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Abstract — The radiative heat transfer in highly
porous materials, open cellular structure or open-
celled foam, is reviewed to characterize the radiative
transport process in terms of fundamental radiative
properties such as extinction coefficient (), albedo ()
and scattering phase function :P(cosé). Firstly, the
geometric shape and topology of open-celled foam are
deeply presented. Thereafter, the governing equation
for radiative transfer (RTE) and the solution methods
are represented. Finally, analytical expressions
relating such radiative properties to basic structural
parameters developed through mathematical modeling
and experimental studies are briefly recalled and
discussed.
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1. INTRODUCTION

The thermal transport consisting of conduction,
convection and radiation in highly porous, cellular foams
with open cells have been studied extensively in recent
years [1-6]. The motivation is attributed to their high
surface area to volume ratio as well as enhanced flow
mixing capability due to high tortuosity. From this
reasons, open-celled foams have been proposed for many
applications such as porous tissue engineering scaffolds
[9,10], hydrogen storage technologies [11], solar energy
storage [12], electrochemical cells [13] and radiant porous
burner [14, 15]. Regarding to three mode of heat transfer,
[1] thermal radiation is a dominant mode in many high
temperature systems. Understanding of radiative transfer
in porous materials is important for design, operation and
simulation of the energy conversion and utilization
systems. However, it is particularly difficult to estimate
radiative heat transfer in solid foams due to the
complexity of the architecture. In order to improve the
accurate prediction and operation of open-celled foam, the
radiative properties of dispersed media is employed [16,
17]. Commonly, three techniques are used to predict the
radiative properties of dispersed media: geometric law,
transmittance  measurement  technique and  X-ray
tomography method. For the first technique, the porous
structure equivalent to a random arrangement of particles

of given shapes is considered and the Mie theory or the
geometric optics laws is conducted [18-20]. The second
technique is based on reflectance and transmittance
measurements of the medium and the inverse method is
operated [21, 22]. Finally, the real complex structures of
the porous medium using the X-Ray tomography method
and Monte Carlo simulation at the local microscopic scale
are performed [23, 24]. However, Monte Carlo
simulations in tomographed samples are not convenient in
practice because it require a gigantic computational effort.

Among the radiative properties, it is particularly
interesting to evaluate the extinction coefficient (5)
because it is a local property, i.e., the scattering (o) and
absorption coefficient (x) are presented simultaneously in
the extinction coefficient (f = x + o). Usually, the
extinction coefficient depends on the porosity (¢) and on
the morphological structure of the foam. In addition,
several studies of radiative properties of open cellular
porous medium pay attention to the scattering phase
function (P(cos#)) and the albedo (w) [17, 19, 25, 26].

From above observation, the aim of the present article
is to review the experimental and theoretical studies of the
fundamental radiative properties consisting of extinction
coefficient (5), albedo (w) and scattering phase function
(P(cos#)) in an open cellular porous material. To deeply
gain understanding in characteristics of the radiative
transport process of the open-celled foam, the geometry of
this material is also discussed in the first part of the
present article.

2. OPEN CELLULAR GEOMETRY

A cellular solid [27] is one made up of an
interconnected network of solid struts or plates which
from the edges and faces of cells, in which three typical
structures are shown in Figs. 1 [28]. As seen from
Fig. 1(a), the simplest structure is a two-dimensional array
of polygons which pack to fill a plane area like the
hexagonal cells of the bee; and for this reason this
two-dimensional  cellular materials is called as
honeycombs. More commonly, the cells are polyhedral
which pack in three dimensions to fill space; thus three-
dimension cellular materials foams are defined as shown
in Figs. 1(b) and 1(c). The foam is said to be closed-celled



(Fig.(b)), because the faces of each cell, of which are solid
too, is sealed off from its neighbors. Figure 1(c) is said to
be open-celled, if the solid of which the foam is made by
containing in the cell edges only (so that the cells connect
through open faces); and of course, some foams are partly
open and partly closed.
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Figures 1 Microstructures of (a) a two-dimensional honeycomb,
(b) a three-dimensional closed-cell foam and
(c) a three-dimensional opened-cell foam.

Regarding to above definitions, the present article
elaborate on open-cell foam; thus the geometry and
characteristics of the open-cell foam is discussed here in
more depth. The unit cell which pack to fill space in three
dimensions are sketched in Fig. 2 [27], which shows the
shapes available for packing together to fill space; their
geometries are characterized in Table 1 [27].
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Figures 2 Three-dimensional polyhedral cells:

(a) tetrahedron, (b) triangular prism, (c) rectangular prism,
(d) hexagonal prism, (e) octahedron, (f) rhombic dodecahedron,
(g) pentagonal dodecahedron,

(h) tetrakaidecahedron and (i) icosahedrons.

Table 1 Geometric properties of isolate cells [27]

Number

Cell shape Nl;;?:k;se,rfof of egges, ’:l/:r?:ikgzsr,c\)f vocl:slrLe Surface area Comments
Tetrahedron 4 6 4 0.1881° NER Regular
Triangular Prism 5 9 6 («/5/4) A ~/§|2/2(1+ 2\/§A) Packs to fill space
Rectangular Prism 6 12 8 IPA 2% (1+2A) Packs to fill space
Hexagonal Prism 8 18 12 (3«/§/ 2) A NEE (1+ 2437 ) Packs to fill space
Octahedron 8 12 6 0.471F 3.461° Regular
Rhombic Dodecahedron 12 24 14 2.79P 10.581° Packs to fill space
Pentagonal Dodecahedron 12 30 20 7.6631° 20.646/ Regular
Tetrakaidecahedron 14 36 24 11.31° 26.801 Packs to fill space
Icosahedrons 20 30 12 2.182° 8.6601° Regular




In the approach for foam geometry creation,
conventionally, the shape of the pore is assumed to be
spherical and spheres of equal volume (unit cell) are
arranged according to the lattice structures of the
body-centered cubic (BCC) lattice [29]. The foam unit cell
geometry is obtained by subtracting the unit cell cube
from the spheres at the various lattice points as shown in
Fig. 3(a). The cross-section of the foam ligaments is a set
of convex triangles (plateau borders), all of which meet at
symmetric tetrahedral vertices. It may be noted that there
is a no uniform distribution of material mass along the
length of the ligament with more mass accumulating at the
vertices (nodes) resulting in a thinning at the center of the
ligament. A schematic illustration of the foam geometry in
BCC unit cell is shown in Fig. 3(b).

Cube Final geometr

(b)

Figures 3 Schematic of (a) the representation of foam geometry
creation in the body-centered cubic structure (BCC) and
(b) a foam geometry in BCC unit cell

To simply clarify the geometry of open cellular porous
material (or open-celled foam), a shape of this materials
referred from Fig. 2 can be arranged as three-dimensional
pentagonal dodecahedron which a perspective view is
depicted in Fig. 4 [30]. The open-celled foam consists of
three-dimensional dodecahedron-like  cells  with
pentagonal or hexagonal open-cell walls, where a
pentagonal dodecahedron cell is illustrated as a typical
example. For this material, it is difficult to specify a pore
shape or size, and thus two quantities, i.e., the porosity (¢)
and the pore density, are used to describe the material.

Porosity (¢) or void fraction is a measure of the void
(empty) spaces in a material, and is a fraction of the
volume of voids over the total volume, between 0-1, or as
a percentage between 0-100%. The porosity of porous

medium describes the fraction of void space in the
material. It is defined by the ratio following as:

Ve, )
b=y

where Vy is the volume of void-space (such as fluids) and
V7 is the total or bulk volume of material. The porosity of
commercially available open-celled foams is typically
about 0.8 — 0.95 [8, 19, 25].

The pore density is the number of pores present per
unit length of the material, typically expressed in unit of
pore per inch (PPI), and is roughly constant in the three
directions. Usually the number of pores is sufficiently
large.
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Figures 4 Perspective view of a pentagonal dodecahedron
for open-cellular porous materials.

3. RADIATIVE HEAT TRANSFER EQUATION

3.1 Continuum Treatment for Radiative Transfer

The fundamentals of radiation heat transfer in
participating media (absorbing, emitting and scattering
media) have been given by many classical text books
[31-34]. Their approach treats the solid-fluid phases as a
single continuum. Therefore, heterogeneous, solid and
fluid phases are presented simultaneously, differential
element is applied. The open-celled foam is also
characterized as heterogeneous participating media and
thus can be treated as a continuum for purposes to
describe the propagation of radiative intensity through the
medium. In the continuous approach, the radiative heat
transfer equations (RTE) are derived by using the
principle of energy conservation. This approach is
acceptable if the size of the system is much larger than the
wavelength of the radiation. In general, the assumptions of
randomness, homogeneity, and continuity are implied in
the formulation. Homogeneity is essential for the medium
to be treated as a continuum. A dispersed medium may be
considered homogeneous if particle diameters are small
compared with the medium thickness. This approach
yields the classical RTE which is used for most radiative
heat transfer problems in absorbing, emitting and
scattering media. The RTE can be formally derived by
making a radiative energy balance on a differential
volume element along a single line of sight. It is an
integro-diferential equation that may be written in terms
of the spectral intensity I, of radiation propagating in a
direction Q as:
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where o; and «; are the scattering and absorption spectral
volumetric coefficients, respectively, and 1,, is Planck's
blackbody function and d<«2is an elemental solid angle
surrounding the direction . The spectral scattering phase
function Pi(.d—).Q) represents the probability that the
radiation propagating in a direction 7 is scattered in the
direction £2. The phase function is normalized such that

1 :
ELHB(Q —>0)d2=1 ®3)

Commonly, the total attenuation of spectral intensity 1,
by both absorption and scattering is known well as
extinction (f;) [31, 33]. Thus, an extinction coefficient is
defined by

p.=k,+0,- (@)
Here, x; and o; are spectral absorption and spectral
scattering coefficient, respectively. Moreover, the

scattering albedo (w,) is generally employed as given by

-9 _%. ®)
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After introducing the extinction coefficient defined in
Equation (4), one may be restate equation (2), RTE, in its
quasi-steady from as:

IER—

v, e
" Tan LIﬂ(Q)PA(Q >y (6)

The last two term in Equation (6) are often combined
and are then known as the source function for radiative
intensity,

$:(2)=(1-a,) By,
2L (o) (@5 a)e. D)

4z 1
Finally, Equation (6) becomes

WD) 51 (2)=5(2). (®)
ds
This equation only involves three the spectral radiative
properties of the medium, extinction coefficient, albedo
and phase function. These properties are those of a
pseudo-continuous medium equivalent in terms of
radiative transport, to the real dispersed material.

3.2 Solution of RTE

In general, a solution of the radiative heat transfer
equation (RTE) has been solved by two directions: exact
and approximated solution method. Both methods may be
placed into four different categories: 1) Geometry, 2)
Temperature Field, 3) Scattering and 4) Radiative
properties. A more details of these categories are
discussed as following:

1) Geometry in the radiation problem may be one-
dimensional, two-dimensional or three-dimensional. Most
investigations to date have dealt with one-dimensional
geometries, and the vast majority of these dealt with the
simplest case of a one-dimensional plane-parallel slab as
shown in Fig. 5 [31].
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Figures 5 Coordinates for solution of RTE for a plane-parallel slab.

2) The least difficult situation arises if the temperature
profile or temperature field within the medium is known,
making Equation (6) a relatively simple integral equation.
Consequently, the most basic case of an isothermal
medium has been studied extensively. Alternatively, if
radiative equilibrium prevails, the temperature field is
unknown but uncoupled from conduction and convection,
and must be found from directional and spectral
integration of RTE. In the most complicated scenario,
radiative heat transfer is combined with conduction and/or
convection, resulting in a highly nonlinear integro-
differential equation.

3) The solution to a radiation problem is greatly
simplified if the medium does not scatter. In that case the
equation of transfer reduces to a simple first-order
differential equation if the temperature field is known. In
scattering case, the isotropic scattering is often assumed.
Relatively few investigations have deal with the case of
anisotropic scattering, and most of those are limited to the
case of linear-anisotropic scattering.

4) Although most participating media display strong
nongray character, the vast majority of investigations to
date have centered on the study of gray media. In addition,
while radiative properties also generally depend strongly
on temperature, concentration, etc., most calculations are
limited to situations with constant properties.

The exact analytical solution of RTE in homogeneous
participating media, in which here focuses on the open-
celled foam, are difficult resulting from an integro-
differential equation of radiative intensity in five
independent  variables, including of three space
coordinates and two directions coordinates [31].



Therefore, most exact solutions are limited to simplest
case dealing with a one-dimensional plane-parallel gray
media; it is isothermal or at radiative equilibrium and the
scattering radiation is usually isotropic, if scatter is
considered [32]. From this simplest case, the RTE or
Equation (6) becomes

ﬂw"'lz(rvﬂ)zsz(r’ﬂ)' ©)
dr
Here u is the cosine of angle 6 between the direction Q
and ot direction, 7 is optical thickness and S,(z, )
represented as the source function. Theses parameters are
defined as

dr=B,ds,
r=[ pos (10)
$.(2)=(1-@,),
+% ()P () ()
P (sl ) = 28R, ()R (1) (12)
a, =1, (13)

where P,(z) and Pn(;/) are the Legendre polynomial of
order n and argument x and ;/ [31]. The phase function
Pa(1, ;/) is independent of the azimuthal angle

In the past of a few decades, several approximated
solutions of RTE are devised, but the majority of radiative
heat transfer analyses today appear to use one of four
methods [30]: 1) The spherical harmonics method or a
variation of it; 2) The discrete ordinate method or its more
modern form; 3) The zonal method; 4) The Monte Carlo
method. By comparing the first two approximation
methods, in the simplification, the spherical harmonics
method is more simplifier than the discrete ordinate
method because the RTE can be reformed to simple partial
differential equations and accuracy improves only slowly
for higher-order approximations while mathematical
complexity increases extremely rapidly. The last two
approximate methods are elaborate schemes and more
difficult than the first two approximation with the
simplified problems of radiative transfer, particular in
Monte Carlo technique. Figure 6 shows the comparison of
Monte Carlo and conventional solution methods [33]. As
the complexity of the problem increase, however, the
complexity of formulation and solution effort increase
much more rapidly for conventional techniques. For
problems beyond a certain complexity, the Monte Carlo
solution will be preferable. Unfortunately, there is no way
to determine a piori precisely where this crossover point in
complexity lies. The disadvantage of Monte Carlo method
is that they are subject to statistical error.

Conventtonal
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Complexity of formulation
Solution effort {CPU time)
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Figures 6 Comparison of Monte Carlo and
conventional solution methods.

4. THERMAL RADIATIVE PROPERTIES

The extinction coefficient g, albedo » and scattering
phase function P(cosé#), which appear as parameters in
RTE, are the radiative properties need for radiative
transfer calculations in participating media (Open-cellular
porous media). Several attempts to model and to measure
the radiative properties of complex open-cellular porous
media have been made.

Glicksman and Torpey [35] considered foam (Open-
cellular) as a set of randomly oriented black-body struts
and used an extinction coefficient in single-particle
properties form of unity. They neglected scattering by
struts. The strut cross-section was constant and occupied
two-thirds of the area of an equilateral triangle formed at
the wvertices (Fig. 7). The resulting mean extinction
coefficient g is a function of the cell diameter d, the foam
density o, and solid polymer density o5 as given by

B =410 N fo; /Ps , (14)

d
where f; is the fraction of solid material in the strut.
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Figures 7 Dodecaeder model for a foam cell: (a) perspective view;
(b) cross-section through struts and walls



Hsu and Howell [36] presented a semi-empirical
formula of the effective extinction coefficient # (m™) as a
function of actual pore size (Dy,) in mm:

_3(1-¢). 15
p==7 (15)

m

They claimed that Equation (15) is applicable to pore
diameter greater than 0.6 mm.

Hendricks and Howell [37] found that a modified
geometrical optics relation fits the data for the integrated
extinction coefficient of both zirconia (PS ZrO,) and
silicon carbide (SiC) and recommended the following
relations

5o ¥ (1-¢) (16)

where the parameter ¥ are 4.4 for PS ZrO, and 4.8 for
SiC. Moreover, the correlations of extinction coefficient
of Hendricks and Howell [37] were compared to Hsu and
Howell [36] data and the Hale and Bohn [38] along with
the 488 nm data as shown in Fig. 8.
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Figures 8 Extinction coefficient vs. pore diameter
for various reticulated ceramics.

Two dual-parameter phase functions were investigated
for the materials: one based on the physical structure of
open-cellular porous ceramics and the other on a modified
Henyey-Greenstein phase function. The first is a linear
combination of a dilraction-dominated phase function
(Pqifp), an isotropic phase function, and a back-scattering
phase function (P ref), taking the mathematical form:

f Py ()

+ fback,l Pdif ref (9) ' (17)

Pl (0) = fisen,/l +(1_ fisen,i - back,i)

The second phase function was a modified Henyey-
Greenstein phase function given by the mathematical
expression:

Pi (9) = fisen,i +(1_ fisen,ﬂ) I:>HG,}~ (6) ! (18)

where Py ; is the Henyey-Greenstein phase function and
given by [33]

1-9; : 19
(O)=——— (19)
(1+9? +2g, cos6)”

Here g, is parameter of Henyey-Greenstein phase
function.

To clarify the understanding in this phase function, the
composed of Henyey-Greenstein phase function [39] is
shown in Fig. 9.

Isotropic scattering

Backward scattering (g,) Forward scattering (gl)

Figures 9 the composed of Henyey-Greenstein phase function.

Doer man and Sacadura [40] proposed a sophisticated
models for the extinction coefficient, albedo and phase
function of open cell foam on the basis of geometrical
optics and diffraction theory, but, unfortunately, they did
not compare model predictions with experimental data.

Fu et al. [41] used a unit cell model (Fig. 10) to predict
the extinction coefficient § and single scattering albedo w
of reticulated ceramics which the estimated results of
Fu et al. [41], i.e., B and o were illustrated in Fig. 11 and
Fig. 12 respectively.
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Figures 10 Schematic of unit cell used for
the radiative charcteristics model.



1200 T T

1000
— 800
£
=

600

400

[ 0.95
1 n ) -l |
20%.0 0.2 04 0.6 0.8 10

Figures 11 Dependence of the extinction coefficient  on
the solid reflectivity p for PPC = 4
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Figures 12 Dependence of the single scattering albedo w on
the solid reflectivity p, for PPC = 4

Kamiuto [42] derived analytical formulas for the
radiative properties of open-cellular porous media by
decomposing a Dul’nev’s unit cell into two cylindrical
struts and one spherical strut juncture as depicted in
Fig. 13 [42] and by applying geometrical optics and
diffraction theory to these scatterers which were assumed
to be randomly oriented in space. Note that there exist
three struts in a unit cell but only two are effective in the
radiation process because the vertical strut is located in the
shadow region of the strut juncture, when thermal
radiation is normally incident on the upper surface of the
unit cell, and thus does not interact with the incident
thermal radiation.

Kamiuto’s scaled radiative properties is thus obtained
from the equation of transfer where the diffraction
scattering phase function is eliminated utilizing Dirac’s
delta function. The scaled radiative properties are given by

z|(6 % , 4w -1
,B:Z[(;) W +J—;(1—W)][[Dc(l—w)] - (20)

w=0.5+cos Ecos%%—lﬁ%n] (21)
D, =0.254PPI , (22)
o=p,, (23)
% =% (24)

Here, w is the dimensionless width of a strut consisting of
a cubic unit cell, D¢ is the nominal cell diameter defined
by 0.254PPI (Pores per inch) in which PPl denotes the
manufacturing provided mean pores per inch and gq is the
asymmetry factor of the surface-seattering phase function
of a diffuse sphere. For the parameter py, it denotes as the
hemispherical reflectivity of the strut and strut junctures.
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Figures 13 Model systems for open-cellular porous materials:
(a) perspective view (pentagonal dodecahedron cell);
(b) unit-cell model by Dul’nev;
(c) rearranged unit-cell model;

(d) equivalent scatterers derived from the unit-cell

Recently, Zhao et al [4] performed the experimental
measurements on radiative transfer in FeCrAlY (A steel
based high temperature alloy) foams having high porosity
(95%) and different cell sizes, manufactured at low cost
from the sintering route. They proposed that the extinction
coefficient was function of porosity ¢, cell size d, and
wave length A as obtained by



_ C o appm (1—(/5)“_0'5
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The value of the constant C and n were determined by
matching the predicted spectral extinction coefficients
from Equation (25) with those measured, as shown in
Fig. 14. It is found that n = 1 for all the three samples
tested, and C = 0:445, 0.278 and 0.30 for the 30, 60 and
90 ppi foam sample, respectively.
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Figures 14 Matching predictions with test data for
spectral extinction coefficient.

In addition, one of the authors [43] has proposed the
extinction coefficient based on Kamiuto’s scaled radiative
model (Equation (20)) depicted in Fig. 15. Computations
cover the range of PPI from 5 to 120 and porosity from
0.75 to 0.95. The scaled extinction coefficient decreases
with an increase in porosity ¢ and increases with PPI and
is approximately represented by the following expression:

=(71.508-20.62¢—45.871¢° ) PPI , (25)
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Figures 15 Dependence of the scaled extinction coefficients
on the pores per inch (PPI) with the porosity (¢) as a parameter

5. CONCLUSIONS

In the present article review, the major conclusions
and recommendations can be summarized as follows:

1) The geometry of the highly porous material, open
cellular structure or open-celled foam, can be arranged as
three-dimensional pentagonal dodecahedron owing to it
consists of three-dimensional dodecahedron-like cells with
pentagonal or hexagonal open-cell walls.

2) The open cellular porous media is commonly
characterized as heterogeneous participating media and
thus can be treated as a continuum for purposes to
describe the propagation of radiative intensity through the
medium.

3) The solution of the radiative heat transfer equation
(RTE) is generally solved by two directions: exact and
approximated solution method. Both methods may be
placed into four different categories, i.e., geometry,
temperature field, scattering and radiative properties.

4) The extinction coefficient g, albedo « and
scattering phase function P(cosd) are significant
parameters of radiative properties for solving RTE in
participating media (Open-cellular porous media).

5) The extinction coefficient g, usually, depends on the
porosity (¢) and on the morphological structure of the
foam, here is the cell or pore diameter.

6) The phase function P(cosé) used for predicting the
RTE of open-cellular porous material, favorably, base on
Henyey-Greenstein phase function and its application.
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