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Abstract – Quadratic Assignment Problem (QAP) is 
a NP-hard problem. In order to eliminate binary 
decision variables and assignment constraint, the 
problem is formulated in a constraint logic 
programming in which the binary decision variables 
are now part of the constraint. Evolutionary algorithm 
is used to find the solution of the constraint logic 
programming. Mutation rate and population size are 
the parameters in the algorithm. Response Surface 
Technique is used to optimize those parameters. 
Response considered in this study is assignment cost 
(QAP objective value). Result shows that QAP in 
constraint logic programming substantially reduces 
computational intensity allowing the modest-size 
problems can be solved in Microsoft Excel 2010. 
Parameter optimization by means of response surface 
approach to locate optimal mutation rate and 
population size shows a promising trend. However, 
further study should be carried out to establish a solid 
ground for the parameter optimization methodology 
proposed in this study.  
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1. INTRODUCTION 

Quadratic Assignment Problem (QAP) is a decision 
problem with a goal to minimize an assignment cost of N 
facilities over N locations subjected to the assignment 
constraints. Traditionally, QAP is formulated as a Mixed-
Integer Linear Programming (MILP) [1] which is NP-hard 
problem and has remained one of the greatest challenges 
in combinatorial optimization e.g. [2]. The problem can 
alternatively be casted as a logical inference problem 
allowing an implementation of constraint logic 
programming (CLP), which potentially offers several 
advantages [3]. In the framework of CLP, the assignment 
problem is in the form of a permutation problem subjected 
to all-different global constraint. The size of this 
permutation problem is substantially reduced in 
comparison to original MILP problem leading to the size 

of the problem that is more manageable. It may be 
possible to obtain QAP solution by means of existing 
solution methods to QAP in CLP framework.  

An evolutionary algorithm with all-different constraint 
available in Microsoft Excel 2010 solver is adopted in this 
study to solve QAP in CLP framework. The objective of 
this study is to optimize two tuning parameters in the 
evolutionary algorithm, namely population size and 
mutation rate, by means of response surface analysis via 
central composite experiment. Many recent studies [4-7] 
support our approach – parameter tuning in algorithms can 
be achieved by means of design of experiment and 
response surface analysis. 

The article starts by stating QAP in CLP framework in 
section 2. Section 3 briefly discusses evolutionary 
algorithm in Microsoft Excel 2010 Solver. Response 
surface analysis and the responses used in this work are 
considered in section 4. Result and discussion are given in 
section 5. We conclude and discuss future work in section 
6. 

 
2. QUADRATIC ASSIGNMENT PROBLEM IN CONSTRAINT 

LOGIC PROGRAMING FRAMEWORK 

A mathematic model of quadratic assignment problem 
(QAP) in constraint logic programming (CLP) framework 
is given in [3] as followed: 
 
Minimization   
    (1) 
Subject to 
         (2) 
where 

n represents the number of facilities/locations 
(1,2,..,N) 
 represents the facility that is located at  

location; must be a permutation of indices 
 represents the assignment cost 

of assigning facility i to location yi and facility k to 
location yk  

Fi,k  represents the flow between facility i to facility k 
 represents the cost between location yi to 

location yk . 



There are many software/systems that support the CLP 
such as Prolog, Xpress, ECLiPSe etc. However, they 
require programming skill to code the problems; it may 
not be accessible to untrained users. This work prefers 
software/program that requires minimum or no 
programming skills ;thereby adopting evolutionary engine 
in Microsoft Excel 2010 Premium Solver Platform. 

Since the maximum allowable number of decision 
variables allowed in Premium Solver Platform is 8000 [8], 
the Solver can handle QAPs only up to the size of N = 9, if 
the problem is casted as linearized QAPs in MILP 
problems. This is because the linearization in MILP 
framework introduces a new decision variable Yijkl that has 
the size of N4 in addition to an original decision variable 
Xij that has the size of N2  [2,9]. If, however, the problems 
are casted in CLP formulation, there is no need to 
introduce the new decision variable Yijkl. In this case, the 
modest-size problems can be reasonably accommodated 
by Premium Solver. This kind of problems is generally 
considered as a computationally non-trival task, if the 
problems are casted as MILP problems [9].  

 
3. EVOLUTIONARY ALGORITHM IN MICROSOFT EXCEL 

Evolutionary algorithm is a subset of a generic 
population-based metaheuristic optimization algorithm. 
The concept of evolutionary algorithms is inspired and 
derived from evolutionary processes found in nature such 
as reproduction, mutation, recombination and selection. In 
Premium Solver, the decision variable i.e. the assignment 
is encoded in a series of bit strings and successively 
updated as it goes though successive generations (or 
iterations) in order to achieve the optimal assignment 
yielding the minimum assignment cost defined in Equation 
(1) and subjected to all-different constraint in Equation 
(2). 

 

 
 

Figure 1 Portion of spreadsheet illustrating the implementation of QAP 
with N = 3. Formula in different cells also given. 

 
Fig. 1 illustrates the portion of the spreadsheet where 

QAP with N = 3 is implemented. Formula related to the 
calculation of the objective function defined in Equation 
(1) is also given in the figure. Fig. 2 shows parameters set 
in Solver Parameters Window in the spreadsheet for N = 3 
problem. To solve larger-size problems, we modify cell 

indices in this spreadsheet and in Solver Parameters 
Window. 

 

 
 

Figure 2 Solver parameters setting1 
  

Evolutionary algorithm requires the inputs of two 
parameters namely population size and mutation rate. Note 
that for high-levels of mutation rates, the algorithm is 
closer to a random process. Finding optimal values for 
population size and mutation rate is challenging and will 
be further studied below.  

 
4. RESPONSE SURFACE ANALYSIS 

Population size and mutation rate for optimal condition 
are determined by means of response surface model. 
Central composite experimental design [10] is used to 
specific the values of population size and mutation rate to 
be used in the response surface model. The response 
considered is the assignment cost defined in Equation (1). 
QAP studied in [11] is used as a benchmark for our 
parameter design approach. In order to come up with 
descend levels of population size and mutation rate to 
start, we perform line searches of these two parameters for 
a given problem size N. We start by fixing the population 
size to be 200 and perform a line search to find two levels 
of mutation rates that produce the two highest probabilities 
to find the best solutions as shown in Table 1. To find two 
best population size levels, we start from the mutation rate 
that produces the highest probability to find the best 
solution determined in the previous step. Then we perform 
another line search to determine two population size levels 
that produce the two highest probabilities to find best 
solution shown in Table 1. Note that the population size of 
200 that we use to start to process is arbitrary. However, 
the size is chosen such that it is the largest population size 
that we can effort to run a line search of mutation rates in a 
reasonable of time. 

Our experiments are designed in Minitab 16. Table2 
shows the values of population size and mutation rate 
derived from central composite design for problems with 
different N. Note that additional center points are added to 
ensure the rotatability of the experimental design [10]. In 

1 The unit of “Maximum Time without Improvement” is seconds. 
                                                           



total, there are 13 plans for population size and mutation 
rate given in Table 2 for each problem size, N. For each 
plan, the Premium Solver in Microsoft Excel 2010 
performs the operation for 30 iterations 

 
Table 1 The two levels of population sizes and mutation rates for 

problems with different N. 
 

Case N 
Parameter Levels of 

Mutation Rate Population Size 
Low High Low High 

1 12 0.4 0.8 200 500 
2 14 0.8 0.9 500 700 
3 15 0.1 0.5 200 600 
4 16b 0.6 0.9 250 450 
5 17 0.35 0.8 500 700 
6 18 0.2 0.7 450 900 
7 21 0.15 0.7 300 700 

 
Table 2 The plans with different population size and mutation 

rate from central composite design for problems with different N. 
 

 
 

5. RESULT 

The problems with different sizes, N, studied in [11] 
are used as a benchmark for our parameter optimization 
procedure proposed here. As a preliminary study, this 
study is restricted to the problem sizes that are less than 
21. From available dataset in QAPLIB, the sizes of the 
problems considered include N = {12, 14, 15, 16b, 17, 18, 
21}. Note that there are two cases for N = 16.  Problem 
instances and solutions are given in Quadratic Assignment 
Problem Library (QAP Library) [9]. Table 3 lists optimal 
assignment cost and layout, yn, for problems with different 
sizes, N. 

Problem instances in [11] obtained from [9] are input 
into Microsoft Excel 2010. For each problem size, N, 13 
plans with different population size and mutation rate 
given in Table 2 are carried out in the spreadsheet. For 
each plan, the solver performs the operation for 30 
iterations. Other parameters in the evolutionary algorithm 
are set according to those shown in Fig. 2. 

For the first task, we explore the ability of evolutionary 
algorithm in Microsoft Excel 2010 over population size 
and mutation rate space to solve QAP. So for each 

problem size, N, we search for the best minimum 
assignment costs for all 13 plans and iterations. We 
measure and compare frequencies and probabilities that 
the evolutionary algorithm finds the optimal solutions. The 
result is show in Table 4.  

 
Table 3 Optimal assignment cost and layout, yn, for problems 

with different N [9,11]. 
 

 
 
Table 4 Characteristics of solutions with different problem 

sizes, N, from Microsoft Excel 2010. 
 

 
 

As the problem sizes, N, increased, the frequencies and 
probabilities that evolutionary algorithm finds optimal 
solution should be less and eventually become zero. From 
the result, the probabilities of finding optimal solution are 
around 0.1 except for N = 12, 16 and 21. For N = 12 and 
16, the probabilities are about in 0.5, while for N = 21, the 
probability is only 0.01. It is clear that the evolutionary 
algorithm can find optimal solution of QAP even the size 
of the problem is up to 20. Note that Microsoft Excel can 
handle the problem size that is less than 9 i.e. N = 9 due to 
the limit of maximum allowable number of decision 
variables, if the problems are casted in MILP formulation 
as discussed in section 2. Study [12] also points out this 
fact. As a result, it is not possible to compare executing 
times between MILP and CLP formlations for modest to 
large scale problems. Clearly, QAP in CLP framework 
shows a great promise as an alternative to QAP in MILP 
framework. Average executing times for different problem 
sizes, N, are also given in Table 4. With this alternative 
formulation, Microsoft Excel 2010 takes only about a few 
minutes to find optimal solutions, which is reasonable. 

Response surfaces for different N are constructed in 
Minitab 16 based on 13 plans with different population 



size and mutation rate with 30 iterations for each plan. Fig. 
3 illustrates these response surfaces. 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

Figure 3 Response surfaces for different N constructed in Minitab 16 
based on 13 plans with different population size and mutation rate with 

30 iterations for each plan 
 

Note that resulting response surface models are 
second-order. The optimal population sizes and mutation 
rates are determined by response optimizer available in 
Minitab 16. Table 5 shows optimal population sizes and 
mutation rates together with optimal solutions obtained 
from response surfaces. Bear in mind that the optimal 
solutions obtained from response surface models are not 
the same as the true optimal solutions shown in Table3 
because response surfaces based on regression though data 
points and it is impossible to arrive at the true optimal 
solution. We also present the desirability function obtained 
from Minitab 16 in Table 3 to underscore the quality of 
our estimated optimal solution in comparison to the true 

N=12 N=14 

N=15 

N=16b 

N=18 

N=17 

N=21 



optimal solution. At this point, we only concern about the 
optimality of the solution and there is other output to be 
compromised with the optimality of the solution. We 
assume that the optimal population size and mutation rate 
will produce lowest value of response (assignment cost), 
and produce high probability that the evolutionary 
algorithm will find true optimal assignment cost. This 
assumption has not been systematically verified in this 
study and will be subjected to future work. At this point, 
we discuss the result based on this assumption. 

 
Table 5 Optimal population sizes, mutation rates, optimal 
solutions and desirability functions obtained from response 

surfaces for different problem size, N. 
 

 
 
For given parameter ranges, only response surface for 

N = 14 gives a clear (local) minimum response. For other 
N, minimum responses occur at the edge of domain 
suggesting that we might have to shift the parameter range 
to new local minimum zone that will produce a lower 
minimum response (and higher desirability function). 

 
6. CONCLUSION AND FUTURE WORK 

We explore the possibility of using evolutionary 
algorithm in Microsoft Excel 2010 to solve quadratic 
assignment problem (QAP) in constraint-logic 
programming (CLP) framework. With all-different 
constraint from assignment constraint, QAP in CLP 
framework becomes a permutation problem. The problem 
has become more manageable allowing optimization 
process on Microsoft Excel 2010 possible. The challenge 
is now on how to find two optimal parameters (population 
size and mutation rate) for evolutionary algorithm. The 
main focus for this work is to perform parameter 
optimization for these two parameters for evolutionary 
algorithm using response surface approach. Central 
composite design in Minitab 16 is used to find the test 
matrix. Parameter optimization is carried out in Minitab 16 
using Response optimizer. 

Result shows that CLP framework greatly simplifies 
QAP and allows evolutionary algorithm in Microsoft 
Excel 2010 to solve the problem up to modest size i.e. N ≤ 
21 within a reasonable executing time. This is much more 
promising than a solution method based on QAP in MILP 
framework. Response surfaces for different problems are 
constructed and used in parameter optimization. The trend 
of the result obtained from the method shows a promising 

sign but future work in the following areas is 
recommended to systematically verify the parameter 
optimization method and generalize it to general QAP: 

1. Since the optimal assignment costs showed are 
from response surface models, it is not clear what 
the statistical characteristics (such as average, 
standard deviation or probability density function) 
of best assignment costs obtained from 
evolutionary algorithm at given optimal parameters 
will be. Comparison against other parameter plans 
obtained from central composite design will also 
bring us more confidence on the level of optimality 
achieved by the method. 

2. From our result, it seems that the range of 
parameters chosen in this study is not the best 
possible one. We can either try to a method to find 
a better range of parameters or apply a combination 
of steepest-descent method with successive 
response surfaces to move parameter range toward 
optimal parameter values, see for example in [13]  

3. Once a solid grounding for parameter optimization 
has be established, wider classes of QAP available 
in QAP Library [9] should be tested in order to fine 
tune and generalize the method to general QAP. 
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