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Abstract

This paper introduces a novel method for classifying textile fibers into three groups: natural fibers, synthetic fibers,
and blended fibers using near-infrared (NIR) spectra obtained via the NeoSpectra-Micro sensor. Our approach involves
preprocessing and employing the /,-norm with p = oo, 1, and 2 to enhance spectral signals. These enhanced signals
alongside textile template filters were obtained from both natural and synthetic fiber groups. Next, the template filters
are used to construct a new 2x1 feature vector through covariance-based techniques to effectively reduce spectral data
dimension. The feature vector is pivotal for establishing two threshold lines together with an analytical geometry
technique to classify for accurate fiber groups. To evaluate the performance of the proposed method, experiments were
conducted by using three groups of fiber samples: 210 natural fiber spectra, 480 synthetic fiber spectra, and 270 blended
fiber spectra. The dataset was divided into training and testing sets with ten random iterations exploring eight ratios and
l,-norm enhancements for training and evaluation. Remarkably, the experimental result has shown that the overall
accuracy remains consistent across the three cases of the /,-norm enhancements providing the similar accuracies.
Considering the limited computational resource, the /;-norm emerges as a practical choice for embedded systems,
emphasizing its practicality for implementation. Moreover, the proposed method additionally provides high accuracies
(mean + standard deviation) of 0.9995 + 0.0006, 0.9999 + 0.0004, and 0.9999 =+ 0.0005, whereas the ratio of the train
and test data is equal to three cases: 10:90, 20:80 and 30:70, respectively, and achieves an exceptional overall accuracy
of 100%, whereas the ratio of the train and test data is equal to five cases: 40:60, 50:50, 60:40, 70:30 and 80:20.
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1. INTRODUCTION in synthetic fabrics and cellulose fibers in natural fabrics,
or blended fabrics containing both types, requires
different recycling methods (Damayanti et al., 2021;
Piribauer & Bartl, 2019).

In recent year, near-infrared (NIR) spectroscopy has
become a popularity as a method for textile analysis and
classification due to its ease of use, non-destruct the
samples, efficiency, cost-effectiveness, and time-saving

The textile industry is one of the most polluting
industries, primarily due to its manufacturing processes
that extensively use the second highest amount of land
resources and the fourth highest amount of water
resources. It contributes to greenhouse gas emissions and
water pollution, accounting for 10% and 20% of the
global world’s pollution, respectively (Dissanayake &

Weerasinghe, 2021; Filho et al, 2022). Additionally, advantages compared to traditional laboratory-based
chemical analysis methods (Guifang et al., 2015; Sun et

al., 2015; Chen et al., 2018). However, it is essential to
highlight that in the majority of research applications,
preprocessing and dimensionality reduction steps are
prerequisites before developing classification models.
Similarly, alternative methods using low-cost devices,
such as image processing, have emerged as viable
options for textile classification, as demonstrated by Da
Silva Barros et al. (2020). Their approach involves the
utilization of mobile device images and Convolutional
Neural Networks (CNN) for feature extraction. The

global post-consumer textile waste has nearly doubled
from 58 million to 109 million tons per year in the past
decade, leading to issues to textile waste in landfills and
contributing to microfiber pollution in oceans.
Recycling textile waste is an important approach to
make the textile industry more sustainable and move
towards a circular economy. However, only 1% of textile
waste can be currently recycled into new clothing due to
technological limitations in efficiently and rapidly
classifying different fiber components. This is because
the fiber composition in textiles, such as polymer fibers
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experimental results indicate that feature extraction
using DenseNet201 and the SVM classification model
achieved the highest accuracy, with an accuracy rate of
94.350% and an F1-Score of 94.296%. This underscores
the importance of employing robust feature extraction
techniques in both NIR spectroscopy and image
processing for accurate textile classification.

Wu et al. (2015) employed preprocessing techniques,
including the first derivative and the standard normal
variant (SNV), before applying the principal component
analysis (PCA), a widely used method for linear
dimensionality reduction. This approach generated six
principal components (PCs), which subsequently served
as input variables for a classification model based on
least-squares support vector machines (LS-SVM). The
LS-SVM model was utilized to classification four types
of natural fibers. Sun et al. (2015) employed the
Savitzky-Golay first derivative with a five-point window
width as preprocessing and used PCA to reduce the
initially high dimensionality of 3,000 variables per NIR
spectra from the Antaris II FT-NIR spectrometer. They
reduced these variables to 3, 4 and 6 PCs, which were
used as new input variables for SIMCA analysis, LS-
SVM with the RBF kernel function, and the extreme
learning machine (ELM) model to classify various
fabrics, including cotton, viscose, acrylic, polyamide,
polyester, and blend fabric. The results indicated that
ELM model achieved a 100% with higher processing
speed compared to SIMCA and LS-SVM. Zhou et al.
(2019) applied the second derivative as preprocessing
before used PCA to reduce 601 variables per NIR spectra
obtained from the Brimrose Luminar 3060 AOTF-NIR
to three PCs. The new variables were subsequently used
in SIMCA analysis to classify seven types of fabric into
three groups. The results indicated that PP, PET, PLA,
cotton and tencel fabrics were accurately classified with
almost perfect accuracy of 100%, whereas wool and
cashmere fabrics required another method to achieve
best classification accuracy of 100%, specifically the
linear discriminant analysis (LDA).

Recently, Ruiz et al. (2022) aimed to enhance the
accuracy of classifying post-consumer textile waste by
employing data fusion techniques that combined MIR
(mid-Infrared) and NIR (near-Infrared) spectroscopy
data. Before fusing the given data, they conducted a
preprocessing step, which involved applying the first and
second derivatives of the Savitzky-Golay smoothing
method with a moving average window of 5 and 10
points. They additionally performed mean-centering and
balanced the weight of the MIR and NIR spectra data
within the 01 interval by using min-max normalization.

For dimensionality reduction, they utilized the PCA and
the canonical variate analysis (CVA) to reduce the
dimensionality of the fusion data, which consisted of
3,551 variables from MIR and 2,201 variables from NIR.
This reduction produced a new set of variables equal to
the number of classes minus one. Subsequently, these
new variables served as inputs for a k-Nearest Neighbors
(kNN) classification model. The results indicated that the
fusion data provided more accurate classification results
than using the NIR or MIR spectra data separately,
particularly in the case study of blended fibers (mixed
between cotton fibers and polyester fiber) achieving the
best accuracy with only a 5% error in classification,
whereas the error rates for the NIR and MIR spectra were
7% and 6%, respectively. In the same year, Ruiz,
Cantero, Riba-Mosoll, et al. (2022) employed a Deep
Learning algorithm based on convolutional neural
networks (CNNs) to classify textile waste, which
included both pure fibers and cotton/polyester blend
fibers. They proposed two distinct methods in their
methodology both beginning with crucial preprocessing
steps involving the calculation of the first or second
derivatives and mean-centering of the NIR spectrum. In
the first approach, no dimensionality reduction step was
applied before the CNN classification. In contrast, the
preprocessed spectral data underwent transformation
using the PCA and CVA algorithms to reduce
dimensionality and create new variables for the
classification step alongside the CNN in the second
approach. The results demonstrated that the PCA + CVA
+ CNN approach in the second method outperformed the
CNN-only method without dimensionality reduction.
Specifically, the PCA + CVA + CNN approach achieved
a correct classification rate of 100% in the case study of
pure fibers and a correct classification rate of 91.1% in
the case study of cotton/polyester blend fibers.

From all the research reviewed above, it is evident
that preprocessing processes with a variety of methods
such as standard normal variables (SNV), and first or
second derivatives combined with Savitzky-Golay
smoothing, and widely used dimensionality reduction
processes like PCA, are essential for achieving accurate
textile classification with NIR data. This finding aligns
with our previous research (Limsripraphan & Yammen,
2022), which demonstrated that preprocessing processes
with signal enhancement in proposed methods improved
the classification efficiency. In addition, it has been
shown that improving the accuracy of blended textile
classification using NIR spectra remains a major challenge.

This paper presents a novel classification approach
to classifying textile samples. The method involves
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several key steps, starting with [, —norm spectral
enhancement as a preprocessing technique (Cadzow,
2002; Cadzow et al., 2002) and utilizing covariance-
based feature filters (Yammen et al, 2021) for
dimensionality reduction to extract a useful feature vector.
Subsequently, this new feature vector is subjected to the
analytic geometry (AG) technique to establish threshold
lines that can classify textile fibers into three groups:
natural, synthetic, and blended fibers. The performance
of the classifiers is evaluated using three key metrics:
overall accuracy, precision, and recall. These metrics
are also applied to various scenarios, considering
different cases of [, —norm spectral enhancement,
where p takes on values of 1, 2, co across varying
training and testing dataset ratios. The proposed method
consistently achieves overall accuracy of 100% for all
l, —norm spectral enhancement, even when the
training dataset is reduced unto 30%, which differs from
the observed variations in accuracy under different
training and testing data ratios.

In conclusion, this paper aims to highlight the
improvement in the accuracy of the textile classification
using the NIR spectra, particularly in classifying blended
fabrics and reducing intensive computational resources.
The objective is to employ simple and interpretable
methods while comparing the effectiveness of [, — norm
spectral enhancement in achieving best classification
accuracy.

2. SPECTRA DATA PREPARATION

2.1 Sample Collection and Identification

The NIR spectral data in this paper were collected
from samples of various types of woven and knitted
fabrics commonly used in clothing production. These
samples were sourced from fabric distributors and
factories in Thailand. The textile samples include natural
fibers (such as cotton, linen, and rayon), synthetic fibers
(like polyester or spandex) and blended fibers between
both types in various proportions from high to low ratios
of natural to synthetic fiber. Additionally, to include
maximum variability in the analyzed set of samples, each
fabric sample was selected in a multitude of colors
ranging from dark to light.

All fabric samples were sent to the textile testing
center, Thailand’s textile institute (THTI), which operates
under the Ministry of Industry’s Foundation for Industrial
Development (FID), to confirm the fiber composition and
to identify the fabric samples into three groups. The fiber

composition was determined based on the clean dry mass
with percentage additions for moisture method under the
Thai Industrial Standard (TIS), Standards No.121 part 26-
2552. This method is widely recognized for quantifying
binary mixtures of fibers in textile products.

In summary, all fabric samples were categorized into
three fiber group based on the composition confirmed by
THTI: 7 fabric types in natural fiber group, 16 fabric
types in synthetic fiber group, and 9 fabric types in
blended fiber group, which were further divided into 7
different ratios of natural to synthetic fiber: 68:32, 52:48,
48:52, 36:64, 35:65, 34:66, and 17:83. There are total 32
fabric types, and each of which comes in 3 different
colors. Therefore, this research utilized a total of 96 fabric
samples for training and testing the performance of the
proposed method.

2.2 NIR Spectral Acquisition

The NIR spectra of the textile samples were acquired
using the NeoSpectra-Micro Development Kit (Si-ware
Systems, Cairo, Egypt), a portable NIR instrument that
has shown its reliability for analysis and classification
in various fields. These fields include food (McVey et
al., 2021; Giussani et al., 2021; Chadalavada et al.,
2022), healthcare (Habibullah et al., 2019), agriculture
(Du et al., 2019), and textile fibers as shown in a
previous study (Yammen et al., 2022; Limsripraphan. et
al., 2022; Cadzow, 1999). The device is housed in a
specially designed enclosure to prevent interference
from external light and to maintain consistent
measurements over fabric samples at a height of one
centimeter as shown in Figure 1.

NeoSpectra-Micro
Development Kit { s [n]}
device encloser > T (' )

— {xp [n]}

fabric sample

/ \
L2 ]

Figure 1 NIR spectral acquisition and spectral enhancement

Each spectral value is acquired using a device that
records data for 65 pairs of absorbance and wavelength in
the range of 1350 nm to 2550 nm. This data is then
transformed in the form of signals representation {s[n]},
where n € {0,1,2, ...,64}, as shown in Figure 2. All
fabric samples are measured at 10 positions on a fabric
sample with dimensions of 30 x 50 centimeters.
Therefore, 960 NIR spectral samples were obtained for
use in the proposed method.
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Figure 2 NIR spectral signals representation

2.3 NIR Spectral Signal Enhancement with l,, norm

Before applying our proposed classification method
to the 960 NIR spectral samples, we introduce [, — norm
spectral enhancement (Cadzow, 1998) as a preprocessing
step to reduce the spectral variability of the input spectral
signals {s[n]} (Bunchuen et al., 2011). In this process,
each spectral signal is normalized by subtracting its mean
and dividing the result by its I, norm, resulting in an
enhanced spectral signal {xp [n]} as calculated using Eq. (1).
We explore various p values to assess their impact on
classification accuracy when applying our proposed
method in section 4.

s[n] —us

xp[n] = T({s[n]}) = TGl = w3, (1)

where: p =1, 2, o0 and

64
1
Hs = %Z s[n] 2)
n=0

2.4 Train and Test Datasets

In this study, the entire set of enhanced spectral
signals {xp [n] }, obtained from three enhancement studies
using 1, —norm with p values of 1, 2, and o was
randomly divided into eight different proportions for the
train-to-test dataset within each fiber group. These
proportions included 10:90, 20:80, 30:70, 40:60, 50:50,
60:40, 70:30, and 80:20, as shown in Table 1.

This approach allowed us to assess the accuracy of our
proposed classification method, which was trained using
the train dataset, while ensuring that the testing data were
not used during the training step. Additionally, this
evaluation helped us understand the performance of our
proposed method when the amount of training data is
reduced. Moreover, each sample was labeled to identify

its respective fiber group, facilitating the assessment of
correct classification.

Table 1 Number of Train and Test Samples

Train dataset Test dataset
proportions| Natural | Synthetic | Blended | Natural |Synthetic | Blended

W) | N | () | (V) | (N | ()

10:90 21 49 27 189 432 243

20:80 42 96 54 168 384 216

30:70 63 144 81 147 336 189

40:60 84 192 108 126 288 162

50:50 105 240 135 105 240 135

60:40 126 288 162 84 192 108

70:30 147 336 189 63 144 81

80:20 168 384 216 42 96 54

3. METHODOLOGY

Extraction {hp[n]} Featwre | T | Decision Decision

Textile > I ing | >
{xp [n]} ‘[ oot Extraction Making Results

Figure 3 Diagram of proposed classification method

Figures 3 shows our proposed method for classifying
textile fibers into three groups. We utilize enhanced spectral
signals {xp [n]} as input to extract patterns of interest in
natural and synthetic fiber spectra, resulting in the creation
of two textile template filters. These template filters are then
employed for feature extraction based on covariance,
leading to the creation of the two new feature vectors. Each
of the two feature vectors is utilized to build a classification
system that facilitates decision-making regarding fiber

groups.

3.1 Textile Template Filter

. 0
O )
éim—I

Figure 4 Diagram of create textile templates filter

Train dataset

([} — >0 t

In this section, we introduce to creation of textile
template filter to extract characteristic patterns of interest
within in either natural or synthetic fibers spectra group.
To create this filters, we start by utilizing input data of
interest derived from the training dataset. We computed
the average of the enhanced spectral signals {xp [n]},
which serves as the input. This average spectrum was
then normalized by subtracting its mean and dividing the
result by its l, — norm, resulting in the textile template

filters {hp [n]} as shown in Figure 4. Consequently, when
we utilize spectra from the training dataset of the natural
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group (N = N,, samples), the textile template filters
represent the pattern within natural fiber spectra.
Similarly, when employing spectra from the synthetic
group (N = N; samples), the textile template filters
represent the pattern within synthetic fiber spectra.

3.2 Feature Extraction with Covariance-based

{xp [n]} —
{hp [n]}—

Figure 5 Diagram of covariance-based feature

O) —r

The proposed method involves a dimensionality
reduction process by extracting useful features using the
textile template filters {hp [n]}, which effectively represent
characteristic patterns in natural or synthetic fiber groups.
We employ a covariance-based technique (Fuangpian et
al., 2011) to assess the similarity between two inputs: the
enhanced spectral signals {xp [n]} from unknown fiber
groups and the representations of natural or synthetic fiber
spectra provided by the textile template filters {hp [n]}.
This process results in a r value as shown in Figure 5,
within the interval from 0 to 1 described in Eq. (3),
signifying the degree of similarity.

Yok xp [1R,[1]
" G WL x Ty ), "

<1 @

When employing textile template filters from the
natural fiber group and utilizing enhanced spectral signals
{xp [n]} from the unknown fiber groups as input, the
resulting r values, denoted as 7, indicate a high degree
of similarity to the patterns found in natural fiber spectra.
Similarly, when employing textile template filters from
the synthetic fiber group with the same input enhanced
spectral signals, the resulting r values, denoted as 7y,
signify patterns highly similar to those present in
synthetic fiber spectra. These values are pivotal in our
approach as they form the foundation of the new feature
vector denoted as a 2x1 feature vector 7 with 7, and r; as
its components. This transformation practically reduces
feature dimensionality from 65 to 2, ensuring efficient
separation and classification of textile fibers based on
their spectral. This new feature vector 7 is used for
analysis to create our proposed classification algorithm,
which utilizes the analytic geometric technique as shown in
Figure 6.

3.3 Classification Algorithm using Analytic Geometric
technique

Figure 6. shows a scatter plot of all two-dimensional
vectors 7; obtained from the training dataset, comprising
three distinct fiber groups, where i € {1,2,3, ..., N}. Each
vector is represented as an ordered pair (7y,;, 75;), With 1;
denoted the x-axis component and r;,; representing the y-
axis component.

1 M %

09

08
07
06
Tsos
04
03

02

0 0.1 0.2 03 0.4 05 06 07 08 0.9 1
Tn

Figure 6 Classification using Analytic Geometric technique

Vectors from the synthetic fiber group (square
symbol) cluster near the y-axis, while those from the
natural fiber group (circle symbol) cluster near the x-axis.
This demonstrate that ry; corresponds to synthetic fiber
patterns, and 7;,; to natural fiber patterns. Therefore,
vectors from the blended fiber group (triangle symbol) lie
between these clusters, demonstrating their relationships.
To effectively separate these groups and determine the
boundaries between them, we employ vector and
geometric analysis techniques to establish two critical
threshold lines: l;; and [,.

In Eq. (4) and Eq. (5) as described, the two essential
VeCtors, Symay and bymin , are used in the process of
establishing l;; . These vectors play a pivotal role in
signifying the boundaries between the synthetic and
blended fabric groups.

§xmax = [Tnn; rSN;]T ) @
where Tpy: = ie{rlr’lzz:g(mNS}{rni}
- (5)
bymin = [rnNZ rSNZ]T ,
where Tany = ie{:{,r%}g..lvs}{r”i}

The based vector Sypg, is determined on Ng €
{1,2,3 ... N;}, which represents the index of the maximum
value 13,; within the synthetic fabric group. Similarly, the

Naresuan University Engineering Journal, Vol.18, No.2, July — December 2023, pp. 57-68 61



NUEJ

Naresuan University
Engineering Journal

based vector mein is determined on N, € {1,2,3 ... N,},
which represents the index of the minimum value ry;
within the blended fabric group. After identifying these
key vectors, we calculate the midpoint vector ¢;, which
serves as the center point of our geometric approach, as
described in Eq. (6):

c_:1 =0.5x (§xmax + mein) (6)

Subsequently, we create a perpendicular line to the
midpoint vector ¢;. This line is instrumental in establishing
l;1, which define the boundary between the synthetic and
blended fabric groups. We find the slope m;of the line
using a component of vectors as described in Eq. (7):

mein(l) - §xmax(1)
m; = —=
' xmin(z) - §xmax(2) (7)

Additionally, we define the equation of the threshold
line as l;; = myx+ ¢;, where 0 <x < 1. The y-
intercept c; is calculated by using a component of vector
¢;, as described in Eq. (8):

=62)—¢ (1) xm (®)

For the second threshold line [;,, which signifies the
boundary between the blended and natural fiber groups,

we follow a similar procedure to create vector Bymin and
Mymax as described by Eq. (9) and Eq. (10):

7 9
bymin = [TnN; TSN;]T , ®)
where 1oy = min Toi
SNb e (123N} i}
- 10
Nymax = [nn;, rSNf;]T ) (10)
where 1oy = max  {rg}

i€{1,2,3..Ny}

The based vectors: Eymin is determined on Nj €
{1,2,3 ... N, }, which represents the index of the minimum
value r; within the blended fabric group. Conversely, the
based vector 7lymqy is determined on N, € {1,2,3 ... N,,},
which represents the index of the maximum value ry;
within the natural fabric group.

With these two vectors, we create [;, using the same
geometric analysis techniques. We calculate the slope m,
by using the components of the vectors with the formula
as described in Eq. (11):

_ ﬁymax(l) - bymin(l)

11
nymax (2) - bymin (2) ( )

m, =

The equation of the threshold line [;, is expressed as
l;, = myx+ c,, where 0 <x <1, and we compute
calculate the y-intercept ¢, by using a component of vector
C,, as described in Eq. (12):

c; = ;(2) — ¢,(1) x my (12)

In our classification process, once the constants for
l;1 and I, have been determined, these threshold lines
play a pivotal role in the classification of unknown vectors,
represented as (75, 75y, ), into one of three distinct fiber
groups: natural, synthetic, or blended fiber group. Our
algorithm employs a fundamental linear equation and
follows the sequence of criteria checks:

Step 1: if 1, —my X1, + ¢; > 0, classify the
unknow vector into the synthetic groups. If this condition is
not met, proceed to the next classification.

Step 2: if 15, —my X 15, + ¢, < 0, classify the
unknow vector into natural group. If this condition is not
met, the unknown vector is classified into the blended
group.

In this section, we have detailed our classification
algorithm based on the analytic geometric technique. The
algorithm’s fundamental linear equations and criteria have
been explained. In the next section, we will present the
outcomes of applying this algorithm with training dataset,
providing insights into its performance.

3.4 Results of NIR Signal Enhancement with l, norm

Figures 7 to 9 (a) show three examples of the raw fiber
spectra {s[n]} in each group, which have the same similar
pattern but exhibit variability and slight differences due
to noise or bias, making it challenging to identify the
group. In Figures 7 to 9 (b-c), the enhanced spectral signals
{xp [n]} with [, norm, where p = o0,1 and 2, respectively,
are shown and can effectively reduce spectral variability.
This ensures that all signals have equal power to one.

05 1
— fabric type-1 N — fabric type-1
0.4 - - fabric type-2 Al 075 - - fabric type-2
=== fabric type-3 i

03
- 02
=)

? 01

o

-01

-02 -0.
0 10 20 30 40 50 60 0 10 20 30 40 50 60

(a) raw spectra signal (b) Enhanced with p = oo
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Figure 7 Signal enhancement with [, norm of Natural fiber group
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Figure 8 Signal enhancement with [, norm of Synthetic fiber group
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Figure 9 Signal enhancement with [, norm of Blended fiber group

3.5 Result of Analytic Geometric Classification with
l, norm

We extend the proposed method from Section 3 to
demonstrate the use of spectral signal enhancement {xp [n]}
with three different [, norm cases in the creation of
new feature vectors 7, which extract features using the

covariance-based technique. In Figures 10 (a), (b) and (c),
we present vector data obtained from a 50:50 training

dataset enhanced with [, norm, where p = 0,1 and 2,
respectively. The figures illustrate that each [, norm

generate a distinct threshold line l;; and l;,, with slight
variations in the two constant values m (slop) and c

(intercept) in line equation.

From Table 2 and 3, show the average values and
standard deviations of the constants m;, ¢;, m, and c,

Naresuan University Engineering Journal, Vol.18, No.2, July — December 2023, pp. 57-68

for threshold line l;; and [;,. These values were obtained
through ten random iterations on various dataset ratios.
Threshold line [, demonstrates minimal variance in
standard deviation values across different I, norm
enhancements. However, the variance in standard deviations
values is notably higher for threshold line l;; . This
variance decreases gradually as the I, norm shift from oo

M'*@

to 2, respectively.

05 08 o7 08
Tn

(a) Classification with 1, — norm spectral enhancement, where p = co

T
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(b) Classification with [, — norm spectral enhancement, where p = 1
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(¢) Classification with 1, — norm spectral enhancement, where p = 2

Figure 10 The new feature vector from proposed classification
method with [, — norm

Table 2 Average value of constants for threshold line ;4

I, norm my cq
p=o -10.742 £ 21.174 9.031 +£15.882
p=1 9.472 £ 14.058 -6.146 £ 10.552
p=2 5.086 +8.104 -2.855+6.078
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Table 3 Average value of constants for threshold line [;,

l, norm m, cy
p=oo 0.514+0.111 0.227£0.112
p=1 0.591 +0.138 0.151+0.139
p=2 0.568 +0.129 0.173 £0.130

3.6 Results of the proposed method evaluation

To evaluate the performance of the proposed method
for textile fiber classification into the natural, synthetic
and blended classes, we utilize four evaluation metrics:
overall accuracy, precision, and recall. These metrics are
calculated using data extracted from the confusion matrix,
which is generated from the classification results utilizing
the test dataset with parameters obtained from the training
process, unique to each iteration and acquired from ten
random iterations with various dataset ratios across three
different cases of 1, norm enhancements with value of p =
0,1 and 2. The evaluation process consists of following
steps:

Step 1: Extract feature from spectral signal enhancement
{xp [n]} using the textile template filters {hp [n]} for natural
and synthetic, resulting in a new feature vector 7.

Step 2: Utilize the vector 7 for classification with the
analytic geometric classification with constant of both
threshold lines l;; and l;,.

Step 3: Count and record the classification results in the
confusion matrix, as show in Table 4. Then, calculate the
overall accuracy, precision, and recall evaluating the
classification performance.

Table 4 The confusion matrix for multi-class classification.

Actual Class
Class Natural Synthetic Blended
§§ Natural Cn Ci2 Ci3
EU Synthetic Ca C2 Ca
Blended Csi Cs2 Cs3

Table 4 represents a confusion matrix tailored for a
multi-class classification task with three distinct classes:
natural, synthetic, and blended. Within this matrix, the
diagonal values Ci1, Cy, and Cs3 signify true positive
(TP) for each class, indicating the number of samples
correctly classified within their respective classes. To
calculate false negative (FN) for a specific class, look at
the off-diagonal values associated with that class. For
natural class, use FNNaturat = C21 + C31. These values
represent natural samples incorrectly classified as

synthetic and blended, respectively. Similarly, to calculate
false positive (FP) for the natural class, use FPnaturai = C12
+ Ci3. These values represent the instances of incorrect
classifications, where samples from other classes,
synthetic and blended were incorrectly classified as
natural class. For a more detailed breakdown of TP, FN,
FP and TN for each class shown in Table 5. The expanded
information offers insights into the classification results
for each class.

Table 5 The confusion matrix for multiclass classification.

Natural Synthetic Blended
TP Cn Cn Cs3
FN Ca1+ Csi Ci2+ Cs2 Ciz+ Cas
FpP Ci2+Cis Ca1+ Cas Cs1+ Cx2
TN | C22+C23+C32+C33 | C11+Ci13+C31+Cs3 | Cri+Cia+Ca1+Ca2

From Table 4, to calculate the overall accuracy, which
reflects the proportion of correctly classified instances
across all classes and provides an overall view of the
classifier’s performance, you can use the formulation as
described in Eq. (13):

3
k=1 Ckk

Overall Accuracy = o5—<5——
i=1 2j=1Cij

(13)

Moreover, the result of overall accuracy in various of
train: test ratio across three different cases three different
cases of l,, norm enhancements with value of p = 0,1
and 2, as show in Table 6.

Table 6 Overall Accuracy across different Train: Test ratios and
l, norm cases.

Trﬁ?lt:l’l?est p=x p=1 p=2
10:20  ]0.9995 £ 0.0006(0.9995 £ 0.0006{0.9995 + 0.0006
20:80 |0.9999 £ 0.0004]0.9999 + 0.0004{0.9999 + 0.0004
30:70  10.9999 £ 0.0005{0.9999 + 0.0005|0.9999 + 0.0005
40:60 |1.0000£0.0000 | 1.0000+0.0000 | 1.000040.0000
50:50 | 1.000040.0000 | 1.000040.0000 | 1.000040.0000
60:40 | 1.000040.0000 | 1.000040.0000 | 1.0000+0.0000
70:30 | 1.000040.0000 | 1.000040.0000 | 1.00001-0.0000
80:20 |1.0000£0.0000 | 1.0000£0.0000 | 1.0000+0.0000

In Table 6, it is demonstrated that the overall accuracy
remains consistent across various l,, norm enhancements,
indicating high performance. The value of p does not
significantly affect the results. Considering the lower
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computational resource requirements, the l; norm is
often preferred over the [, norm, which involves more
complex square root calculations, and the [, norm,
which requires finding the maximum absolute value.
Therefore, the [, norm is an appropriate choice,
especially when the method is intended for application in
an embedded system, emphasizing practicality in
implementation. Subsequently, we will narrow our focus
to the case of [, norm enhancement with p = 1 to assess

the classification performance for each individual class.

We utilize data from Table 5 to calculate the evaluation
metrics of precision, recall, and accuracy for each class, and
these results are presented in Tables 7 thru 9 to assess the
classification performance:

Precision: measures the proportion of correctly predicted
positive outcomes to all the predicted positive outcomes,
with an emphasis on avoiding false positives as described
in Eq. (14):

a perfect score of 1 for precision, recall, and accuracy in
the synthetic class across various train: test ratios. This
remarkable performance showcases the method's robust
and reliable nature, even when dealing with a limited
training dataset. However, it's important to note that when
the training dataset size is below the 40:60 ratio, the
precision of the natural class and the recall of the Blended
class do not reach a perfect score. Consequently, this
results in the overall accuracy falling short of achieving a
score of one. Nevertheless, our method outperforms the
approach by Ruiz et al. (2022), which involved data
fusion between MIR and NIR, achieving the highest
accuracy of 95% in the case study of blended fibers.
Furthermore, our method surpasses the approach by Ruiz,
Cantero, Riba-Mosoll, et al. (2022) who employed PCA +
CVA + CNN which achieved a correct classification rate of
91.1% in the case study of blended fibers.

Table 8 Recall results across different Train:Test ratios.

Precision =

TP

(14)

TP +FP

Recall: represents the proportion of correctly predicted
positive outcomes to all the outcomes in each class,
focusing on the ability to avoid false negatives as
described in Eq. (15):

TP
Recall =

" TP +FN (15

Accuracy: This metric measures the proportion of
correctly classified instances and is defined by Eq. (16):

Accuracy

TP+TN

TP+ FN+FP+TN

(16)

Table 7 Precision results across different Train:Test ratios.

TrI:i?lt:iToest Natural Synthetic Blended
10:20  {0.997940.0027 | 1.000040.0000 | 1.00004-0.0000
20:80 {0.9994+0.0019 | 1.000040.0000 | 1.00004-0.0000
30:70  0.9993+0.0021 | 1.0000+0.0000 | 1.000040.0000
40:60 |1.000040.0000 | 1.0000£0.0000 | 1.00004-0.0000
50:50 |1.000040.0000 | 1.0000+0.0000 | 1.00004-0.0000
60:40 |1.000040.0000 | 1.0000+0.0000 | 1.00004-0.0000
70:30  |{1.000040.0000 | 1.0000+0.0000 | 1.00004-0.0000
80:20 | 1.0000+0.0000 | 1.000040.0000 | 1.0000+0.0000

Trfi?nt:i;‘)est Natural Synthetic Blended
10:20  {1.000040.0000 | 1.0000+0.0000 | 0.9984+0.0021
20:80 |1.000040.0000 | 1.000040.0000 | 0.9995+0.0015
30:70  |1.000040.0000 | 1.0000+0.0000 | 0.999540.0017
40:60 |1.000040.0000 | 1.0000£0.0000 | 1.00004-0.0000
50:50 |1.000040.0000 | 1.0000+0.0000 | 1.00004-0.0000
60:40 |1.000040.0000 | 1.0000+0.0000 | 1.00004-0.0000
70:30 | 1.000040.0000 | 1.0000+0.0000 | 1.00004-0.0000
80:20 | 1.0000+0.0000 | 1.0000+0.0000 | 1.0000+0.0000

Table 9 Accuracy results across different Train:Test ratios.

Ratio

Train:Test Natural Synthetic Blended
10:20  |0.999540.0006 | 1.000040.0000 | 0.999540.0006
20:80 {0.999940.0004 | 1.000040.0000 | 0.9999+0.0004
30:70  10.999940.0005 | 1.000040.0000 | 0.999940.0005
40:60 |1.0000+0.0000 | 1.0000+0.0000 | 1.000040.0000
50:50 | 1.000040.0000 | 1.000040.0000 | 1.000010.0000
60:40 | 1.000040.0000 | 1.000040.0000 | 1.000040.0000
70:30 | 1.000040.0000 | 1.000040.0000 | 1.000040.0000
80:20 |1.0000£0.0000 | 1.0000£0.0000 | 1.0000+0.0000

Tables 7 thru 9 clearly demonstrate the exceptional
performance of our proposed method, consistently achieving
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4. CONCLUSION

This paper introduces an innovative approach for
classifying textile fibers based on near-infrared spectrum
signals. The proposed method involves spectral signal
enhancement using various [, norm values with p = oo,
1, and 2, as a preprocessing step to assess and compare
classification accuracy. The method also incorporates the
textile template filters and covariance-based techniques
for the feature extraction, which effectively reduces the
dimensionality of spectral data into a new 2x1 feature
vector. The classification is based on an algorithm rooted
in the analytic geometric technique. The results show that
the proposed method achieved a perfect overall accuracy
of 100% when used with train and test data ratio not less
than minimum at 40:60 indicating that it is robust and can
generalize even when dealing with a limited training
dataset. However, even under varying train and test data
ratios such as 30:70, 20:80 and 10:90 ratios, the method
maintains impressive accuracy values of 0.9999 £ 0.0005,
0.9999 + 0.0004 and 0.9995 + 0.0006, respectively.
Nevertheless, this still surpasses our previous study
(Yammen & Limsripraphan, 2022) where the highest
accuracy achieved was 0.9922 + 0.0078, but only when
using an 80:20 training-to-test dataset ratio. These
findings underscore the robustness and reliability of the
proposed method in textile fiber classification across
different scenarios. A notable contribution of this study is
found in the simplicity and minimal computational
resource demands of the proposed method, rendering it
well-suited for applications in the textile industry. This is
especially relevant for the embedded systems used in
automating textile recycling processes or in portable
devices across diverse fields that employ spectroscopy
techniques. In the future work, analytical methods will be
improved in predicting the composition of the blended
fiber either natural or synthetic fabric.
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