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     Abstract – The radiative heat transfer in highly 

porous materials, open cellular structure or open-

celled foam, is reviewed to characterize the radiative 

transport process in terms of fundamental radiative 

properties such as extinction coefficient (β), albedo (ω) 

and scattering phase function :P(cos). Firstly, the 

geometric shape and topology of open-celled foam are 

deeply presented. Thereafter, the governing equation 

for radiative transfer (RTE) and the solution methods 

are represented. Finally, analytical expressions 

relating such radiative properties to basic structural 

parameters developed through mathematical modeling 

and experimental studies are briefly recalled and 

discussed. 

 

Keywords – Radiative Heat Transfer, Open –Cellular 

Porous Material, Extinction Coefficient  

 

1. INTRODUCTION 

The thermal transport consisting of conduction, 

convection and radiation in highly porous, cellular foams 

with open cells have been studied extensively in recent 

years [1-6]. The motivation is attributed to their high 

surface area to volume ratio as well as enhanced flow 

mixing capability due to high tortuosity. From this 

reasons, open-celled foams have been proposed for many 

applications such as porous tissue engineering scaffolds 

[9,10], hydrogen storage technologies [11], solar energy 

storage [12], electrochemical cells [13] and radiant porous 

burner [14, 15]. Regarding to three mode of heat transfer, 

[1] thermal radiation is a dominant mode in many high 

temperature systems. Understanding of radiative transfer 

in porous materials is important for design, operation and 

simulation of the energy conversion and utilization 

systems. However, it is particularly difficult to estimate 

radiative heat transfer in solid foams due to the 

complexity of the architecture. In order to improve the 

accurate prediction and operation of open-celled foam, the 

radiative properties of dispersed media is employed [16, 

17]. Commonly, three techniques are used to predict the 

radiative properties of dispersed media: geometric law, 

transmittance measurement technique and X-ray 

tomography method. For the first technique, the porous 

structure equivalent to a random arrangement of particles 

of given shapes is considered and the Mie theory or the 

geometric optics laws is conducted [18-20]. The second 

technique is based on reflectance and transmittance 

measurements of the medium and the inverse method is 

operated [21, 22]. Finally, the real complex structures of 

the porous medium using the X-Ray tomography method 

and Monte Carlo simulation at the local microscopic scale 

are performed [23, 24]. However, Monte Carlo 

simulations in tomographed samples are not convenient in 

practice because it require a gigantic computational effort. 

Among the radiative properties, it is particularly 

interesting to evaluate the extinction coefficient (β) 

because it is a local property, i.e., the scattering () and 

absorption coefficient () are presented simultaneously in 

the extinction coefficient (β =  + ). Usually, the 

extinction coefficient depends on the porosity () and on 

the morphological structure of the foam. In addition, 

several studies of radiative properties of open cellular 

porous medium pay attention to the scattering phase 

function (P(cos)) and the albedo (ω) [17, 19, 25, 26]. 

From above observation, the aim of the present article 

is to review the experimental and theoretical studies of the 

fundamental radiative properties consisting of extinction 

coefficient (β), albedo (ω) and scattering phase function 

(P(cos))  in an open cellular porous material. To deeply 

gain understanding in characteristics of the radiative 

transport process of the open-celled foam, the geometry of 

this material is also discussed in the first part of the 

present article. 

 

2. OPEN CELLULAR GEOMETRY 

A cellular solid [27] is one made up of an 

interconnected network of solid struts or plates which 

from the edges and faces of cells, in which three typical 

structures are shown in Figs. 1 [28]. As seen from           

Fig. 1(a), the simplest structure is a two-dimensional array 

of polygons which pack to fill a plane area like the 

hexagonal cells of the bee; and for this reason this          

two-dimensional cellular materials is called as 

honeycombs. More commonly, the cells are polyhedral 

which pack in three dimensions to fill space; thus three-

dimension cellular materials foams are defined as shown 

in Figs. 1(b) and 1(c). The foam is said to be closed-celled 



 

 

 

 

 

 

 

 

  

(Fig.(b)), because the faces of each cell, of which are solid 

too, is sealed off from its neighbors. Figure 1(c) is said to 

be open-celled, if the solid of which the foam is made by 

containing in the cell edges only (so that the cells connect 

through open faces); and of course, some foams are partly 

open and partly closed. 
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Figures 1 Microstructures of (a) a two-dimensional honeycomb, 

(b) a three-dimensional closed-cell foam and 

(c) a three-dimensional opened-cell foam. 

 

Regarding to above definitions, the present article 

elaborate on open-cell foam; thus the geometry and 

characteristics of the open-cell foam is discussed here in 

more depth. The unit cell which pack to fill space in three 

dimensions are sketched in Fig. 2 [27], which shows the 

shapes available for packing together to fill space; their 

geometries are characterized in Table 1 [27]. 
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Figures 2 Three-dimensional polyhedral cells:  

(a) tetrahedron, (b) triangular prism, (c) rectangular prism,  

(d) hexagonal prism, (e) octahedron, (f) rhombic dodecahedron,  

(g) pentagonal dodecahedron, 
(h) tetrakaidecahedron and (i) icosahedrons. 

  

 

 

Cell shape 
Number of 

faces, f 

Number 

of edges, 

n 

Number of 

vertices, v 

Cell 

volume 
Surface area Comments 

Tetrahedron 4 6 4 0.188l3 23l  Regular 

Triangular Prism 5 9 6  3 4 l3At  23 2 1 2 3 tl A  Packs to fill space 

Rectangular Prism 6 12 8 l3At  22 1 2 tl A  Packs to fill space 

Hexagonal Prism 8 18 12  3 3 2 l3At  23 1 2 3 tl A  Packs to fill space 

Octahedron 8 12 6 0.471l3 3.46l2 Regular 

Rhombic Dodecahedron 12 24 14 2.79l3 10.58l2 Packs to fill space 

Pentagonal Dodecahedron 12 30 20 7.663l3 20.646l2 Regular 

Tetrakaidecahedron 14 36 24 11.31l3 26.80l2 Packs to fill space 

Icosahedrons 20 30 12 2.182l3 8.660l2 Regular 

 

Table 1 Geometric properties of isolate cells [27] 



 

In the approach for foam geometry creation, 

conventionally, the shape of the pore is assumed to be 

spherical and spheres of equal volume (unit cell) are 

arranged according to the lattice structures of the         

body-centered cubic (BCC) lattice [29]. The foam unit cell 

geometry is obtained by subtracting the unit cell cube 

from the spheres at the various lattice points as shown in         

Fig. 3(a). The cross-section of the foam ligaments is a set 

of convex triangles (plateau borders), all of which meet at 

symmetric tetrahedral vertices. It may be noted that there 

is a no uniform distribution of material mass along the 

length of the ligament with more mass accumulating at the 

vertices (nodes) resulting in a thinning at the center of the 

ligament. A schematic illustration of the foam geometry in 

BCC unit cell is shown in Fig. 3(b). 
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Figures 3 Schematic of (a) the representation of foam geometry 
creation in the body-centered cubic structure (BCC) and 

(b) a foam geometry in BCC unit cell 

 

To simply clarify the geometry of open cellular porous 

material (or open-celled foam), a shape of this materials 

referred from Fig. 2 can be arranged as three-dimensional 

pentagonal dodecahedron which a perspective view is 

depicted in Fig. 4 [30]. The open-celled foam consists of 

three-dimensional dodecahedron-like cells with 

pentagonal or hexagonal open-cell walls, where a 

pentagonal dodecahedron cell is illustrated as a typical 

example. For this material, it is difficult to specify a pore 

shape or size, and thus two quantities, i.e., the porosity () 

and the pore density, are used to describe the material. 

Porosity () or void fraction is a measure of the void 

(empty) spaces in a material, and is a fraction of the 

volume of voids over the total volume, between 0-1, or as 

a percentage between 0-100%. The porosity of porous 

medium describes the fraction of void space in the 

material. It is defined by the ratio following as: 

 

V

T

V

V
  ,                                                    (1) 

 

where VV is the volume of void-space (such as fluids) and 

VT is the total or bulk volume of material. The porosity of 

commercially available open-celled foams is typically 

about 0.8 – 0.95 [8, 19, 25]. 

The pore density is the number of pores present per 

unit length of the material, typically expressed in unit of 

pore per inch (PPI), and is roughly constant in the three 

directions. Usually the number of pores is sufficiently 

large. 

 

 

 

 

 

 

 

 

 

 

 
Figures 4 Perspective view of a pentagonal dodecahedron 

for open-cellular porous materials. 

 

3. RADIATIVE HEAT TRANSFER EQUATION  

3.1 Continuum Treatment for Radiative Transfer 

The fundamentals of radiation heat transfer in 

participating media (absorbing, emitting and scattering 

media) have been given by many classical text books        

[31-34]. Their approach treats the solid-fluid phases as a 

single continuum. Therefore, heterogeneous, solid and 

fluid phases are presented simultaneously, differential 

element is applied. The open-celled foam is also 

characterized as heterogeneous participating media and 

thus can be treated as a continuum for purposes to 

describe the propagation of radiative intensity through the 

medium. In the continuous approach, the radiative heat 

transfer equations (RTE) are derived by using the 

principle of energy conservation. This approach is 

acceptable if the size of the system is much larger than the 

wavelength of the radiation. In general, the assumptions of 

randomness, homogeneity, and continuity are implied in 

the formulation. Homogeneity is essential for the medium 

to be treated as a continuum. A dispersed medium may be 

considered homogeneous if particle diameters are small 

compared with the medium thickness. This approach 

yields the classical RTE which is used for most radiative 

heat transfer problems in absorbing, emitting and 

scattering media. The RTE can be formally derived by 

making a radiative energy balance on a differential 

volume element along a single line of sight. It is an 

integro-diferential equation that may be written in terms 

of the spectral intensity I of radiation propagating in a 

direction  as: 
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where  and  are the scattering and absorption spectral 

volumetric coefficients, respectively, and Ib is Planck's 

blackbody function and dis an elemental solid angle 

surrounding the direction �. The spectral scattering phase 

function P(
/) represents the probability that the 

radiation propagating in a direction /
 is scattered in the 

direction . The phase function is normalized such that 

 

 
4

1
1

4
P d


  


  .                               (3) 

 

Commonly, the total attenuation of spectral intensity I 

by both absorption and scattering is known well as 

extinction (β) [31, 33]. Thus, an extinction coefficient is 

defined by 

 

      .                                               (4) 

 

Here,  and  are spectral absorption and spectral 

scattering coefficient, respectively. Moreover, the 

scattering albedo (ω) is generally employed as given by 
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After introducing the extinction coefficient defined in 

Equation (4), one may be restate equation (2), RTE, in its 

quasi-steady from as: 
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The last two term in Equation (6) are often combined 

and are then known as the source function for radiative 

intensity, 
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Finally, Equation (6) becomes 

 

 
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dI
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
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This equation only involves three the spectral radiative 

properties of the medium, extinction coefficient, albedo 

and phase function. These properties are those of a 

pseudo-continuous medium equivalent in terms of 

radiative transport, to the real dispersed material. 

3.2 Solution of RTE 

In general, a solution of the radiative heat transfer 

equation (RTE) has been solved by two directions: exact 

and approximated solution method. Both methods may be 

placed into four different categories: 1) Geometry, 2) 

Temperature Field, 3) Scattering and 4) Radiative 

properties. A more details of these categories are 

discussed as following: 

1) Geometry in the radiation problem may be one-

dimensional, two-dimensional or three-dimensional. Most 

investigations to date have dealt with one-dimensional 

geometries, and the vast majority of these dealt with the 

simplest case of a one-dimensional plane-parallel slab as 

shown in Fig. 5 [31]. 

 

 

 

 

 

 

 

 

 

 

 

 
Figures 5 Coordinates for solution of RTE for a plane-parallel slab. 

 

2) The least difficult situation arises if the temperature 

profile or temperature field within the medium is known, 

making Equation (6) a relatively simple integral equation. 

Consequently, the most basic case of an isothermal 

medium has been studied extensively. Alternatively, if 

radiative equilibrium prevails, the temperature field is 

unknown but uncoupled from conduction and convection, 

and must be found from directional and spectral 

integration of RTE. In the most complicated scenario, 

radiative heat transfer is combined with conduction and/or 

convection, resulting in a highly nonlinear integro-

differential equation. 

3) The solution to a radiation problem is greatly 

simplified if the medium does not scatter. In that case the 

equation of transfer reduces to a simple first-order 

differential equation if the temperature field is known. In 

scattering case, the isotropic scattering is often assumed. 

Relatively few investigations have deal with the case of 

anisotropic scattering, and most of those are limited to the 

case of linear-anisotropic scattering. 

4) Although most participating media display strong 

nongray character, the vast majority of investigations to 

date have centered on the study of gray media. In addition, 

while radiative properties also generally depend strongly 

on temperature, concentration, etc., most calculations are 

limited to situations with constant properties. 

The exact analytical solution of RTE in homogeneous 

participating media, in which here focuses on the open-

celled foam, are difficult resulting from an integro-

differential equation of radiative intensity in five 

independent variables, including of three space 

coordinates and two directions coordinates [31]. 

 



Therefore, most exact solutions are limited to simplest 

case dealing with a one-dimensional plane-parallel gray 

media; it is isothermal or at radiative equilibrium and the 

scattering radiation is usually isotropic, if scatter is 

considered [32]. From this simplest case, the RTE or 

Equation (6) becomes 
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Here  is the cosine of angle  between the direction   

and o direction,  is optical thickness and S(, ) 

represented as the source function. Theses parameters are 

defined as 
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where Pn() and Pn(
/
) are the Legendre polynomial of 

order n and argument  and /
 [31]. The phase function 

P(, /
) is independent of the azimuthal angle 

In the past of a few decades, several approximated 

solutions of RTE are devised, but the majority of radiative 

heat transfer analyses today appear to use one of four 

methods [30]: 1) The spherical harmonics method or a 

variation of it; 2) The discrete ordinate method or its more 

modern form; 3) The zonal method; 4) The Monte Carlo 

method. By comparing the first two approximation 

methods, in the simplification, the spherical harmonics 

method is more simplifier than the discrete ordinate 

method because the RTE can be reformed to simple partial 

differential equations and accuracy improves only slowly 

for higher-order approximations while mathematical 

complexity increases extremely rapidly. The last two 

approximate methods are elaborate schemes and more 

difficult than the first two approximation with the 

simplified problems of radiative transfer, particular in 

Monte Carlo technique. Figure 6 shows the comparison of 

Monte Carlo and conventional solution methods [33]. As 

the complexity of the problem increase, however, the 

complexity of formulation and solution effort increase 

much more rapidly for conventional techniques. For 

problems beyond a certain complexity, the Monte Carlo 

solution will be preferable. Unfortunately, there is no way 

to determine a piori precisely where this crossover point in 

complexity lies. The disadvantage of Monte Carlo method 

is that they are subject to statistical error. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figures 6 Comparison of Monte Carlo and 

conventional solution methods. 

 

4. THERMAL RADIATIVE PROPERTIES 

The extinction coefficient β, albedo ω and scattering 

phase function P(cos), which appear as parameters in 

RTE, are the radiative properties need for radiative 

transfer calculations in participating media (Open-cellular 

porous media). Several attempts to model and to measure 

the radiative properties of complex open-cellular porous 

media have been made. 

Glicksman and Torpey [35] considered foam (Open-

cellular) as a set of randomly oriented black-body struts 

and used an extinction coefficient in single-particle 

properties form of unity. They neglected scattering by 

struts. The strut cross-section was constant and occupied 

two-thirds of the area of an equilateral triangle formed at 

the vertices (Fig. 7). The resulting mean extinction 

coefficient β is a function of the cell diameter d, the foam 

density f, and solid polymer density s as given by 

 

4.10
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 
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where fs is the fraction of solid material in the strut. 
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Figures 7 Dodecaeder model for a foam cell: (a) perspective view;  

(b) cross-section through struts and walls 
 

 

 



Hsu and Howell [36] presented a semi-empirical 

formula of the effective extinction coefficient β (m
-1

) as a 

function of actual pore size (Dm) in mm: 

 

 3 1

mD





 .                                      (15) 

 

They claimed that Equation (15) is applicable to pore 

diameter greater than 0.6 mm.  

Hendricks and Howell [37] found that a modified 

geometrical optics relation fits the data for the integrated 

extinction coefficient of both zirconia (PS ZrO2) and 

silicon carbide (SiC) and recommended the following 

relations 
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where the parameter  are 4.4 for PS ZrO2 and 4.8 for 

SiC. Moreover, the correlations of extinction coefficient 

of Hendricks and Howell [37] were compared to Hsu and 

Howell [36] data and the Hale and Bohn [38] along with 

the 488 nm data as shown in Fig. 8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figures 8 Extinction coefficient vs. pore diameter  

for various reticulated ceramics. 

 

Two dual-parameter phase functions were investigated 

for the materials: one based on the physical structure of 

open-cellular porous ceramics and the other on a modified 

Henyey-Greenstein phase function. The first is a linear 

combination of a di!raction-dominated phase function 

(Pdiff), an isotropic phase function, and a back-scattering 

phase function (Pdif,ref), taking the mathematical form: 

 

             , , ,1isen isen back diffP f f f P         

 , ,back dif reff P  .         (17) 

 

The second phase function was a modified Henyey-

Greenstein phase function given by the mathematical 

expression: 
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where PHG, is the Henyey-Greenstein phase function and 

given by [33] 
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Here g is parameter of Henyey-Greenstein phase 

function.  

To clarify the understanding in this phase function, the 

composed of Henyey-Greenstein phase function [39] is 

shown in Fig. 9. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figures 9 the composed of Henyey-Greenstein phase function. 

 

Doer man and Sacadura [40] proposed a sophisticated 

models for the extinction coefficient, albedo and phase 

function of open cell foam on the basis of geometrical 

optics and diffraction theory, but, unfortunately, they did 

not compare model predictions with experimental data. 

Fu et al. [41] used a unit cell model (Fig. 10) to predict 

the extinction coefficient β and single scattering albedo ω 

of reticulated ceramics which the estimated results of           

Fu et al. [41], i.e., β and ω were illustrated in Fig. 11 and 

Fig. 12 respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figures 10 Schematic of unit cell used for 

the radiative charcteristics model. 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figures 11 Dependence of the extinction coefficient β on  

the solid reflectivity s for PPC = 4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figures 12 Dependence of the single scattering albedo ω on 

the solid reflectivity s for PPC = 4 

 

Kamiuto [42] derived analytical formulas for the 

radiative properties of open-cellular porous media by 

decomposing a Dul’nev’s unit cell into two cylindrical 

struts and one spherical strut juncture as depicted in        

Fig. 13 [42] and by applying geometrical optics and 

diffraction theory to these scatterers which were assumed 

to be randomly oriented in space. Note that there exist 

three struts in a unit cell but only two are effective in the 

radiation process because the vertical strut is located in the 

shadow region of the strut juncture, when thermal 

radiation is normally incident on the upper surface of the 

unit cell, and thus does not interact with the incident 

thermal radiation. 

Kamiuto’s scaled radiative properties is thus obtained 

from the equation of transfer where the diffraction 

scattering phase function is eliminated utilizing Dirac’s 

delta function. The scaled radiative properties are given by 
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0.254CD PPI ,                                                (22) 

 

H  ,                                                             (23) 

 

4
9dg   .                                                         (24) 

 

Here, w is the dimensionless width of a strut consisting of 

a cubic unit cell, DC is the nominal cell diameter defined 

by 0.254PPI (Pores per inch) in which PPI denotes the 

manufacturing provided mean pores per inch and gd is the 

asymmetry factor of the surface-seattering phase function 

of a diffuse sphere. For the parameter H, it denotes as the 

hemispherical reflectivity of the strut and strut junctures. 
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Figures 13 Model systems for open-cellular porous materials: 

          (a) perspective view (pentagonal dodecahedron cell); 

          (b) unit-cell model by Dul’nev; 

          (c) rearranged unit-cell model; 

          (d) equivalent scatterers derived from the unit-cell  

 

Recently, Zhao et al [4] performed the experimental 

measurements on radiative transfer in FeCrAlY (A steel 

based high temperature alloy) foams having high porosity 

(95%) and different cell sizes, manufactured at low cost 

from the sintering route. They proposed that the extinction 

coefficient was function of porosity , cell size dp and 

wave length  as obtained by 
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The value of the constant C and n were determined by 

matching the predicted spectral extinction coefficients 

from Equation (25) with those measured, as shown in      

Fig. 14. It is found that n = 1 for all the three samples 

tested, and C = 0:445, 0.278 and 0.30 for the 30, 60 and 

90 ppi foam sample, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figures 14 Matching predictions with test data for  

spectral extinction coefficient. 

 

In addition, one of the authors [43] has proposed the 

extinction coefficient based on Kamiuto’s scaled radiative 

model (Equation (20)) depicted in Fig. 15. Computations 

cover the range of PPI from 5 to 120 and porosity from 

0.75 to 0.95. The scaled extinction coefficient decreases 

with an increase in porosity  and increases with PPI and 

is approximately represented by the following expression: 

 

 271.508 20.62 45.871 PPI     ,             (25) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figures 15 Dependence of the scaled extinction coefficients 

on the pores per inch (PPI) with the porosity () as a parameter 

5. CONCLUSIONS 

In the present article review, the major conclusions 

and recommendations can be summarized as follows: 

1) The geometry of the highly porous material, open 

cellular structure or open-celled foam, can be arranged as 

three-dimensional pentagonal dodecahedron owing to it 

consists of three-dimensional dodecahedron-like cells with 

pentagonal or hexagonal open-cell walls. 

2) The open cellular porous media is commonly 

characterized as heterogeneous participating media and 

thus can be treated as a continuum for purposes to 

describe the propagation of radiative intensity through the 

medium.  

3) The solution of the radiative heat transfer equation 

(RTE) is generally solved by two directions: exact and 

approximated solution method. Both methods may be 

placed into four different categories, i.e., geometry, 

temperature field, scattering and radiative properties. 

4) The extinction coefficient β, albedo ω and 

scattering phase function P(cos) are significant 

parameters of radiative properties for solving RTE in 

participating media (Open-cellular porous media). 

5) The extinction coefficient β, usually, depends on the 

porosity () and on the morphological structure of the 

foam, here is the cell or pore diameter. 

6) The phase function P(cos) used for predicting the 

RTE of open-cellular porous material, favorably, base on 

Henyey-Greenstein phase function and its application. 
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