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Abstract 
This paper introduces a novel method for classifying textile fibers into three groups: natural fibers, synthetic fibers, 

and blended fibers using near-infrared (NIR) spectra obtained via the NeoSpectra-Micro sensor. Our approach involves 
preprocessing and employing the lp-norm with p = ∞, 1, and 2 to enhance spectral signals. These enhanced signals 
alongside textile template filters were obtained from both natural and synthetic fiber groups. Next, the template filters 
are used to construct a new 2x1 feature vector through covariance-based techniques to effectively reduce spectral data 
dimension. The feature vector is pivotal for establishing two threshold lines together with an analytical geometry 
technique to classify for accurate fiber groups. To evaluate the performance of the proposed method, experiments were 
conducted by using three groups of fiber samples: 210 natural fiber spectra, 480 synthetic fiber spectra, and 270 blended 
fiber spectra. The dataset was divided into training and testing sets with ten random iterations exploring eight ratios and 
lp-norm enhancements for training and evaluation. Remarkably, the experimental result has shown that the overall 
accuracy remains consistent across the three cases of the lp-norm enhancements providing the similar accuracies. 
Considering the limited computational resource, the l1-norm emerges as a practical choice for embedded systems, 
emphasizing its practicality for implementation. Moreover, the proposed method additionally provides high accuracies 
(mean ± standard deviation) of 0.9995 ± 0.0006, 0.9999 ± 0.0004, and 0.9999 ± 0.0005, whereas the ratio of the train 
and test data is equal to three cases: 10:90, 20:80 and 30:70, respectively, and achieves an exceptional overall accuracy 
of 100%, whereas the ratio of the train and test data is equal to five cases: 40:60, 50:50, 60:40, 70:30 and 80:20. 
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1. INTRODUCTION 

The textile industry is one of the most polluting 
industries, primarily due to its manufacturing processes 
that extensively use the second highest amount of land 
resources and the fourth highest amount of water 
resources. It contributes to greenhouse gas emissions and 
water pollution, accounting for 10% and 20% of the 
global world’s pollution, respectively (Dissanayake & 
Weerasinghe, 2021; Filho et al., 2022). Additionally, 
global post-consumer textile waste has nearly doubled 
from 58 million to 109 million tons per year in the past 
decade, leading to issues to textile waste in landfills and 
contributing to microfiber pollution in oceans. 

Recycling textile waste is an important approach to 
make the textile industry more sustainable and move 
towards a circular economy. However, only 1% of textile 
waste can be currently recycled into new clothing due to 
technological limitations in efficiently and rapidly 
classifying different fiber components. This is because 
the fiber composition in textiles, such as polymer fibers 

in synthetic fabrics and cellulose fibers in natural fabrics, 
or blended fabrics containing both types, requires 
different recycling methods (Damayanti et al., 2021; 
Piribauer & Bartl, 2019). 

In recent year, near-infrared (NIR) spectroscopy has 
become a popularity as a method for textile analysis and 
classification due to its ease of use, non-destruct the 
samples, efficiency, cost-effectiveness, and time-saving 
advantages compared to traditional laboratory-based 
chemical analysis methods (Guifang et al., 2015; Sun et 
al., 2015; Chen et al., 2018). However, it is essential to 
highlight that in the majority of research applications, 
preprocessing and dimensionality reduction steps are 
prerequisites before developing classification models. 
Similarly, alternative methods using low-cost devices, 
such as image processing, have emerged as viable 
options for textile classification, as demonstrated by Da 
Silva Barros et al. (2020). Their approach involves the 
utilization of mobile device images and Convolutional 
Neural Networks (CNN) for feature extraction. The 
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experimental results indicate that feature extraction 
using DenseNet201 and the SVM classification model 
achieved the highest accuracy, with an accuracy rate of 
94.350% and an F1-Score of 94.296%. This underscores 
the importance of employing robust feature extraction 
techniques in both NIR spectroscopy and image 
processing for accurate textile classification. 

Wu et al. (2015) employed preprocessing techniques, 
including the first derivative and the standard normal 
variant (SNV), before applying the principal component 
analysis (PCA), a widely used method for linear 
dimensionality reduction. This approach generated six 
principal components (PCs), which subsequently served 
as input variables for a classification model based on 
least-squares support vector machines (LS-SVM). The 
LS-SVM model was utilized to classification four types 
of natural fibers. Sun et al. (2015) employed the 
Savitzky-Golay first derivative with a five-point window 
width as preprocessing and used PCA to reduce the 
initially high dimensionality of 3,000 variables per NIR 
spectra from the Antaris II FT-NIR spectrometer. They 
reduced these variables to 3, 4 and 6 PCs, which were 
used as new input variables for SIMCA analysis, LS-
SVM with the RBF kernel function, and the extreme 
learning machine (ELM) model to classify various 
fabrics, including cotton, viscose, acrylic, polyamide, 
polyester, and blend fabric. The results indicated that 
ELM model achieved a 100% with higher processing 
speed compared to SIMCA and LS-SVM. Zhou et al. 
(2019) applied the second derivative as preprocessing 
before used PCA to reduce 601 variables per NIR spectra 
obtained from the Brimrose Luminar 3060 AOTF-NIR 
to three PCs. The new variables were subsequently used 
in SIMCA analysis to classify seven types of fabric into 
three groups. The results indicated that PP, PET, PLA, 
cotton and tencel fabrics were accurately classified with 
almost perfect accuracy of 100%, whereas wool and 
cashmere fabrics required another method to achieve 
best classification accuracy of 100%, specifically the 
linear discriminant analysis (LDA). 

Recently, Ruiz et al. (2022) aimed to enhance the 
accuracy of classifying post-consumer textile waste by 
employing data fusion techniques that combined MIR 
(mid-Infrared) and NIR (near-Infrared) spectroscopy 
data. Before fusing the given data, they conducted a 
preprocessing step, which involved applying the first and 
second derivatives of the Savitzky-Golay smoothing 
method with a moving average window of 5 and 10 
points. They additionally performed mean-centering and 
balanced the weight of the MIR and NIR spectra data 
within the 0–1 interval by using min-max normalization. 

For dimensionality reduction, they utilized the PCA and 
the canonical variate analysis (CVA) to reduce the 
dimensionality of the fusion data, which consisted of 
3,551 variables from MIR and 2,201 variables from NIR. 
This reduction produced a new set of variables equal to 
the number of classes minus one. Subsequently, these 
new variables served as inputs for a k-Nearest Neighbors 
(kNN) classification model. The results indicated that the 
fusion data provided more accurate classification results 
than using the NIR or MIR spectra data separately, 
particularly in the case study of blended fibers (mixed 
between cotton fibers and polyester fiber) achieving the 
best accuracy with only a 5% error in classification, 
whereas the error rates for the NIR and MIR spectra were 
7% and 6%, respectively. In the same year, Ruiz, 
Cantero, Riba-Mosoll, et al. (2022) employed a Deep 
Learning algorithm based on convolutional neural 
networks (CNNs) to classify textile waste, which 
included both pure fibers and cotton/polyester blend 
fibers. They proposed two distinct methods in their 
methodology both beginning with crucial preprocessing 
steps involving the calculation of the first or second 
derivatives and mean-centering of the NIR spectrum. In 
the first approach, no dimensionality reduction step was 
applied before the CNN classification. In contrast, the 
preprocessed spectral data underwent transformation 
using the PCA and CVA algorithms to reduce 
dimensionality and create new variables for the 
classification step alongside the CNN in the second 
approach. The results demonstrated that the PCA + CVA 
+ CNN approach in the second method outperformed the 
CNN-only method without dimensionality reduction. 
Specifically, the PCA + CVA + CNN approach achieved 
a correct classification rate of 100% in the case study of 
pure fibers and a correct classification rate of 91.1% in 
the case study of cotton/polyester blend fibers.  

From all the research reviewed above, it is evident 
that preprocessing processes with a variety of methods 
such as standard normal variables (SNV), and first or 
second derivatives combined with Savitzky-Golay 
smoothing, and widely used dimensionality reduction 
processes like PCA, are essential for achieving accurate 
textile classification with NIR data. This finding aligns 
with our previous research (Limsripraphan & Yammen, 
2022), which demonstrated that preprocessing processes 
with signal enhancement in proposed methods improved 
the classification efficiency. In addition, it has been 
shown that improving the accuracy of blended textile 
classification using NIR spectra remains a major challenge. 

This paper presents a novel classification approach 
to classifying textile samples. The method involves 
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several key steps, starting with 𝑙௣ − 𝑛𝑜𝑟𝑚  spectral 

enhancement as a preprocessing technique (Cadzow, 
2002; Cadzow et al., 2002) and utilizing covariance-
based feature filters (Yammen et al., 2021) for 
dimensionality reduction to extract a useful feature vector. 
Subsequently, this new feature vector is subjected to the 
analytic geometry (AG) technique to establish threshold 
lines that can classify textile fibers into three groups: 
natural, synthetic, and blended fibers. The performance 
of the classifiers is evaluated using three key metrics: 
overall accuracy, precision, and recall. These metrics 
are also applied to various scenarios, considering 
different cases of  𝑙௣ − 𝑛𝑜𝑟𝑚  spectral enhancement, 

where 𝑝  takes on values of 1, 2, ∞  across varying 
training and testing dataset ratios. The proposed method 
consistently achieves overall accuracy of 100% for all 
𝑙௣ − 𝑛𝑜𝑟𝑚  spectral enhancement, even when the 

training dataset is reduced unto 30%, which differs from 
the observed variations in accuracy under different 
training and testing data ratios. 

In conclusion, this paper aims to highlight the 
improvement in the accuracy of the textile classification 
using the NIR spectra, particularly in classifying blended 
fabrics and reducing intensive computational resources. 
The objective is to employ simple and interpretable 
methods while comparing the effectiveness of 𝑙௣ − 𝑛𝑜𝑟𝑚 

spectral enhancement in achieving best classification 
accuracy. 

2. SPECTRA DATA PREPARATION 

2.1 Sample Collection and Identification 

The NIR spectral data in this paper were collected 
from samples of various types of woven and knitted 
fabrics commonly used in clothing production. These 
samples were sourced from fabric distributors and 
factories in Thailand. The textile samples include natural 
fibers (such as cotton, linen, and rayon), synthetic fibers 
(like polyester or spandex) and blended fibers between 
both types in various proportions from high to low ratios 
of natural to synthetic fiber. Additionally, to include 
maximum variability in the analyzed set of samples, each 
fabric sample was selected in a multitude of colors 
ranging from dark to light. 

All fabric samples were sent to the textile testing 
center, Thailand’s textile institute (THTI), which operates 
under the Ministry of Industry’s Foundation for Industrial 
Development (FID), to confirm the fiber composition and 
to identify the fabric samples into three groups. The fiber 

composition was determined based on the clean dry mass 
with percentage additions for moisture method under the 
Thai Industrial Standard (TIS), Standards No.121 part 26-
2552. This method is widely recognized for quantifying 
binary mixtures of fibers in textile products. 

In summary, all fabric samples were categorized into 
three fiber group based on the composition confirmed by 
THTI: 7 fabric types in natural fiber group, 16 fabric 
types in synthetic fiber group, and 9 fabric types in 
blended fiber group, which were further divided into 7 
different ratios of natural to synthetic fiber: 68:32, 52:48, 
48:52, 36:64, 35:65, 34:66, and 17:83. There are total 32 
fabric types, and each of which comes in 3 different 
colors. Therefore, this research utilized a total of 96 fabric 
samples for training and testing the performance of the 
proposed method.  

2.2 NIR Spectral Acquisition 

The NIR spectra of the textile samples were acquired 
using the NeoSpectra-Micro Development Kit (Si-ware 
Systems, Cairo, Egypt), a portable NIR instrument that 
has shown its reliability for analysis and classification 
in various fields. These fields include food (McVey et 
al., 2021; Giussani et al., 2021; Chadalavada et al., 
2022), healthcare (Habibullah et al., 2019), agriculture 
(Du et al., 2019), and textile fibers as shown in a 
previous study (Yammen et al., 2022; Limsripraphan. et 
al., 2022; Cadzow, 1999). The device is housed in a 
specially designed enclosure to prevent interference 
from external light and to maintain consistent 
measurements over fabric samples at a height of one 
centimeter as shown in Figure 1.  

 
Figure 1 NIR spectral acquisition and spectral enhancement 

Each spectral value is acquired using a device that 
records data for 65 pairs of absorbance and wavelength in 
the range of 1350 nm to 2550 nm. This data is then 
transformed in the form of signals representation {𝑠[𝑛]}, 
where 𝑛 ∈ {0,1,2, … , 64} , as shown in Figure 2. All 
fabric samples are measured at 10 positions on a fabric 
sample with dimensions of 30 x 50 centimeters. 
Therefore, 960 NIR spectral samples were obtained for 
use in the proposed method. 
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Figure 2 NIR spectral signals representation 

2.3 NIR Spectral Signal Enhancement with 𝑙௣ 𝑛𝑜𝑟𝑚 

Before applying our proposed classification method 
to the 960 NIR spectral samples, we introduce 𝑙௣ − 𝑛𝑜𝑟𝑚 

spectral enhancement (Cadzow, 1998) as a preprocessing 
step to reduce the spectral variability of the input spectral 
signals {𝑠[𝑛]} (Bunchuen et al., 2011). In this process, 
each spectral signal is normalized by subtracting its mean 
and dividing the result by its 𝑙௣  norm, resulting in an 

enhanced spectral signal ൛𝑥௣[𝑛]ൟ as calculated using Eq. (1). 

We explore various 𝑝 values to assess their impact on 
classification accuracy when applying our proposed 
method in section 4. 

𝑥௣[𝑛] = 𝑇({𝑠[𝑛]}) =
𝑠[𝑛] − 𝜇௦

‖{𝑠[𝑛] − 𝜇௦}‖௣

  , (1) 

where: 𝑝 = 1, 2, ∞ and 

𝜇௦ =  
1

65
෍ 𝑠[𝑛]

଺ସ

௡ୀ଴

 (2) 

2.4 Train and Test Datasets 

In this study, the entire set of enhanced spectral 

signals ൛𝑥௣[𝑛]ൟ, obtained from three enhancement studies 

using 𝑙௣ − 𝑛𝑜𝑟𝑚  with 𝑝  values of 1, 2, and ∞  was 

randomly divided into eight different proportions for the 
train-to-test dataset within each fiber group. These 
proportions included 10:90, 20:80, 30:70, 40:60, 50:50, 
60:40, 70:30, and 80:20, as shown in Table 1. 

This approach allowed us to assess the accuracy of our 
proposed classification method, which was trained using 
the train dataset, while ensuring that the testing data were 
not used during the training step. Additionally, this 
evaluation helped us understand the performance of our 
proposed method when the amount of training data is 
reduced. Moreover, each sample was labeled to identify 

its respective fiber group, facilitating the assessment of 
correct classification. 

Table 1 Number of Train and Test Samples 

proportions 
Train dataset Test dataset 

Natural 

(𝑁௡) 

Synthetic 

(𝑁௦) 

Blended 

(𝑁௕) 

Natural 

(𝑁௡) 

Synthetic 

(𝑁௦) 

Blended 

(𝑁௕) 

10:90 21 49 27 189 432 243 
20:80 42 96 54 168 384 216 
30:70 63 144 81 147 336 189 
40:60 84 192 108 126 288 162 
50:50 105 240 135 105 240 135 
60:40 126 288 162 84 192 108 
70:30 147 336 189 63 144 81 
80:20 168 384 216 42 96 54 

3. METHODOLOGY 

 

Figure 3 Diagram of proposed classification method  

Figures 3 shows our proposed method for classifying 
textile fibers into three groups. We utilize enhanced spectral 

signals ൛𝑥௣[𝑛]ൟ  as input to extract patterns of interest in 

natural and synthetic fiber spectra, resulting in the creation 
of two textile template filters. These template filters are then 
employed for feature extraction based on covariance, 
leading to the creation of the two new feature vectors. Each 
of the two feature vectors is utilized to build a classification 
system that facilitates decision-making regarding fiber 
groups. 

3.1 Textile Template Filter 

 
Figure 4 Diagram of create textile templates filter 

In this section, we introduce to creation of textile 
template filter to extract characteristic patterns of interest 
within in either natural or synthetic fibers spectra group. 
To create this filters, we start by utilizing input data of 
interest derived from the training dataset. We computed 

the average of the enhanced spectral signals ൛𝑥௣[𝑛]ൟ , 

which serves as the input. This average spectrum was 
then normalized by subtracting its mean and dividing the 
result by its 𝑙௣ − 𝑛𝑜𝑟𝑚, resulting in the textile template 

filters ൛ℎ௣[𝑛]ൟ as shown in Figure 4. Consequently, when 

we utilize spectra from the training dataset of the natural 
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group ( 𝑁 = 𝑁௡  samples), the textile template filters 
represent the pattern within natural fiber spectra. 
Similarly, when employing spectra from the synthetic 
group ( 𝑁 = 𝑁௦  samples), the textile template filters 
represent the pattern within synthetic fiber spectra. 

3.2 Feature Extraction with Covariance-based  

 
Figure 5 Diagram of covariance-based feature 

 
The proposed method involves a dimensionality 

reduction process by extracting useful features using the 

textile template filters ൛ℎ௣[𝑛]ൟ, which effectively represent 

characteristic patterns in natural or synthetic fiber groups. 
We employ a covariance-based technique (Fuangpian et 
al., 2011) to assess the similarity between two inputs: the 

enhanced spectral signals ൛𝑥௣[𝑛]ൟ  from unknown fiber 

groups and the representations of natural or synthetic fiber 

spectra provided by the textile template filters ൛ℎ௣[𝑛]ൟ. 

This process results in a 𝑟 value as shown in Figure 5, 
within the interval from 0 to 1 described in Eq. (3), 
signifying the degree of similarity. 

𝑟 =
∑ 𝑥௣[𝑙]ℎ௣[𝑙]଺ସ

௟ୀ଴

ฮ൛𝑥௣[𝑛]ൟฮ
ଶ

×  ฮ൛ℎ௣[𝑛]ൟฮ
ଶ

  ;   0 ≤ 𝑟 ≤ 1 (3) 

When employing textile template filters from the 
natural fiber group and utilizing enhanced spectral signals 

൛𝑥௣[𝑛]ൟ  from the unknown fiber groups as input, the 

resulting 𝑟 values, denoted as 𝑟௡, indicate a high degree 
of similarity to the patterns found in natural fiber spectra. 
Similarly, when employing textile template filters from 
the synthetic fiber group with the same input enhanced 
spectral signals, the resulting 𝑟  values, denoted as 𝑟௦ , 
signify patterns highly similar to those present in 
synthetic fiber spectra. These values are pivotal in our 
approach as they form the foundation of the new feature 
vector denoted as a 2x1 feature vector 𝑟 with 𝑟௡ and 𝑟௦ as 
its components. This transformation practically reduces 
feature dimensionality from 65 to 2, ensuring efficient 
separation and classification of textile fibers based on 
their spectral. This new feature vector 𝑟  is used for 
analysis to create our proposed classification algorithm, 
which utilizes the analytic geometric technique as shown in 
Figure 6. 

3.3 Classification Algorithm using Analytic Geometric 
technique 

Figure 6. shows a scatter plot of all two-dimensional 
vectors 𝑟పሬሬ⃑  obtained from the training dataset, comprising 
three distinct fiber groups, where 𝑖 ∈ {1,2,3, … , 𝑁}. Each 
vector is represented as an ordered pair (𝑟௡௜, 𝑟௦௜), with 𝑟௡௜  
denoted the x-axis component and 𝑟௡௜ representing the y-
axis component. 

 

Figure 6 Classification using Analytic Geometric technique 

Vectors from the synthetic fiber group (square 
symbol) cluster near the y-axis, while those from the 
natural fiber group (circle symbol) cluster near the x-axis. 
This demonstrate that 𝑟௦௜  corresponds to synthetic fiber 
patterns, and 𝑟௡௜  to natural fiber patterns. Therefore, 
vectors from the blended fiber group (triangle symbol) lie 
between these clusters, demonstrating their relationships. 
To effectively separate these groups and determine the 
boundaries between them, we employ vector and 
geometric analysis techniques to establish two critical 
threshold lines: 𝑙௧ଵ and 𝑙௧ଶ. 

In Eq. (4) and Eq. (5) as described, the two essential 

vectors, 𝑠௫௠௔௫  and 𝑏ሬ⃑ ௫௠௜௡ , are used in the process of 
establishing 𝑙௧ଵ . These vectors play a pivotal role in 
signifying the boundaries between the synthetic and 
blended fabric groups. 

𝑠௫௠௔௫ = [𝑟௡ேೞ
∗ 𝑟௦ேೞ

∗]்  , (4) 

𝑤ℎ𝑒𝑟𝑒   𝑟௡ேೞ
∗ =  max 

௜ ∈ {ଵ,ଶ,ଷ…ேೞ}
{𝑟௡௜}   

𝑏ሬ⃑ ௫௠௜௡ = [𝑟௡ே್
∗ 𝑟௦ே್

∗ ]்   ,  
(5) 

𝑤ℎ𝑒𝑟𝑒   𝑟௡ே್
∗ =  min

௜ ∈ {ଵ,ଶ,ଷ…ேೞ}
{𝑟௡௜}   

The based vector 𝑠௫௠௔௫  is determined on 𝑁௦
∗ ∈

 {1,2,3 … 𝑁௦}, which represents the index of the maximum 
value 𝑟௡௜ within the synthetic fabric group. Similarly, the 
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based vector 𝑏ሬ⃑ ௫௠௜௡  is determined on 𝑁௕
∗ ∈  {1,2,3 … 𝑁௦}, 

which represents the index of the minimum value 𝑟௡௜ 
within the blended fabric group. After identifying these 
key vectors, we calculate the midpoint vector 𝑐ଵ, which 
serves as the center point of our geometric approach, as 
described in Eq. (6): 

𝑐ଵ = 0.5 × ൫𝑠௫௠௔௫ +  𝑏ሬ⃑ ௫௠௜௡൯ (6) 

Subsequently, we create a perpendicular line to the 
midpoint vector 𝑐ଵ. This line is instrumental in establishing 
 𝑙௧ଵ, which define the boundary between the synthetic and 
blended fabric groups. We find the slope 𝑚ଵof the line 
using a component of vectors as described in Eq. (7): 

𝑚ଵ  = −
𝑏ሬ⃑ ௫௠௜௡(1) − 𝑠௫௠௔௫(1)

𝑏ሬ⃑ ௫௠௜௡(2) − 𝑠௫௠௔௫(2)
 (7) 

Additionally, we define the equation of the threshold 
line as 𝑙௧ଵ =  𝑚ଵ𝑥 +  𝑐ଵ , where 0 ≤ 𝑥 ≤ 1 . The y-
intercept 𝑐ଵ is calculated by using a component of vector 
𝑐ଵ, as described in Eq. (8): 

𝑐ଵ = 𝑐ଵ(2) − 𝑐ଵ(1) × 𝑚ଵ (8) 

For the second threshold line 𝑙௧ଶ, which signifies the 
boundary between the blended and natural fiber groups, 

we follow a similar procedure to create vector 𝑏ሬ⃑ ௬௠௜௡ and 

𝑛ሬ⃑ ௬௠௔௫ as described by Eq. (9) and Eq. (10): 

𝑏ሬ⃑ ௬௠௜௡ = [𝑟௡ே್
∗ 𝑟௦ே್

∗ ]்  ,  (9) 

𝑤ℎ𝑒𝑟𝑒   𝑟௦ே್
∗ =  min

௜ ∈ {ଵ,ଶ,ଷ…ே್}
 {𝑟௦௜}   

𝑛ሬ⃑ ௬௠௔௫ = [𝑟௡ே೙
∗ 𝑟௦ே೙

∗ ]்  ,  
(10) 

𝑤ℎ𝑒𝑟𝑒   𝑟௦ே೙
∗ =  max

௜∈ {ଵ,ଶ,ଷ…ே೙}
 {𝑟௦௜}   

The based vectors: 𝑏ሬ⃑ ௬௠௜௡  is determined on 𝑁௕
∗ ∈

{1,2,3 … 𝑁௡}, which represents the index of the minimum 
value 𝑟௦௜ within the blended fabric group. Conversely, the 
based vector 𝑛ሬ⃑ ௬௠௔௫  is determined on 𝑁௡

∗ ∈ {1,2,3 … 𝑁௡}, 

which represents the index of the maximum value 𝑟௦௜ 
within the natural fabric group. 

With these two vectors,  we create  𝑙௧ଶ using the same 

geometric analysis techniques. We calculate the slope 𝑚ଶ 
by using the components of the vectors with the formula 
as described in Eq. (11):  

𝑚ଶ  = −
𝑛ሬ⃑ ௬௠௔௫(1) − 𝑏ሬ⃑ ௬௠௜௡(1)

𝑛௬௠௔௫(2) − 𝑏௬௠௜௡(2)
 (11) 

The equation of the threshold line 𝑙௧ଶ is expressed as 
𝑙௧ଶ =  𝑚ଶ𝑥 +  𝑐ଶ , where 0 ≤ 𝑥 ≤ 1 , and we compute 
calculate the y-intercept 𝑐ଶ by using a component of vector 
𝑐ଶ, as described in Eq. (12): 

𝑐ଶ = 𝑐ଶ(2) − 𝑐ଶ(1) × 𝑚ଶ (12) 

In our classification process, once the constants for 
 𝑙௧ଵ and  𝑙௧ଶ have been determined, these threshold lines 
play a pivotal role in the classification of unknown vectors, 
represented as (𝑟௡௨ , 𝑟௦௨), into one of three distinct fiber 
groups: natural, synthetic, or blended fiber group. Our 
algorithm employs a fundamental linear equation and 
follows  the sequence of criteria checks: 

Step 1: if  𝑟௦௨ − 𝑚ଵ × 𝑟௡௨ +  𝑐ଵ  > 0, classify the 
unknow vector into the synthetic groups. If this condition is 
not met, proceed to the next classification.  

Step 2: if 𝑟௦௨ − 𝑚ଶ × 𝑟௡௨ +  𝑐ଶ  < 0, classify the 
unknow vector into natural group. If this condition is not 
met, the unknown vector is classified into the blended 
group. 

In this section, we have detailed our classification 
algorithm based on the analytic geometric technique. The 
algorithm’s fundamental linear equations and criteria have 
been explained. In the next section, we will present the 
outcomes of applying this algorithm with training dataset, 
providing insights into its performance. 

3.4 Results of NIR Signal Enhancement with 𝑙௣ 𝑛𝑜𝑟𝑚 

Figures 7 to 9 (a) show three examples of the raw fiber 
spectra {𝑠[𝑛]} in each group, which have the same similar 
pattern but exhibit variability and slight differences due 
to noise or bias, making it challenging to identify the 
group. In Figures 7 to 9 (b-c), the enhanced spectral signals 

൛𝑥௣[𝑛]ൟ with 𝑙௣ 𝑛𝑜𝑟𝑚, where 𝑝 = ∞,1 and 2, respectively, 

are shown and can effectively reduce spectral variability. 
This ensures that all signals have equal power to one. 

  
(a) raw spectra signal (b) Enhanced with p = ∞ 
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(c) Enhanced with p = 1 (d) Enhanced with p = 2 

Figure 7 Signal enhancement with 𝑙௣ 𝑛𝑜𝑟𝑚 of Natural fiber group 
 

  
(a) raw spectra signal (b) Enhanced with p = ∞ 

  
(c) Enhanced with p = 1 (d) Enhanced with p = 2 

Figure 8 Signal enhancement with 𝑙௣ 𝑛𝑜𝑟𝑚 of Synthetic fiber group 
 

  
(a) raw spectra signal (b) Enhanced with p = ∞ 

  
(c) Enhanced with p = 1 (d) Enhanced with p = 2 

Figure 9 Signal enhancement with 𝑙௣ 𝑛𝑜𝑟𝑚 of Blended fiber group 

3.5 Result of Analytic Geometric Classification with 
𝑙௣ 𝑛𝑜𝑟𝑚 

We extend the proposed method from Section 3 to 

demonstrate the use of spectral signal enhancement ൛𝑥௣[𝑛]ൟ 

with three different 𝑙௣ 𝑛𝑜𝑟𝑚  cases in the creation of 

new feature vectors 𝑟, which extract features using the 
covariance-based technique. In Figures 10 (a), (b) and (c), 
we present vector data obtained from a 50:50 training 
dataset enhanced with 𝑙௣ 𝑛𝑜𝑟𝑚 , where 𝑝  = ∞ ,1 and 2, 

respectively. The figures illustrate that each 𝑙௣ 𝑛𝑜𝑟𝑚 

generate a distinct threshold line 𝑙௧ଵ and 𝑙௧ଶ,  with slight 
variations in the two constant values 𝑚  (slop) and 𝑐 
(intercept) in line equation. 

From Table 2 and 3, show the average values and 
standard deviations of the constants 𝑚ଵ , 𝑐ଵ , 𝑚ଶ  and 𝑐ଶ 

for threshold line 𝑙௧ଵ and 𝑙௧ଶ. These values were obtained 
through ten random iterations on various dataset ratios. 
Threshold line 𝑙௧ଶ demonstrates minimal variance in 
standard deviation values across different 𝑙௣ 𝑛𝑜𝑟𝑚 

enhancements. However, the variance in standard deviations 
values is notably higher for threshold line 𝑙௧ଵ . This 
variance decreases gradually as the 𝑙௣ 𝑛𝑜𝑟𝑚 shift from ∞ 

to 2, respectively. 

 
(a) Classification with  𝑙௣ − 𝑛𝑜𝑟𝑚 spectral enhancement, where 𝑝 = ∞ 

 
(b) Classification with  𝑙௣ − 𝑛𝑜𝑟𝑚 spectral enhancement, where 𝑝 = 1 

 
(c) Classification with  𝑙௣ − 𝑛𝑜𝑟𝑚 spectral enhancement, where 𝑝 = 2 

Figure 10 The new feature vector from proposed classification 
method with 𝑙௣ − 𝑛𝑜𝑟𝑚 

Table 2 Average value of constants for threshold line 𝑙௧ଵ 

𝒍𝒑 𝒏𝒐𝒓𝒎 𝒎𝟏 𝒄𝟏 

𝑝 = ∞ -10.742 ± 21.174 9.031 ± 15.882 

𝑝 = 1 9.472 ± 14.058 -6.146 ± 10.552 

𝑝 = 2 5.086 ± 8.104 -2.855 ± 6.078 
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Table 3 Average value of constants for threshold line 𝑙௧ଶ 

𝒍𝒑 𝒏𝒐𝒓𝒎 𝒎𝟐 𝒄𝟐 

𝑝 = ∞ 0.514 ± 0.111 0.227 ± 0.112 

𝑝 = 1 0.591 ± 0.138 0.151 ± 0.139 

𝑝 = 2 0.568 ± 0.129 0.173 ± 0.130 

3.6 Results of the proposed method evaluation 

To evaluate the performance of the proposed method 
for textile fiber classification into the natural, synthetic 
and blended classes, we utilize four evaluation metrics: 
overall accuracy, precision, and recall. These metrics are 
calculated using data extracted from the confusion matrix, 
which is generated from the classification results utilizing 
the test dataset with parameters obtained from the training 
process, unique to each iteration and acquired from ten 
random iterations with various dataset ratios across three 
different cases of 𝑙௣ 𝑛𝑜𝑟𝑚 enhancements with value of 𝑝 = 

∞,1 and 2. The evaluation process consists of following 
steps: 

Step 1: Extract feature from spectral signal enhancement 

൛𝑥௣[𝑛]ൟ using the textile template filters ൛ℎ௣[𝑛]ൟ for natural 

and synthetic, resulting in a new feature vector 𝑟. 

Step 2: Utilize the vector 𝑟  for classification with the 
analytic geometric classification with constant of both 
threshold lines 𝑙௧ଵ and 𝑙௧ଶ. 

Step 3: Count and record the classification results in the 
confusion matrix, as show in Table 4. Then, calculate the 
overall accuracy, precision, and recall evaluating the 
classification performance. 

Table 4 The confusion matrix for multi-class classification. 

 Actual Class 

P
re

d
ic

te
d 

C
la

ss
 

Class Natural Synthetic Blended 

Natural C11 C12 C13 

Synthetic C21 C22 C23 

Blended C31 C32 C33 

Table 4 represents a confusion matrix tailored for a 
multi-class classification task with three distinct classes: 
natural, synthetic, and blended. Within this matrix, the 
diagonal values C11, C22, and C33 signify true positive 
(TP) for each class, indicating the number of samples 
correctly classified within their respective classes. To 
calculate false negative (FN) for a specific class, look at 
the off-diagonal values associated with that class. For 
natural class, use FNNatural = C21 + C31. These values 
represent natural samples incorrectly classified as 

synthetic and blended, respectively. Similarly, to calculate 
false positive (FP) for the natural class, use FPNatural = C12 
+ C13. These values represent the instances of incorrect 
classifications, where samples from other classes, 
synthetic and blended were incorrectly classified as 
natural class. For a more detailed breakdown of TP, FN, 
FP and TN for each class shown in Table 5. The expanded 
information offers insights into the classification results 
for each class. 

Table 5 The confusion matrix for multiclass classification. 

 Natural Synthetic Blended 

TP C11 C22 C33 

FN C21 + C31 C12 + C32 C13 + C23 

FP C12 + C13 C21 + C23 C31 + C32 

TN C22+C23+C32+C33 C11+C13+C31+C33 C11+C12+C21+C22 

From Table 4, to calculate the overall accuracy, which 
reflects the proportion of correctly classified instances 
across all classes and provides an overall view of the 
classifier’s performance, you can use the formulation as 
described in Eq. (13): 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
∑ 𝑐௞௞

ଷ
௞ୀଵ

∑ ∑ 𝑐௜௝
ଷ
௝ୀଵ

ଷ
௜ୀଵ

 (13) 

Moreover, the result of overall accuracy in various of 
train: test ratio across three different cases three different 
cases of 𝑙௣ 𝑛𝑜𝑟𝑚  enhancements with value of 𝑝 = ∞,1 

and 2, as show in Table 6. 

Table 6 Overall Accuracy across different Train: Test ratios and 
𝑙௣  𝑛𝑜𝑟𝑚 cases. 

Ratio 
Train:Test 𝒑 = ∞ 𝒑 = 𝟏 𝒑 = 𝟐 

10:20 0.9995 ± 0.0006 0.9995 ± 0.0006 0.9995 ± 0.0006 

20:80 0.9999 ± 0.0004 0.9999 ± 0.0004 0.9999 ± 0.0004 

30:70 0.9999 ± 0.0005 0.9999 ± 0.0005 0.9999 ± 0.0005 

40:60 1.0000±0.0000 1.0000±0.0000 1.0000±0.0000 

50:50 1.0000±0.0000 1.0000±0.0000 1.0000±0.0000 

60:40 1.0000±0.0000 1.0000±0.0000 1.0000±0.0000 

70:30 1.0000±0.0000 1.0000±0.0000 1.0000±0.0000 

80:20 1.0000±0.0000 1.0000±0.0000 1.0000±0.0000 

 
In Table 6, it is demonstrated that the overall accuracy 

remains consistent across various 𝑙௣ 𝑛𝑜𝑟𝑚 enhancements, 

indicating high performance. The value of 𝑝  does not 
significantly affect the results. Considering the lower 
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computational resource requirements, the 𝑙ଵ 𝑛𝑜𝑟𝑚  is 
often preferred over the 𝑙ଶ 𝑛𝑜𝑟𝑚, which involves more 
complex square root calculations, and the 𝑙ஶ 𝑛𝑜𝑟𝑚 , 
which requires finding the maximum absolute value. 
Therefore, the 𝑙ଵ 𝑛𝑜𝑟𝑚  is an appropriate choice, 
especially when the method is intended for application in 
an embedded system, emphasizing practicality in 
implementation. Subsequently, we will narrow our focus 
to the case of 𝑙௣ 𝑛𝑜𝑟𝑚 enhancement with 𝑝 = 1 to assess 

the classification performance for each individual class. 

We utilize data from Table 5 to calculate the evaluation 
metrics of precision, recall, and accuracy for each class, and 
these results are presented in Tables 7 thru 9 to assess the 
classification performance: 

Precision: measures the proportion of correctly predicted 
positive outcomes to all the predicted positive outcomes, 
with an emphasis on avoiding false positives as described 
in Eq. (14): 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛   =     
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
        (14) 

Recall: represents the proportion of correctly predicted 
positive outcomes to all the outcomes in each class, 
focusing on the ability to avoid false negatives as 
described in Eq. (15): 

𝑅𝑒𝑐𝑎𝑙𝑙     =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                   (15) 

Accuracy: This metric measures the proportion of 
correctly classified instances and is defined by Eq. (16): 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦  =     
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 + 𝑇𝑁
 

 
(16) 

Table 7 Precision results across different Train:Test ratios. 

Ratio 
Train:Test 

Natural Synthetic Blended 

10:20 0.9979±0.0027 1.0000±0.0000 1.0000±0.0000 

20:80 0.9994±0.0019 1.0000±0.0000 1.0000±0.0000 

30:70 0.9993±0.0021 1.0000±0.0000 1.0000±0.0000 

40:60 1.0000±0.0000 1.0000±0.0000 1.0000±0.0000 

50:50 1.0000±0.0000 1.0000±0.0000 1.0000±0.0000 

60:40 1.0000±0.0000 1.0000±0.0000 1.0000±0.0000 

70:30 1.0000±0.0000 1.0000±0.0000 1.0000±0.0000 

80:20 1.0000±0.0000 1.0000±0.0000 1.0000±0.0000 

 
Tables 7 thru 9 clearly demonstrate the exceptional 

performance of our proposed method, consistently achieving 

a perfect score of 1 for precision, recall, and accuracy in 
the synthetic class across various train: test ratios. This 
remarkable performance showcases the method's robust 
and reliable nature, even when dealing with a limited 
training dataset. However, it's important to note that when 
the training dataset size is below the 40:60 ratio, the 
precision of the natural class and the recall of the Blended 
class do not reach a perfect score. Consequently, this 
results in the overall accuracy falling short of achieving a 
score of one. Nevertheless, our method outperforms the 
approach by Ruiz et al. (2022), which involved data 
fusion between MIR and NIR, achieving the highest 
accuracy of 95% in the case study of blended fibers. 
Furthermore, our method surpasses the approach by Ruiz, 
Cantero, Riba-Mosoll, et al. (2022) who employed PCA + 
CVA + CNN which achieved a correct classification rate of 
91.1% in the case study of blended fibers.  

Table 8 Recall results across different Train:Test ratios. 

Ratio 
Train:Test 

Natural Synthetic Blended 

10:20 1.0000±0.0000 1.0000±0.0000 0.9984±0.0021 

20:80 1.0000±0.0000 1.0000±0.0000 0.9995±0.0015 

30:70 1.0000±0.0000 1.0000±0.0000 0.9995±0.0017 

40:60 1.0000±0.0000 1.0000±0.0000 1.0000±0.0000 

50:50 1.0000±0.0000 1.0000±0.0000 1.0000±0.0000 

60:40 1.0000±0.0000 1.0000±0.0000 1.0000±0.0000 

70:30 1.0000±0.0000 1.0000±0.0000 1.0000±0.0000 

80:20 1.0000±0.0000 1.0000±0.0000 1.0000±0.0000 

Table 9 Accuracy results across different Train:Test ratios. 

Ratio 
Train:Test 

Natural Synthetic Blended 

10:20 0.9995±0.0006 1.0000±0.0000 0.9995±0.0006 

20:80 0.9999±0.0004 1.0000±0.0000 0.9999±0.0004 

30:70 0.9999±0.0005 1.0000±0.0000 0.9999±0.0005 

40:60 1.0000±0.0000 1.0000±0.0000 1.0000±0.0000 

50:50 1.0000±0.0000 1.0000±0.0000 1.0000±0.0000 

60:40 1.0000±0.0000 1.0000±0.0000 1.0000±0.0000 

70:30 1.0000±0.0000 1.0000±0.0000 1.0000±0.0000 

80:20 1.0000±0.0000 1.0000±0.0000 1.0000±0.0000 
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4. CONCLUSION 

This paper introduces an innovative approach for 
classifying textile fibers based on near-infrared spectrum 
signals. The proposed method involves spectral signal 
enhancement using various 𝑙௣ 𝑛𝑜𝑟𝑚 values with p = ∞, 

1, and 2, as a preprocessing step to assess and compare 
classification accuracy. The method also incorporates the 
textile template filters and covariance-based techniques 
for the feature extraction, which effectively reduces the 
dimensionality of spectral data into a new 2x1 feature 
vector. The classification is based on an algorithm rooted 
in the analytic geometric technique. The results show that 
the proposed method achieved a perfect overall accuracy 
of 100% when used with train and test data ratio not less 
than minimum at 40:60 indicating that it is robust and can 
generalize even when dealing with a limited training 
dataset. However, even under varying train and test data 
ratios such as 30:70, 20:80 and 10:90 ratios, the method 
maintains impressive accuracy values of 0.9999 ± 0.0005, 
0.9999 ± 0.0004 and 0.9995 ± 0.0006, respectively. 
Nevertheless, this still surpasses our previous study 
(Yammen & Limsripraphan, 2022) where the highest 
accuracy achieved was 0.9922 ± 0.0078, but only when 
using an 80:20 training-to-test dataset ratio. These 
findings underscore the robustness and reliability of the 
proposed method in textile fiber classification across 
different scenarios. A notable contribution of this study is 
found in the simplicity and minimal computational 
resource demands of the proposed method, rendering it 
well-suited for applications in the textile industry. This is 
especially relevant for the embedded systems used in 
automating textile recycling processes or in portable 
devices across diverse fields that employ spectroscopy 
techniques. In the future work, analytical methods will be 
improved in predicting the composition of the blended 
fiber either natural or synthetic fabric. 
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