
Nakhara: Journal of Environmental Design and Planning (2026) 

Volume 25(1), Article 601 

DOI: https://doi.org/10.54028/NJ202625601 

Article Type: Research Article 

Nakhara: Journal of Environmental Design and Planning, 2026, 25(1), Article 601 | 1 

Spatial Clustering and Determinants of 

Dengue Incidence Among the Young 

Population of Northern Thailand During 

the COVID-19 Pandemic  

Sopida Supotina1, Kasama Pooseesod1,2, Tassanee Silawan3, 

Nattapong Puttanapong4, Sayambhu Saita1,2,* 

1 Faculty of Public Health, Thammasat University, Thailand 
2 Thammasat University Research Unit in One Health and Ecohealth, Thailand 
3 Department of Community Health, Faculty of Public Health, Mahidol University, Thailand 
4 Faculty of Economics, Thammasat University, Thailand 

* Corresponding e-mail: sayambhu.s@fph.tu.ac.th 

Received 2025-05-01; Revised 2025-06-23; Accepted 2025-07-07 

ABSTRACT 

Dengue infection remains a significant public health concern in Thailand, particularly among young 

populations. The emergence of COVID-19 introduced additional complexity to disease surveillance and 

control efforts. This study aimed to determine the spatial clustering and determinants of dengue 

incidence among individuals under 25 years of age in Northern Thailand during the COVID-19 

pandemic. Ecological analysis was conducted across 103 districts in eight northern provinces. District-

level dengue incidence rates of individuals under 25 years of age for 2021 were calculated and 

analyzed using global Moran’s I and local indicators of spatial association (LISA) to detect spatial 

clustering. Bivariate LISA was employed to explore spatial correlations between dengue incidence and 

sociodemographic, environmental, and health service factors. Spatial regression models were applied 

to identify significant predictors while accounting for spatial dependence. There were 18 districts 

(17.48%) with dengue incidence rates higher than the national target. Global Moran’s I indicated a 

positive spatial autocorrelation (Moran’s I = 0.087), and LISA identified significant high-high clusters in 

two remote border districts. Bivariate LISA analysis revealed significant positive spatial associations 

between dengue incidence and the proportion of the population under 25 years of age, COVID-19 

morbidity rate, and minimum, maximum, and average rainfall. In contrast, significant negative spatial 

associations were observed with the proportion of the urban population, COVID-19 fatality rate, and 

both minimum and average temperatures. Given the low spatial dependence observed, the ordinary 

least squares model was considered appropriate and identified the number of schools, the ratio of 

village health volunteers to households, and average temperature as significant determinants of 

dengue incidence (R² = 0.102). These findings indicated the need for geographically targeted health 

planning strategies and community design, school-based vector control, and climate-informed 

surveillance strategies. Integrated and resilient public health systems are essential for managing 

concurrent health threats. 

Keywords: dengue incidence, young population, clustering, sociodemographic, environment, health 

service
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INTRODUCTION 

Dengue infection is one of the most widespread 

mosquito-borne viral diseases in tropical and 

subtropical regions, with Southeast Asia 

accounting for a substantial proportion of the 

global burden. In Thailand, dengue remains 

endemic, and children and young adults 

(individuals under 25 years of age) have 

consistently represented a disproportionately 

high number of reported cases in Thailand, 

particularly in endemic regions of the north region 

(Thisyakorn et al., 2022). The emergence of the 

COVID-19 pandemic disrupted routine public 

health functions, including vector control, mobility 

patterns, access to care, and disease 

surveillance (Roster et al., 2024; Yek et al., 

2022). These disruptions might have uniquely 

affected younger populations, especially students 

and adolescents, due to prolonged school 

closures, increased time spent at home, and 

reduced access to health education and 

prevention activities (Bialy et al., 2024). Such 

factors likely altered exposure patterns and care-

seeking behaviors, contributing to shifts in 

dengue transmission among youth during this 

period (Brady & Wilder-Smith, 2021; Liyanage et 

al., 2021).  

Despite this significance, few studies have 

specifically examined the spatial epidemiology of 

dengue among youth during the COVID-19 

pandemic, especially in the northern provinces of 

Thailand, where both vector ecology and 

population distribution vary considerably. Existing 

research has largely focused on general 

population models or aggregated case data 

without disaggregating by age or examining 

contextual risk factors relevant to young people’s 

environments, such as proximity to schools, 

urban-rural variation, or community-level health 

services (Hnusuwan et al., 2020; Phanitchat et 

al., 2019; Saita et al., 2022). Understanding how 

sociodemographic, environmental, and health 

system factors shape these spatial variations is 

essential for building responsive, dengue area-

based surveillance and control strategies amid 

emerging health crises (Rahman et al., 2021; 

Romeo-Aznar et al., 2024; Zheng et al., 2019).  

Therefore, these gaps need to be addressed by 

focusing specifically on individuals under 25 

years of age, integrating geospatial methods to 

identify spatial clustering and determinants of 

dengue incidence across 103 districts in Northern 

Thailand during the COVID-19 pandemic, in 

particular in 2021. By incorporating spatial 

autocorrelation measures and spatial regression 

models, the research aims to produce actionable 

insights that account for demographic-specific 

vulnerabilities and spatial heterogeneity, both of 

which are essential for effective area-based 

public health planning and disease control during 

the overlapping health crisis.  

RESEARCH MATERIALS 

AND METHODOLOGY 

Study areas  

This study was conducted in Northern Thailand, 

comprising eight provinces: Chiang Mai, Chiang 

Rai, Mae Hong Son, Lamphun, Lampang, 

Phayao, Phrae, and Nan. These provinces are 

characterized by mountainous terrain and 

extensive forest cover. The unit of analysis was 

at the district level, encompassing a total of 103 

districts (Figure 1). The region features diverse 

topographical and ecological conditions that may 

influence the transmission dynamics of dengue 

fever. Population density across districts varied, 

ranging from 3.98 to 302.09 persons per square 

kilometer (Office Statistics Registration System, 

Ministry of Interior, 2021). The majority of the 

population resided in rural or semi-urban areas, 

which are interspersed with highland 

communities and remote settlements. 

Data Preparation 

The dependent variable in this study was the 

incidence rate of dengue infection (per 100,000 

population) among individuals under 25 years of 

age at the district level in 2021.  Data on new 

dengue cases diagnosed according to the 1997 

WHO guidelines (World Health Organization, 

1997) were obtained from the national disease 

surveillance system (R506). The mid-year 

population was also retrieved from the Bureau of 

Epidemiology, Department of Disease Control, 

Ministry of Public Health (Bureau of 

Epidemiology, Department of Disease Control, 

Ministry of Public Health Thailand, 2021). The 

incidence rate in each district was calculated  
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using the number of reported all serotypes of 

dengue cases comprising dengue fever, dengue 

hemorrhagic fever, and dengue shock syndrome 

of individuals under 25 years of age divided by 

the mid-year population of each district in the 

same age group and then multiplied by 100,000 

to standardize the measure.  

The independent variables in this study in 2021 

were categorized into three main groups: 

sociodemographic factors, environmental 

characteristics, and health service indicators. 

Sociodemographic variables included the sex 

ratio (male to female) among individuals under 

25 years of age, the proportion (%) of the 

population under 25 years old, population 

density, and the proportion (%) of urban 

population. These data were sourced from the 

Bureau of Registration Administration, Ministry of 

Interior (Bureau of Registration Administration, 

Ministry of Interior, n.d.). Additionally, the 

nighttime light (NTL) in 2021 was obtained from 

SNPP/VIIRS satellites using Google Earth 

Engine, with a spatial resolution of approximately 

500 meters.  To account for differences in district 

area, NTL values were normalized by calculating 

the average of NTL per square kilometer and 

aggregated at the district level using zonal mean 

statistics. NTL was used as a proxy for 

urbanization and economic activity (Puttanapong 

et al., 2022). 

 

Figure 1 

Map of 103 Districts in 8 Provinces in Northern Thailand 
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Environmental variables, including rainfall, 

temperature, and Normalized Difference 

Vegetation Index (NDVI), were derived from 

satellite sources via Google Earth Engine for the 

year 2021. Rainfall data were obtained from the 

Climate Hazards Group Infrared Precipitation 

with Stations (CHIRPS) dataset, with a spatial 

resolution of approximately 5 km. Land surface 

temperature and NDVI were derived from the 

Terra MODIS sensor at a 1 km resolution. 

Minimum, maximum, and average values of each 

environmental variable were computed for each 

district using zonal statistics based on district 

boundaries. Additional environmental indicators 

comprised the proportion (%) of households with 

poor hygiene, the number of higher education 

institutions, schools, and nurseries. These data 

were sourced from the Basic Needs Data 

platform by the Community Development 

Department, the Ministry of Interior (Community 

Development Department, Ministry of Interior, 

2021), and the Educational Information Center, 

Ministry of Education (Educational Information 

Center, Ministry of Education, 2021).  

Health service-related variables in each district 

included the ratio of village health volunteers 

(VHVs) to households, which was obtained from 

the Department of Health Service Support, 

Ministry of Public Health (Department of Health 

Service Support, Ministry of Public Health, n.d.). 

Data on the COVID-19 morbidity rate and the 

fatality rate of COVID-19 were obtained from 

Provincial Public Health Offices using a district-

based data recording form. 

Data analysis 

Spatial Distribution and Clustering 

The spatial distribution of dengue incidence 

among individuals under 25 years of age at the 

district level in 2021 was calculated, and a map 

was created using QGIS 3.28.0 (QGIS 

Development Team, 2023), compared to the 

national target ( 40  cases per 100, 000  

population). Before assessing the spatial 

autocorrelation of dengue incidence across 

districts in 2021, the spatial empirical Bayesian 

(SEB) smoothed incidence was computed to 

solve the problem of comparing rates in different 

population sizes related to the problem of 

variance instability and spurious outliers (Deb 

Nath et al., 2023; Saita et al., 2022). The spatial 

autocorrelation based on SEB-smoothed 

incidence was investigated using Moran’s I 

equation, which is defined as in Eq. (1). This 

measure evaluates whether the spatial 

distribution of a variable is clustered, dispersed, 

or random by comparing the value at each 

location with the values at neighboring locations. 

Moran’s I ranges from -1 to +1, where positive 

values indicate spatial clustering of similar 

values, negative values suggest spatial 

dispersion, and values near zero imply a random 

spatial pattern (Li et al., 2007). For the spatial 

weight matrix, a fixed distance threshold of 

approximately 45 kilometers was used to define 

spatial neighbors based on Euclidean distance 

between district centroids. This distance ensured 

that all districts had at least one neighbor and 

avoided isolated spatial units. The threshold was 

determined using an incremental spatial 

autocorrelation test based on Global Moran’s I, 

which identified the distance at which spatial 

clustering peaked. A distance-based approach 

was chosen over contiguity-based methods (e.g., 

Queen or Rook adjacency) due to the substantial 

variation in size, shape, and geographic isolation 

of administrative districts in Northern Thailand. 

Many remote or mountainous districts do not 

share borders with adjacent units, rendering 

contiguity-based definitions less effective. The 

use of a Euclidean distance threshold 

(approximately 45 kilometers) ensures that all 

districts have at least one spatial neighbor, 

enabling a more accurate representation of 

proximity-based spatial interactions across a 

heterogeneous landscape. 

The analysis was performed using GeoDa 

software, which provides robust tools for spatial 

statistical analysis (Anselin et al., 2022). A 

statistically significant positive Moran’s I value 

would indicate clustering of high or low dengue 

incidence rates in neighboring districts. 

𝐼 =  
𝑛 ∑ ∑ 𝑤𝑖𝑗(𝑥𝑖−𝑥̅)(𝑥𝑗−𝑥̅)𝑗𝑖

(∑ ∑ 𝑤𝑖𝑗) ∑ (𝑥𝑖−𝑥̅)2
𝑖𝑗𝑖

                                     (1) 

Where 𝑛 is the number of spatial units (districts); 

𝑥𝑖 is the value of the variable at location i; 𝑥𝑗 is 

the value of the variable at location j (the 

neighbor of location i); 𝑥̅ is the mean of the 

observed value; 𝑤𝑖𝑗 is the spatial weight between 

locations i and j.  
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In addition to Moran’s I, LISA were applied to 

detect the presence and location of local clusters 

of dengue incidence based on SEB-smoothed 

incidence as in Eq. (2). LISA statistics assess the 

degree of spatial association around individual 

spatial units, enabling the identification of 

statistically significant local patterns that may not 

be evident through global measures. The results 

classified districts into four types of spatial 

clusters: High-High (hotspots), where districts 

with high dengue incidence are surrounded by 

similarly high-incidence district neighbors; Low-

Low (cold spots), where districts with low 

incidence are surrounded by low-incidence 

district neighbors; and the spatial outliers High-

Low and Low-High, which represent districts with 

values that contrast with those of their 

surrounding areas (Anselin, 1995). 

𝐼𝑖 =  
∑ 𝑤𝑖𝑗(𝑥𝑖−𝑥̅)(𝑥𝑗−𝑥̅)𝑗

∑ (𝑥𝑖−𝑥̅)2
𝑖

            (2) 

Where 𝑥𝑖 is the value of the variable at location i; 

𝑥𝑗 is the value of the variable at location j (the 

neighbor of location i); 𝑥̅ is the mean of the 

observed value; and 𝑤𝑖𝑗  is the spatial weight 

between locations i and j.  

Bivariate Local Moran’s I 

To further explore spatial relationships between 

two distinct variables, bivariate local Moran’s I 

was employed. This method extends the 

traditional LISA by measuring the spatial 

association between the value of one variable at 

a given location and the values of a second 

variable in neighboring locations as in Eq. (3). In 

this study, bivariate LISA was applied to examine 

local spatial correlations between dengue 

incidence and potential explanatory variables, 

including sociodemographic, environmental, and 

health service factors. The analysis identified 

spatial clusters where high (or low) values of the 

dengue incidence co-occur with high (or low) 

values of an independent variable in adjacent 

districts. The analysis was performed using 

GeoDa software, with spatial relationships 

defined by a fixed-distance spatial weight matrix 

based on Euclidean distance, using a threshold 

of approximately 45 kilometers. Statistical 

significance was assessed using 999 random 

permutations, with a significance level set at p < 

0.05. 

𝐼𝑖
𝐵 = (𝑥𝑖 − 𝑥̅) ∑ 𝑤𝑖𝑗(𝑦𝑗 − 𝑦̅)𝑗   (3) 

Spatial regression  

To examine the spatial determinants of dengue 

incidence at the district level, accounting for 

spatial dependence, the spatial regression 

models included variables that demonstrated 

statistical or marginal significance (p < 0.100) in 

the bivariate spatial correlation analysis and 

showed no evidence of multicollinearity. Three 

regression approaches were employed: ordinary 

least squares (OLS), spatial lag model (SLM), 

and spatial error model (SEM) (Anselin, 1988; 

Anselin & Bera, 1998). These models enabled 

the identification of key sociodemographic, 

environmental, and health service-related factors 

associated with spatial variations in dengue 

incidence. 

The OLS model served as the baseline for 

comparing and verifying the spatial model. The 

general form of the OLS model is Eq. (4). 

𝑌 =  𝛽0 + 𝛽𝑋 + 𝜀           (4) 

where 𝑌 is the dependent variable, 𝑋 is a matrix 

of explanatory variables, 𝛽0 is the intercept, 𝛽 is 

the regression coefficient of 𝑋, and ε is the error 

term. 

To address spatial autocorrelation, the SLM 

incorporates a spatially lagged dependent 

variable as an additional predictor. The SLM 

equation is defined as Eq. (5). 

𝑌 =  𝛽0 + 𝛽𝑋 + 𝜌𝑊𝑦 + 𝜀               (5) 

where 𝜌 is the spatial autoregressive coefficient, 

and 𝑊𝑦 is the spatial lag of the dependent 

variable, based on a spatial weight matrix 𝑊. 

The SEM assumes that spatial dependence is 

present in the error terms rather than in the 

dependent variable itself. The SEM equation is 

defined as Eq. (6). 

𝑌 =  𝛽0 + 𝛽𝑋 + 𝜆𝑊ξ+𝜀          (6) 

where 𝜆 is the spatial autoregressive coefficient 

in the error component, and 𝑊ξ is the spatial 

error. 
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Both SLM and SEM were estimated using a 

spatial weight matrix constructed based on 

Euclidean distance, with a fixed distance 

threshold of approximately 45 kilometers. Model 

performance was compared using diagnostic 

indicators, including the Akaike Information 

Criterion (AIC), log-likelihood, coefficient of 

determination (R²), and Lagrange Multiplier (LM) 

tests. Statistical significance was considered at p 

< 0.05. 

Ethical approval  

This study was reviewed and exempted from a 

full ethical review by the Human Research Ethics 

Committee of Thammasat University, Thailand. 

The exemption was granted under approval 

number 015/2566, dated May 16, 2023. 

RESULTS  

Spatial Clustering of 

Dengue Incidence 

In 2021, the dengue incidence among individuals 

under 25 years of age in Northern Thailand was 

43.59 per 100,000 population. Spatial distribution 

exhibited substantial variation across districts. 

Based on the national dengue control target (40 

cases per 100,000 population), the majority of 

districts (85 out of 103) met the national target. 

However, seven districts (6.8%) reported 

incidence rates exceeding four times the national 

target, with the highest burden concentrated in 

the western region, particularly in Mae Hong Son 

Province, and in parts of northern Chiang Rai 

and Nan Province (Figure 2a). 

The Global Moran’s I statistics for dengue 

incidence was 0.087, indicating a positive spatial 

autocorrelation across districts in 2021 (Figure 3). 

LISA analysis revealed significant spatial 

clustering of dengue incidence across districts. 

Out of the 103 districts, 22 districts (21.4%) 

exhibited statistically significant local spatial 

autocorrelation (p < 0.05). Among these, the 

most notable clusters were two High-High 

districts located in the remote western border 

area of Mae Hong Son Province, Sop Moei and 

Mae Sariang, highlighting zones of elevated 

incidence surrounded by similar high-incidence 

neighbors. In contrast, Low-Low clusters were 

observed in several central and eastern districts, 

particularly in Lampang, Phrae, and Nan, where 

both local and neighboring districts reported low 

dengue incidence. Low-High outliers, primarily 

found in northern Chiang Rai Province, indicate 

districts with relatively low dengue incidence 

surrounded by high-incidence neighbors (Figure 

2b and Table 1). 

Figure 2 

Distribution of Dengue Incidence (a) and LISA Clusters (b) in Northern Thailand, 2021 
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Figure 3 

Moran’s I Scatterplot of SEB Dengue Incidence in 2021 

 

Table 1  

Dengue Cluster by District and Province 

Cluster District Province 

High-High Mae Sariang Mae Hong Son 

High-High Sop Moei Mae Hong Son 

Low-Low Soem Ngam Lampang 

Low-Low Thoen Lampang 

Low-Low Mae Phrik Lampang 

Low-Low Mae Tha Lampang 

Low-Low Ko Kha Lampang 

Low-Low Sop Prap Lampang 

Low-Low Mueang Phrae Phrae 

Low-Low Long Phrae 

Low-Low Den Chai Phrae 

Low-Low Wang Chin Phrae 

Low-Low Nong Muang Khai Phrae 

Low-Low Sung Men Phrae 

Low-Low Rong Kwang Phrae 

Low-Low Wiang Sa Nan 

Low-Low Santi Suk Nan 

Low-High Wiang Chiang Rung Chiang Rai 

Low-High Doi Luang Chiang Rai 

Low-High Mae Sai Chiang Rai 

Low-High Mai Chan Chiang Rai 

Low-High Phaya Mengrai Chiang Rai 
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Spatial Determinants of 

Dengue Incidence  

Among sociodemographic variables, the 

proportion of the population under 25 years old 

showed a significant positive spatial correlation 

with dengue incidence (I = 0.190, p = 0.001); 

meanwhile, the proportion of urban population 

was negatively associated (I = –0.110, p = 

0.003).  The minimum, maximum, and average 

rainfall showed statistically significant positive 

spatial correlations with dengue incidence (I = 

0.084, 0.107, and 0.089, respectively; p < 0.05), 

while minimum and average temperature were 

negatively associated (I = –0.120 and –0.141; p = 

0.004 and 0.002, respectively). Regarding health 

service factors, the COVID-19 morbidity rate was 

positively associated with dengue incidence (I = 

0.107, p = 0.024), whereas the COVID-19 fatality 

rate exhibited a significant negative spatial 

relationship (I = –0.076, p = 0.016) (Table 2). 

Among key spatial determinants of dengue 

incidence, the bivariate LISA analysis revealed 

distinct spatial clustering patterns between 

dengue incidence and several explanatory 

variables. High-High clusters, indicating districts 

with both high dengue incidence and high values 

of the explanatory variable in surrounding 

neighbors, were most frequently observed in the 

northernmost districts of Chiang Rai Province 

(e.g., Mae Chan, Mae Sai, Phaya Mengrai, and 

Wiang Chiang Rung) and the western border 

districts of Mae Hong Son Province (Sop Moei 

and Mae Sariang). These clusters were 

consistent across multiple variables, suggesting 

overlapping vulnerabilities. In contrast, Low-Low 

clusters were concentrated in central and eastern 

districts such as Ko Kha, Soem Ngam, and Sop 

Prap in Lampang; Rong Kwang and Den Chai in 

Phrae; and Ban Luang in Nan areas 

characterized by low dengue incidence and 

correspondingly low levels of explanatory 

variables in neighbors (Figure 4 and Table 3). 

All three models (OLS, SLM, and SEM) were 

estimated using a spatial weight matrix based on 

a 45 km Euclidean distance threshold. However, 

tests for spatial dependence, including Global 

Moran’s I and LM diagnostics, indicated no 

significant spatial autocorrelation in the residuals 

(p-values > 0.262), suggesting that the data did 

not exhibit strong spatial dependence (Table 4). 

As such, the use of spatial regression models 

may not be strictly necessary in this context. 

Nonetheless, for comparative purposes, both the 

SLM and SEM were assessed. The SEM 

demonstrated slightly better model fit, with the 

lowest AIC (1259.89), highest log-likelihood (–

624.943), and marginally improved R² (0.108). 

Across all models, the ratio of VHVs to 

households, the number of schools, and average 

temperature were statistically significant 

predictors of dengue incidence. Specifically, 

higher VHV-to-household ratios and a greater 

number of schools were positively associated 

with dengue incidence, while higher average 

temperature was negatively associated with 

dengue incidence (Table 5). 

Table 2  

Bivariate Moran’s I Between Sociodemographic, Environmental, Health Services Related Factors, and 

Dengue Incidence 

Factors I p Factors I p 

Sociodemographic factors Environmental factors  

Sex ratio  

(male to female) 

0.013 0.380 Minimum rainfall 0.084 0.027* 

% of population under 25 years 

old 

0.190 0.001* Maximum rainfall 0.107 0.014* 

Population density -0.030 0.241 Average rainfall 0.089 0.021* 

% of urban population  -0.110 0.003* Minimum temperature -0.120 0.004* 

NTL -0.011 0.102 Maximum temperature -0.048 0.109 
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Table 2 (Continued) 

Note. * p<0.05 

 

Figure 4 

Bivariate LISA Cluster Map of Dengue Incidence and Significant Explanatory Variables 

Factors I p Factors I p 

Health services Average temperature -0.141 0.002* 

Ratio of VHVs to households -0.051 0.093 Minimum NDVI -0.012 0.394 

COVID-19 morbidity rate 0.107 0.024* Maximum NDVI -0.061 0.083 

COVID-19 fatality rate -0.076 0.016* Average NDVI -0.040 0.180 

   Proportion of poor hygiene 

households 

0.064 0.082 

   Number of higher education 

institutions 

-0.035 0.192 

   Number of schools 0.061 0.078 

   Number of nurseries 0.028 0.249 
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Table 3 

Districts Within Significant Bivariate LISA Clusters Between Dengue Incidence and Key 

Determinants, Northern Thailand, 2021 

b Cluster District Province Cluster District Province 

%
 o

f 
p
o
p
u
la

ti
o
n
 u

n
d
e
r 

2
5
 y

e
a

rs
 o

ld
 

H-H Phaya Mengrai 

Doi Luang 

Mae Sariang 

Sop Moei 

Chiang Rai 

Chiang Rai 

Mae Hong Son 

Mae Hong Son 

L-L Ko Kha 

Soem Ngam 

Sop Prap 

Rong Kwang 

Den Chai 

Ban Luang 

Lampang 

Lampang 

Lampang 

Phrae 

Phrae 

Nan 

L-H Mae Chan 

Mae Sai 

Wiang Chiang 

Rung 

Chiang Rai 

Chiang Rai 

Chiang Rai 

H-L - - 

%
 o

f 
u
rb

a
n

 p
o
p

u
la

ti
o
n

 

H-H Mae Chan 

Phaya Mengrai 

Chiang Rai 

Chiang Rai 

L-L Sop Prap 

Rong Kwang 

Ban Luang 

Lampang 

Phrae 

Nan 

L-H Mae Sai 

Wiang Chiang 

Rung 

Doi Luang 

Mae Sariang 

Sop Moei 

Chiang Rai 

Chiang Rai 

Chiang Rai 

Mae Hong Son 

Mae Hong Son 

H-L Ko Kha 

Soem Ngam 

Mae Phrik 

Den Chai 

Lampang 

Lampang 

Lampang 

Phrae 

C
O

V
ID

-1
9
 m

o
rb

id
it
y
 r

a
te

 

H-H Mae Chan 

Mae Sai 

Phaya Mengrai 

Wiang Chiang 

Rung 

Chiang Rai 

Chiang Rai 

Chiang Rai 

Chiang Rai 

L-L Ko Kha 

Soem Ngam 

Sop Prap 

Rong Kwang 

Den Chai 

Ban Luang 

Lampang 

Lampang 

Lampang 

Phrae 

Phrae 

Nan 

L-H Doi Luang 

Mae Sariang 

Sop Moei 

Chiang Rai 

Mae Hong Son 

Mae Hong Son 

H-L - - 
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Table 3 (Continued) 

b Cluster District Province Cluster District Province 

C
O

V
ID

-1
9
 f
a
ta

lit
y
 r

a
te

 

H-H - - L-L Soem Ngam 

Sop Prap 

Rong Kwang 

Ban Luang 

Lampang 

Lampang 

Phrae 

Nan 

L-H Mae Chan 

Mae Sai 

Phaya Mengrai 

Wiang Chiang Rung 

Doi Luang 

Mae Sariang 

Sop Moei 

Chiang Rai 

Chiang Rai 

Chiang Rai 

Chiang Rai 

Chiang Rai 

Mae Hong Son 

Mae Hong Son 

H-L Ko Kha 

Den Chai 

Lampang 

Phrae 

M
in

im
u
m

 r
a
in

fa
ll
 

H-H Mae Chan 

Mae Sai 

Phaya Mengrai 

Wiang Chiang Rung 

Doi Luang 

Chiang Rai 

Chiang Rai 

Chiang Rai 

Chiang Rai 

Chiang Rai 

L-L Ko Kha 

Soem Ngam 

Sop Prap 

Rong Kwang 

Den Chai 

Ban Luang 

Lampang 

Lampang 

Lampang 

Phrae 

Phrae 

Nan 

L-H Mae Sariang 

Sop Moei 

Mae Hong Son 

Mae Hong Son 

H-L - - 

M
a
x
im

u
m

 r
a
in

fa
ll 

H-H Mae Chan 

Mae Sai 

Phaya Mengrai 

Wiang Chiang Rung 

Doi Luang 

Sop Moei 

Chiang Rai 

Chiang Rai 

Chiang Rai 

Chiang Rai 

Chiang Rai 

Mae Hong Son 

L-L Ko Kha 

Soem Ngam 

Sop Prap 

Rong Kwang 

Ban Luang 

Lampang 

Lampang 

Lampang 

Phrae 

Nan 

L-H Mae Sariang Mae Hong Son H-L Den Chai Phrae 

A
v
e
ra

g
e
 r

a
in

fa
ll
 

H-H Mae Chan 

Mae Sai 

Phaya Mengrai 

Wiang Chiang Rung 

Doi Luang 

Chiang Rai 

Chiang Rai 

Chiang Rai 

Chiang Rai 

Chiang Rai 

L-L Ko Kha 

Soem Ngam 

Sop Prap 

Rong Kwang 

Den Chai 

Ban Luang 

Lampang 

Lampang 

Lampang 

Phrae 

Phrae 

Nan 

L-H Mae Sariang 

Sop Moei 

Mae Hong Son 

Mae Hong Son 

H-L - - 
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Table 3 (Continued) 

Note. H-H = High-High, L-L = Low-Low, L-H = Low-High, and H-L = High-Low  

 

Table 4 

Diagnostics for Spatial Dependency 

Test  MI or DF Value p-value 

Moran’s I (error) 0.045 (MI) 1.122 0.262 

Lagrange Multiplier (lag) 1 (DF) 0.743 0.389 

Robust LM (lag) 1 (DF) 0.380 0.538 

Lagrange Multiplier (error) 1 (DF) 0.539 0.463 

Robust LM (error) 1 (DF) 0.176 0.675 

Lagrange Multiplier (SARMA) 1 (DF) 0.919 0.632 

Note. MI = Moran’s I statistic and DF = Degrees of Freedom 

b Cluster District Province Cluster District Province 

M
in

im
u
m

 t
e
m

p
e
ra

tu
re

 

H-H Mae Sai 

Phaya Mengrai 

Wiang Chiang Rung 

Chiang Rai 

Chiang Rai 

Chiang Rai 

L-L Den Chai 

Ban Luang 

Phrae 

Nan 

L-H Mae Chan 

Doi Luang 

Mae Sariang 

Sop Moei 

Chiang Rai 

Chiang Rai 

Mae Hong Son 

Mae Hong Son 

H-L Ko Kha 

Soem Ngam 

Mae Phrik 

Sop Prap 

Rong Kwang 

Lampang 

Lampang 

Lampang 

Lampang 

Phrae 

A
v
e
ra

g
e
 t
e

m
p
e

ra
tu

re
 

H-H Phaya Mengrai Chiang Rai L-L Ban Luang Nan 

L-H Mae Chan 

Mae Sai 

Wiang Chiang Rung 

Doi Luang 

Mae Sariang 

Sop Moei 

Chiang Rai 

Chiang Rai 

Chiang Rai 

Chiang Rai 

Mae Hong Son 

Mae Hong Son 

H-L Ko Kha 

Soem Ngam 

Mae Phrik 

Sop Prap 

Rong Kwang 

Den Chai 

Lampang 

Lampang 

Lampang 

Lampang 

Phrae 

Phrae 
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Table 5 

Spatial Regression Models of Dengue Incidence, 2021 

Factors OLS (SE) p SLM (SE) p SEM (SE) p 

COVID-19 

morbidity rate 

-6.542x10-4 

(6.187x10-4) 

0.293 -6.933x10-4 

(6.013x10-4) 

0.249 -7.055x10-4 

(6.209x10-4) 

0.256 

Ratio of VHVs to 

households 

5.332 

(2.373) 

0.027* 5.385 

(2.306) 

0.020* 5.474 

(2.304) 

0.018* 

Number of schools   1.333 

(0.643) 

0.041* 1.277 

(0.628) 

0.042* 1.289 

(0.636) 

0.043* 

Average 

temperature 

-16.952 

(7.705) 

0.030* -15.539 

(7.604) 

0.041* -15.859 

(7.849) 

0.043* 

ρ  -  0.115 

(0.151) 

0.447 -  

λ -  -  0.107 

(0.156) 

0.495 

F-statistic 2.794  -  -  

R2 0.102  0.109  0.108  

Log likelihood -625.134  -624.874  -624.943  

AIC 1260.277  1261.754  1259.891  

Note. SE = standard error, ρ = spatial autoregressive coefficient, λ= spatial error coefficient, R2 = 

coefficient of determination, AIC = Ake's Information Criterion and * p<0.05.

DISCUSSION 

During the COVID-19 pandemic in 2021, few 

districts in Northern Thailand had higher dengue 

incidence among individuals under 25 years than 

the national target, which were in the border 

area.  This was in line with a positive global 

spatial autocorrelation in the LISA cluster map, 

which identified specific high-high clusters, 

particularly in the west district of Mae Hong Son, 

a remote, mountainous border area adjoining 

Myanmar. A concentrated spatial burden of 

dengue incidence might be influenced by limited 

access to healthcare during the pandemic and 

ecological conditions conducive to Aedes 

mosquito breeding. The remoteness of Mae 

Hong Son and the challenges in surveillance 

efforts during the crisis might also contribute to 

delayed outbreak detection and under-resourced 

vector control, amplifying disease clustering in 

these areas (Lu et al., 2023). These might point 

to the need for spatial planning approaches that 

address the vulnerabilities of peripheral regions. 

The low-high clusters in the northern district of 

Chiang Rai Province might indicate areas where 

preventive measures are effective, despite 

proximity to high-burden districts. These areas 

are risk zones that serve as critical targets for 

proactive vector control, community engagement, 

and enhanced surveillance, particularly during 

periods of regional outbreak expansion. 

Alternatively, it may reflect reporting gaps or 

differences in surveillance sensitivity during the 

COVID-19 pandemic (Rahastri & Sulistyawati, 

2024; Roster et al., 2024), highlighting the need 

for continuous monitoring in districts even during 

the pandemic.  

The bivariate spatial analysis revealed several 

contextual factors influencing dengue incidence 

during the COVID-19 pandemic in northern 
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Thailand. A higher proportion of the population 

under 25 years of age exhibited a significant 

positive spatial association with dengue 

incidence, especially in High-High clusters in Mae 

Hong Son and northern Chiang Rai. This aligns 

with known epidemiological trends in Thailand, 

where children and young adults remain 

particularly vulnerable due to behavioral 

exposure and lower immunity (Thisyakorn et al., 

2022). Conversely, a higher proportion of the 

urban population showed a negative spatial 

association with dengue incidence. This may 

reflect benefits of urban infrastructure, more 

consistent vector control, and improved 

healthcare access in urban areas (Lindsay et al., 

2017; Mani et al., 2021). Interestingly, this 

pattern contrasts with pre-pandemic trends in 

some countries where urban areas often reported 

higher dengue burdens, suggesting that urban-

rural risk patterns may shift under overlapping 

health crises (Brady & Wilder-Smith, 2021). The 

COVID-19 morbidity rate demonstrated a positive 

spatial correlation with dengue incidence, 

suggesting that areas with high COVID-19 case 

burdens may have experienced interruptions in 

vector control, reduced community health 

activities, or health system strain. In contrast, the 

COVID-19 fatality rate showed a negative spatial 

correlation with dengue, likely because fatalities 

reflect healthcare outcomes and population 

vulnerability rather than disease burden. These 

findings reinforce the importance of syndemic-

informed surveillance systems that account for 

simultaneous public health threats (Araujo et al., 

2024; Wilder-Smith & Osman, 2020). Regarding 

climate variables, minimum, maximum, or 

average rainfall was positively associated with 

dengue incidence, consistent with its role in 

creating breeding habitats for Aedes mosquitoes 

(Xu et al., 2024). On the other hand, minimum 

and average temperatures had significant 

negative spatial correlations, particularly in 

highland and cooler districts, supporting evidence 

that cooler climates constrain mosquito survival 

and virus replication (Nik Abdull Halim et al., 

2022). These spatial patterns highlight the 

interplay between demographic, climatic, and 

health system variables in shaping dengue risk, 

underscoring the importance of geographically 

tailored vector control and health interventions, 

especially in peripheral or underserved districts. 

Spatial regression analysis confirmed three 

consistent and significant determinants of 

dengue incidence: the ratio of VHVs to 

households, the number of schools, and average 

temperature. A positive association was 

observed between the VHVs to household ratio 

and dengue incidence. Areas with a higher VHVs 

coverage tend to have a higher number of 

recorded cases. During the COVID-19 pandemic, 

VHVs in Thailand played a crucial role in the 

prevention and control of COVID-19, leveraging 

their community-based approach to health care 

involving proactive disease control, community 

education, and direct health services, which 

collectively helped mitigate the spread of the 

virus (Krassanairawiwong et al., 2021; 

Singweratham et al., 2024; Zaheer et al., 2022). 

A high VHVs coverage still could facilitate the 

education of dengue symptoms, collection of 

dengue case data, and ensure that cases are 

reported accurately while facing this crisis, 

contributing to higher, timely recorded dengue 

cases. This aligns with findings that emphasize 

the importance of robust surveillance systems in 

tracking dengue cases (Togami et al., 2023). 

This study suggests that areas with higher 

disease burdens may require the allocation of 

more VHVs to support public health responses 

(Bohm et al., 2024). 

Schools represent high-density environments 

where large numbers of children and adolescents 

congregate during the day, providing favorable 

conditions for mosquito-human contact. 

Furthermore, school environments might 

inadvertently serve as breeding grounds for 

Aedes mosquitoes due to the presence of 

shaded areas, open containers, clogged 

drainage systems, and insufficient sanitation 

infrastructure (Ratanawong et al., 2016). In 

Southeast Asian schools, water storage 

containers, such as drums and buckets, are 

common breeding sites for Aedes mosquitoes. A 

study in Indonesia found that schools with poor 

waste management practices and uncovered 

water containers had higher Aedes indices, 

indicating increased mosquito breeding (Sasmita 

et al., 2021). This risk was compounded by the 

tendency of children to spend extended periods 

outdoors, often without protective clothing or 

repellent. Moreover, during the COVID-19 

pandemic, intermittent school closures due to 

lockdown measures and reopening might have 
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influenced local dengue dynamics by altering 

population movement and vector exposure 

patterns (Chen et al., 2022). As schools resume 

full operations, it is crucial to reinforce dengue 

prevention measures in educational settings, 

particularly in high-risk districts. This finding also 

highlighted for integration of vector-aware design 

principles into educational facility planning, 

especially in high-risk districts. 

Districts with lower average temperatures tended 

to report higher dengue incidence among 

individuals under 25 years of age during the 

COVID-19 pandemic. Previous research 

indicated that dengue transmission occurs most 

efficiently within an optimal temperature range of 

approximately 21-34°C (Manna et al., 2024; 

Ryan et al., 2019). Within this range, mosquito 

survival, biting rates, and viral replication inside 

the mosquito are maximized. However, 

temperatures above this range, especially when 

sustained, can reduce mosquito survival, impair 

egg and larval development, and inhibit virus 

propagation, thereby lowering transmission 

potential (Agyekum et al., 2021, 2022). This 

phenomenon might explain the negative 

association observed in this study. Lower-altitude 

areas of Northern Thailand experience higher 

average temperatures. However, highland areas 

such as parts of Mae Hong Son and Chiang Rai 

Provinces, which have reported high dengue 

incidence, may still exhibit temperature 

conditions that are still within or close to the 

optimal dengue transmission range, especially 

during the rainy season. These highland areas 

might also experience unique climatic 

characteristics with moderate temperatures, 

higher humidity, and suitable breeding habitats, 

creating favorable conditions for localized 

outbreaks, since a study focused on broader 

trends in Thailand indicated that relative humidity 

and precipitation trends vary regionally 

(Kliengchuay et al., 2024). Climate variability 

associated with the El Niño–Southern Oscillation 

(ENSO) has also been linked to changes in 

dengue patterns across Asia. ENSO-related 

temperature shifts can influence mosquito 

population dynamics and expand transmission 

into previously cooler regions (Jing et al., 2024). 

This reinforces the importance of incorporating 

temperature trends into spatial risk models and 

suggests that climate-informed early warning 

systems could help anticipate dengue outbreaks 

in vulnerable districts. 

Although the COVID-19 morbidity rate did not 

show a statistically significant association with 

dengue incidence in this study, the coexistence 

of these diseases emphasizes the importance of 

integrated surveillance systems capable of 

managing concurrent health threats (Khan et al., 

2022). The pandemic might have indirectly 

influenced dengue patterns through disruptions in 

vector control, altered healthcare-seeking 

behavior, and changes in human mobility, 

leading to complex and localized effects on 

transmission (Chen et al., 2022). Additionally, the 

reallocation of public health resources toward 

COVID-19 might have impacted dengue case 

detection and reporting, particularly in under-

resourced areas (Wiyono et al., 2021).  

Although spatial regression models such as SLM 

and SEM are widely recommended for 

addressing spatial autocorrelation in geographic 

health data (Anselin, 1988), their necessity may 

depend on the extent of spatial dependence 

present in the dataset. In this study, the Global 

Moran’s I statistics for dengue incidence were 

relatively low, and diagnostic tests for spatial 

dependence returned non-significant results, 

suggesting no substantial spatial autocorrelation 

in the residuals. Accordingly, the spatial 

parameters in both SLM (ρ = 0.115) and SEM (λ 

= 0.107) were statistically insignificant. While the 

SEM yielded a slightly better model fit, the 

improvements over the OLS model were 

marginal. Importantly, the key explanatory 

variables were consistently significant across all 

models, reinforcing the robustness of these 

associations. These findings support the use of 

the simpler OLS model in contexts where spatial 

dependence is weak, as it offers interpretable 

and statistically sound results without 

unnecessary model complexity. Nevertheless, 

the spatial lag framework retains conceptual 

relevance. Even when not statistically dominant, 

it highlights the potential for inter-district 

transmission dynamics influenced by human 

mobility, environmental continuity, and vector 

behavior (Pakaya et al., 2023; Soukavong et al., 

2024). Therefore, incorporating spatial 

perspectives into disease surveillance, 

particularly through coordinated regional 

responses, can strengthen preparedness, 

strategic planning, and policy implementation. In 
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regions with similar ecological and social 

conditions, cross-boundary strategies may be 

critical to controlling dengue transmission 

spillovers, regardless of the strength of observed 

spatial dependence. From a public health 

perspective, this underscores the need for inter-

district coordination in surveillance and vector 

control efforts. For instance, the existing 

mechanism, as documented by Prasittisopin et 

al. (2024), should be extended to incorporate the 

health care program and contagion prevention. 

Moreover, a systematic planning approach, such 

as that introduced by Jiravanichkul et al. (2024), 

should be applied.   

This study highlighted the spatial heterogeneity 

of dengue incidence among young people in 

Northern Thailand during the COVID-19 

pandemic, with high-risk clusters concentrated in 

remote border areas. Spatial regression analysis 

identified key contextual factors, including the 

number of schools, VHVs coverage, and average 

temperature, as significant predictors of dengue 

incidence. Although spatial autocorrelation was 

relatively weak, these findings reinforce the value 

of spatial analysis for identifying place-based risk 

factors and informing targeted responses. 

Targeted responses in high-incidence areas 

should be accompanied by proactive measures 

in surrounding districts, especially in border 

zones where administrative boundaries may not 

align with transmission risk. To enhance public 

health resilience, spatially informed strategies are 

needed. In urban areas, the association with 

school density calls for integrating vector control 

into school infrastructure and neighborhood 

planning, including improved drainage and waste 

management systems. In rural and remote 

districts, where healthcare access is limited, 

expanding the capacity of community-based 

surveillance, particularly through VHVs, is crucial. 

Investments in basic environmental health 

infrastructure, such as sanitation and water 

management, can also reduce mosquito 

breeding sites. Both urban and rural settings 

would benefit from cross-sectoral collaboration 

and the use of geospatial data in planning, 

ensuring that dengue prevention measures are 

both context-sensitive and sustainable. These 

insights can support more equitable and effective 

health and environmental planning across 

diverse geographic regions. 
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