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Abstract—Learning System is a method to approximate an
underlying function from a finite observation data. Since batch
learning has a disadvantage in dealing with large data set, online
learning is proposed to prevent the computational expensive. Iter-
ative method called Stochastic Gradient Descent (SGD) is applied
to solve for the underlying function on reproducing kernel Hilbert
spaces (RKHSs). RKHS is widely used in many applications such
as kernel method, radial basis function neural networks, Volterra
filers and estimation of bandlimited functions. This approach has
advantages that there is no local minima problem and convergence
is also guaranteed because of using convex optimisation.This paper
aims to provide background and theory of learning in RKHS which
online kernel method is our main interest. The experiments show the
results of learning from 3 test sets and some important parameters
are also discussed.

Index Terms—Reproducing kernel Hilbert spaces, online learn-
ing, stochastic gradient descent, kernel methods.

I. INTRODUCTION

The goal of learning is to approximate a function from
data samples, perhaps perturbed with noise [1]. In this ap-
proach, learning is considered as finding an approximation
function which estimates an unknown mapping between known
input/output samples. Once such unknown mapping has been
accurately estimated, it can be extended to predict a future
outputs from the known input value [2].

Reproducing kernel Hilbert spaces (RKHSs) have been ap-
plied to a number of well-known problems in signal processing,
control, machine learning and function approximation as this
approach performs advantages in solving these problems. The
strong theoretical foundations of RKHS have been developed [3],
[4] and can be appreciated in comparison to neural networks that
the solutions are global and usually unique since kernel methods
use the idea of convex optimisation in training method which
does not suffer from the problem of local minima [5], [6]. Recent
interest in kernel methods has been dominated by the machine
learning community as it allows to obtain nonlinear algorithms
from linear ones in a simple and elegant manner, for example,
support vector machines, Gaussian process and regularisation
networks [3], [7], [8].

Generally, the batch learning is assumed that the learner is
given all examples simultaneously and allowed to use them as
often as desired. However, it is very inefficient in the case of
training with large data set. Then online learning is employed
instead [9] as it has a better performance in handling a huge
data set. In this framework, only one example is given at a
time and then discarded after learning. Therefore, the learner
receives new information at every moment and adapts to it,
without having a large memory for storing old data [9]. Apart
from easier feasibility and data handling the most important

advantage of online learning is its ability to adapt to changing
environment [10].

Solving for the approximated function with online kernel
method was recently developed under the iterative calculation
called stochastic gradient descent (SGD) [11]–[14] that the
objective function is estimated sequentially. In each data coming,
a new approximation function is produced by making use of
gradient information. Under some mild conditions this approach
is consistent, meaning that as the number of data observations
becomes large, the error between the approximation function and
the true function converges to the minimum possible risk [2].
SGD method has the parameter called learning rate, η, or step
size which determines the length of algorithm movement in the
direction of gradient. An improper value of learning rate can
cause the algorithm to diverge. Moreover, finding a solution
of the approximation function from a finite given sample is
ill-posed as the output from measurements is contaminated by
small errors (noises) such that our function fits very well on the
training data but cannot generalise to future data. The so-called
classical regularisation technique is applied for solving such ill-
conditioned problems. Therefore, the approximation function can
be investigated by minimising the risk functional together with
a stabiliser (penalty or regularisation) term [15]. Regularisation
parameter, ρ, needs to be considered in learning method that it
must be chosen at an appropriate value for each problem.

The characteristic of estimating the function in RKHS is that
the size of model, number of kernels and model parameters,
increased without a limit. The method to bound the growth of
the approximation function called sparse solution is introduced
in [16], [17]. By making use of orthogonal projection, we can
neglect the kernel which contributes an insignificant error. Then,
the size of model and time of calculation can be decreased.

The convergence rate of online kernel method has been
analysed in a number of research studies with variety setting of
learning rate and regularisation parameter. The SGD algorithm
called naive online Rreg minimisation algorithm (NORMA) is
proposed as an online algorithm to find the minimiser of risk
functional. This technique uses decayed learning rate and the
convergence of the algorithm is investgated without probabilistic
assumptions in [14], [18]. The convergence of online learning
using SGD with probabilistic assumption of observation data
is presented in [19]. This paper uses a decaying learning rate
whereas the regularisation parameter is assigned as a constant.
In setting regularisation parameter equal to zero, the convergence
rate can be competitive when the value of learning rate is chosen
appropriately [20].

This paper presents a general framework of online kernel



method in RKHSs used in function approximation (regression)
problem. The background theory starts from least squares solu-
tion in batch learning and then extended to sequential method
called gradient descent and online gradient descent (stochastic
gradient descent-SGD). In online method which is the main
interest of this paper, the important parameters and selected
reproducing kernel are discussed in terms of effects to learning
performance. Data using in experiments is generated from 3
functions added with noise. The simulation results illustrate
characteristics of approximated function which is the output of
kernel method comparing with the given training data and the 3
functions.

In the next section, the general framework for function
approximation in RKHS is described and followed by properties
of reproducing kernel. Least square solution which is the method
to approximate function from finite given data in batch learning is
explained. Characteristics of gradient descent and their extension
to SGD including with the important parameters are explained
in Section III. Finally, simulation results of online kernel method
which training data is generated from 3 test sets are shown.

II. PRELIMINARIES AND NOTATION

In general learning we need to find an unknown characteristic
known as underlying function, f : X × Z → R [7]. A set of
samples is given in the form of observation data {xi, zi}N

i=1 ∈
X × Z. The unknown f is assumed to belong to some RKHS,
Hk, defined on a subset of Euclidian space X ⊆ Rn. We assume
that the space of all possible observations is Z. Neglecting errors,
the observations arise as follows

zi = Lif (1)

where {Li}N
i=1 is a set of linear evaluation functionals defined

on Hk which have a unique correspondence to zi. The complete
set of zi can be expressed by

z =
N∑

i=1

(Lif)ei = Lf (2)

where ei ∈ RN is the ith standard basis vector such that every
value of ei is equal to zero except position i which is equal to
one [21].

A RKHS can be defined as a Hilbert space of functions on X ,
with the property that, for each x ∈ X , the evaluation functional,
Li, which associates f with f(xi), Lif → f(xi), is a bounded
linear functional. The boundedness means that there exists a
scalar M such that

|Lif | = |f(xi)| ≤ M‖f‖Hk
for all f in the RKHS (3)

where ‖ · ‖Hk
is the norm in RKHS [22]. Following from the

Riesz representation theorem, the observations can be expressed
as [23]

Lif = 〈ki, f〉 = f(xi) f ∈ Hk (4)

where ki depends only on xi. Therefore the learning problem
can be stated as follows: given the RKHS of functions (Hk), the
set of functions {ki}N

i=1 ∈ Hk, and the observations {xi, zi}N
i=1,

find a function f ∈ Hk, such that (4) is satisfied [24].
The ki is a positive definite function called the reproducing

kernel (r.k.) of Hk and the unique representation of evaluation

at xi [25]. The function k : X ×X can be defined by the Riesz
representation theorem such that

〈k(xi, ·), k(xj , ·)〉Hk
= k(xi, xj) (5)

where k(xi, ·) is considered as a function of X centered on xi

and we can write k(xi, ·) = ki(·), or more simply ki. There are
several examples of kernel functions. One common kernel used
is the polynomial [26],

k(xi, xj) = (1 + xixj)d where d ∈ N. (6)

Another choice is the Gaussian kernel which is used in Gaussian
radial basis function neural networks

k(xi, xj) = exp(−σ‖xi − xj‖2), (7)

where σ defines the width of the kernel function. Besides,
sigmoid kernels

k(xi, xj) = tanh(κ(xi, xj) + Θ) (8)

are used with suitable value of gain κ and threshold Θ [27].
We can then represent any function in RKHS with reproducing

kernel k in the form

f(·) =
N∑

i=1

αik(xi, ·) (9)

for N ∈ Z+ and αi ∈ R where this expression defines a finite
dimensional subspace of Hk and the reproducing kernels are
a basis for RKHS. The learning problem then reduces to that
of estimating the parameters, αi, in (9) using the information
contained in the observation pairs, {xi, zi}N

i=1.

III. FUNCTION APPROXIMATION AND GRADIENT DESCENT
FOR KERNEL METHODS

In order to find a function approximation in a form of RKHS
function, the problem is reduced to estimate appropriate values
for the parameters, αi. Using the available information contained
in the sample data pairs, {xi, zi}N

i=1. This section summaries
the least squares solution to this problem with a batch gradient
descent method and then extends to online learning case through
stochastic gradient descent method (SGD).

A. Least squares solution

The approximation problem can be investigated for a best
possible solution, u. Since Z is a subspace of RN , the range
of R(L) is closed [28]. It always has a unique solution z =
L−1f when the operator L has an inverse. The following theorem
presents a least squares solution of u.

Theorem III.1. [28] Suppose R(L) is closed and z ∈ Z , then
the following conditions on u ∈ Hk are equivalent:

1) ‖Lu− z‖Z = inf{‖Lf − z‖Z for any f ∈ Hk}
2) L∗Lu = L∗z
3) Lu = Pz.

Note that, P is the projection of z onto R(L) and L∗ is the
adjoint operator to L. However, we may have the case that the
null space of L, N(L) 6= 0. The set of least squares solutions is
given by [29]

Sg = {u ∈ Hk | u = u0 + v, Lv = 0} (10)



where v = N(L). This set is a closed convex set which
contains a unique vector of minimal norm called the generalised
solution [28] and denoted by f†:

‖f†‖Hk
= inf{‖u‖Hk

| u ∈ Sg}. (11)

The generalised inverse of L is defined by the mapping L† : Z →
Hk such that L†z = u and it has the relationship presented in
the following theorem [29].

L† = (L∗L)†L∗ = L∗(LL∗)† (12)

Then [28]
f† = L†z = L∗(LL∗)†z. (13)

In the case of RKHS, there exist expressions for the operators
L∗ and LL∗ [21]

L∗c =
p∑

i=1

k(xi, ·)ci

LL∗ =
p∑

j=1

p∑

i=1

k(xi, xj)eje
T
i (14)

for any c ∈ Rp. Let matrix K be a representation of LL∗ that
[K]ij = k(xi, xj). Assuming the inverse of the matrix K exists,
we have (LL∗)† = (LL∗)−1 = K−1. From (13), the prediction
at a future data, x, is given as the following

f†(x) = 〈f†(·), k(x, ·)〉 (15)

which can be written as

f†(x) = 〈L∗(LL∗)†z, k(x, ·)〉
= 〈(LL∗)†z, Lk(x, ·)〉
= 〈k(x, ·), (LL∗)†z〉 (16)

Using the definition of K−1, we then have

f†(x) = kT K−1z (17)

where k is the vector

k = Lk(x, ·) = [k(x1, x), . . . , k(xp, x)]T . (18)

However, the problem of determining the generalised solution
can sometimes be ill-conditioned. In this situation, it is necessary
to use the technique which applies to the case that R(L) is not
closed.

When R(L) is not closed, the generalised solution f† does
not exist for any z as the generalised inverse is not continuous.
The problem of determining the generalised solution is ill-posed.
Hence, it is necessary to use the so-called regularisation theory.
Roughly speaking, this theory performs the continuous approx-
imations to the discontinuous inverse, generalised inverse, of
operator L [29]. Then, the solution of the problem is considered
as finding function freg which is a least squares solution.

Lemma III.2. [29] For any value of regularisation parameter
ρ > 0, there exists a unique solution freg ∈ F which minimises
the functional

greg(f) = ‖Lf − z‖2Z + ρ‖f‖2F (19)

and equivalent to the unique solution of the Euler equation

(L∗L + ρI)freg = L∗z. (20)

Then
freg = (L∗L + ρI)−1L∗z. (21)

This lemma is induced using Tikhonov regularisation which is
a powerful tool for finding stable approximations for inverse
problem. This method imposes well-posedness on ill-posed
problems by making use of prior information like smoothness
constraints [30]. In the framework of Tikhonov’s regularisation,
smoothness constraint is represented in terms of penalisation
which is revealed by the term ρ‖f‖2 in (19). Introducing ρ
as a smoothness constraint can also overcome the problem of
overfitting that the approximation function fits very well on
observation data but cannot perform prediction of an unforseen
data. From (21), the expression is equivalent to

freg = L∗(ρI + LL∗)−1z. (22)

To compute the prediction value at point x, we have

freg(x) = 〈freg(·), k(x, ·)〉 (23)

and can be written as

freg(x) = 〈(ρI + LL∗)−1z, Lk(x, ·)〉
= 〈Lk(x, ·), (ρI + LL∗)−1z〉
= kT (ρI + K)−1z (24)

where k is the vector presented in (18). The regularised solution,
(24), is same as the generalised solution, (17), where K is
replaced by ρI + K.

B. Batch gradient descent

In this section, we present the gradient descent method to
investigate the regularised solution from given observation data.
This method differs from the previous technique that the result
is produced at each step of iterations. As a number of iteration
increased, we will have more accuracy of approximated function.
Let the non negative cost functional greg : Z → R be defined
by

greg(x) =
1
2
‖Lf − z‖2 +

ρ

2
‖f‖2 (25)

where ρ > 0 known as the regularisation parameter. Solution
of the function approximation problem is a minimiser of greg .
Given an initial approximation, f0, the gradient descent method
for minimising greg is given by

fn+1 = fn − ηn∇greg(fn) (26)

where∇greg(fn) is the gradient of greg at fn and ηn is a learning
rate or step size for moving to a direction of decreasing greg .
[28] presented that

∇greg(fn) = L∗Lfn − L∗z + ρfn (27)

and we then have

fn+1 = fn − ηn(L∗Lfn − L∗z + ρfn)
= (1− ηnρ)fn − ηnL∗(Lfn − z). (28)



Using (9), the solution can be given by

fn+1 = L∗αn+1 =
n+1∑

i=1

αi
n+1ki. (29)

Substitution the above expression to (28), the update for α is as
the follows

αn+1 = (1− ηnρ)αn − ηn(Kαn − z). (30)

IV. ONLINE STOCHASTIC GRADIENT DESCENT

This method uses only a pair of data to update the parameters
at each iteration. After that, the pair of data is discarded and wait
for a new pair of data for the next iteration. Suppose that, at each
iteration, we observe only a part of Z, denoted zn (typically the
nth observation). The associated linear evaluation functional at
each iteration is then [13]

Lnf = zn. (31)

Generally, the function approximation of f can be achieved by
minimising a risk functional, ĝ(fn) = 1

2‖Ln+1fn − zn+1‖2
where fn is a function approximation at time n. However,
the problem of estimating the function fn is ill-posed [15] in
the sense that the estimation function fits very well on the
observation data but cannot fit the unforeseen data. To overcome
this problem, Tikhonov regularisation method [30] is applied
for solving this problem. We now define the instantaneous non-
negative functional

ĝreg(fn) =
1
2
‖Ln+1fn − zn+1‖2 +

ρ

2
‖fn‖2 (32)

where ρ
2‖fn‖2 is a regularisation term and ρ ≥ 0 is a regulari-

sation parameter [11].
The objective of online learning is then to evaluate function

fn which minimises the risk functional ĝreg . Using SGD, the
function update, fn+1, will be calculated at each incoming
observations, (xn, zn), by

fn+1 = fn − ηn∇ĝreg(fn) (33)

where ∇ĝreg(fn) is the instantaneous gradient of ĝreg or the
direction of gradient descent at fn and ηn is the learning rate.
Hence, we obtain the function update

fn+1 = (1− ηnρn)fn − ηnL∗n+1(Ln+1fn − zn+1) (34)

where L∗ is the adjoint operator of L defined by 〈Lf, z〉 =
〈f, L∗z〉. The instantaneous gradient of ĝreg at fn is given by

∇ĝreg(fn) =
∂ĝreg(fn)

∂fn

= L∗n+1(Ln+1fn − zn+1) + ρnfn. (35)

Here, for some constants, L∗n+1a = kn+1a and also L∗n+1fn =
fn(xn+1), therefore

fn+1 = (1− ηnρn)fn − ηnkn+1(fn(xn+1)− zn+1).
(36)

From (9), the function update which is the approximation of the
unknown function we need to find, can be written in the form

of kernel function. Then, the function update, fn+1, is [31]

fn+1(x) = (1− ηnρn)
n∑

i=1

αi
nki(x)− ηnen+1kn+1(x)

=
n+1∑

i=1

αi
n+1ki(x) (37)

where the prediction error en+1 = Ln+1fn − zn+1 and
L∗n+1en+1 = kn+1en+1. Considering (37), the parameter αn+1

n+1

equals to −ηnen+1, the function update at time n + 1 is the
previous function update added with kernel function which is
weighted by prediction error and learning rate. Hence, the update
parameters αi

n+1 are calculated from [32]

αi
n+1 =

{
(1− ηnρ)αi

n for i ≤ n
−ηnen+1 for i = n + 1.

(38)

In SGD, the learning rate, ηn, plays an important role as
the step size for moving in the direction such that ĝreg(fn) is
minimised. The value of the learning rate to be used in algorithm
is critical. Small values can lead to a slow minimisation process
whereas high values may cause divergence.

Convergence of online learning has been guaranteed in a
number of papers with variety setting of learning rate and
regularisation parameter. The SGD algorithm called naive online
Rreg minimisation algorithm (NORMA) is proposed as an online
algorithm to find the minimiser of risk functional. This technique
uses decayed learning rate and the convergence of the algorithm
is investgated without probabilistic assumptions in [14], [18].
The convergence of online learning using SGD with probabilis-
tic assumption of observation data is presented in [19]. Also,
the convergence of SGD is guaranteed by using the decaying
learning rate and regularisation parameter as given in [33],

V. EXPERIMENTAL DESIGN AND RESULTS

In this section, kernel method are applied to 3 test problems
which are function approximation problems. The training data
(200 data points) were randomly generated from sinc function,
exponential function and Paley-Wiener (PW) RKHS [34], [35].
These 3 test functions are selected due to their variety of
complexity. Exponential function is the simplest and PW is the
most complex. The corresponding r.k. for PW RKHS is

k(x, x′) =
d∏

i=1

σi

π
sinc[

σi

π
(xi − x′i)] (39)

where sinc(u) = sin(πu)/πu. Observation data was generated
from a known function belonging in the PW RKHS

f(·) =
M∑

i=1

miki(·) (40)

where M was chosen to be 20, mi were randomly selected
and kernel centres were uniformly distributed from the interval
[−10, 10]. The data generated from function in (40), with d = 1
and σ1 = 3 was used as the training data. Also, the data was
added with noise such that

f̂(xn) = f(xn) + N(0, σ2) (41)



where N(0, σ2) is a Gaussian distribution with variance σ2 =
0.2 throughout. The performance of the algorithms was assessed
using the usual MSE

MSE =
1
N

N∑

i=1

(f(xi)− zi)2 (42)

which is calculated on the test set (50 data points). The algorithm
for kernel method is summarised as follows:

1) Choose an appropriate reproducing kernel function and
define their parameters. This study used kernel function
in (7).

2) Choose a value for regularisation parameter ρ ≥ 0 and
learning rate η ≥ 0.

3) For a whole set of training data, calculate the update of α
from (30) and the prediction from (29) where the kernel
function in each term has a centre at each data point.

4) Calculate MSE and repeat step (3)-(4) until it reaches the
iteration number.

TABLE I
RESULTS OF KERNEL METHOD FROM 3 TEST SETS

Test set η ρ kernel width average MSE
sinc 0.2 0.005 50 0.0223

exponential 0.8 0.005 30 0.4495
PW 0.8 0.001 1 0.1094

Table I represents the results from online learning with
kernel method. Parameters using in the table were the best
set (minimum MSE) for each test set. In these experiments,
Gaussian kernel was selected as reproducing kernel and kernel
width was the corresponding parameter. The kernel width is a
width of gaussian radial basis function which the small value
means narrow shape. The proper values of kernel width in 3 test
sets can be investigated from trial and error and the idea that
complex data set needs a small value of kernel width.

The regularisation paremeter, ρ, is an important parameter to
prevent overfitting problem. This parameter also means a level of
believing in data set. Small value of regularisation parameter is a
high level of believing. Then this value should be set as a small
positive value (less than 0.005) as we trust in data set in high
level but not in a hundred percent level. The other parameter is
a step size parameter, η, which is a length of step to go down to
minimum of error bound. The large value can cause divergence
whereas the small value can be a very slow convergence.

From the table, the average MSE of sinc function is the
smallest whereas the MSE of exponential function is the highest.
This is an effect of using Gaussian kernel because the shape of
Gaussian kernel is similar to sinc function then online kernel
method performs better approximation than using in exponential
data. In case of learning from PW test set, MSE is higher than
sinc test set due to the high complexity of PW function. Instead
of using Gaussian kernel, we can use other reproducing kernel
as presented in Section II.

The results of approximation function generated from online
kernel method using Gaussian kernel after 200th iteration for 3
test sets are shown with solid line in Figures 1- 3. The approxi-
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Fig. 1. Result of learning from sinc test set. Shown are approximated data
(‘−−’), training data (‘··’) and sinc function (‘−−’).
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Fig. 2. Result of learning from exponential test set. Shown are approximated
data (‘−−’), training data (‘··’) and exponential function (‘−−’).

mated data (solid line) in 3 test sets is closed to their true function
(dash line) which means that our kernel method performs as an
acceptable approximator. Moreover the approximated data does
not have the overfitting problem that the solid line pass through
every data points.

MSE of 3 test sets are illustrated in Figure 4 in logscale. From
the results, online kernel method has an ability to learn non-linear
test sets because kernel method is a non-linear approximator.
Moreover, kernel method uses the idea of convex optimisation
then it does not have a problem of local minima. Then, initial
value of α can be any value (always set to zero) and the
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convergence are not effected.

VI. CONCLUSIONS

This work presents an overview of learning in RKHS which
is mainly interested in solving the approximation function from
finite given data. A sequential learning method called the online
kernel method, is introduced including with characteristics of im-
portant parameters: step size, regularisation parameter and kenel
width according to selected reproducing kernel. Performance of
learning is investigated by using 3 sets of data generated from
sinc, exponential and PW function. From experimental results,
kernel method can be use as approximator for non-linear training
data and does not have a problem of local minima. Convergence
of the method also guaranteed corresponding to the conditions
on parameters setting. However, calculation in online kernel

method using SGD can be very slow due to a large number
of data set. Technique to increase a speed of calculation should
be investigated in future research.
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