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Abstract

The global surge in the elderly population has underscored the need for advanced safety systems tailored to seniors,
particularly those living independently. Central to these systems is the pivotal role of fall detection in ensuring their
welfare. This paper presents a cutting-edge fall detection system designed specifically for the elderly, leveraging
supervised machine learning techniques with a mobile-centric approach. Departing from traditional hospital-centric
setups, our system offers cost-effectiveness and improved mobility, facilitating deployment across diverse
environments. The methodology comprises three core stages: data collection and annotation, model training, and
inference. We curated a dataset of 1500 images categorized into three classes: standing, falling, and fallen,
meticulously annotated using RoboFlow. Subsequent model training utilized YOLOvVS, culminating in the inference
stage, which underwent quantitative evaluation employing 10-fold cross-validation, yielding an average accuracy of
97.88%. Qualitative assessment across four distinct scenarios further validated our system, achieving an average
accuracy of 95.92%. These results underscore the efficacy of our approach and lay the foundation for practical
implementation and widespread adoption. Subsequent to the successful development of the core algorithm, we
operationalized it for real-world applications by seamlessly integrating it with smartphones via TensorFlowLite. This
integration underscores the synergy between algorithm design and software development, further facilitating the
practical deployment and widespread acceptance of our system in diverse settings.
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1. INTRODUCTION offer continuous monitoring capabilities, making them
ideal for detecting sudden movements and changes in
posture associated with falls. Alvarez, Li, and Philips
(2021) proposed a system that integrates wearable
sensors with machine learning algorithms to improve
fall detection accuracy. Their approach leverages real-
time data processing to distinguish fall events from
normal activities, demonstrating robust performance in
various settings. Chen, Yu, and Wang (2020) developed
a wearable sensor-based fall detection system using
machine learning techniques. Their study emphasizes
the importance of sensor fusion and algorithm
optimization in achieving high detection accuracy and
reliability. By analyzing accelerometer and gyroscope
data, their system effectively distinguishes fall incidents
from other daily movements. Lopes, Rodrigues, and
Plawiak (2020) conducted a comprehensive review of
wearable solutions for elderly fall detection. They
highlighted the integration of multiple sensor modalities
and the optimization of algorithms to enhance detection
accuracy while minimizing false positives. Their
findings underscored the importance of sensor
placement and data fusion techniques in achieving
reliable fall detection outcomes. Kim and Kim (2021)
focused on real-time fall detection using wearable
sensors and machine learning algorithms. Their research

Over the past decade, there has been a notable surge
in the demographic comprising individuals aged 60 and
above. This demographic shift holds significant
implications for various sectors, particularly the
healthcare industry. With projections extending to the
year 2100, the sustained growth in the elderly population
is expected to play a pivotal role in shaping the
trajectory of healthcare services globally. Concurrently,
the issue of falls among the elderly has remained a
longstanding concern. According to statistical insights
provided by the World Health Organization (WHO), the
prevalence of falls among individuals aged 65 and above
is anticipated up to 35%. Moreover, this risk escalates
significantly to 42%, for individuals aged 70 and older
(Kumar et al., 2021). These statistics underscore the
urgent need for comprehensive strategies and
interventions to mitigate the risks associated with falls in
the elderly population.

Research in human fall detection can be categorized
into several main types: wearable sensors, vision-based
systems, acoustic detection, radar-based systems, and
hybrid approaches. Recent advancements in wearable
sensor technology have significantly enhanced the field
of fall detection systems, particularly in the context of
elderly care and safety monitoring. Wearable sensors
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highlighted advancements in sensor technology and
algorithmic efficiency, contributing to improved
responsiveness and reliability in detecting falls.

Vision-based systems analyze images or video to
identify posture changes and potential falls. Recent
advancements in vision-based fall detection systems
have leveraged RGB-D cameras and deep learning
techniques to enhance accuracy and reliability in
detecting falls, particularly focusing on elderly care and
safety monitoring. Ma, Zhang, and Li (2020) proposed
an RGB-D camera-based fall detection system utilizing
deep learning algorithms. Their approach integrates
RGB-D camera data to capture both color and depth
information, enabling precise detection of falls based on
human body movements and orientations. Palacios-
Navarro, Carrasco-Jiménez, and Perez-Cisneros (2021)
developed a fall detection system that fuses thermal and
depth information from sensors. By combining thermal
imaging with depth data, their system achieves robust
fall detection capabilities, particularly in low-light
conditions or privacy-sensitive environments. Bouloudi,
Charfi, and Soudani (2019) utilized Kinect depth images
and support vector machine (SVM) algorithms for real-
time fall detection. Their study demonstrated high
accuracy in identifying falls by analyzing depth images
captured by Kinect sensors and applying machine
learning classifiers. Yu, Wang, and Hao (2020)
proposed a fall detection system based on RGB-D
cameras and convolutional neural networks (CNNs).
Their approach leverages CNNs to process RGB-D
camera data, achieving efficient and accurate fall
detection through automated feature extraction and
classification.

Acoustic-based fall detection systems have emerged
as a promising approach for detecting falls using sound
signals and machine learning techniques. These systems
capitalize on the unique acoustic signatures generated
during falls to distinguish them from other activities and
background noise. Khan and Porikli (2019) proposed an
acoustic fall detection system utilizing deep learning-
based sound analysis. Their study demonstrated the
effectiveness of deep learning algorithms in analyzing
acoustic patterns associated with falls, achieving high
accuracy in real-time fall detection scenarios. Grzeszick
and Jager (2020) developed a fall detection system
based on convolutional neural networks (CNNs) applied
to acoustic signals. Their approach focuses on extracting
features from audio recordings to classify falls,
showcasing the robustness of CNNs in acoustic-based
fall detection applications. Wang and Liu (2020)
explored the use of acoustic signals and machine
learning techniques for fall detection. Their study
investigated various machine learning algorithms to
analyze acoustic features, aiming to improve detection
accuracy by leveraging different classification models.
Pannurat, Nantajeewarawat, and Haddawy (2020)
proposed a fall detection system using environmental

sound signals and machine learning. Their approach
integrates environmental sounds with machine learning
models to detect falls in diverse acoustic environments,
highlighting the versatility of acoustic-based methods in
different settings.

Radar-based fall detection systems have garnered
attention for their ability to monitor human motion and
detect falls using radar signals. These systems utilize
radar technology to detect changes in movement patterns
associated with falls, providing reliable monitoring in
various environments. Miao, Zhang, and Wang (2019)
explored radar-based fall detection using machine
learning algorithms. Their study focused on enhancing
detection accuracy by integrating radar signals with
machine learning techniques, demonstrating effective
fall detection capabilities. Zhou, He, and Wu (2020)
investigated ultra-wideband radar for fall detection,
emphasizing signal processing and system design
aspects. Their research highlighted the advantages of
ultra-wideband radar in detecting falls with high
accuracy and reliability in complex environments. Wang
and Guo (2020) proposed a fall detection system
utilizing ultra-wideband radar combined with deep
learning methods. Their study leveraged deep learning
algorithms to analyze radar signals, achieving robust
performance in detecting falls wunder different
conditions. Mahmood and Hassan (2020) investigated a
frequency-modulated continuous-wave radar-based fall
detection system employing deep learning techniques.
Their study showcased the effectiveness of radar signals
and deep learning algorithms in accurately detecting
falls, highlighting advancements in radar-based fall
detection technologies.

Moreover, hybrid approaches combine multiple
methods to enhance accuracy. Alsheikh and Selim
(2020) proposed a hybrid fall detection system
integrating wearable sensors and RGB-D cameras. Their
study demonstrated the effectiveness of combining
sensor modalities to improve detection accuracy and
reduce false alarms in real-world scenarios. Mahmud
and Wang (2019) conducted a comprehensive review on
sensor fusion techniques for fall detection. Their review
highlighted the integration of different sensor types,
such as accelerometers, gyroscopes, and environmental
sensors, with advanced fusion algorithms to enhance
system robustness and reliability. Eskofier, Lee, and
Kupnik (2020) investigated sensor fusion and machine
learning approaches for robust fall detection in real-
world environments. Their research emphasized the
synergy between sensor fusion techniques and machine
learning algorithms to achieve high accuracy and
adaptability across various conditions. Hossain,
Muhammad, and Alhamid (2020) proposed a hybrid fall
detection system utilizing both wearable sensors and
ambient sensors. Their study focused on integrating data
from multiple sensor sources to improve detection
sensitivity and reliability, particularly in home-based
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healthcare settings. He and Wang (2020) explored multi-
sensor fusion techniques combined with deep learning
for fall detection. Their research highlighted the
advantages of integrating data from different sensors
with deep learning models to achieve robust and
accurate fall detection performance.

In addition to the previously mentioned
methodologies, an increasingly prevalent approach in
the development of human fall detection systems is the
YOLO-based technique. The related research is as
follows: Luo (2023) addresses the critical challenge of
fall detection in smart home applications, aiming to
mitigate injuries among the elderly. Although both
vision and non-vision-based techniques are available,
vision-based approaches are preferred for their
practicality, despite challenges related to accuracy and
computational cost. The research introduces a novel
dataset for posture and fall detection, employing YOLO
networks to enhance detection efficacy. Various YOLO
versions, including YOLOv5n and YOLOv6s, are
evaluated on the dataset based on accuracy metrics such
as the FI score, recall, and mean Average Precision
(mAP). Experimental results indicate that YOLOvVSs
outperforms other versions, demonstrating superior
performance in real-world fall detection scenarios. Gao
(2023) focuses on developing a YOLO-based model for
effective fall detection in IoT smart home applications,
essential for minimizing injuries among the elderly.
Vision-based approaches have gained popularity due to
their practicality, but they often encounter issues such as
low accuracy and high computational costs. The
research aims to address these challenges by creating an
accurate and lightweight fall detection system suitable
for IoT platforms. A YOLO-based network is trained
and tested to accurately identify human falls.
Experimental findings highlight the system's potential
for integration into loT-enabled smart homes. Kan et al.
(2023) tackle the significant health concern of falls
among the elderly by proposing a lightweight approach
named CGNS-YOLO for human fall detection. Despite
the advancements of YOLOv5 in fall detection,
challenges such as computational demands and
hardware integration persist. The CGNS-YOLO method
integrates GSConv and GDCN modules to optimize
YOLOVSs, reducing model size and enhancing feature
extraction efficiency. A normalization-based attention
module (NAM) improves precision by focusing on
relevant fall-related data. Incorporating the SCYLLA
Intersection over Union (SIoU) loss function further
boosts detection accuracy and convergence speed.
Evaluation on the Multicam and Le2i Fall Detection
datasets reveals a 1.2% increase in detection accuracy,
with a significant reduction in model parameters and
floating-point  operations.  Overall, CGNS-YOLO
demonstrates superior efficacy and suitability for real-
world deployment in fall detection applications. Wang et
al. (2023) introduce an improved YOLOvSs algorithm

for lightweight fall detection, crucial for addressing
health risks associated with elderly falls at home.
Enhancements include the application of a k-means
clustering algorithm for accurate anchor boxes,
replacing the backbone with a ShuffleNetV?2 network for
simplified computing, integrating an SE attention
mechanism for enhanced feature extraction, and
adopting an SIOU loss function for improved detection
accuracy and training speed. Experimental results
demonstrate a 3.5% increase in mean Average Precision
(mAP), a 75% reduction in model size, and a 79.4%
decrease in computation time compared to conventional
YOLOvVSs. The algorithm offers superior detection
accuracy and speed, making it suitable for deployment
in cost-effective embedded devices with limited
performance. Gomes et al. (2022) leverage deep learning
for fall detection, a crucial aspect of elderly safety. They
integrate the YOLO object detection algorithm with
temporal classification models and the Kalman filter to
identify and track falls in video streams. The proposed
methods, YOLOK + 3DCNN and YOLOK + 2DCNN +
LSTM, outperform existing models on key metrics.
Raza, Yousaf, and Velastin (2022) explore human fall
detection using YOLO from a real-time and Al-on-the-
edge perspective. Addressing the challenges of using
wearable sensors in public settings, they propose a
vision-based solution using YOLO and its variants
(YOLOvV1-v4 and tiny YOLOvV4). The method leverages
the UR Fall dataset for feature extraction and
demonstrates the ability to detect falls and other
activities in real-time using simple video camera images,
without the need for ambient sensors. The approach
supports deployment on edge devices like Raspberry Pi
and OAK-D, highlighting its practical applicability.
Zhao et al. (2021) introduce YOLO-Fall, an advanced
convolutional neural network model tailored for
detecting falls in open spaces, particularly in industrial
settings where safety hazards are prevalent. Traditional
fall detection models often struggle with accuracy and
computational demands, limiting their practical
deployment. YOLO-Fall addresses these challenges by
incorporating novel enhancements: an SDI attention
module for improved feature extraction, GSConv and
VoV-GSCSP modules to reduce model parameters and
complexity, and a DBB module in the final ELAN for
enhanced feature diversity. Experimental results show
that YOLO-Fall achieves a 2.7% improvement in mean
Average Precision (mAP) compared to YOLOv7-tiny,
while reducing model parameters by 3.5% and
computational  requirements by  5.4%.  These
advancements position YOLO-Fall as a precise and
lightweight solution for real-world fall detection
applications. Yin et al. (2021) address the critical issue
of elderly fall detection using YOLO algorithms,
considering the challenges posed by aging populations.
Traditional machine learning methods often lack real-
time performance and robustness in complex scenarios.
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The study utilizes modified versions of YOLOv4 and
YOLOvVSs to achieve end-to-end prediction of fall
events in real-time. Training on a custom fall dataset and
testing in real scenarios demonstrate that YOLOvSs
offers lightweight deployment, good robustness, and
real-time accuracy compared to YOLOv4. Wang and Jia
(2020) address the increasing issue of falls among the
elderly, highlighting the need for efficient fall detection
methods. Current video-based methods are often
complex and lack real-time accuracy. The authors
propose a solution using the YOLOvV3 network model,
which includes creating a fall detection dataset and
optimizing the model on a GPU server. Their model
demonstrates  superior  recognition  performance
compared to other algorithms.

After reviewing the literature on human fall
detection, this section will discuss the details of YOLO
(You Only Look Once). YOLO is a pioneering object
detection algorithm that revolutionized computer vision
by enabling real-time detection with high accuracy.
Developed by Joseph Redmon et al., YOLO employs a
single convolutional neural network (CNN) to predict
bounding boxes and class probabilities directly from
images in a single pass. This approach eliminates the
need for multiple stages and significantly speeds up the
detection process, achieving up to 45 frames per second
on a GPU. YOLO's unified framework, use of anchor
boxes for precise bounding box prediction, and its
balance between speed and accuracy have made it a
cornerstone in various applications requiring fast and
reliable object detection.

In this research, we choose to use YOLOVS, referred
to hereafter as YOLO version 8, which represents a
significant advancement in the YOLO series of object
detection models. This version introduces several key
improvements over its predecessors, enhancing both
accuracy and efficiency in object detection tasks.
YOLOvVS integrates advanced architectural changes,
such as the use of CSPNet (Cross Stage Partial Network)
and PANet (Path Aggregation Network). These
enhancements optimize feature extraction and
aggregation, leading to improved detection performance
across various object sizes and orientations. In terms of
speed, YOLOV8 maintains real-time inference
capabilities despite its increased complexity. This is
achieved through optimizations in model architecture,
implementation of efficient layers, and streamlined
computational processes. Training efficiency has also
been enhanced in YOLOvVS. The model benefits from
novel data augmentation techniques, refined loss
functions like focal loss, and efficient training strategies
such as transfer learning with pre-trained models. These
improvements contribute to faster convergence during
training and Dbetter overall model performance.
Backbone network improvements are crucial in
YOLOVS, leveraging a more powerful base network that
enhances feature representation and extraction. This

upgrade ensures that the model can accurately detect
objects under diverse environmental conditions and
challenging scenarios. Overall, YOLOv8 sets a new
benchmark in object detection with state-of-the-art
performance metrics. Its combination of superior
accuracy, real-time processing speed, efficient training
methodologies, and robust backbone architecture makes
it a preferred choice for a wide range of applications in
computer vision, including autonomous driving,
surveillance systems, and medical diagnostics.

Upon reviewing the literature on elderly fall
detection, it is evident that current systems primarily
focus on developing highly efficient detection hardware.
Moreover, the software and algorithms used in these
systems are often complex and resource-intensive,
leading to significant costs for access. In practical real-
world applications, these high-performance falls
detection systems offer limited accessibility options for
the middle class. The available alternatives are either to
place elderly individuals in a healthcare center, incurring
substantial expenses, or to invest in installing a home-
based fall detection system, which requires considerable
expenditure on both hardware and costly software.
Furthermore, once installed, these systems lack
portability and cannot be relocated for use in different
settings. Therefore, users of these systems are
constrained to remain within the premises where the
system is originally set up. Additionally, a stable Wi-Fi
connection is crucial for optimal system operation.

Hence, the author aims to propose a fall detection
system characterized by affordability and accessibility
for all users. This system should be highly portable.
Consider a scenario where one must care for an elderly
individual who stays alone at home while the caregiver
is at work during the day. If the caregiver's job involves
frequent relocations, a portable fall detection system
becomes essential. Consequently, the author envisions
developing a fall detection application for elderly
individuals using a smartphone as the detection device.
Upon detecting a fall, the system can send alerts through
Wi-Fi or mobile network SIM. Another notable feature
of this system is its portability, allowing it to be carried
anywhere. Additionally, in the event of a power outage,
the smartphone can continue to operate on battery power
until it is depleted.

The subsequent sections of the paper follow this
structure: the section titled "The Proposed Methods"
presents the methodologies proposed in this paper,
offering detailed elucidations. Following that, the
section "Experimental Results" delves into the specifics
of data processing and experimentation, accompanied by
an exhaustive analysis of the outcomes. Lastly, the
"Conclusion" section provides a summary of the
findings and outlines avenues for future research.
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2. THE PROPOSED METHODOLOGY

This section presents a comprehensive fall detection
system specifically designed for elderly individuals,
utilizing supervised machine learning methods, and
emphasizing mobile-based deployment. The proposed
methodology is delineated into three core stages: data
collection and labeling, training, and inference. The
schematic representation of our system is illustrated in
Figure 1.

Our method amalgamates state-of-the-art machine
learning techniques with a mobile-centric approach,
providing an economically viable and scalable solution
for fall detection within elderly care contexts. The
subsequent section will delve into the intricate details of
each of these three stages, elucidating their significance
and implementation nuances.

4 Data Collection and Labeling Stage \

o Lablelmo
A = <
roboflow
K Raw Data Dataset

( Training stage \ { Inference stage \

-

Dataset

N2
Y-

YoLov8

TenserFlow Lite

Application

Traning Model

Figure 1 The schematic of the proposed system

2.1 The data collection and labeling stage

The data collection and labeling stage involved
acquiring a diverse dataset comprising 1,500 images
across three distinct classes: standing, falling, and fallen.
All 1500 images were selected from free access image
datasets specifically curated for elderly fall detection,
namely the UP-Fall Detection Dataset, Multicam
Dataset, and UR Fall Detection Dataset. The UP-Fall
Detection Dataset, Multicam Dataset, and UR Fall
Detection Dataset are invaluable resources for research
in elderly fall detection. Each dataset offers curated
images specifically annotated to depict various scenarios
of falls among elderly individuals. The UP-Fall
Detection Dataset provides a comprehensive collection
capturing diverse environments and fall types,
enhancing realism in training and evaluation. The
Multicam Dataset contributes multiple camera angles,
simulating varied surveillance perspectives crucial for
robust model training. Meanwhile, the UR Fall
Detection Dataset focuses on annotated images tailored

for studying algorithmic intricacies in fall detection,
aiding in algorithm development and evaluation. Together,
these datasets facilitate comprehensive research on fall
detection algorithms, covering a wide range of
environmental conditions and fall scenarios. These images
underwent meticulous labeling using the RoboFlow
platform, ensuring accurate classification within the
designated classes while maintaining consistency and
reliability across the dataset. The schematic depiction of
this stage is illustrated in Figure 2.

Following the augmentation of noise types to
diversify the dataset, the original 1,500 images have
been significantly enriched, resulting in a total of 7,500
images. This augmentation strategy aims not only to
expand the dataset size but also to imbue the model with
robustness and adaptability to varying real-world
conditions. The inclusion of four types of noise:
grayscale, saturation, mosaic, and brightness serves as a
strategic augmentation approach to simulate a spectrum
of environmental challenges commonly encountered in
real-life scenarios. Each type of noise introduces
specific variations to the original images, thereby
enhancing the model's ability to generalize and
accurately detect falls amidst diverse conditions.
Grayscale noise, for instance, alters the color space of
the images to simulate scenarios with varying lighting
conditions, such as low-light environments or
overexposed settings. This augmentation challenges the
model to detect falls irrespective of lighting variations,
thereby improving its resilience in real-world
deployment.
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Figure 2 Overview of the data collection and labeling stage
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Saturation noise adjusts the saturation levels of the
images, resulting in desaturated or muted colors. This
augmentation mimics scenes with subdued or washed-
out colors, such as foggy or hazy conditions, challenging
the model to discern falls amidst diminished visual cues.
Mosaic noise pixelates sections of the images, distorting
their details to replicate scenarios where the image
quality is degraded or obscured. This augmentation
prompts the model to identify falls despite partial or
obscured visual information, thereby enhancing its
adaptability to diverse imaging conditions. Brightness
noise modifies the brightness levels of the images,
resulting in darker or brighter overall appearances. This

augmentation emulates environments with varying
degrees of illumination, ranging from dimly lit spaces to
glaringly bright conditions, challenging the model to
accurately detect falls under diverse lighting
circumstances.

Through this comprehensive augmentation strategy,
we aim to equip our model with the resilience and
adaptability necessary to reliably detect falls in a wide
range of real-world conditions, thus enhancing its
practical utility within elderly care settings.

The characteristics of each type of noise are visually
depicted in Figure 3, showcasing the diversity of
challenges introduced to the dataset.

@ roboflow

ol A
.c_u.\ -

9 GrayScale  Saturation

@ s .

Mosaic Brightness

)

Original
Image

. V(‘}rayScale " Saturation

B 2 ™

Mosaic Brightness

- -

Figure 3 Examples of all four types of noise

This step ensures the availability of high-quality data
crucial for training our fall detection model.

2.2 The training stage

Subsequently, the training stage incorporates state-
of-the-art deep learning architecture, YOLOVS, to
facilitate the development of our fall detection model.
Leveraging the capabilities of TensorFlow, a powerful
machine learning framework, we seamlessly integrate
YOLOV8 into our training pipeline. This strategic
decision is rooted in YOLOV8's renowned robustness in
object detection tasks and its real-time processing
capabilities, making it an ideal candidate for our mobile-
centric approach to fall detection. The schematic
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depiction of this stage, as outlined above, is visually
represented in Figure 4.
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Figure 4 Overview of the training stage

By harnessing TensorFlow's extensive
functionalities, we optimize the implementation of
YOLOVS, ensuring efficient utilization of computational
resources during training. TensorFlow's flexibility
allows us to fine-tune model parameters and
hyperparameters, enhancing the accuracy and reliability
of our fall detection system. Moreover, TensorFlow
provides a rich ecosystem of tools and libraries for data

preprocessing,  augmentation, and  visualization,
streamlining the entire training process.

Throughout numerous training iterations, our model
undergoes a rigorous learning process, adapting to
diverse scenarios and environmental conditions to
accurately detect and classify instances of falls within
input images.

Additionally, we carefully monitor the training
progress by analyzing the learning rate over epochs. The
learning rate graph, depicted in Figure 5, illustrates the
dynamic adjustment of the learning rate during training.
This adaptive learning rate scheme optimizes the
convergence speed and stability of the training process,
allowing our model to effectively learn from the training
data while mitigating the risk of overfitting or
divergence.
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Figure 5 Graph of learning rate

In Figure 5, it is observed that the precision
surpasses the threshold of 80% after approximately 50
epochs of training. Furthermore, the precision stabilizes
at a level exceeding 80% after around 300 epochs of
training. This phenomenon underscores the efficacy of
the training regimen in enhancing precision metrics.
Such observations reflect a convergence towards a stable
and desirable precision performance, indicative of the
model's adeptness in discerning and classifying data
patterns. These findings bear significance in the context
of model optimization and deployment, elucidating the
trajectory of precision improvement over training
epochs. The integration with TensorFlow not only
accelerates model convergence but also facilitates
seamless deployment across various platforms,
including mobile devices, ensuring real-time fall
detection capabilities in practical scenarios.

In summary, by harnessing the synergy between
YOLOvV8 and TensorFlow, we empower our fall
detection model with cutting-edge object detection
capabilities, paving the way for robust and efficient fall
detection solutions in real-world applications.
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2.3 The inference stage

The inference stage marks the deployment and
evaluation of our trained fall detection system. Our next
critical step involves deploying the trained system for
real-world applications. Integration of YOLOvV8 with
TensorFlow provides a robust framework for developing
and deploying advanced object detection systems.
YOLO is renowned for its real-time processing speed
and high accuracy in object detection across images and
videos. TensorFlow, widely adopted in deep learning
and machine learning applications, offers
comprehensive support for training and inference
processes, enhancing YOLO models effectively.

The TensorFlow Object Detection API enables
seamless integration with YOLO models, empowering
researchers and developers to leverage TensorFlow's
capabilities throughout training and deployment phases.
During training, TensorFlow efficiently trains models
using annotated datasets, allowing the YOLO model to
adapt and optimize its detection capabilities by adjusting
model parameters and architecture for optimal
performance metrics.

In deployment, TensorFlow facilitates the integration
of pre-trained YOLO models into real-time applications
or video streams, ensuring precise object detection in
dynamic environments. The API's flexibility supports
fine-tuning of pre-trained models tailored to specific use
cases or to enhance detection performance further.

Furthermore, TensorFlow supports ongoing model
refinement  through continuous evaluation and
optimization, enabling iterative improvements based on
real-world  performance feedback. Leveraging
TensorFlow Lite, a lightweight version optimized for
mobile and embedded devices, further enhances
deployment efficiency.

The workflow of this stage is illustrated in Figure 6,
depicting the overall process from model training to
deployment and iterative refinement.
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Figure 6 Overview of the Inference stage

The process begins with the conversion of our
trained TensorFlow model into a TensorFlowLite
format, tailored for seamless integration with mobile
platforms. TensorFlowLite employs various
optimization  techniques to  ensure  minimal
computational and memory footprint, thereby enabling
efficient execution on resource-constrained devices such
as smartphones. Once the model conversion is
completed, we proceed to integrate the TensorFlowLite
model into our mobile application, empowering
smartphones with the capability to perform real-time fall
detection. Leveraging the processing power of modern
smartphones, our application can analyze video streams
or accelerometer data in real-time, swiftly detecting and
alerting caregivers or emergency services in the event of
a fall. Furthermore, the deployment of our fall detection
system on smartphones offers several advantages,
including portability, ubiquity, and accessibility.

Users can carry their fall detection solution with
them wherever they go, ensuring continuous monitoring
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and assistance, particularly for elderly individuals living
independently. Additionally, the integration of our fall
detection system into smartphones opens up
opportunities for further enhancements, such as
incorporating additional sensors (e.g., gyroscopes, GPS)
for context-aware fall detection or leveraging cloud
services for centralized monitoring and data analytics. In
summary, the exportation of our trained fall detection
model to TensorFlowLite facilitates seamless integration
into smartphones, enabling the deployment of our
solution for real-time fall detection on a wide scale. By
harnessing the ubiquity and processing power of
smartphones, we empower individuals to lead safer and
more independent lives while providing caregivers and
emergency responders with timely alerts and assistance
when needed.

Following the successful deployment of our fall
detection system onto smartphones, the next pivotal
aspect we delve into is the analysis of experimental
results. This phase serves as the ultimate validation of
our system's performance and effectiveness in real-
world scenarios.

3. THE EXPERIMENTAL RESULTS

The experimental results provide crucial insights into
the performance and effectiveness of our fall detection
system, validating its capability to accurately identify
falls and differentiate them from normal activities. In
this section, we present a comprehensive analysis of
both quantitative and qualitative evaluations conducted
to assess the system's performance. Additionally, a
utilization evaluation was also conducted.

3.1 Quantitative evaluation

Cross-validation is a statistical method used to assess
the performance of machine learning models by
partitioning the dataset into subsets known as "folds."
Typically, in a 10-fold cross-validation setup, the data is
divided into 10 equally sized folds. During each
iteration, one fold is designated as the validation set,
while the remaining nine folds are utilized for training
the model. This process is repeated ten times, ensuring
that each fold serves once as the validation set. The
results from each iteration are averaged to derive a final
performance metric, providing robust evaluation and
minimizing overfitting risks by leveraging all available
data for training and validation purposes.

For the quantitative evaluation of our fall detection
system, we utilized a 10-fold cross-validation technique.
Details of the fold division and the sequence of folds
used for testing and training are depicted in Figure 7.
The dataset comprises a total of 7,500 images,
consisting of 3 classes with 2,500 images per class.
These images were divided into 10 folds, each
containing 750 images. Each fold consists of 750
images, with 250 images from each of the 3 classes. The
average accuracy of our approach was calculated to be

97.88%. Comprehensive confusion matrices for each
fold, accompanied by their respective accuracy scores,
are presented in Table 1, providing a detailed illustration
of the evaluation results.
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Figure 7 10-fold cross-validations

In Table 1, the abbreviations ST, FG, and FN in the
columns under "Actual class" and "Predicted class"
denote stand, falling, and fallen, respectively. The
accuracy of the fall detection model was evaluated using
the following formula:

TP+TN

Accuracy = ———
Y = TP+TN+FPEN

(1

where TP represents True Positives, 7N represents True
Negatives, FP represents False Positives, and FN
represents False Negatives. This metric measures the
model's ability to correctly classify instances of falls and
non-falls.

These results demonstrate the high accuracy and
reliability of our fall detection system across diverse
datasets, showcasing its robustness in real-world
scenarios.
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Table 1 Accuracy scores from 10-fold cross-validation

\\ NOR NIR

Figure 8 Examples of images from four scenario

The evaluation was based on confusion matrices
obtained from the classification results for each
scenario. The confusion matrices provide insights into
the system's ability to accurately detect falls and
differentiate them from non-fall activities. The results of
the qualitative evaluation are summarized in Table 2,
where the average accuracy of the qualitative approach
is calculated to be 95.92%.

Table 2 Accuracy scores from four scenarios

Actual Predicted Class o
Fold Class ST | FG | FN Accuracy (%)

ST 245 4 1

1 FG 2 245 3 98.27%
FN 1 2 247
ST 245 4 1

2 FG 2 245 3 o
FN 1 2 247 98.00%
ST 245 3 2

3 FG 1 246 3 o
N 2 4 242 98.40%
ST 249 1 0

4 FG 3 243 4 o
FN 0 4 246 787%
ST 245 3 2

5 FG 1 246 3 o
N 3 n 3 97.73%
ST 246 3 1

6 FG 2 244 4 o
FN 2 5 243 O707%
ST 245 3 2

7 FG 5 237 8 o
N 1 3 246 98.27%
ST 248 2 0

8 FG 1 245 4 o
FN 2 4 244 97:20%
ST 242 5 3

9 FG 2 244 4 o
FN 1 6 243 98.67%
ST 247 2 1

10 FG 1 246 3 97.33%
FN 0 3 247

Average 97.88%

3.2 Qualitative evaluation

In addition to quantitative assessment, we conducted
a qualitative evaluation to analyze the system's
performance under different conditions. The evaluation
criteria included four scenarios: daytime outdoor
residential (DOR), daytime indoor residential (DIS),
nighttime outdoor residential (NOR), and nighttime
indoor residential (NIR). From this assessment, we
collected 300 images for each scenario, totaling 1200
images used for qualitative evaluation. These images
were meticulously chosen to encompass various
environmental factors and challenges typical of real-
world fall detection scenarios. Examples of images from
each scenario are illustrated in Figure 8. These scenarios
represent subclasses within the main class of elderly fall
images as discussed in section 2.1 of the image database.

Scenario ACclt:szl Sl;red;%ed Cl;:ls\? Accuracy (%)

ST 97 2 1

DOR FG 0 97 3 97.33%
FN 1 1 98
ST 95 3 2

DIR FG 1 97 2 96.67%
FN 1 1 98
ST 96 3 1

NOR FG 0 98 95.33%
FN 3 5 92
ST 93 4 3

NIR FG 1 97 2 94.33%
FN 2 5 93

Average 95.92%

These results demonstrate the system's effectiveness
in accurately detecting falls across different
environmental conditions. The low false positive and
false negative rates indicate the system's reliability in
distinguishing fall events from normal activities, thus
showcasing its suitability for real-world deployment.

3.3 Utilization evaluation

In addition to the quantitative and qualitative
evaluations discussed in preceding sections, serving as
benchmarks for academic performance, this study
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presents a pragmatic assessment focusing on four critical
dimensions: real-time detection capabilities,
simultaneous detection of falls among multiple
individuals with varying statuses, system repositioning
flexibility, and fall-triggered alert notifications.

The study conducted tests on real-time and
simultaneous fall detection by capturing fifteen 1-hour
videos, totaling 15 hours of footage. Results indicate the
smartphone-based fall detection system operated
flawlessly. Figure 9 provides sample images
highlighting the system's real-time individual status
detection, while Figure 10 demonstrates its simultaneous
detection across diverse individual statuses.

Figure 9 Real-time demonstration of the fall detection system
accurately identifying individual statuses.

Figure 10 Simultaneous detection of falls across multiple
individuals with varying statuses.

To evaluate system mobility and usability across
different environments, varied indoor and outdoor
locations were systematically tested during video
recordings. Results revealed seamless transitions
between locations without complications, as shown in
Figure 11.

Figure 11 Example of location transition during testing.
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Lastly, alert notifications were tested by integrating
them with the LINE messaging app, triggering
notifications for 45 instances of randomly simulated
falls, occurring three times per hour during video
recordings. The system successfully detected and alerted
each instance without errors, depicted in Figure 12.

< ® LINE Notiy

I'

Figure 12 Notification display integrated with the LINE
messaging app during fall detection testing.

This revision emphasizes that figures 9, 10, 11, and
12 were intentionally chosen not to depict elderly
individuals. The testing methodology of the fall
detection system included simulated falls specifically
designed to assess its sensitivity and accuracy,
particularly in scenarios involving elderly users. The
deliberate decision to exclude images of elderly
individuals from these figures was made to prevent any
misinterpretation and to ensure clarity in demonstrating
the system's capabilities across various scenarios.

Conducting tests with elderly individuals in fall
detection  research  raises  significant  ethical
considerations and potential risks. Safeguarding the
safety and well-being of participants is paramount when
conducting research involving vulnerable populations.
Adherence to stringent research ethics guidelines is
essential to mitigate any potential harm or discomfort
that participants may experience. Testing the fall
detection system involved rigorous evaluation under
controlled conditions where simulated falls were
carefully orchestrated to mimic real-world scenarios.
This approach not only validated the system's ability to
detect falls but also ensured that the testing process did
not expose elderly individuals to actual risks associated
with falling.

The validated fall detection system explored in this
study holds significant promise for diverse applications
across various sectors. Implementing this system in
elderly care facilities, such as nursing homes or assisted

living facilities stands to revolutionize elderly care by
providing immediate alerts in the event of falls. This
capability not only reduces response times but also
enhances overall safety by ensuring prompt assistance
during critical moments. In the realm of home
healthcare, particularly for elderly individuals living
independently, the system's continuous monitoring
capabilities offer reassurance without compromising
privacy. By detecting falls and triggering alerts, it
enables timely intervention and support, crucial for
managing emergencies effectively and maintaining
independence. Hospitals can also benefit from
integrating this fall detection system into their
environments. In wards where patient mobility is a
concern, the system serves as a valuable supplement to
existing monitoring systems. It enhances patient safety
by providing additional layers of detection and response
mechanisms, thereby reducing the risks associated with
falls within healthcare settings. Public spaces, such as
airports, train stations, or recreational areas, can
leverage the system to improve safety protocols. Rapid
detection of falls allows for immediate medical
assistance, minimizing potential consequences and
ensuring a swift response to emergencies. Moreover, the
system's adaptability extends to personal use through
wearable devices or smartphone integration. This
application empowers individuals by alerting caregivers
or emergency services in real-time, regardless of their
location. Such proactive measures not only enhance
personal safety but also contribute to peace of mind for
users and their families. By harnessing the accuracy and
real-time capabilities validated in this study,
stakeholders across these sectors can optimize safety
protocols, improve response times, and ultimately
enhance outcomes for individuals prone to falls,
including the elderly and those with specific medical
conditions.

4. CONCLUSION

In conclusion, this paper introduces a mobile-centric
approach to fall detection tailored specifically for the
elderly, addressing a critical need in the context of an
aging global population. Our research underscores the
urgency of developing cost-effective, scalable solutions
to ensure the safety and well-being of seniors,
particularly those living independently. By diverging
from  conventional hospital-based  setups, our
methodology offers a pragmatic response to the
challenges posed by the demographic shift towards an
increasingly elderly populace. Throughout our study, we
have meticulously outlined the methodology employed
in the design, development, and evaluation of our fall
detection system. From the rigorous data collection and
labeling process to the utilization of state-of-the-art
supervised machine learning techniques, such as
YOLOVS, our approach reflects a commitment to
methodological rigor and innovation. Furthermore, the
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seamless integration of our model with mobile platforms
through TensorFlowLite underscores our emphasis on
practicality and real-world applicability.  The
experimental results presented in this paper provide
compelling evidence of the efficacy and reliability of
our fall detection system. Through a combination of
quantitative evaluation techniques, including 10-fold
cross-validation, and qualitative analysis based on
confusion matrices, we have demonstrated the
robustness of our approach across diverse datasets and
environmental conditions. These findings not only
validate the effectiveness of our system but also
underscore its potential for widespread adoption and
deployment. Moreover, the practical implications of our
research extend beyond academic discourse. The
deployment of our fall detection system on smartphones
holds transformative potential for elderly care and
emergency response. By leveraging the ubiquity and
processing power of mobile devices, we empower
caregivers and elderly individuals with real-time
monitoring and assistance capabilities, thereby
enhancing safety, autonomy, and quality of life. Looking
ahead, the field of fall detection systems for the elderly
presents exciting opportunities for further research and
innovation.

Future endeavors may explore enhancements such as
context-aware fall detection, integration with additional
sensors, or cloud-based analytics for comprehensive
monitoring and analysis. By continuing to push the
boundaries of technology and healthcare, we can strive
towards a future where aging populations can age with
dignity and security, supported by cutting-edge solutions
tailored to their unique needs.
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