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ABSTRACT

Dengue infection remains a significant public health concern in Thailand, particularly among young
populations. The emergence of COVID-19 introduced additional complexity to disease surveillance and
control efforts. This study aimed to determine the spatial clustering and determinants of dengue
incidence among individuals under 25 years of age in Northern Thailand during the COVID-19
pandemic. Ecological analysis was conducted across 103 districts in eight northern provinces. District-
level dengue incidence rates of individuals under 25 years of age for 2021 were calculated and
analyzed using global Moran’s | and local indicators of spatial association (LISA) to detect spatial
clustering. Bivariate LISA was employed to explore spatial correlations between dengue incidence and
sociodemographic, environmental, and health service factors. Spatial regression models were applied
to identify significant predictors while accounting for spatial dependence. There were 18 districts
(17.48%) with dengue incidence rates higher than the national target. Global Moran’s | indicated a
positive spatial autocorrelation (Moran’s | = 0.087), and LISA identified significant high-high clusters in
two remote border districts. Bivariate LISA analysis revealed significant positive spatial associations
between dengue incidence and the proportion of the population under 25 years of age, COVID-19
morbidity rate, and minimum, maximum, and average rainfall. In contrast, significant negative spatial
associations were observed with the proportion of the urban population, COVID-19 fatality rate, and
both minimum and average temperatures. Given the low spatial dependence observed, the ordinary
least squares model was considered appropriate and identified the number of schools, the ratio of
village health volunteers to households, and average temperature as significant determinants of
dengue incidence (R? = 0.102). These findings indicated the need for geographically targeted health
planning strategies and community design, school-based vector control, and climate-informed
surveillance strategies. Integrated and resilient public health systems are essential for managing
concurrent health threats.

Keywords: dengue incidence, young population, clustering, sociodemographic, environment, health
service
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INTRODUCTION

Dengue infection is one of the most widespread
mosquito-borne viral diseases in tropical and
subtropical regions, with Southeast Asia
accounting for a substantial proportion of the
global burden. In Thailand, dengue remains
endemic, and children and young adults
(individuals under 25 years of age) have
consistently represented a disproportionately
high number of reported cases in Thailand,
particularly in endemic regions of the north region
(Thisyakorn et al., 2022). The emergence of the
COVID-19 pandemic disrupted routine public
health functions, including vector control, mobility
patterns, access to care, and disease
surveillance (Roster et al., 2024; Yek et al.,
2022). These disruptions might have uniquely
affected younger populations, especially students
and adolescents, due to prolonged school
closures, increased time spent at home, and
reduced access to health education and
prevention activities (Bialy et al., 2024). Such
factors likely altered exposure patterns and care-
seeking behaviors, contributing to shifts in
dengue transmission among youth during this
period (Brady & Wilder-Smith, 2021; Liyanage et
al., 2021).

Despite this significance, few studies have
specifically examined the spatial epidemiology of
dengue among youth during the COVID-19
pandemic, especially in the northern provinces of
Thailand, where both vector ecology and
population distribution vary considerably. Existing
research has largely focused on general
population models or aggregated case data
without disaggregating by age or examining
contextual risk factors relevant to young people’s
environments, such as proximity to schools,
urban-rural variation, or community-level health
services (Hnusuwan et al., 2020; Phanitchat et
al., 2019; Saita et al., 2022). Understanding how
sociodemographic, environmental, and health
system factors shape these spatial variations is
essential for building responsive, dengue area-
based surveillance and control strategies amid
emerging health crises (Rahman et al., 2021;
Romeo-Aznar et al., 2024; Zheng et al., 2019).

Therefore, these gaps need to be addressed by
focusing specifically on individuals under 25
years of age, integrating geospatial methods to
identify spatial clustering and determinants of

dengue incidence across 103 districts in Northern
Thailand during the COVID-19 pandemic, in
particular in 2021. By incorporating spatial
autocorrelation measures and spatial regression
models, the research aims to produce actionable
insights that account for demographic-specific
vulnerabilities and spatial heterogeneity, both of
which are essential for effective area-based
public health planning and disease control during
the overlapping health crisis.

RESEARCH MATERIALS
AND METHODOLOGY

Study areas

This study was conducted in Northern Thailand,
comprising eight provinces: Chiang Mai, Chiang
Rai, Mae Hong Son, Lamphun, Lampang,
Phayao, Phrae, and Nan. These provinces are
characterized by mountainous terrain and
extensive forest cover. The unit of analysis was
at the district level, encompassing a total of 103
districts (Figure 1). The region features diverse
topographical and ecological conditions that may
influence the transmission dynamics of dengue
fever. Population density across districts varied,
ranging from 3.98 to 302.09 persons per square
kilometer (Office Statistics Registration System,
Ministry of Interior, 2021). The majority of the
population resided in rural or semi-urban areas,
which are interspersed with highland
communities and remote settlements.

Data Preparation

The dependent variable in this study was the
incidence rate of dengue infection (per 100,000
population) among individuals under 25 years of
age at the district level in 2021. Data on new
dengue cases diagnosed according to the 1997
WHO guidelines (World Health Organization,
1997) were obtained from the national disease
surveillance system (R506). The mid-year
population was also retrieved from the Bureau of
Epidemiology, Department of Disease Control,
Ministry of Public Health (Bureau of
Epidemiology, Department of Disease Control,
Ministry of Public Health Thailand, 2021). The
incidence rate in each district was calculated
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using the number of reported all serotypes of
dengue cases comprising dengue fever, dengue
hemorrhagic fever, and dengue shock syndrome
of individuals under 25 years of age divided by
the mid-year population of each district in the
same age group and then multiplied by 100,000
to standardize the measure.

The independent variables in this study in 2021
were categorized into three main groups:
sociodemographic factors, environmental
characteristics, and health service indicators.
Sociodemographic variables included the sex
ratio (male to female) among individuals under
25 years of age, the proportion (%) of the
population under 25 years old, population

Figure 1

density, and the proportion (%) of urban
population. These data were sourced from the
Bureau of Registration Administration, Ministry of
Interior (Bureau of Registration Administration,
Ministry of Interior, n.d.). Additionally, the
nighttime light (NTL) in 2021 was obtained from
SNPP/VIIRS satellites using Google Earth
Engine, with a spatial resolution of approximately
500 meters. To account for differences in district
area, NTL values were normalized by calculating
the average of NTL per square kilometer and
aggregated at the district level using zonal mean
statistics. NTL was used as a proxy for
urbanization and economic activity (Puttanapong
et al., 2022).

Map of 103 Districts in 8 Provinces in Northern Thailand

20 Wiang Haeng
21 Chai Prakan

45 Hang Chat

District code and name

1 Mueang Chiang Mai 26 Mueang Lamphun 51 Den Chai

2 Chom Thong 27 Mae Tha 52 Song 77 Phu Sang 102 Sop Moei

3 Mac Chacm 28 Ban Hong 53 Wang Chin 78 Phu Kamyao 103 Pang Mapha
4 Chiang Dao 29Li 54 Nong Muang Khai 79 Mueang Chiang Rai

5 Doi Saket 30 Thung Hua Chang 55 Mueang Nan 80 Wiang Chai

6 Mae Tacng 31 Pa Sang 56 Mac Charim 81 Chiang Khong Province

7 Mae Rim 32 Ban Thi 57 Ban Luang 82 Thoeng s :
8 Samoeng 33 Wiang Nong Long 58 Na Noi 83 Phan M Chiang Mai
9 Fang 34 Mueang Lampang 59 Pua 84 Pa Daet [ Chiang Rai
10 Mac Ai 35 Mac Mo 60 Tha Wang Pha 85 Mac Chan [ Lampang
11 Phrao 36 Ko Kha 61 Wiang Sa 86 Chiang Saen B Lamph

12 San Pa Tong 37 Soem Ngam 62 Thung Chang 87 Mae Sai amphun
13 San Kamphaceng 38 Ngao 63 Chiang Klang 88 Mac Suai [ Mae Hong Son
14 San Sai 39 Chac Hom 64 Na Muen 89 Wiang Pa Pao [ Nan

15 Hang Dong 40 Wang Nuea 65 Santi Suk 90 Phaya Mengrai O rh

16 Tot 41 Thoen 66 Bo Kluca 91 Wiang Kaen 2ya0,

17 Doi Tao 42 Mac Phrik 67 Song Khwae 92 Khun Tan [ Phrae

18 Omkoi 43 Mae Tha 68 Phu Phiang 93 Mae Fa Luang

19 Saraphi 44 Sop Prap 69 Chaloem Phra Kiat 94 Mae Lao

70 Mucang Phayao 95 Wiang Chiang Rung
46 Mucang Pan 71 Chun

22 Mae Wang 47 Mueang Phrae 72 Chiang Kham 97 Mueang Mae Hong Son
23 Mae On 48 Rong Kwang 73 Chiang Muan 98 Khun Yuam

24 Doi Lo 49 Long 74 Dok Khamtai 99 Pai

25 Galyani Vadhana 50 Sung Men 75 Pong 100 Mae Sariang

76 Mae Chai 101 Mae La Noi

96 Doi Luang
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Environmental variables, including rainfall,
temperature, and Normalized Difference
Vegetation Index (NDVI), were derived from
satellite sources via Google Earth Engine for the
year 2021. Rainfall data were obtained from the
Climate Hazards Group Infrared Precipitation
with Stations (CHIRPS) dataset, with a spatial
resolution of approximately 5 km. Land surface
temperature and NDVI were derived from the
Terra MODIS sensor at a 1 km resolution.
Minimum, maximum, and average values of each
environmental variable were computed for each
district using zonal statistics based on district
boundaries. Additional environmental indicators
comprised the proportion (%) of households with
poor hygiene, the number of higher education
institutions, schools, and nurseries. These data
were sourced from the Basic Needs Data
platform by the Community Development
Department, the Ministry of Interior (Community
Development Department, Ministry of Interior,
2021), and the Educational Information Center,
Ministry of Education (Educational Information
Center, Ministry of Education, 2021).

Health service-related variables in each district
included the ratio of village health volunteers
(VHVs) to households, which was obtained from
the Department of Health Service Support,
Ministry of Public Health (Department of Health
Service Support, Ministry of Public Health, n.d.).
Data on the COVID-19 morbidity rate and the
fatality rate of COVID-19 were obtained from
Provincial Public Health Offices using a district-
based data recording form.

Data analysis

Spatial Distribution and Clustering

The spatial distribution of dengue incidence
among individuals under 25 years of age at the
district level in 2021 was calculated, and a map
was created using QGIS 3.28.0 (QGIS
Development Team, 2023), compared to the
national target ( 40 cases per 100, 000
population). Before assessing the spatial
autocorrelation of dengue incidence across
districts in 2021, the spatial empirical Bayesian
(SEB) smoothed incidence was computed to
solve the problem of comparing rates in different
population sizes related to the problem of

variance instability and spurious outliers (Deb
Nath et al., 2023; Saita et al., 2022). The spatial
autocorrelation based on SEB-smoothed
incidence was investigated using Moran’s |
equation, which is defined as in Eq. (1). This
measure evaluates whether the spatial
distribution of a variable is clustered, dispersed,
or random by comparing the value at each
location with the values at neighboring locations.
Moran’s | ranges from -1 to +1, where positive
values indicate spatial clustering of similar
values, negative values suggest spatial
dispersion, and values near zero imply a random
spatial pattern (Li et al., 2007). For the spatial
weight matrix, a fixed distance threshold of
approximately 45 kilometers was used to define
spatial neighbors based on Euclidean distance
between district centroids. This distance ensured
that all districts had at least one neighbor and
avoided isolated spatial units. The threshold was
determined using an incremental spatial
autocorrelation test based on Global Moran’s |,
which identified the distance at which spatial
clustering peaked. A distance-based approach
was chosen over contiguity-based methods (e.g.,
Queen or Rook adjacency) due to the substantial
variation in size, shape, and geographic isolation
of administrative districts in Northern Thailand.
Many remote or mountainous districts do not
share borders with adjacent units, rendering
contiguity-based definitions less effective. The
use of a Euclidean distance threshold
(approximately 45 kilometers) ensures that all
districts have at least one spatial neighbor,
enabling a more accurate representation of
proximity-based spatial interactions across a
heterogeneous landscape.

The analysis was performed using GeoDa
software, which provides robust tools for spatial
statistical analysis (Anselin et al., 2022). A
statistically significant positive Moran’s | value
would indicate clustering of high or low dengue
incidence rates in neighboring districts.

I =

nyiXjwij(x;—x)(x;—x) (1)
CiXjwij) Yix—%)2

Where n is the number of spatial units (districts);
x; is the value of the variable at location i; x; is
the value of the variable at location j (the
neighbor of location i); x is the mean of the
observed value; w;; is the spatial weight between
locations i and j.
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In addition to Moran’s |, LISA were applied to
detect the presence and location of local clusters
of dengue incidence based on SEB-smoothed
incidence as in Eq. (2). LISA statistics assess the
degree of spatial association around individual
spatial units, enabling the identification of
statistically significant local patterns that may not
be evident through global measures. The results
classified districts into four types of spatial
clusters: High-High (hotspots), where districts
with high dengue incidence are surrounded by
similarly high-incidence district neighbors; Low-
Low (cold spots), where districts with low
incidence are surrounded by low-incidence
district neighbors; and the spatial outliers High-
Low and Low-High, which represent districts with
values that contrast with those of their
surrounding areas (Anselin, 1995).

_ ZjwiG—0)(xj-%)

I
: Yi(x;—%)?

)
Where x; is the value of the variable at location i;
x; is the value of the variable at location j (the
neighbor of location i); x is the mean of the
observed value; and w;; is the spatial weight
between locations i and j.

Bivariate Local Moran’s |

To further explore spatial relationships between
two distinct variables, bivariate local Moran’s |
was employed. This method extends the
traditional LISA by measuring the spatial
association between the value of one variable at
a given location and the values of a second
variable in neighboring locations as in Eq. (3). In
this study, bivariate LISA was applied to examine
local spatial correlations between dengue
incidence and potential explanatory variables,
including sociodemographic, environmental, and
health service factors. The analysis identified
spatial clusters where high (or low) values of the
dengue incidence co-occur with high (or low)
values of an independent variable in adjacent
districts. The analysis was performed using
GeoDa software, with spatial relationships
defined by a fixed-distance spatial weight matrix
based on Euclidean distance, using a threshold
of approximately 45 kilometers. Statistical
significance was assessed using 999 random

permutations, with a significance level set at p <
0.05.

I = — %) X;wiy (v — 9) (3)

Spatial regression

To examine the spatial determinants of dengue
incidence at the district level, accounting for
spatial dependence, the spatial regression
models included variables that demonstrated
statistical or marginal significance (p < 0.100) in
the bivariate spatial correlation analysis and
showed no evidence of multicollinearity. Three
regression approaches were employed: ordinary
least squares (OLS), spatial lag model (SLM),
and spatial error model (SEM) (Anselin, 1988;
Anselin & Bera, 1998). These models enabled
the identification of key sociodemographic,
environmental, and health service-related factors
associated with spatial variations in dengue
incidence.

The OLS model served as the baseline for

comparing and verifying the spatial model. The
general form of the OLS model is Eq. (4).
where Y is the dependent variable, X is a matrix
of explanatory variables, S, is the intercept, g is

the regression coefficient of X, and ¢ is the error
term.

To address spatial autocorrelation, the SLM
incorporates a spatially lagged dependent
variable as an additional predictor. The SLM
equation is defined as Eq. (5).
Y=p8+pX+pWy+e (5)
where p is the spatial autoregressive coefficient,
and Wy is the spatial lag of the dependent
variable, based on a spatial weight matrix .

The SEM assumes that spatial dependence is
present in the error terms rather than in the
dependent variable itself. The SEM equation is
defined as Eq. (6).
Y= By +BX+AWE+te (6)
where 1 is the spatial autoregressive coefficient

in the error component, and W¢ is the spatial
error.
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Both SLM and SEM were estimated using a
spatial weight matrix constructed based on
Euclidean distance, with a fixed distance
threshold of approximately 45 kilometers. Model
performance was compared using diagnostic
indicators, including the Akaike Information
Criterion (AIC), log-likelihood, coefficient of
determination (R?), and Lagrange Multiplier (LM)
tests. Statistical significance was considered at p
< 0.05.

Ethical approval

This study was reviewed and exempted from a
full ethical review by the Human Research Ethics
Committee of Thammasat University, Thailand.
The exemption was granted under approval
number 015/2566, dated May 16, 2023.

RESULTS

Spatial Clustering of
Dengue Incidence

In 2021, the dengue incidence among individuals
under 25 years of age in Northern Thailand was
43.59 per 100,000 population. Spatial distribution
exhibited substantial variation across districts.

Figure 2

Based on the national dengue control target (40
cases per 100,000 population), the majority of
districts (85 out of 103) met the national target.
However, seven districts (6.8%) reported
incidence rates exceeding four times the national
target, with the highest burden concentrated in
the western region, particularly in Mae Hong Son
Province, and in parts of northern Chiang Rai
and Nan Province (Figure 2a).

The Global Moran’s | statistics for dengue
incidence was 0.087, indicating a positive spatial
autocorrelation across districts in 2021 (Figure 3).
LISA analysis revealed significant spatial
clustering of dengue incidence across districts.
Out of the 103 districts, 22 districts (21.4%)
exhibited statistically significant local spatial
autocorrelation (p < 0.05). Among these, the
most notable clusters were two High-High
districts located in the remote western border
area of Mae Hong Son Province, Sop Moei and
Mae Sariang, highlighting zones of elevated
incidence surrounded by similar high-incidence
neighbors. In contrast, Low-Low clusters were
observed in several central and eastern districts,
particularly in Lampang, Phrae, and Nan, where
both local and neighboring districts reported low
dengue incidence. Low-High outliers, primarily
found in northern Chiang Rai Province, indicate
districts with relatively low dengue incidence
surrounded by high-incidence neighbors (Figure
2b and Table 1).

Distribution of Dengue Incidence (a) and LISA Clusters (b) in Northern Thailand, 2021

Dengue incidence

per 1000,000 population

[ ==40.00

[ 140.01-80.00
[ 80.01-120.00
120.01-160.00
0 50 100 km -
Bl 160.01-200.00
| I I
Il -200.00

LISA cluster

[ Not Significant
B Liigh-High
Bl Low-Low
B Low-High
[ High-Low

(b)
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Figure 3

Moran’s | Scatterplot of SEB Dengue Incidence in 2021

Table 1

lagged seb2021

Moran's I: 0.087

seb2021

Dengue Cluster by District and Province

Cluster District Province
High-High Mae Sariang Mae Hong Son
High-High Sop Moei Mae Hong Son
Low-Low Soem Ngam Lampang
Low-Low Thoen Lampang
Low-Low Mae Phrik Lampang
Low-Low Mae Tha Lampang
Low-Low Ko Kha Lampang
Low-Low Sop Prap Lampang
Low-Low Mueang Phrae Phrae
Low-Low Long Phrae
Low-Low Den Chai Phrae
Low-Low Wang Chin Phrae
Low-Low Nong Muang Khai Phrae
Low-Low Sung Men Phrae
Low-Low Rong Kwang Phrae
Low-Low Wiang Sa Nan
Low-Low Santi Suk Nan
Low-High Wiang Chiang Rung Chiang Rai
Low-High Doi Luang Chiang Rai
Low-High Mae Sai Chiang Rai
Low-High Mai Chan Chiang Rai
Low-High Phaya Mengrai Chiang Rai
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Spatial Determinants of
Dengue Incidence

Among sociodemographic variables, the
proportion of the population under 25 years old
showed a significant positive spatial correlation
with dengue incidence (I = 0.190, p = 0.001);
meanwhile, the proportion of urban population
was negatively associated (I =-0.110, p =
0.003). The minimum, maximum, and average
rainfall showed statistically significant positive
spatial correlations with dengue incidence (I =
0.084, 0.107, and 0.089, respectively; p < 0.05),
while minimum and average temperature were
negatively associated (I = —-0.120 and —-0.141; p =
0.004 and 0.002, respectively). Regarding health
service factors, the COVID-19 morbidity rate was
positively associated with dengue incidence (I =
0.107, p = 0.024), whereas the COVID-19 fatality
rate exhibited a significant negative spatial
relationship (I =-0.076, p = 0.016) (Table 2).

Among key spatial determinants of dengue
incidence, the bivariate LISA analysis revealed
distinct spatial clustering patterns between
dengue incidence and several explanatory
variables. High-High clusters, indicating districts
with both high dengue incidence and high values
of the explanatory variable in surrounding
neighbors, were most frequently observed in the
northernmost districts of Chiang Rai Province
(e.g., Mae Chan, Mae Sai, Phaya Mengrai, and
Wiang Chiang Rung) and the western border
districts of Mae Hong Son Province (Sop Moei

Table 2

and Mae Sariang). These clusters were
consistent across multiple variables, suggesting
overlapping vulnerabilities. In contrast, Low-Low
clusters were concentrated in central and eastern
districts such as Ko Kha, Soem Ngam, and Sop
Prap in Lampang; Rong Kwang and Den Chai in
Phrae; and Ban Luang in Nan areas
characterized by low dengue incidence and
correspondingly low levels of explanatory
variables in neighbors (Figure 4 and Table 3).

All three models (OLS, SLM, and SEM) were
estimated using a spatial weight matrix based on
a 45 km Euclidean distance threshold. However,
tests for spatial dependence, including Global
Moran’s | and LM diagnostics, indicated no
significant spatial autocorrelation in the residuals
(p-values > 0.262), suggesting that the data did
not exhibit strong spatial dependence (Table 4).

As such, the use of spatial regression models
may not be strictly necessary in this context.
Nonetheless, for comparative purposes, both the
SLM and SEM were assessed. The SEM
demonstrated slightly better model fit, with the
lowest AIC (1259.89), highest log-likelihood (—
624.943), and marginally improved R? (0.108).
Across all models, the ratio of VHVs to
households, the number of schools, and average
temperature were statistically significant
predictors of dengue incidence. Specifically,
higher VHV-to-household ratios and a greater
number of schools were positively associated
with dengue incidence, while higher average
temperature was negatively associated with
dengue incidence (Table 5).

Bivariate Moran’s | Between Sociodemographic, Environmental, Health Services Related Factors, and

Dengue Incidence

Factors | p

Factors | o]

Sociodemographic factors

Sex ratio 0.013 0.380
(male to female)

% of population under 25 years  0.190 0.001*
old

Population density -0.030 0.241
% of urban population -0.110 0.003*
NTL -0.011 0.102

Environmental factors

Minimum rainfall 0.084 0.027*
Maximum rainfall 0.107 0.014*
Average rainfall 0.089 0.021*
Minimum temperature -0.120 0.004*
Maximum temperature -0.048 0.109
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Table 2 (Continued)

Factors | P Factors | p
Health services Average temperature -0.141 0.002*
Ratio of VHVs to households -0.051 0.093 Minimum NDVI -0.012 0.394
COVID-19 morbidity rate 0.107 0.024* Maximum NDVI -0.061 0.083
COVID-19 fatality rate -0.076 0.016* Average NDVI -0.040 0.180
Proportion of poor hygiene 0.064 0.082
households
Number of higher education -0.035 0.192
institutions
Number of schools 0.061 0.078
Number of nurseries 0.028 0.249
Note. * p<0.05
Figure 4
Bivariate LISA Cluster Map of Dengue Incidence and Significant Explanatory Variables
% of population under 23 years old % of urban populatio COVID-19 morbidity rate
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Table 3

Districts Within Significant Bivariate LISA Clusters Between Dengue Incidence and Key
Determinants, Northern Thailand, 2021

b Cluster District Province Cluster District Province
H-H Phaya Mengrai Chiang Rai L-L Ko Kha Lampang
% Doi Luang Chiang Rai Soem Ngam  Lampang
§ Mae Sariang Mae Hong Son Sop Prap Lampang
Q Sop Moei Mae Hong Son Rong Kwang Phrae
% Den Chai Phrae
g Ban Luang Nan
g L-H Mae Chan Chiang Rai H-L - -
o
8 Mae Sai Chiang Rai
:\?_, Wiang Chiang Chiang Rai
Rung
H-H Mae Chan Chiang Rai L-L Sop Prap Lampang
Phaya Mengrai Chiang Rai Rong Kwang Phrae
.§ Ban Luang Nan
%_ L-H Mae Sai Chiang Rai H-L Ko Kha Lampang
2‘ Wiang Chiang Chiang Rai Soem Ngam  Lampang
'§ g Chiang Rai Mae Phrik Lampang
:g Dl L Mae Hong Son Den Chai Phrae
Mae Sariang Mae Hong Son
Sop Moei
H-H Mae Chan Chiang Rai L-L Ko Kha Lampang
Mae Sai Chiang Rai Soem Ngam  Lampang
% Phaya Mengrai Chiang Rai Sop Prap Lampang
% Wiang Chiang Chiang Rai Rong Kwang Phrae
-g Rung Den Chai Phrae
or? Ban Luang Nan
% L-H Doi Luang Chiang Rai H-L - -
o Mae Sariang Mae Hong Son
Sop Moei Mae Hong Son
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Table 3 (Continued)

b Cluster District Province Cluster District Province
H-H - - L-L Soem Ngam Lampang
Sop Prap Lampang
Rong Kwang  Phrae
g Ban Luang Nan
= L-H Mae Chan Chiang Rai H-L Ko Kha Lampang
g Mae Sai Chiang Rai Den Chai Phrae
g Phaya Mengrai Chiang Rai
CS) Wiang Chiang Rung Chiang Rai
© Doi Luang Chiang Rai
Mae Sariang Mae Hong Son
Sop Moei Mae Hong Son
H-H Mae Chan Chiang Rai L-L Ko Kha Lampang
Mae Sai Chiang Rai Soem Ngam Lampang
..<=E Phaya Mengrai Chiang Rai Sop Prap Lampang
'§ Wiang Chiang Rung Chiang Rai Rong Kwang  Phrae
§ Doi Luang Chiang Rai Den Chai Phrae
é Ban Luang Nan
L-H Mae Sariang Mae Hong Son  H-L - -
Sop Moei Mae Hong Son
H-H Mae Chan Chiang Rai L-L Ko Kha Lampang
_ Mae Sai Chiang Rai Soem Ngam Lampang
g Phaya Mengrai Chiang Rai Sop Prap Lampang
g Wiang Chiang Rung Chiang Rai Rong Kwang  Phrae
E Doi Luang Chiang Rai Ban Luang Nan
§ Sop Moei Mae Hong Son
L-H Mae Sariang Mae Hong Son  H-L Den Chai Phrae
H-H Mae Chan Chiang Rai L-L Ko Kha Lampang
Mae Sai Chiang Rai Soem Ngam Lampang
.$=2 Phaya Mengrai Chiang Rai Sop Prap Lampang
-% Wiang Chiang Rung Chiang Rai Rong Kwang  Phrae
% Doi Luang Chiang Rai Den Chai Phrae
:'% Ban Luang Nan
L-H Mae Sariang Mae Hong Son H-L - -
Sop Moei Mae Hong Son
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Table 3 (Continued)

b Cluster District Province Cluster District Province
H-H Mae Sai Chiang Rai L-L Den Chai Phrae
Phaya Mengrai Chiang Rai Ban Luang Nan
% Wiang Chiang Rung Chiang Rai
Zﬂ’- L-H Mae Chan Chiang Rai H-L Ko Kha Lampang
*OE'J‘ Doi Luang Chiang Rai Soem Ngam Lampang
E Mae Sariang Mae Hong Son Mae Phrik Lampang
é Sop Moei Mae Hong Son Sop Prap Lampang
Rong Kwang  Phrae
H-H Phaya Mengrai Chiang Rai L-L Ban Luang Nan
) L-H Mae Chan Chiang Rai H-L Ko Kha Lampang
§ Mae Sai Chiang Rai Soem Ngam Lampang
% Wiang Chiang Rung Chiang Rai Mae Phrik Lampang
o Doi Luang Chiang Rai Sop Prap Lampang
g Mae Sariang Mae Hong Son Rong Kwang  Phrae
< Sop Moei Mae Hong Son Den Chai Phrae
Note. H-H = High-High, L-L = Low-Low, L-H = Low-High, and H-L = High-Low
Table 4
Diagnostics for Spatial Dependency
Test Mi or DF Value p-value
Moran’s | (error) 0.045 (MI) 1.122 0.262
Lagrange Multiplier (lag) 1 (DF) 0.743 0.389
Robust LM (lag) 1 (DF) 0.380 0.538
Lagrange Multiplier (error) 1 (DF) 0.539 0.463
Robust LM (error) 1 (DF) 0.176 0.675
Lagrange Multiplier (SARMA) 1 (DF) 0.919 0.632

Note. Ml = Moran’s | statistic and DF = Degrees of Freedom
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Table 5

Spatial Regression Models of Dengue Incidence, 2021

Factors OLS (SE) p SLM (SE) ¢] SEM (SE) p

COVID-19 6542x10% 0293 -6.933x107 0249 -7.055x10% _ 0.256
LI (6.187x10) (6.013x10) (6.209x10)

Ratio of VHVS to 5332  0.027* 5385  0.020* 5474  0.018*
households (2.373) (2.306) (2.304)

Number of schools 1333 0.041* 1277 0.042* 1289  0.043*
(0.643) (0.628) (0.636)

Average 16.952  0.030* 15539 0.041* 15.859  0.043*
temperature (7.705) (7.604) (7.849)
0 ; 0.115  0.447 i

(0.151)

A i - 0.107  0.495
(0.156)
F-statistic 2.794 - -
R? 0.102 0.109 0.108
Log likelihood 625.134 624874 -624.943
AlC 1260.277 1261.754 1259.891

Note. SE = standard error, p = spatial autoregressive coefficient, A= spatial error coefficient, R?=
coefficient of determination, AIC = Ake's Information Criterion and * p<0.05.

DISCUSSION

During the COVID-19 pandemic in 2021, few
districts in Northern Thailand had higher dengue
incidence among individuals under 25 years than
the national target, which were in the border
area. This was in line with a positive global
spatial autocorrelation in the LISA cluster map,
which identified specific high-high clusters,
particularly in the west district of Mae Hong Son,
a remote, mountainous border area adjoining
Myanmar. A concentrated spatial burden of
dengue incidence might be influenced by limited
access to healthcare during the pandemic and
ecological conditions conducive to Aedes
mosquito breeding. The remoteness of Mae
Hong Son and the challenges in surveillance
efforts during the crisis might also contribute to
delayed outbreak detection and under-resourced
vector control, amplifying disease clustering in

these areas (Lu et al., 2023). These might point
to the need for spatial planning approaches that
address the vulnerabilities of peripheral regions.
The low-high clusters in the northern district of
Chiang Rai Province might indicate areas where
preventive measures are effective, despite
proximity to high-burden districts. These areas
are risk zones that serve as critical targets for
proactive vector control, community engagement,
and enhanced surveillance, particularly during
periods of regional outbreak expansion.
Alternatively, it may reflect reporting gaps or
differences in surveillance sensitivity during the
COVID-19 pandemic (Rahastri & Sulistyawati,
2024; Roster et al., 2024), highlighting the need
for continuous monitoring in districts even during
the pandemic.

The bivariate spatial analysis revealed several
contextual factors influencing dengue incidence
during the COVID-19 pandemic in northern
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Thailand. A higher proportion of the population
under 25 years of age exhibited a significant
positive spatial association with dengue
incidence, especially in High-High clusters in Mae
Hong Son and northern Chiang Rai. This aligns
with known epidemiological trends in Thailand,
where children and young adults remain
particularly vulnerable due to behavioral
exposure and lower immunity (Thisyakorn et al.,
2022). Conversely, a higher proportion of the
urban population showed a negative spatial
association with dengue incidence. This may
reflect benefits of urban infrastructure, more
consistent vector control, and improved
healthcare access in urban areas (Lindsay et al.,
2017; Mani et al., 2021). Interestingly, this
pattern contrasts with pre-pandemic trends in
some countries where urban areas often reported
higher dengue burdens, suggesting that urban-
rural risk patterns may shift under overlapping
health crises (Brady & Wilder-Smith, 2021). The
COVID-19 morbidity rate demonstrated a positive
spatial correlation with dengue incidence,
suggesting that areas with high COVID-19 case
burdens may have experienced interruptions in
vector control, reduced community health
activities, or health system strain. In contrast, the
COVID-19 fatality rate showed a negative spatial
correlation with dengue, likely because fatalities
reflect healthcare outcomes and population
vulnerability rather than disease burden. These
findings reinforce the importance of syndemic-
informed surveillance systems that account for
simultaneous public health threats (Araujo et al.,
2024; Wilder-Smith & Osman, 2020). Regarding
climate variables, minimum, maximum, or
average rainfall was positively associated with
dengue incidence, consistent with its role in
creating breeding habitats for Aedes mosquitoes
(Xu et al., 2024). On the other hand, minimum
and average temperatures had significant
negative spatial correlations, particularly in
highland and cooler districts, supporting evidence
that cooler climates constrain mosquito survival
and virus replication (Nik Abdull Halim et al.,
2022). These spatial patterns highlight the
interplay between demographic, climatic, and
health system variables in shaping dengue risk,
underscoring the importance of geographically
tailored vector control and health interventions,
especially in peripheral or underserved districts.

Spatial regression analysis confirmed three
consistent and significant determinants of
dengue incidence: the ratio of VHVs to
households, the number of schools, and average
temperature. A positive association was
observed between the VHVs to household ratio
and dengue incidence. Areas with a higher VHVs
coverage tend to have a higher number of
recorded cases. During the COVID-19 pandemic,
VHVs in Thailand played a crucial role in the
prevention and control of COVID-19, leveraging
their community-based approach to health care
involving proactive disease control, community
education, and direct health services, which
collectively helped mitigate the spread of the
virus (Krassanairawiwong et al., 2021;
Singweratham et al., 2024; Zaheer et al., 2022).
A high VHVs coverage still could facilitate the
education of dengue symptoms, collection of
dengue case data, and ensure that cases are
reported accurately while facing this crisis,
contributing to higher, timely recorded dengue
cases. This aligns with findings that emphasize
the importance of robust surveillance systems in
tracking dengue cases (Togami et al., 2023).
This study suggests that areas with higher
disease burdens may require the allocation of
more VHVs to support public health responses
(Bohm et al., 2024).

Schools represent high-density environments
where large numbers of children and adolescents
congregate during the day, providing favorable
conditions for mosquito-human contact.
Furthermore, school environments might
inadvertently serve as breeding grounds for
Aedes mosquitoes due to the presence of
shaded areas, open containers, clogged
drainage systems, and insufficient sanitation
infrastructure (Ratanawong et al., 2016). In
Southeast Asian schools, water storage
containers, such as drums and buckets, are
common breeding sites for Aedes mosquitoes. A
study in Indonesia found that schools with poor
waste management practices and uncovered
water containers had higher Aedes indices,
indicating increased mosquito breeding (Sasmita
et al., 2021). This risk was compounded by the
tendency of children to spend extended periods
outdoors, often without protective clothing or
repellent. Moreover, during the COVID-19
pandemic, intermittent school closures due to
lockdown measures and reopening might have
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influenced local dengue dynamics by altering
population movement and vector exposure
patterns (Chen et al., 2022). As schools resume
full operations, it is crucial to reinforce dengue
prevention measures in educational settings,
particularly in high-risk districts. This finding also
highlighted for integration of vector-aware design
principles into educational facility planning,
especially in high-risk districts.

Districts with lower average temperatures tended
to report higher dengue incidence among
individuals under 25 years of age during the
COVID-19 pandemic. Previous research
indicated that dengue transmission occurs most
efficiently within an optimal temperature range of
approximately 21-34°C (Manna et al., 2024;
Ryan et al., 2019). Within this range, mosquito
survival, biting rates, and viral replication inside
the mosquito are maximized. However,
temperatures above this range, especially when
sustained, can reduce mosquito survival, impair
egg and larval development, and inhibit virus
propagation, thereby lowering transmission
potential (Agyekum et al., 2021, 2022). This
phenomenon might explain the negative
association observed in this study. Lower-altitude
areas of Northern Thailand experience higher
average temperatures. However, highland areas
such as parts of Mae Hong Son and Chiang Rai
Provinces, which have reported high dengue
incidence, may still exhibit temperature
conditions that are still within or close to the
optimal dengue transmission range, especially
during the rainy season. These highland areas
might also experience unique climatic
characteristics with moderate temperatures,
higher humidity, and suitable breeding habitats,
creating favorable conditions for localized
outbreaks, since a study focused on broader
trends in Thailand indicated that relative humidity
and precipitation trends vary regionally
(Kliengchuay et al., 2024). Climate variability
associated with the El Nifio—Southern Oscillation
(ENSO) has also been linked to changes in
dengue patterns across Asia. ENSO-related
temperature shifts can influence mosquito
population dynamics and expand transmission
into previously cooler regions (Jing et al., 2024).
This reinforces the importance of incorporating
temperature trends into spatial risk models and
suggests that climate-informed early warning

systems could help anticipate dengue outbreaks
in vulnerable districts.

Although the COVID-19 morbidity rate did not
show a statistically significant association with
dengue incidence in this study, the coexistence
of these diseases emphasizes the importance of
integrated surveillance systems capable of
managing concurrent health threats (Khan et al.,
2022). The pandemic might have indirectly
influenced dengue patterns through disruptions in
vector control, altered healthcare-seeking
behavior, and changes in human mobility,
leading to complex and localized effects on
transmission (Chen et al., 2022). Additionally, the
reallocation of public health resources toward
COVID-19 might have impacted dengue case
detection and reporting, particularly in under-
resourced areas (Wiyono et al., 2021).

Although spatial regression models such as SLM
and SEM are widely recommended for
addressing spatial autocorrelation in geographic
health data (Anselin, 1988), their necessity may
depend on the extent of spatial dependence
present in the dataset. In this study, the Global
Moran’s | statistics for dengue incidence were
relatively low, and diagnostic tests for spatial
dependence returned non-significant results,
suggesting no substantial spatial autocorrelation
in the residuals. Accordingly, the spatial
parameters in both SLM (p = 0.115) and SEM (A
= 0.107) were statistically insignificant. While the
SEM yielded a slightly better model fit, the
improvements over the OLS model were
marginal. Importantly, the key explanatory
variables were consistently significant across all
models, reinforcing the robustness of these
associations. These findings support the use of
the simpler OLS model in contexts where spatial
dependence is weak, as it offers interpretable
and statistically sound results without
unnecessary model complexity. Nevertheless,
the spatial lag framework retains conceptual
relevance. Even when not statistically dominant,
it highlights the potential for inter-district
transmission dynamics influenced by human
mobility, environmental continuity, and vector
behavior (Pakaya et al., 2023; Soukavong et al.,
2024). Therefore, incorporating spatial
perspectives into disease surveillance,
particularly through coordinated regional
responses, can strengthen preparedness,
strategic planning, and policy implementation. In
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regions with similar ecological and social
conditions, cross-boundary strategies may be
critical to controlling dengue transmission
spillovers, regardless of the strength of observed
spatial dependence. From a public health
perspective, this underscores the need for inter-
district coordination in surveillance and vector
control efforts. For instance, the existing
mechanism, as documented by Prasittisopin et
al. (2024), should be extended to incorporate the
health care program and contagion prevention.
Moreover, a systematic planning approach, such
as that introduced by Jiravanichkul et al. (2024),
should be applied.

This study highlighted the spatial heterogeneity
of dengue incidence among young people in
Northern Thailand during the COVID-19
pandemic, with high-risk clusters concentrated in
remote border areas. Spatial regression analysis
identified key contextual factors, including the
number of schools, VHVs coverage, and average
temperature, as significant predictors of dengue
incidence. Although spatial autocorrelation was
relatively weak, these findings reinforce the value
of spatial analysis for identifying place-based risk
factors and informing targeted responses.
Targeted responses in high-incidence areas
should be accompanied by proactive measures
in surrounding districts, especially in border
zones where administrative boundaries may not
align with transmission risk. To enhance public
health resilience, spatially informed strategies are
needed. In urban areas, the association with
school density calls for integrating vector control
into school infrastructure and neighborhood
planning, including improved drainage and waste
management systems. In rural and remote
districts, where healthcare access is limited,
expanding the capacity of community-based
surveillance, particularly through VHVs, is crucial.
Investments in basic environmental health
infrastructure, such as sanitation and water
management, can also reduce mosquito
breeding sites. Both urban and rural settings
would benefit from cross-sectoral collaboration
and the use of geospatial data in planning,
ensuring that dengue prevention measures are
both context-sensitive and sustainable. These
insights can support more equitable and effective
health and environmental planning across
diverse geographic regions.
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