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Abstract 

This research presents a method for detecting permanent magnet damage anomalies in a brushless direct current 

motor (BLDC Motor) by applying the adaptive neuro-fuzzy interface system (ANFIS). The input data for ANFIS has 4 

lead inputs.  Derived from the magtitude and position of the third order harmonics of the stator current and back 

electromotive force (Back-EMF) from the BLDC Motor. Consists of frequency of 3rd Order in the Back-EMF, magnitude 

of 3rd Order in the Back-EMF, frequency of 3rd Order in the Motor Current and Magnitude of 3rd Order in the Motor 

Current.  The ANFIS construction is ideal for detecting any malfunctions. It is the combined structure of the fuzzy logic 

system (FLS) and artificial neural networks (ANN) methods. In the FLS part, the membership function is used as the 

triangular and choose the principle of function approximation as sugeno fuzzy model and in ANN choose feed-forward 

network, there is transfer function at hidden layer and output layer is tan-sigmoid transfer function (tansig) and linear 

transfer function (purelin) respectively and have a learning style back-propagation learning from the test, it was found 

that the learning error of ANFIS was 3.62E-03 and the accuracy in the detection of anomalies was 98.81%. 

 

Keywords:  Brushless Direct Current Motor, Demagnetization, Back Electromotive Force, Stator Current, Adaptive 

Neuro-Fuzzy Interface System. 

 

1. INTRODUCTION  

Nowadays, Brushless Direct Current Motor (BLDC 

Motor) is widely used in various industrial sectors, 

especially in the electric vehicle and electric bicycle 

industry. Due to its good power transmission properties 

carbon brushes are not required to transmit power like a 

brushed direct current motor (DC Motor). BLDC Motor 

is a type of machine that has malfunctions. The cause may 

be caused by the motor manufacturing process or caused 

by abnormal operating conditions. Faults that occur can 

occur in many parts such as bearing faults, stator faults 

and demagnetization faults etc. Faults in a BLDC Motor 

are divided into 2 The main categories include electrical 

faults and mechanical faults. Research (Albrecht et al., 

1986) has shown that the percentage of motor faults 

occurring is found to be the majority of bearing damage. 

used followed by faults occurring at the stator and rotor 

in order.   

There are two methods of checking motor faults at 

present, checking by stopping the motor. For example, 

checking the fracture of the permanent magnet, the 

deterioration of the bearing, which this method has a 

disadvantage is that it has to stop the work process. Due 

to such disadvantages, there is another way to check 

without stopping the motor is an analysis of abnormalities 

caused by electrical signals such as voltage, current, etc., 

which helps to identify impending motor faults before 

they can cause serious damage. In research (Kang et al., 

2015; Kang et al., 2015; Yang et al., 2021; Usman & 

Rajpurohit, 2020; Usman et al., 2020; Usman et al., 2019; 

Kim & Hur, 2016; Kim et al., 2020; Kim et al., 2010; 

Usman & Rajpurohit, 2020; Madhav & Sadakale, 2020; 

Kim et al., 2020) The study and analysis of back 

electromotive force (Back-EMF). From the damage 

condition incurred to the permanent magnet in the BLDC 

Motor by analyzing the electrical signal. Voltage and 

other parameters. 

In the study (Mati & Kuli, 2010; Drira & Derbel, 2011; 

Kolla & Altman, 2007) applied artificial neural networks 

(ANN) to detect and classify abnormalities in rotor and 

stator of the motor by taking electrical signal data. The 

resulting vibration and heat are inputs for ANN to be used 

in the learning process and analyze the network output for 

discriminative analysis of motor faults.  

In the study (Dias & Chabu, 2008; Zouzou et al., 2009; 

Laala et al., 2011) applied fuzzy logic system (FLS) to 

detect and classify abnormalities in rotor and stator of the 

motor by taking the information of the electric signal, 

vibration and heat generated. Define and create. 

Membership function in the FLS method for discriminating 

motor faults. 

Different mathematical methods have their advantages 

and disadvantages, and no one is better than the other in 

every way. An ANN, for example, has the advantage of 

being able to learn and recognize patterns. But there is a 

disadvantage that it cannot explain the reason for the 
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decision while FLS. It is characterized by its logical 

reasoning like human thought. Decisions can be explained 

by FLS rules and can be applied to obscure information. But 

the disadvantage of FLS lies in the inability to learn and 

customize the rules by yourself. Must rely on experts or 

knowledgeable people to define the structure and rules. 

Therefore, researchers are interested in combining different 

methods into a hybrid system in order to combine the 

advantages of each method and eliminate the limitations of 

each method. One such hybrid system is the ANN blending 

with FLS to form the Adaptive Neuro-Fuzzy Interface 

System (ANFIS) proposed by J.S.r. Jang (Kolla & Altman, 

2007) 

In the study (Souad et al., 2017; Moghadasian et al., 

2017; Ballal et al., 2007) the application of ANFIS to the 

analysis of motor abnormalities was presented. which is 

a system created by the combined application of FLS or 

fuzzy logic with ANN In order to distinguish between 

motor faults. 

This research applied ANFIS to detect abnormality 

caused by permanent magnet damage in BLDC Motor 

rotor. The input data for ANFIS has 4  inputs taken from 

Third order harmonics (3rd order): 

1. Frequency of 3rd Order in the Back-EMF 

2. Magnitude of 3rd Order in the Back-EMF 

3. Frequency of 3rd Order in the Motor Current 

4. Magnitude of 3rd Order in the Motor Current 

The working process of rotor permanent magnet 

detection and classification system by applying ANFIS 

started simulating the state of permanent magnet fracture in 

BLDC motor into 3  case studies as follows: 1 .  Normal 

permanent magnet (0BB) 2. Permanent magnet damaged 1 

bar conductor (1 BB) and 3. Two permanent magnets 

damaged (2BB). Stator current and back-EMF signals with 

the motor operating under various simulation conditions are 

analyzed and converted from time domain to frequency 

domain signal (Fast Fourier Transform (FFT)) to continue 

as input in ANFIS. 
 

2. BRUSHLESS DIRECT CURRENT MOTOR  

2.1 Fundamental of BLDC motor (Kim et al., 2020) 

A BLDC motor is usually supplied with a 120-degree 

commutation inverter and the schematic of a BLDC 

motor drive circuit is shown in Fig. 1.  
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Figure 1 Schematic of a BLDC motor drive circuit. 

 

In this paper, an upper PWM method for a speed 

controller is used. An illustration of the ideal back-EMF, 

current waveform and the switching states in a BLDC 

motor is shown in Fig. 2. 
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Figure 2 The ideal waveforms of back-EMF, current and witching 

states. 
 

2.2 Demagnetization faults in BLDC motor (Usman & 

Rajpurohit, 2020) 

Additional investigations are made on the harmonic 

analysis of demagnetization faults in the BLDC motor 

drive. The harmonics are excited at multiples of 

mechanical frequency in the stator back-EMF and current 

spectrum as given in (1). 

      1,2,3...
/ 2

demag s m

k
f f kf k

p

 
= = = 

 
 (1) 

where demagf  is the frequency of 
thk  component in 

the spectrum, sf is electrical frequency, mf  is the 

rotational frequency and p is the number of poles.  The 

proposed investigations are done on the BLDC motor 

under study with p = 12. 

 

2.3 BLDC motor Operation (Faiz & Mazaheri, 2017) 

In this section, the effect of the demagnetization fault 

on Back-EMF waveforms of a BLDC motor is studied; 

harmonics of Back-EMF, caused by the demagnetization 

fault, are the main reason for injecting harmonics to the 

phase current. Six-step operation of the BLDC leads to 

the specific extrema in the phase currents at each 

switching instance. These patterns are treated 

analytically. 

Back-EMF is an important signal in the diagnosis of 

the demagnetization fault, because flux disturbance 

caused by this fault influences Back-EMF waveforms. It 

is possible to separate the effect of each individual PM on 

each coil by knowing individual coils offset angles 

(Hanselman, 2003; Goktas et al., 2016). Suppose the 

following Fourier series: 
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360
( 1)

cac
c

p
 = −    (3) 

describes the induced voltage in 
thc  coil of phase a 

with separated effects of each individual magnet in a p-

pole PM motor where kd  is between 0 and 1 introducing 

demagnetization fault severity of each magnet, nE  is the 

amplitude of 
thn  Fourier series coefficients, m is the 

mechanical position of the rotor, and cac is the coil angle 

of 
thc  coil which can be calculated by (3) .  Taking coil 

angles for all cN coils into account, the induced voltage in 

phase a is as follows: 
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  (4) 

The first part in (4) corresponds to the distribution of 

the coils in stator slots for a particular winding layout: 

1

1

( 1)
c

cac

N
jnc

wan
c

S e −

=

= −    (5) 

The second part in (4) is related to the number of rotor 

magnets and fault severity of the magnets: 
360

( 1)
1

1

( 1)
p jn k

k p
pmn k

k

S d e
−

−

=

= −    (6) 

And the last part forms the shape of the Back-EMF 

waveform for each individual coil.  For a balanced 

winding, induced voltages in other phases can be 

calculated by shifting the coil angle cac in
wanS part by 

120o: 

( )mjn
a wbn pmn n

n

e S S E e 
+

=−

=     (7) 

( )mjn
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n
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=−

=     (8) 

Similarly, line- to- line Back-EMF are expressed by 

subtracting two corresponding phase Back-EMF for the 

line Back-EMF of phase a and phase b: 

1201 mjnin
ab wbn pmn n

n

e S e S E e 
+

=−

 = −
    (9) 

Although the fault frequency components in (1) are 
observed in the phase Back-EMF, Eqn. (9) indicates that 
some components can be disappeared in the line-to-line 
Back-EMF due to the lack of phase difference which 
depends on the winding configuration and number of 
poles and slots.  

Suppose the induced voltages of the coils are perfect 
trapezoidal waveforms with a flat-top of 120 electrical 

degrees; as an ideal case for a BLDC motor. Therefore, 
the following fourier series coefficients: 
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   (10) 

Can be directly calculated by its function or by 

subtraction of two triangular waveforms. 

 

2.4 Experimental Setup 

The proposed algorithm is verified by simulation of 

experiments. Simulations are performed at healthy 

condition and fault conditions. The parameters of the 

BLDC are summarized in Table I. 

BLDC upper PWM-based inverter drive in speed 

control mode is used to operate the motor for 

experimental verification. The switching frequency of the 

inverter is 625 kHz and it has speed and position feedback 

system using hall sensors. The overall experimental setup 

is illustrated in Fig. 3. 
 
 

Table 1 The parameters of BLDC motor. 
 

Parameters Value  

Rated Power  800 W 

Rated Voltage 48 V 

Rated Current 11 A 

Rated Speed 3,000 rpm 

Phase 3 - 

Slots of Stator 18 - 

Poles 16 - 
 

The important equipment for testing Demagnetization 
Fault in BLDC motor is Power Supply, Current Probe, 
BLDC motor, DC motor and Computer as shown in Fig. 
3. 

 

 
 

Figure 3 Overall experimental setup 
 

To detect the motor's stator current and Back-EMF 
signals, the electrical signal flowing through the motor is 
measured.  

       
                (a)                            (b)                   (c)                     (d) 

 

Figure 4 Photograph of Demagnetization Faults 

(a) Stator (b) 0BB (c) 1BB (d) 2BB 

1BB 2BB 0BB 
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The current data is recorded using an oscilloscope 

with a sampling of 2  kHz and a total of 1 0 ,0 0 0  data 

records, so the frequency resolution is 0 . 2  Hz. The 

simulation of fracture condition of the permanent magnet in 

BLDC Motor is divided into 3 cases: 1. Normal permanent 

magnet (0BB), 2. Damaged permanent magnet 1 rod (1BB) 

and 3. Damaged permanent magnet 2 rod (2BB) as follows: 

Fig.  4 .  and an example of the motor current and voltage 

signal is shown in Fig. 5. 
 

 

Figure 5 Signal of current and Back-EMF 

 

2.5 Experimental Results 

The harmonics effect on the permanent magnet 

damage is applied as the default value for the input as 

shown in Figures 6, 7 and table 2. 1. Frequency of third 

order harmonics in the Back-EMF 2.  Magnitude of third 

order harmonics in the Back-EMF 3 .  frequency of third 

order harmonics in the motor current 4 .  Magnitude of 

third order harmonics in the motor current.  
 

Table 2 Data of Harmonic Components. 
 

Condition 
Input Target 

X1 X2 X3 X4 Y1 

0BB 2.58 1245.63 0.71 2910.00 1 

0BB 3.08 1246.88 0.76 2920.00 1 

0BB 2.96 1247.50 0.69 2920.00 1 

0BB 2.96 1248.13 0.74 2920.00 1 

1BB 2.77 1326.88 0.95 1760.63 2 

1BB 2.99 1327.50 1.28 1763.13 2 

1BB 3.25 1328.75 0.83 1763.75 2 

1BB 2.96 1329.38 1.09 1766.25 2 

2BB 2.17 1410.00 0.74 1523.75 3 

2BB 2.56 1410.00 0.86 1524.38 3 

2BB 2.50 1410.00 0.88 1525.63 3 

2BB 2.66 1410.00 0.92 1525.63 3 

 

 

 
Figure 6 3rd Orde of Harmonic Components of Motor Current 

 

The harmonic analysis of stator phase currents under 

fault conditions has been already illustrated in Fig. 6. The 

harmonic analysis of rotor Back-EMF under fault 

conditions has been already illustrated in Fig. 7. 

 
Figure 7 3rd Order of Harmonic Components of Back-EMF  

 

3. ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM 

(YILMAZ & AYAZ, 2009) 

ANFIS is an implementation of a fuzzy logic 

inference system with the architecture of a five-layer 

feed-forward network. With this way ANFIS uses the 

advantages of learning capability of neural networks and 

inference mechanism similar to human brain provided by 

fuzzy logic. The architecture of ANFIS with two inputs, 

one output and two rules are given in Fig. 8. Here x, y are 

inputs, f is output, the circles represent fixed node 

functions and squares represent adaptive node functions. 

This is a Sugeno type 

Fuzzy system, where the fuzzy IF-THEN rules have 

the following form: 

Rule1: 

IF x is
1A and y is

1B THEN
1 1 1 1 1f p x p x q y r= + + +  

Rule2: 

IF x is
2A and y is

2B THEN
2 2 2 2 2f p x p x q y r= + + +  
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Figure 8 ANFIS architecture. 
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The operation of each layer is as follows: Here the 

output node i in layer l is denoted as l
iO . 

Layer 1 is fuzzification layer. Every node i in this 

layer is an adaptive node with node function 

2( ),     ( ),    1,2
i i

l l
i A i AO x O x i += = =   (11) 

Where x is the input to
thi node, 1

iO is the membership 

grade of x in the fuzzy set 
iA . Generalized bell member-

ship function is popular method for specifying fuzzy sets 

because of their smoothness and concise notation, and 

defined as  

2

1
( )

1

i i
A b

i

i

x

x c

a

 =
  −
 +  
   

   (12) 

Here { , ,  }i i ia b c is the parameter set of the 

membership function. The center and width of the 

membership function is varied by adjusting 
ic and 

ia

.The parameter
ib is used to control the slopes at the 

crossover points. Fig. 9 shows the physical meaning of 

each parameter in a generalized bell function. The 

parameters in this layer are called premise parameters. 

This layer forms the antecedents of the fuzzy rules (IF 

part). 

                 

Slope = -b/2s

1.0

0.5

0

2a

c-a c+ac x

u

 
Figure 9 Generalized bell function. 

 

Layer 2 is rules layer. Every node in this layer is a 

fixed node and contains one fuzzy rule. The output is the 

product of all incoming signals and represents the firing 

strength of each rule. 

2
1 ( ) ( )

i ii A BO w x y = =    (13) 

Layer 3 is normalization layer. Every node in this 

layer is a fixed node and 
thi  node calculates the ratio of 

thi rule’s firing strength to the sum of all rules’ firing 

strengths. Outputs of this layer are called normalized 

firing strengths computed as 

3

1 2

, 1,2i
i i

w
O w i

w w
= = =

+
   (14) 

Layer 4 is consequent layer. Every node in this layer 

is an adaptive node and computes the values of rule 

consequent (THEN part) as 

4
1 ( )i i i i i iO w f w p x q y r= = + +   (15) 

Here i w is the output of Layer 3 and the parameters 

{ , , }i i ip q r  are called as consequent parameters.  

Layer 5 is summation layer and consists of single 

fixed node which calculates the overall output as the 

summation of all incoming signals as 

5 i i i
i i i

i ii

w f
O w f

w
= =





   (16) 

Learning of ANFIS is done using hybrid learning 

procedure which combines back-propagation gradient 

descent and least squares method for identification of 

premise and consequent parameters.  

An ANFIS model-based fault detector for a BLDC 

motor has been designed and tested using simulations. 

The results indicated that, regardless of the loading 

condition, the proposed scheme is capable of detecting 

Demagnetization. The next step is to test whether the 

proposed fault detection methodology is able to detect 

the existence of Demagnetization in a practical BLDC 

motor. 
 

Table 3 Parameter for training in ANFIS. 
 

 Parameter 

Input 

Frequency of Third order harmonics 

in the Back-EMF 
X1 

Magnitude of Third order harmonics 

in the Back-EMF 
X2 

Frequency of Third order harmonics 

in the Motor Current 
X3 

Magnitude of Third order harmonics 

in the Motor Current 
X4 

Output 
Demagnetization (Healthy (0BB), 

Unhealthy (1BB, 2BB)) 
Y1 

 

An ANFIS method detects permanent magnet damage 

in this study. Use the analysis of ANFIS that has a mixed 

structure of the fuzzy logic system and artificial neural 

networks methods. In the FLS part, choose membership 

function as triangular and choose the principle of 

function. Approximation is surgeon fuzzy model and in 

ANN part choose feed-forward network, there is transfer 

function at hidden layer and output layer is tan-sigmoid 

transfer function (tensing) and linear transfer function 

(purlin) respectively and have a learning style back-

propagation learning. The structure of ANFIS is shown in 

Fig.10., which consists of 4 input layers (X1, X2, X3, X4) 

and 1 output layer Y1 (0BB, 1BB, 2BB) as in Table 3. 
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Figure 10 The structure of ANFIS 
 

The structure of ANFIS in this research. The learning 

results of the program can be displayed with a surface 

chart between the input and output relationships as shown 

in Fig. 11. 

 

                    
                          X1                                                                          X1 
 

                    
                          X1                                                                          X2 
 

                    
                          X2                                                                          X3 
 

Figure 11 Surface 

 

The results of the permanent magnet abnormality test 

with ANFIS can be shown and compared with the results 

of the detection of abnormalities occurring in the BLDC 

motor as shown in Fig. 12. From the figure, it shows that 

the detected result with the value. Targets are of the same 

value. It has an ANFIS learning error of 3.62E-03 and an 

accuracy in detecting an anomaly of 98.81%. 

 

 
Figure 12 Result of ANFIS 

 

4. CONCLUSION 

In this paper, the demagnetization fault detection of 

brushless DC electric motor using adaptive neuro-fuzzy 

inference system (ANFIS). The ANFIS method has been 

utilized to obtain data collection of the harmonic 

components of Back-EMF and harmonic components of 

current. Comparison in terms of accuracy and MSE for 

ANFIS is demonstrated. The results obtained show that 

the best MLP training algorithm has the best accuracy 

(98.81%) and MSE (3.62E-03) compared with others 

training algorithms. The test results are reliable and can 

be applied for the future. 
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