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Abstract — Quadratic Assignment Problem (QAP) is
a NP-hard problem. In order to eliminate binary
decision variables and assignment constraint, the
problem is formulated in a constraint logic
programming in which the binary decision variables
are now part of the constraint. Evolutionary algorithm
is used to find the solution of the constraint logic
programming. Mutation rate and population size are
the parameters in the algorithm. Response Surface
Technique is used to optimize those parameters.
Response considered in this study is assignment cost
(QAP objective value). Result shows that QAP in
constraint logic programming substantially reduces
computational intensity allowing the modest-size
problems can be solved in Microsoft Excel 2010.
Parameter optimization by means of response surface
approach to locate optimal mutation rate and
population size shows a promising trend. However,
further study should be carried out to establish a solid
ground for the parameter optimization methodology
proposed in this study.
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1. INTRODUCTION

Quadratic Assignment Problem (QAP) is a decision
problem with a goal to minimize an assignment cost of N
facilities over N locations subjected to the assignment
constraints. Traditionally, QAP is formulated as a Mixed-
Integer Linear Programming (MILP) [1] which is NP-hard
problem and has remained one of the greatest challenges
in combinatorial optimization e.g. [2]. The problem can
alternatively be casted as a logical inference problem
allowing an implementation of constraint logic
programming (CLP), which potentially offers several
advantages [3]. In the framework of CLP, the assignment
problem is in the form of a permutation problem subjected
to all-different global constraint. The size of this
permutation problem is substantially reduced in
comparison to original MILP problem leading to the size

of the problem that is more manageable. It may be
possible to obtain QAP solution by means of existing
solution methods to QAP in CLP framework.

An evolutionary algorithm with all-different constraint
available in Microsoft Excel 2010 solver is adopted in this
study to solve QAP in CLP framework. The objective of
this study is to optimize two tuning parameters in the
evolutionary algorithm, namely population size and
mutation rate, by means of response surface analysis via
central composite experiment. Many recent studies [4-7]
support our approach — parameter tuning in algorithms can
be achieved by means of design of experiment and
response surface analysis.

The article starts by stating QAP in CLP framework in
section 2. Section 3 briefly discusses evolutionary
algorithm in Microsoft Excel 2010 Solver. Response
surface analysis and the responses used in this work are
considered in section 4. Result and discussion are given in
section 5. We conclude and discuss future work in section
6.

2. QUADRATIC ASSIGNMENT PROBLEM IN CONSTRAINT
LOGIC PROGRAMING FRAMEWORK

A mathematic model of quadratic assignment problem
(QAP) in constraint logic programming (CLP) framework
is given in [3] as followed:

Minimization
Assignment Cost = Ei5 ER= Fy Dy (1)
Subject to
all — different {3, Vo, s ¥Vl (2)
where
n represents the number of facilities/locations
1,2,..,N)

v, represents the facility that is located at
vy, location; must be a permutation of indices
Ciypy, = Fir ¥ Dy o, represents the assignment cost
of assigning facility i to location y; and facility k to
location y;

Fix represents the flow between facility i to facility k
Dy 5. represents the cost between location y; to
location yy .



There are many software/systems that support the CLP
such as Prolog, Xpress, ECLiPSe etc. However, they
require programming skill to code the problems; it may
not be accessible to untrained users. This work prefers
software/program that requires minimum or no
programming skills ;thereby adopting evolutionary engine
in Microsoft Excel 2010 Premium Solver Platform.

Since the maximum allowable number of decision
variables allowed in Premium Solver Platform is 8000 [8],
the Solver can handle QAPs only up to the size of N = 9, if
the problem is casted as linearized QAPs in MILP
problems. This is because the linearization in MILP
framework introduces a new decision variable Yjy that has
the size of N* in addition to an original decision variable
Xij that has the size of N? [2,9]. If, however, the problems
are casted in CLP formulation, there is no need to
introduce the new decision variable Yjy. In this case, the
modest-size problems can be reasonably accommodated
by Premium Solver. This kind of problems is generally
considered as a computationally non-trival task, if the
problems are casted as MILP problems [9].

3. EVOLUTIONARY ALGORITHM IN MICROSOFT EXCEL

Evolutionary algorithm is a subset of a generic
population-based metaheuristic optimization algorithm.
The concept of evolutionary algorithms is inspired and
derived from evolutionary processes found in nature such
as reproduction, mutation, recombination and selection. In
Premium Solver, the decision variable i.e. the assignment
is encoded in a series of bit strings and successively
updated as it goes though successive generations (or
iterations) in order to achieve the optimal assignment
yielding the minimum assignment cost defined in Equation
(1) and subjected to all-different constraint in Equation

Q).

A B c D E |[FIG H I J K
1 Fik 1 2 3 Matching 3 2 1
2 i 0| 36 6 8 0] 37| 53
< 2| 59 0] 49 2 3 0l 75
4 3|_94] 36 0 1] 35| 10 0
5
6 Dyi,yk 1 2 3 9152
7 1 0| 10| 35
8 2| 75 0 3
9 3|53 37 0 i
10 30 20 10
Cell Formula Copied to

I1 =H2 -
11 =H3

KI |=H4 -
12 =INDEX($C$7:$E$9,5H2,1$1 12:K4
H6  |=SUMPRODUCT(C2:E4,12:K4) -

Figure 1 Portion of spreadsheet illustrating the implementation of QAP
with N = 3. Formula in different cells also given.

Fig. 1 illustrates the portion of the spreadsheet where
QAP with N = 3 is implemented. Formula related to the
calculation of the objective function defined in Equation
(1) is also given in the figure. Fig. 2 shows parameters set
in Solver Parameters Window in the spreadsheet for N = 3
problem. To solve larger-size problems, we modify cell

indices in this spreadsheet and in Solver Parameters
Window.

Solver Parameters:
Set Objective: SHS6
To: Min
By Changing Variable Cells: SHS2:SHS4
Subject to the Constraints: SH$2:SHS4 = AllDifferent
Select a Solving Method: Evolutionary
Options: Evolutionary:
Convergence: 0.0001
Mutation Rate: "be studied"
Population Size: "be studied"
Random Seed: 0

Maximum Time without Improvement: 30

Figure 2 Solver parameters setting*

Evolutionary algorithm requires the inputs of two
parameters namely population size and mutation rate. Note
that for high-levels of mutation rates, the algorithm is
closer to a random process. Finding optimal values for
population size and mutation rate is challenging and will
be further studied below.

4. RESPONSE SURFACE ANALYSIS

Population size and mutation rate for optimal condition
are determined by means of response surface model.
Central composite experimental design [10] is used to
specific the values of population size and mutation rate to
be used in the response surface model. The response
considered is the assignment cost defined in Equation (1).
QAP studied in [11] is used as a benchmark for our
parameter design approach. In order to come up with
descend levels of population size and mutation rate to
start, we perform line searches of these two parameters for
a given problem size N. We start by fixing the population
size to be 200 and perform a line search to find two levels
of mutation rates that produce the two highest probabilities
to find the best solutions as shown in Table 1. To find two
best population size levels, we start from the mutation rate
that produces the highest probability to find the best
solution determined in the previous step. Then we perform
another line search to determine two population size levels
that produce the two highest probabilities to find best
solution shown in Table 1. Note that the population size of
200 that we use to start to process is arbitrary. However,
the size is chosen such that it is the largest population size
that we can effort to run a line search of mutation rates in a
reasonable of time.

Our experiments are designed in Minitab 16. Table2
shows the values of population size and mutation rate
derived from central composite design for problems with
different N. Note that additional center points are added to
ensure the rotatability of the experimental design [10]. In

! The unit of “Maximum Time without Improvement” is seconds.



total, there are 13 plans for population size and mutation
rate given in Table 2 for each problem size, N. For each
plan, the Premium Solver in Microsoft Excel 2010
performs the operation for 30 iterations

Table 1 The two levels of population sizes and mutation rates for
problems with different N.

problem size, N, we search for the best minimum
assignment costs for all 13 plans and iterations. We
measure and compare frequencies and probabilities that
the evolutionary algorithm finds the optimal solutions. The
result is show in Table 4.

Table 3 Optimal assignment cost and layout, y,, for problems
with different N [9,11].

Parameter Levels of
Case N Mutation Rate Population Size -
- - Assignment
Low High Low High N Cost Layout

1 12 0.4 0.8 200 500

2 14 0.8 09 500 700 12 578 (12,7.9,3.4,8,11,1,5,6,10,2)

3 15 0.1 0.5 200 600 14 1014 |(9.8.13,2,1,11,7,14,3.4,12,5,6,10)

4 16b 0.6 0.9 250 450 15 1150 [(1,2,13,8,9.4,3,14.7.11,10,7.3,14,6,1,5)

5 17 0.35 0.8 500 700

5 18 0.2 0.7 250 900 16b 1240 |(16,12,13,8,4,2,9,11,15,10,7,3,14,6,1,5)

7 21 0.15 0.7 300 700 17 1732 [(16,15,2,14,9,11,8,12,10,3,4,1,7,6,13,17.5)

18 1930  [(10,3,14,2,18,6,7,12,15,4,5,1,11,8,17,13,9,16)

Table 2 The plans with different population size and mutation 21 2438 |(4.21.3.9,13.2.5.14.18.11,16.10,6,15.20,19.8.7,1.12.17)

rate from central composite design for problems with different N.

Master N=12 N=14 N=13 N=16b N=17 N=18 N=21

Parameter | Parameter | Parameter | Parameter | Parameter | Parameter | Parameter | Parameter

W* | @ | | @2 [ @ | @ [ O] @ W | @] W | @ d® | @ | 0| @

Table 4 Characteristics of solutions with different problem
sizes, N, from Microsoft Excel 2010.

13 0 o 06 | 350 | 085 | 600 | 0.3 | 400 | 0.75 | 350 |0.575( 600 | 0.45 | 675 | 0.15 | 300

* (1) = Mutation Rate, (2) = Population Size

5. RESULT

The problems with different sizes, N, studied in [11]
are used as a benchmark for our parameter optimization
procedure proposed here. As a preliminary study, this
study is restricted to the problem sizes that are less than
21. From available dataset in QAPLIB, the sizes of the
problems considered include N = {12, 14, 15, 16b, 17, 18,
21}. Note that there are two cases for N = 16. Problem
instances and solutions are given in Quadratic Assignment
Problem Library (QAP Library) [9]. Table 3 lists optimal
assignment cost and layout, y,, for problems with different
sizes, N.

Problem instances in [11] obtained from [9] are input
into Microsoft Excel 2010. For each problem size, N, 13
plans with different population size and mutation rate
given in Table 2 are carried out in the spreadsheet. For
each plan, the solver performs the operation for 30
iterations. Other parameters in the evolutionary algorithm
are set according to those shown in Fig. 2.

For the first task, we explore the ability of evolutionary
algorithm in Microsoft Excel 2010 over population size
and mutation rate space to solve QAP. So for each
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8 [1414] o [o883| 350 |82t | 00 [0583| 400 |0.062| 350 |o.803| s00 |0.804 | 673 |0.814] 00
204 2 4 4 - -
o | o | o |os|350]08s5|600| 03| 400|075 350 |os75| 600|045 | 675 0425| 500 16b 1294 1240 1253.49 189 0.48 0:01:16
0] o | ofos|350]085]600]| 03 |400]075]| 350 |os75| 600 | 045 | 675 |0.425 | 500 17 1794 1732 1750.18 42 0.11 0:02:01
11 0 o 06 | 350 | 085 600 | 0.3 | 400 | 0.73 | 330 |0.575( 600 | 045 | 675 |0.425] 300 18 2010 1930 1962.62 23 0.06 0:01:41
12| o | o |06 |350]085|600| 03 400|075 350 |o.575| 600 | 0.45 | 675 [0425| 500
21 2568 2438 2479.09 2 0.01 0:02:47

As the problem sizes, N, increased, the frequencies and
probabilities that evolutionary algorithm finds optimal
solution should be less and eventually become zero. From
the result, the probabilities of finding optimal solution are
around 0.1 except for N = 12, 16 and 21. For N = 12 and
16, the probabilities are about in 0.5, while for N = 21, the
probability is only 0.01. It is clear that the evolutionary
algorithm can find optimal solution of QAP even the size
of the problem is up to 20. Note that Microsoft Excel can
handle the problem size that is less than 9 i.e. N = 9 due to
the limit of maximum allowable number of decision
variables, if the problems are casted in MILP formulation
as discussed in section 2. Study [12] also points out this
fact. As a result, it is not possible to compare executing
times between MILP and CLP formlations for modest to
large scale problems. Clearly, QAP in CLP framework
shows a great promise as an alternative to QAP in MILP
framework. Average executing times for different problem
sizes, N, are also given in Table 4. With this alternative
formulation, Microsoft Excel 2010 takes only about a few
minutes to find optimal solutions, which is reasonable.

Response surfaces for different N are constructed in
Minitab 16 based on 13 plans with different population



size and mutation rate with 30 iterations for each plan. Fig.
3 illustrates these response surfaces.
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Figure 3 Response surfaces for different N constructed in Minitab 16
based on 13 plans with different population size and mutation rate with
30 iterations for each plan

Note that resulting response surface models are
second-order. The optimal population sizes and mutation
rates are determined by response optimizer available in
Minitab 16. Table 5 shows optimal population sizes and
mutation rates together with optimal solutions obtained
from response surfaces. Bear in mind that the optimal
solutions obtained from response surface models are not
the same as the true optimal solutions shown in Table3
because response surfaces based on regression though data
points and it is impossible to arrive at the true optimal
solution. We also present the desirability function obtained
from Minitab 16 in Table 3 to underscore the quality of
our estimated optimal solution in comparison to the true



optimal solution. At this point, we only concern about the
optimality of the solution and there is other output to be
compromised with the optimality of the solution. We
assume that the optimal population size and mutation rate
will produce lowest value of response (assignment cost),
and produce high probability that the evolutionary
algorithm will find true optimal assignment cost. This
assumption has not been systematically verified in this
study and will be subjected to future work. At this point,
we discuss the result based on this assumption.

Table 5 Optimal population sizes, mutation rates, optimal
solutions and desirability functions obtained from response
surfaces for different problem size, N.

QAPLIB
Y Optimal
N Mutation | Population D Assignment Ass? nment
Rate Size  |Desirability|  Cost gos °
(unit cost) (unit cost)
12 0.317 562 0.972 578.787 578
14 0.819 678 0.843 1021.841 1014
15 0.017 683 0.932 1153.854 1150
16b 0.538 491 0.898 1246.349 1240
17 0.285 741 0.891 1741.348 1732
18 0.096 993 0.771 1951.941 1930
21 0.036 783 0.840 2457.396 2438

For given parameter ranges, only response surface for
N = 14 gives a clear (local) minimum response. For other
N, minimum responses occur at the edge of domain
suggesting that we might have to shift the parameter range
to new local minimum zone that will produce a lower
minimum response (and higher desirability function).

6. CONCLUSION AND FUTURE WORK

We explore the possibility of using evolutionary
algorithm in Microsoft Excel 2010 to solve quadratic
assignment  problem  (QAP) in  constraint-logic
programming (CLP) framework. With all-different
constraint from assignment constraint, QAP in CLP
framework becomes a permutation problem. The problem
has become more manageable allowing optimization
process on Microsoft Excel 2010 possible. The challenge
is now on how to find two optimal parameters (population
size and mutation rate) for evolutionary algorithm. The
main focus for this work is to perform parameter
optimization for these two parameters for evolutionary
algorithm using response surface approach. Central
composite design in Minitab 16 is used to find the test
matrix. Parameter optimization is carried out in Minitab 16
using Response optimizer.

Result shows that CLP framework greatly simplifies
QAP and allows evolutionary algorithm in Microsoft
Excel 2010 to solve the problem up to modest size i.e. N <
21 within a reasonable executing time. This is much more
promising than a solution method based on QAP in MILP
framework. Response surfaces for different problems are
constructed and used in parameter optimization. The trend
of the result obtained from the method shows a promising

sign but future work in the following areas is
recommended to systematically verify the parameter
optimization method and generalize it to general QAP:

1. Since the optimal assignment costs showed are
from response surface models, it is not clear what
the statistical characteristics (such as average,
standard deviation or probability density function)
of best assignment costs obtained from
evolutionary algorithm at given optimal parameters
will be. Comparison against other parameter plans
obtained from central composite design will also
bring us more confidence on the level of optimality
achieved by the method.

2. From our result, it seems that the range of
parameters chosen in this study is not the best
possible one. We can either try to a method to find
a better range of parameters or apply a combination
of steepest-descent method with successive
response surfaces to move parameter range toward
optimal parameter values, see for example in [13]

3. Once a solid grounding for parameter optimization
has be established, wider classes of QAP available
in QAP Library [9] should be tested in order to fine
tune and generalize the method to general QAP.
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