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ABSTRACT 

This study aimed to predict household expenditure using a combination of survey and geospatial data. 

A web-based application operating on the Google Earth Engine platform has been specifically 

developed for this research, providing a set of satellite-based indicators. These data were spatially 

averaged at the district level and integrated with household nonfood expenditures, a proxy of 

socioeconomic conditions, derived from the World Bank’s 2019 Living Standards Measurement Study 

(LSMS). Four machine learning algorithms were applied. By using root mean square error as the 

goodness-of-fit criterion, a random forest algorithm yielded the highest forecasting precision, followed 

by support vector machine, neural network, and generalized least squares. In addition, variable 

importance and minimal depth analyses were conducted, indicating that the geospatial indicators have 

moderate contributive powers in predicting socioeconomic conditions. Conversely, the predictive 

powers of variables derived from the LSMS were mixed. Some asset ownership yielded a high 

explanatory power, whereas some were minimal. The attained results suggest future development 

aimed at enhancing accuracy. Additionally, the findings revealed an association between economic 

activity density and household expenditure, recommending regional development promotion through 

urbanization and transition from agriculture to other economic sectors. 

Keywords: Cambodia, household expenditure, google earth engine, machine learning, prediction 
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INTRODUCTION 

Contextual Overview of 

Cambodian Poverty 

As of 2021, Cambodia’s population is 

approximately 16.59 million, with 38% residing 

in urban areas and 62% in rural locations. 

Urbanization has seen a significant uptick 

since 2015, rising 17% to constitute 38% of the 

population. Concurrently, the rural population 

has correspondingly declined by 17% 

(National Institute of Statistics, 2021). 

Economic metrics also demonstrate growth; 

the GDP per capita has more than doubled 

from $741 in 2009 to $1,619 in 2021 (Asian 

Development Bank, 2022). 

As shown in Table 1, along with the provincial 

map detected in Figure 1, poverty rates have 

also improved markedly. In 2009, about 4.7 

million people were impoverished, the majority 

residing in rural areas. A decade later, this 

figure dropped by 40.43% to 2.8 million, lifting 

nearly 1.9 million Cambodians above the 

poverty threshold. This improvement coincides 

with an average economic growth rate of 7.7% 

over two decades. Projections indicate that 

Cambodia will transition from a lower-middle-

income to an upper-middle-income country by 

2030 (World Bank, 2022). 

In addition to the poverty rates, Human 

Development Index (HDI) can provide a 

comprehensive view summarizing the status of 

healthcare, education, and individual income. 

Particularly, Cambodia’s HDI has experienced 

a slight but consistent decline from 0.598 in 

2019 to 0.593 in 2021 (United Nations 

Development Programme, 2022). 

Cambodia has made significant progress in 

economic development, poverty reduction, and 

social indices. Nuanced metrics such as the 

HDI indicate that room for improvement 

remains, emphasizing the need for a 

multifaceted approach to assessing well-being 

and development. Essentially, the innovation 

of geographic information system (GIS) 

analysis and data availability, as introduced in 

the subsequent sections, have enabled the 

investigation at the district level, enhancing 

spatial accuracy and predictive capabilities of 

poverty analysis in the case of Cambodia. 

Table 1  

Poverty Rate (%) by Cities/Provinces in 2011 and 2020  

No. Provinces 2011 2020 

1 Koh Kong 23 28 

2 Mondul Kiri 26 27 

3 Prey Veng 17 23 

4 Kep 17 23 

5 Battambang 20 23 

6 Preah Sihanouk 12 21 

7 Kratie 23 21 

8 Pailin 18 20 

9 Pursat 22 19 

10 Stung Treng 25 19 

11 Kampong Chhnang 20 18 

12 Svay Rieng 14 18 

13 Preah Vihear 25 18 

14 Ratanak Kiri 29 18 
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Table 1 (Continued) 

No. Provinces 2011 2020 

15 Kampot 20 17 

16 Kampong Thom 23 17 

17 Kampong Speu 18 16 

18 Tbong Khmum NA 16 

19 Takeo 16 15 

20 Kampong Cham  19 14 

21 Siem Reap 21 13 

22 Banteay Meanchey 21 11 

23 Kandal 15 10 

24 Otdar Meanchey NA 10 

25 Phnom Penh 3 7 

Note. From “Educational Administration: Theory and Practice,” by R. Eng, and S. Lim, 2024, The 

economic development and level of poverty in Cambodia, 30(6), 3693–3701 

(https://doi.org/10.53555/kuey.v30i6.5806). Copyright 2024 by Eng & Lim. 

Figure 1  

Cambodia’s Provincial Map  

 

Note.  From Cambodia’s Provincial Map, by Wikimedia Commons, 2020, Wikimedia Commons 

(https://commons.wikimedia.org/wiki/File:Provincial_Boundaries_in_Cambodia.svg). CC-BY-SA-3.0. 
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Innovative Frameworks for 

Developmental Surveillance 

through Spatial Data  

With the evolution of information technology, 

open geographical data and open-source 

software tools have become significantly more 

accessible. Many online platforms (e.g., 

Google Earth Engine) have been providing 

public access to satellite data, as well as 

simplifying data extraction and computational 

tasks. These platforms also facilitate the 

creation of task-specific web applications, 

enriching the tailored development to serve 

specific needs. The rise of open software tools 

offers users, particularly those in developing 

nations, an equitable opportunity to engage in 

spatial and AI-driven computations without 

financial constraints.  

In view of nations such as Cambodia, where a 

predominant portion of the populace is 

engaged in agriculture and resides in rural 

locales, the innovative methodologies enable 

new opportunities to monitor regional 

development. This study, therefore, aims to 

introduce a new analytical framework 

integrating satellite-based indicators, survey 

data, and machine learning to examine the 

household socioeconomic condition proxied 

by non-food expenditure.  

Technically, in this study, a web 

application powered by the Google Earth 

Engine platform was developed and launched 

to facilitate satellite data acquisition. To 

investigate the association between the 

household expenditure and explanatory 

variables sourced from satellite indicators and 

the ground survey, our research methodology 

employed four machine learning algorithms 

(i.e., generalized least squares (GLS), neural 

network (NN), Random Forest (RF), and 

support vector regression (SVR)) using the R 

software suite. Subsequent analyses were 

conducted using two feature analysis methods: 

variable importance (VIMP) and minimal 

depth, allowing the prioritization of explanatory 

variables in predicting household non-food 

expenditure. 

The remainder of this paper is structured as 

follows. Section 2 surveys related literature. 

Sections 3 and 4 detail data sources and 

methodological approaches, respectively. 

Section 5 presents findings derived from 

machine learning and feature analysis. Finally, 

Section 6 summarizes key insights and 

suggests directives for future exploration and 

improvement. 

LITERATURE REVIEW  

Evolution of Spatial Analysis 

of Poverty 

As comprehensively reviewed by Hall et al. 

(2023), spatial examinations of poverty 

traditionally relied on face-to-face household 

surveys. These methods, though established, 

face challenges, especially when the majority 

of impoverished populations inhabit remote or 

rugged terrains. Such locales can lead to 

increased costs, errors, and scalability 

challenges, often resulting in sporadic updates 

and restricted spatial reach (Burke et al., 2021; 

Puttanapong et al., 2022). In addition, the 

multifaceted nature of poverty has 

necessitated the formulation of specific 

indices, reinforcing that a single measure 

cannot sufficiently represent the breadth of 

poverty. 

Recent shifts in poverty analysis underscore 

the importance of granularity, with emphasis 

on district, household, and individual levels. 

Such a nuanced approach demands the 

assimilation of advanced data sources and 

techniques (Blumenstock, 2016). Innovations 

in this domain encompass high-resolution 

satellite imagery (Head et al., 2017; Jean et 

al., 2016), mobile phone metadata (Aiken et 

al., 2022; Blumenstock et al., 2015), and digital 

footprints, such as online search trends and 

social media behaviors (Choi & Varian, 2012; 

Fatehkia et al., 2020; Llorente et al., 2015). 

The emergence and integration of these data 

sources can be attributed to technological 

progress, specifically the proliferation of big 

data and the enhancement of machine 

learning algorithms (Pokhriyal & Jacques, 

2017; Steele et al., 2017). 
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Such novel techniques are instrumental in 

identifying areas and communities grappling 

with poverty, a critical component for targeted 

resource allocation in poverty mitigation 

efforts, given the complex dimensions of 

poverty (Aiken et al., 2022; Blumenstock et al., 

2021; Erenstein et al., 2010; Zhou & Liu, 

2022). 

Geospatial Approaches to 

Poverty Analysis in Cambodia: 

A Historical Overview 

Initiated in 1997 as a collaborative effort 

between the National Institute of Statistics and 

international agencies, such as UNDP, World 

Bank, and SIDA, the Cambodia 

Socioeconomic Survey (CSES) aims to assess 

living standards across diverse geographic 

segments. Covering nine thematic areas from 

demographics to household assets, CSES 

data serve various stakeholders, including 

NGOs and government bodies (National 

Institute of Statistics, 1997). Since 2008, the 

CSES has been conducted annually, with the 

latest one completed in 2021 (National 

Institute of Statistics, 2021).       

After the Khmer Rouge era, Cambodia’s first 

national census took place in 1998, registering 

11.44 million individuals. Subsequent 

censuses were in 2008 and 2019, covering a 

comprehensive set of demographic and 

socioeconomic indicators. Some populations in 

conflict-affected areas were omitted from the 

1998 census, affecting the total count (Huguet 

et al., 2000). 

In 2002, a pioneering poverty measurement 

technique was employed in a study by the 

Ministry of Planning, the United Nations World 

Food Program, and the World Bank, which 

utilized community-level data from multiple 

sources, including CSES and the 1998 census 

(Elbers et al., 2002). According to the World 

Bank report, the national poverty rate in 

2019/20 was 17.8 percent (World Bank, 2022).         

Nutritional mapping techniques were 

introduced in 2003 in a study involving the 

 

1 https://cambodiapovertymapping.sig-gis.com/en/about/  

World Food Program and the Ministry of 

Health. This technique, however, indicated a 

weak correlation between poverty and 

malnutrition in children, a finding later 

addressed through methodological 

refinements (Fujii, 2007; Fujii, 2010). 

Research Gaps  

Although traditional methods such as CSES 

are robust, their limitations include high costs 

and infrequent data collection, impeding the 

timely evaluation of poverty alleviation efforts. 

Smaller surveys offer more frequent 

data but also come with limitations, such as 

cost and time constraints. With advancements 

in remote sensing and geospatial technology, 

modern poverty mapping techniques provide 

cost-effective, timely data, making them 

increasingly relevant for nations such as 

Cambodia. These innovations pave the way 

for developing an alternative approach to 

integrating multiple data sources for predicting 

and monitoring socioeconomic status, thereby 

better-informing policy interventions. To our 

knowledge, this exists only in the United 

Nations Development Programme’s initiative1 

exploring the application of big data and AI in 

mapping poverty in Cambodia. Therefore, this 

study aimed to bridge the knowledge gap by 

introducing the analytical framework and 

applying machine learning methods to a 

combination of remote sensing and survey 

data.  

METHODOLOGY 

Data  

Following the sets of remote-sensing data 

applied in existing literature Ayush et al., 2021,  

Engstrom et al., 2017, Jean et al., 2016 and 

Yeh et al., 2020, this study utilizes two sets of 

data. The first was derived from the official 

nationwide survey, namely, LSMS Plus 

(LSMS+). The second dataset consists of 

satellite indicators sourced from Google Earth 
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Engine. To facilitate the data extraction 

process, a tailor-made application has been 

developed for this study. Technical attributes 

of each dataset are outlined in subsequent 

subsections. 

Survey Data 

The National Institute of Statistics conducted 

the 2019–2020 Cambodia LSMS+ Survey in 

collaboration with the World Bank LSMS+ 

program (National Institute of Statistics, 2019). 

This national survey targeted private 

interviews with every adult (aged 18 and 

above) in the selected households. The 

primary emphasis of the data collection was on 

(i) asset ownership, (ii) employment status, 

and (iii) nonfarm business activities. 

Subsequently, this study utilized household 

nonfood expenditure as the dependent 

variable. In addition, other characteristics of 

each household (such as ownership of assets 

and dwelling) obtained from LSMS+ Survey 

were merged with geospatial indicators 

derived from satellite data, yielding 1,257 

observations representing nationwide 

samplings of households. Details of these 

satellite-based indicators are explained in the 

following section.  

Satellite Data 

In this study, all remote-sensing data were 

sourced from Google Earth Engine, a public 

cloud service. Google Earth Engine merges 

cloud storage, offering an array of satellite 

data collections, with a computing platform 

designed for satellite data analysis. Below are 

the technical specifications for each dataset. 

NDVI   

This study utilized vegetation index data 

derived from the Moderate Resolution Imaging 

Spectroradiometer (MODIS) sensors aboard 

the Terra and Aqua satellites. These sensors 

are adept at detecting various terrestrial 

features, incorporating surface and ground 

temperatures, clouds, ocean hues, and 

biogeochemical components. Technically, this 

index is computed by using data obtained from 

two sensors, as shown as follows: 

𝑁𝐷𝑉𝐼 =  
(𝑁𝐼𝑅−𝑅𝑒𝑑)

(𝑁𝐼𝑅+𝑅𝑒𝑑)
                                          (1) 

where NIR represents near-infrared 

reflectance, and Red indicates reflectance in 

the red spectrum. This equation mimics the 

absorption and reflectance properties of 

chlorophyll in vegetation, leading to the green 

appearance of leaves as perceived by the 

human eye. 

The MODIS sensor has 36 spectral bands, 

spanning wavelengths from 0.4 to 14.4 μm, 

with spatial resolutions of 250 m (Bands 1–2), 

500 m (Bands 3–7), and 1 km (Bands 8–36). 

The NDVI value lies between −1 and 1: 

nearing 1 for dense vegetation, around 0 for 

unhealthy vegetation, and close to −1 for water 

surfaces. The GIS-based data of NDVI are 

depicted in Figure 2. 

Several studies have featured the utility of the 

Normalized Difference Vegetation Index 

(NDVI) as a vegetation index, enabling 

analysis of vegetative coverage. For instance, 

positive correlations between GDP and NDVI 

were highlighted by Jin et al., (2008), Chen et 

al., (2022), and Guo et al. (2021). Another 

research pointed to a link between 

socioeconomic conditions and NDVI (Li et al., 

2015).  

Research has also verified the NDVI’s 

relationship with poverty. For Kenya and 

China, a higher poverty rate corresponded to 

lower NDVI values (Kristjanson et al., 2005; 

Shi et al. 2020). A similar negative association 

was observed in Tanzania (Morikawa, 2014). 

However, some studies have noted 

bidirectional ties between rural 

impoverishment and environmental 

determinants, including the NDVI 

(Bhattacharya & Innes, 2006). 

Normalized Difference Water Index (NDWI) 

Following the computational technique of the 

NDVI, Gao (1996) and McFeeters (1996) 

introduced the NDWI to monitor water bodies. 

The NDWI is calculated as follows:  
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𝑁𝐷𝑊𝐼 =  
(𝑁𝐼𝑅−𝑆𝑊𝐼𝑅)

(𝑁𝐼𝑅+𝑆𝑊𝐼𝑅)
    (2)                                                   

where NIR stands for near-infrared 

reflectance, and SIWR represents short-wave 

infrared reflectance. Similar to the NDVI, the 

NDWI value ranges from −1 to +1. A value 

exceeding 0.5 typically signifies the presence 

of water bodies. Figure 3 exhibits the 2019 

NDWI map of Cambodia. 

Normalized Difference Drought Index 

(NDDI) 

Gu et al. (2007) developed the NDDI using a 

similar mathematical framework to map and 

track drought features. The NDDI is calculated 

as 

𝑁𝐷𝐷𝐼 =  
(𝑁𝐷𝑉𝐼−𝑁𝐷𝑊𝐼)

(𝑁𝐷𝑉𝐼+𝑁𝐷𝑊𝐼)
    (3)                                            

The NDDI values begin at 0 for no drought, 

with values exceeding 1.0 indicating intense 

drought scenarios. 

LST 

Using Bands 20–23 and 30–31, MODIS 

sensors measure global surface temperatures 

and thermal radiation, encompassing 

bandwidths of 3.66–4.080 nm and 10.780–

11.280 μm. Data, updated daily at a 1 km 

resolution, is retrievable from the Google Earth 

Engine from March 5, 2000 onward. This study 

employed average daytime LST and nighttime 

LST. Figure 4 illustrates the 2019 spatial 

distribution of average LST in Cambodia. 

A strong link has been identified between 

socioeconomic factors and LST, with areas of 

high industrial and commercial activity typically 

showing higher LST values in contrast to those 

mainly agricultural or forested (Huang et al., 

2011). A US-focused study detected a positive 

trend between LST and increasing per capita 

income (Buyantuyev & Wu, 2010). In emerging 

economies, variables, including infrastructural 

developments, industrial progression, and 

demographic growth, have influenced LST 

variations (Dissanayake et al., 2019; Ruthirako 

et al., 2015).  

In addition, the mutual relationship between 

LST and NDVI values has been the subject of 

numerous studies (Liaqut et al., 2019; Li et al., 

2014; Wan Mohd Jaafar et al., 2020; Sruthi & 

Aslam, 2015; Youneszadeh et al., 2015). 

These studies have consistently identified that 

vegetated areas maintain cooler temperatures 

than their urban or industrial counterparts.  

Rainfall Data  

This study utilized data sourced from the 

Climate Hazards Group Infrared Precipitation 

with Stations (CHIRPS), which integrates 

satellite-based rainfall measurements with 

data from rain gauge stations. Accessible via 

Google Earth Engine, the CHIRPS dataset 

extends back to 1981 and offers a spatial 

granularity of 0.05 arc degrees, equivalent to 

around 110 m per pixel. Figure 5 shows the 

geographical distribution of cumulative rainfall 

within Cambodia in 2019. 

A notable study by Barrios et al. (2010) 

identified a positive link between rainfall and 

real GDP per capita in African nations. 

Conversely, in developed nations, rainfall 

typically negatively influences economic 

activities, especially within the service sector. 

Arezki and Brückner (2012) integrated rainfall 

data with historical financial transactions and 

observed a positive correlation in nations 

where the financial sector holds a minor GDP 

share, yet a negative association emerged in 

countries with a dominant financial sector. An 

interesting finding is the concave relationship 

between GDP growth and rainfall in 

developing regions (Damania et al., 2020). 

Rainfall variability’s connection with inequality 

has also garnered attention. Several studies 

have highlighted a negative association 

(Brown & Lall, 2006; Richardson, 2007). 

Investigations using agricultural yields as a 

proxy for indirect inequality—such as those 

from Ethiopia (Thiede, 2014), Nigeria (Amare 

et al., 2018), and India (Gilmont et al., 2018)—

all reported negative correlations.  

Population  

Annual population data were acquired from the 

WorldPop Global Project, an open-access 
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resource for population distribution datasets. 

Utilizing a machine learning algorithm and 

various geospatial layers, the WorldPop 

creates detailed population spatial distributions 

with a granularity of 100 m. Figure 6 exhibits 

this population map of Cambodia in 2019. 

Leaf Area Index (LAI)  

As comprehensively surveyed by Zheng and 

Moskal (2009), the LAI is a biophysical metric 

of vegetation. Conventionally, it is scientifically 

defined as the one-sided green leaf area per 

unit of ground area. This metric is especially 

significant in monitoring forest conditions and 

cultivation activities. The LAI can be employed 

with other environmental indicators to calculate 

crop yield. Therefore, the LAI is particularly an 

important determinant of income for farmers in 

the study areas (Mourad et al., 2020). Figure 7 

shows the LAI map of Cambodia in 2019. 

Gross Primary Productivity (GPP)   

GPP is a metric quantifying the rate at which 

solar energy is converted into sugar molecules 

via photosynthesis, measured per unit area 

per unit time. GPP is a significant indicator of 

vegetative density and efficacy in a specific 

locale, particularly relevant to light energy 

capture and photosynthetic activity. In addition 

to its role in environmental science, GPP has 

practical applications in agriculture, specifically 

in the estimation of crop yields. Thus, GPP can 

be implemented as the satellite-based 

determinant of farmers’ incomes (Li et al., 

2022; Liu et al., 2022). The spatial distribution 

of GPP in Cambodia is shown in Figure 8.  

Evapotranspiration (ET)  

ET represents the aggregate of mechanisms 

through which water is transferred from the 

terrestrial surface to the atmosphere, 

encompassing evaporation and transpiration 

processes. ET’s MODIS remote sensing data 

are estimated using an algorithm based on the 

Penman–Monteith equation, incorporating 

daily meteorological and environmental data, 

including vegetation characteristics, albedo, 

and land cover categorizations. Similar to 

GPP, ET can be integrated with other 

variables to predict crop yield, which is the 

proxy for farmers’ economic livelihoods (Pandit 

et al., 2022; Mulovhedzi et al., 2020). 

Urban Area 

Global land cover types were derived using 

supervised classification techniques on Terra 

and Aqua MODIS reflectance data. This 

approach produces an annual global map 

detailing 17 distinct land use categories. For 

this study, Type 14, representing urban areas, 

was specifically extracted. Figure 9 illustrates 

the geographical distribution of land use in 

Cambodia in 2019.  

All key technical specifications of satellite 

indicators are summarized in Table 2. 
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Figure 2  

NDVI Map of Cambodia (Average Value of 2019) 

 

Note. Dark color represents high value. Adapted from NDVI Map of Cambodia, by Google Earth 

Engine, 2019. Google Earth Engine. 

(https://code.earthengine.google.com/88b38d332a95a32330e39d26edc44edb). Copyright 2019 by 

Google LLC.  

Figure 3  

NDWI Map of Cambodia (Average Value of 2019) 

 

Note. Blue color represents water bodies. Adapted from NDWI Map of Cambodia, by Google Earth 

Engine, 2019. Google Earth Engine. 

(https://code.earthengine.google.com/125e1b8a896197d87bec0c6ab5d941f3). Copyright 2019 by 

Google LLC.  
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Figure 4  

LST Map of Cambodia (Average Value of 2019) 

 

Note. Dark color represents high temperature. Adapted from LST Map of Cambodia, by Google Earth 

Engine, 2019. Google Earth Engine. 

(https://code.earthengine.google.com/cf0873d0f938d697b898c3f2febc8d92). Copyright 2019 by 

Google LLC.  

Figure 5 

Rainfall Map of Cambodia (Average Value of 2019) 

 

Note. Dark color represents high value. Adapted from Rainfall Map of Cambodia, by Google Earth 

Engine, 2019. Google Earth Engine. 

(https://code.earthengine.google.com/7da4894e7f83f1f26526a0ffb0999218). Copyright 2019 by 

Google LLC.  

https://code.earthengine.google.com/7da4894e7f83f1f26526a0ffb0999218
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Figure 6  

Population Map of Cambodia (2019) 

 

Note. Dark color represents high population density. Adapted from Population Map of Cambodia, by 

Google Earth Engine, 2019. Google Earth Engine. 

(https://code.earthengine.google.com/89e180bc9a64dae03067f3b047e70d61). Copyright 2019 by 

Google LLC.  

Figure 7 

LAI Map of Cambodia (2019) 

 

Note. Dark green color represents high density of LAI. Adapted from LAI Map of Cambodia, by 

Google Earth Engine, 2019. Google Earth Engine.  

(https://code.earthengine.google.com/e67af9da1e4eea8a579264b8e3cb89ac). Copyright 2019 by 

Google LLC.  
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Figure 8 

GPP Map of Cambodia (2019) 

 

Note. Dark color represents high GPP. Adapted from GPP Map of Cambodia, by Google Earth 

Engine, 2019. Google Earth Engine. 

(https://code.earthengine.google.com/3536b4517cd3148f55726f76ae689d9d). Copyright 2019 by 

Google LLC. 

Figure 9 

Land-Use Map of Cambodia (2019) 

 

Note. Red color represents the urban area, yellow color indicates the cropland, orange color identifies 

the flooded vegetation zone and green color denotes the forest.  Adapted from Land-Use Map of 

Cambodia, by Google Earth Engine. Google Earth 

(https://code.earthengine.google.com/88b38d332a95a32330e39d26edc44edb). Copyright 2019 by 

Google LLC. 

https://code.earthengine.google.com/88b38d332a95a32330e39d26edc44edb
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Table 2  

Main Specifications of Geospatial Data 

Indicator Satellite/Dataset Resolution Frequency Technical reference 

Normalized Difference 

Drought Index (NDDI) 

Terra MODIS 500 m 8 days https://developers.google.com/earth-

engine/datasets/catalog/MODIS_006_MOD09A1  

Normalized Difference 

Vegetation Index (NDVI) 

Terra MODIS 500 m 8 days https://developers.google.com/earth-

engine/datasets/catalog/MODIS_006_MOD09A1  

Normalized Difference 

Water Index (NDWI) 

Terra MODIS 500 m 8 days https://developers.google.com/earth-

engine/datasets/catalog/MODIS_006_MOD09A1  

Land Surface 

Temperature (Daytime) 

Terra MODIS 1 km 8 days https://developers.google.com/earth-

engine/datasets/catalog/MODIS_006_MOD11A2 

Land Surface 

Temperature (Nighttime) 

Terra MODIS 1 km 8 days https://developers.google.com/earth-

engine/datasets/catalog/MODIS_006_MOD11A2 

URBAN (urban area)  MODIS Land 

Cover Type  

500 m Annual https://developers.google.com/earth-

engine/datasets/catalog/MODIS_006_MCD12Q1 

Rainfall CHIRPS  ~5 km Daily https://developers.google.com/earth-engine/datasets/catalog/UCSB-

CHG_CHIRPS_DAILY 

Population  WorldPop ~100 m Annual https://developers.google.com/earth-

engine/datasets/catalog/WorldPop_GP_100m_pop 

Leaf Area Index (LAI) Terra MODIS 500 m 8 days https://developers.google.com/earth-

engine/datasets/catalog/COPERNICUS_S2_HARMONIZED 

Gross Primary Productivity 

(GPP) 

Terra MODIS 500 m 8 days https://developers.google.com/earth-

engine/datasets/catalog/MODIS_061_MOD17A2H 

Evapotranspiration (ET)  Terra MODIS 500 m 8 days https://developers.google.com/earth-

engine/datasets/catalog/MODIS_061_MOD16A2 

Note. From Main Specifications of Geospatial Data, by Google Earth Engine, 2019. Google Earth. Copyright 2019 by Google LLC. 
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Developing a Web-Based 

Application on Google Earth 

Engine    

We developed a web application tailored for 

satellite data analysis using the combined power 

of Google Earth Engine's cloud services. This 

application, central to our study, facilitated the 

transformation of geospatial data into district-

level metrics. As depicted in Figure 10, the user-

friendly graphical interface of the application lets 

users easily navigate and choose their desired 

district. Further, as highlighted in Figure 11, the 

left-hand panel showcases the indicator, allowing 

users to export this data graphically and as 

spreadsheets. Specifically, the 2019 average of 

each indicator was used in this study.   

This constructed web-based application2 is 

publicly accessible at: 

https://nattapong.users.earthengine.app/view/ca

mbodia---districtdata----version-1. 

The dataset used in this study was obtained by 

spatially merging the survey data with satellite 

indicators at the district level. The average 

nonfood expenditure is the predicted outcome, 

and 11 satellite-based indices are independent 

variables.  

 

Figure 10  

The User Interface of the Application Developed Specifically for This Study  

 

Note. From Combodia: Satellite-based indicators, by Google Earth Engine Apps, 2024 ( 

https://nattapong.users.earthengine.app/view/cambodia----districtdata----version-1). 

 

2 We have developed the alternative version of this web-based application, generating the satellite indicators at the 
provincial level.  The examples of this application and its access link are shown in the appendix. 
 

https://nattapong.users.earthengine.app/view/cambodia----districtdata----version-1
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Figure 11  

Satellite Data at the District Level Extracted by the Application   

 

Note. From Satellite-based indicators (Combodia: district level), by Google Earth Engine Apps, 2024 

(https://nattapong.users.earthengine.app/view/cambodia----districtdata----version-1).  

Methods 

Figure 12 illustrates the main process of 

undertaking quantitative analyses. As previously 

stated, the dataset was generated by conducting 

a spatial integration technique. Then, four 

machine learning methods were applied. In this 

study, RF yielded the highest accuracy. 

Therefore, the analysis was furthered by using 

two feature analysis techniques. Technically, 

VIMP and minimal depth are extended algorithms 

specifically based on the RF framework. The 

theoretical concepts of each method applied in 

this study are elaborated in the following 

subsections. 

Machine Learning Techniques 

GLS Regression   

GLS is an enhanced regression method 

developed based on the ordinary least squares 

framework. Technically, the main enhancement 

addresses issues such as heteroscedasticity and 

residual correlation. Mathematically, the 

Cholesky decomposition of the variance–

covariance matrix is employed to formulate the 

weight matrix, enabling the transformation of the 

initial regression model. This procedure results in 

unbiased, consistent, and asymptotically normal 

estimators with improved efficiency. 

NN  

As summarized by Ciaburro and Venkateswaran 

(2017) and Anesti et al. (2021), NNs are a 

computational model inspired by the human 

brain’s architecture. These networks consist of 

interconnected nodes or neurons and are 

designed to uncover latent patterns within data. 

With this configuration, NNs can perform various 

tasks, including classification, regression, and 

clustering. The standard structure of an NN 

incorporates three categories of layers, namely, 

(1) input, (2) hidden, and (3) output layers. 

The architecture of an NN is the hierarchy of 

layers, formulating the structural interconnections 

among neurons. The input layer takes in feature 

variables, whereas the output layer generates 

predictions. Adding hidden layers between the 

input and output layers introduces nonlinear 

transformations, augmenting the model’s 

capabilities to handle complexity. Within this 

architecture, every connection linking nodes  
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Figure 12  

Outline of Research Methods  

carries a specific weight. Moreover, each neuron 

applies an activation function (e.g., sigmoid) on 

its input, allowing the network to capture 

complicated relationships within the data. 

Training an NN is an iterative procedure that 

adjusts weights to minimize a designated loss 

function. This objective reduces the disparity 

between the model’s predictions and target 

values. The backpropagation technique is usually 

utilized in this process, leveraging optimization 

algorithms, such as gradient descent. By 

employing the chain rule, backpropagation 

computes the loss function’s gradient concerning 

each weight, thereby facilitating efficient weight 

updates throughout the network. 

RF  

RF is a prevalent ensemble learning algorithm for 

classification and regression tasks. It employs a 

fundamental approach, constructing an extensive 

array of decision trees and amalgamating their 

outcomes to yield predictions. This method 

leverages multiple trees to counteract overfitting, 

a common pitfall found in individual decision 

trees. 

Breiman (2001) introduced RF. Its framework 

involves crafting numerous decision trees, each 

trained on a randomized subset of the training 

data. In addition, at every split, a random subset 

of features is selected, imbuing variety into the 

trees. The final prediction is derived from the 

average forecast across all trees. This 

aggregation process, termed bagging and 

advocated by Hastie et al. (2009), reduces 

variance without augmenting bias, thereby 

enhancing prediction robustness. 

RF boasts a notable capability in evaluating 

feature significance, which sheds light on latent 

data relationships. Sections 4.2.1 (VIMP) and 

4.2.2 (Minimal Depth) will explain these distinct 

attributes. 

SVR  

Vapnik (1998) initially introduced SVR, a 

supervised learning algorithm tailored for 

regression tasks. On the basis of the principles of 

support vector machine, SVR can predict 

continuous outcomes by identifying the optimal 

hyperplane that effectively captures the link 

between input variables and the output.  

The core computational procedure of SVR is the 

mathematical process of numerically optimizing a 

hyperplane that accommodates data within a 

predefined error threshold denoted as ε. An 

important distinction is the penalty imposed on 

errors outside the margin. Exceptionally, SVR 

can handle linear and nonlinear relationships 

facilitated by diverse kernel functions, such as 

linear, polynomial, and radial basis functions. 

These kernels mathematically project the input 

Survey Data  

Household’s  non-food expenditure 

2019-2020 Cambodia (LSMS+)) 
  

Satellite Data 
 
(1) NDVI                     (7) Cropland 

(2) NDWI                   (8) Population 

(3) NDDI                     (9) LAI 

(4) Daytime LST        (10) GPP 

(5) Nighttime LST      (11) ET 

(6) Urban area 

Machine Learning Methods 

(1) Generalized Least Square (GLS) 
(2) Neural Networks (NN) 
(3) Random Forest (RF) 
(4) Support Vector Regression (SVR) 

Feature Analysis 

Techniques 

(1) Variable Importance (VIMP) 
(2) Minimal Depth  
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space into higher dimensions, enabling the 

algorithm to uncover intricate data connections. 

Technically, SVR transforms its computational 

process into a constrained quadratic optimization 

problem, with the solution manifesting as support 

vectors—data points situated outside or on the ε-

margin boundary. These support vectors crucially 

contribute to establishing the optimal hyperplane, 

a concept underscored by Zhang et al. (2010) 

and Wang et al. (2012). The selection of 

parameters such as cost parameter and kernel 

function profoundly influences model 

performance and its adaptability to particular data 

characteristics. 

Feature Analysis Methods  

The machine learning models introduced in the 

preceding section provide a quantitative 

approach to exploring the associations between 

geographical attributes and socioeconomic 

progress. However, those methods have 

limitations in explaining the predictive 

contribution of each variable. Therefore, this 

study expanded the computational efforts by 

implementing feature analysis techniques. This 

extension enhanced the machine learning 

capabilities to gauge the explanatory strength of 

individual variables. The following discussion 

outlines the main theoretical background of each 

feature analysis method. 

VIMP  

In the context of RF, a robust ensemble learning 

technique, VIMP emerges as a pivotal element, 

offering insights into the individual predictors’ 

significance within the model. As discussed by 

Díaz et al. (2015), VIMP can prioritize the 

features that contribute the most to predictive 

accuracy. It also enables model interpretation 

and enhances data collection strategies. 

A methodology, initially introduced by van der 

Laan (2006) and Ishwaran (2007) and 

subsequently elaborated by Strobl et al. (2007), 

revolves around assessing VIMP within RF. This 

calculation method predominantly relies on 

quantifying the rise in prediction error subsequent 

to randomly permuting the values of a particular 

variable. By perturbing a variable’s values, this 

approach gauges the extent to which the model’s 

accuracy diminishes due to the disruption of the 

variable’s connection with the response. This 

comprehensive procedure is applied to all trees 

within the forest, ultimately resulting in an 

average importance score for each variable. 

Minimal Depth 

In the context of RF, the minimal depth technique 

is an investigative tool that quantifies the 

importance of variables. This assessment is 

based on the variables’ positioning within 

individual decision trees forming the forest 

(Ishwaran et al., 2010; Seifert et al., 2021). On 

the basis of the foundational structure of decision 

trees, this method discerns that variables of 

greater importance are prone to emerge closer to 

the trees’ root. By contrast, those of lesser 

significance tend to surface nearer to the leaves. 

Consequently, the minimal depth metric denotes 

the average depth at which a variable initially 

appears across all trees within the ensemble. 

Each decision tree in the RF is traversed to 

compute the minimal depth of a variable, and the 

depth at which the variable is initially introduced 

in a split is noted. This depth is defined as the 

number of edges from the root to the node where 

the variable is utilized. This process is repeated 

for all trees, and the mean depth across the 

entire forest is then taken as the minimal depth 

for that specific variable. Lower minimal depth 

values correspond to higher importance, 

indicating a consistent involvement in early tree 

splits. 

The minimal depth approach offers a distinct 

perspective that can uncover insights not 

captured by other methods. In contrast to metrics 

relying on variable permutation, minimal depth 

concentrates on a variable’s structural role within 

decision trees. It evaluates the variable’s 

contribution to the hierarchical division of the 

data space. Thus, the minimal depth outcome 

accurately reflects the variable’s contribution in 

the context of RF-based prediction. 

All machine learning algorithm computations and 

feature analysis procedures were executed using 

R software. Table 3 provides the key technical 

attributes of the R packages employed for each 

calculation. 
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Table 3  

List of R Packages Used in Machine-Learning Computations 

Method Package’s name  Technical reference 

NN 
 

Nnet https://cran.r-project.org/web/ 

packages/nnet/nnet.pdf 

RF randomForestSRC https://cran.r-project.org/web/ 

packages/randomForestSRC/ 

randomForestSRC.pdf 

SVR e1071 https://cran.r-project.org/web/ 

packages/e1071/e1071.pdf 

VIMP randomForestSRC https://cran.r-project.org/web/ 

packages/randomForestSRC/ 

randomForestSRC.pdf 

Minimal Depth randomForestSRC https://cran.r-project.org/web/ 

packages/randomForestSRC/ 

randomForestSRC.pdf 

Note. From List of R Packages Used in Machine-Learning Computations, by The Comprehensive R 

Archive Network (CRAN), 2024. 

RESULTS  

Machine Learning Results  

By utilizing the framework of classical regression 

analysis, the GLS approach was employed to 

produce estimated coefficients that quantify the 

effects of individual variables on predicted output 

variability (i.e., household nonfood consumption). 

These coefficients, along with their levels of 

statistical significance, are exhibited in Table 4.  

Some geospatial indicators are statistically 

significant. The daytime LST and NDDI values 

are negatively associated with the predicted 

outcome. The results are in line with many 

publications indicating that high temperatures 

(Buyantuyev & Wu, 2010; Dissanayake et al., 

2019; Huang et al., 2011) and drought can affect 

households’ economic status (Amare et al., 2018; 

Richardson, 2007; Thiede, 2014). Moreover, the 

size of the population is negatively correlated 

with household consumption capability. 

Conversely, urban density positively correlates 

with the household socioeconomic condition, 

thereby affirming the agglomeration force 

inducing the higher income of households in 

highly urbanized areas.  

Table 6 exhibits that variables obtained from the 

ground survey have mixed outcomes in 

explaining the household socioeconomic status. 

Particularly, one group of the assets owned by 

the household is a powerful predictor, whereas 

the other is statistically insignificant. The 

ownership of a car, a mobile phone, and a 

motorcycle and the floor area of residence (i.e., 

Flr_area) have high explanatory powers, as 

indicated by their p values. However, owning a 

tuktuk (i.e., motor tricycles) has a low explanatory 

capability, and other variables are statistically 

insignificant.    

These results indicate that the geospatial 

characteristics extracted from satellite data can 

be integrated with the ground survey as the 

independent variables for predicting the 

household socioeconomic condition. 

However, the R-square value of the model is 

0.260, explaining only 26% of the variance in 

household expenditure. Thus, machine learning 

methods are included to alternatively examine 

the relationship between socioeconomic status, 

satellite-based indicators, and survey data. 
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Table 4 

Coefficients Obtained from GLS Regression [Dependent variable: Household nonfood expenditure]  

Variable Coefficient and Standard Error 

Intercept 0.398*** 

 (0.096) 

Cropland -0.008 

 (0.037) 

Urban 0.163* 

 (0.093) 

ET 0.022 

 (0.028) 

GPP      0.009 

 (0.048) 

LAI   -0.033 

 (0.082) 

LST_D -0.056* 

 (0.029) 

LST_N 0.033 

 (0.051) 

NDVI -0.051 

 (0.053) 

NDWI -0.039 

 (0.087) 

NDDI 0.057* 

 (0.033) 

POP -0.178* 

 (0.095) 

Bicycle 0.023 

 0.030 

Boat 0.036 

 (0.048) 

Car 0.192*** 

 (0.041) 

Cellphone 0.154*** 

 (0.038) 

Computer 0.087 

 (0.057) 

Motorcycle 0.132*** 

 (0.024) 

Tractor 0.022 

 (0.036) 

Tuktuk 0.066* 

 (0.032) 

Flr_area 0.168*** 

 (0.030) 

Note. Standard Error in parentheses; * p<0.10, ** p<0.05, *** p<0.01 
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In addition to GLS, three machine learning 

algorithms—NN, RF, and SVR—were applied. 

Figures 13 and 14 reveal that these machine 

learning techniques outperformed the GLS 

model. Specifically, RF yielded the lowest root 

mean square error (RMSE), equivalent to an R-

square value of 0.406. This superior fit suggests 

that these machine learning approaches can 

capture the intricate and multifaceted 

relationships among the variables affecting 

household socioeconomic status. However, 

these methods fall short of detailing the specific 

contributory effects of individual variables, 

necessitating a follow-up feature analysis to 

explore their respective roles in influencing 

household expenditure and income.  

 

Figure 13  

Comparison of Root Mean Square Error (RMSE) [Dependent variable: Household nonfood 

expenditure]  

 

 

Figure 14 

A Scatter Plot Comparing the Actual Values and Predicted Ones of an Independent Variable 
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Feature Analysis Results  

The results generated by the two distinct feature 

analysis techniques are depicted in Figures 15 

and 16. Table 5 ranks each variable’s 

contribution to the model based on these 

outcomes. The key insights derived from this 

variable ranking can be summarized as follows: 

• Car, motorcycle, cellphone, and the floor 

area of residence (Flr_area) are ranked as the 

most contributive variables explaining the 

variation in a household’s socioeconomic status. 

These variables obtained from the survey 

represent households’ purchasing behavior on 

high-priced electronic devices. These ownerships 

are directly associated with purchasing power 

and income level. Therefore, they were 

categorized by VIMP and minimal depth methods 

as the most significant variables. These findings 

align with the existing literature (Mika et al., 2021; 

Noeurn, 2020; Asongu, 2013; Wong & Shuaibim, 

2023).  

• VIMP and minimal depth classified urban 

area, GPP, population, LST_N, LST_D, LAI, 

NDWI, NDDI, and NDVI as the factors that 

moderately contributed to the households’ 

socioeconomic condition variations. These 

results indicated that the geospatial 

characteristics have the midrange explanatory 

power in predicting household expenditure and 

income. Especially, these results are similar to 

the conclusions of previous publications (Arezki 

& Brückner, 2012; Barrios et al., 2010; Damania 

et al., 2020; Gilmont et al., 2018; Liaqut et al., 

2019; Sruthi & Aslam, 2015)    

• The rest of the variables included in the 

survey (i.e., bicycle, tuktuk, tractor, and boat) 

were categorized as the lowest contributive 

factors influencing the socioeconomic status of 

households in Cambodia. The ownership of 

these assets was not statistically correlated with 

the households’ income and expenditure. 

Sharma et al. (2016) highlighted the anomalies in 

poverty distribution in Cambodia, and natural 

resources significantly contribute to household 

incomes within Cambodia. In particular, the rate 

of poverty reduction is unevenly distributed 

across regions. Rural locales heavily rely on 

directly consuming products (food and nonfood) 

harvested from nature. As a result, a direct 

relationship between income poverty and 

consumption poverty is not observed in certain 

areas, suggesting that some asset ownership 

might not be related to consumption (Hansen & 

Neth, 2006; Jiao et al., 2015; McKenney & Tola, 

2002; Sophal & Acharya, 2002; Tong & Sry, 

2011).  

The main results obtained from the VIMP and 

minimal depth methods signify the contribution of 

integrating survey data and satellite-based 

indicators in poverty analysis in Cambodia. The 

survey data can identify household-specific 

consumption behavior. The satellite-based 

indices complementarily reveal the location-

specific physical conditions influencing 

infrastructure accessibility, occupational 

opportunities, and related risks. These obtained 

outcomes indicate that integration of satellite 

indicators, survey data and machine learning 

methods can enable the future enhancement of 

poverty analysis and effective policy formulation. 
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Figure 15 

Variable Importance (VIMP) Result   

 

Figure 26 

Minimal Depth Result     
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Table 5  

Ranking of Contributive Power of Each Variable [Dependent variable: Household nonfood expenditure] 

Rank Variable Importance  Minimal Depth 

1 Car Cellphone 

2 Motorcycle  Motorcycle  

3 Cellphone Flr_area 

4 Flr_area Car 

5 Computer Population 

6 Urban Urban  

7 GPP  LST_N 

8 Population GPP 

9 LST_N NDWI 

10 LST_D LAI 

11 LAI Rainfall 

12 NDWI LST_D 

13 NDDI NDVI 

14 NDVI ET 

15 Tuktuk Cropland  

16 Rainfall NDDI 

17 ET Bicycle 

18 Cropland Computer 

19 Boat Tuktuk 

20 Bicycle Tractor 

21 Tractor Boat 

 

 

Limitations  

We acknowledge that our RF model achieves 

lower accuracy compared to existing studies 

(Ayush et al., 2021; Engstrom et al., 2017; Jean 

et al., 2016; Puttanapong et al., 2022; 

Puttanapong et al., 2023; Yeh et al., 2020), which 

is a major drawback of our study. Satellite-based 

indicators such as NDDI, NDWI, LAI, and GPP 

are widely used in geospatial research, 

especially in environmental and ecological 

studies. However, as documented by Running et 

al. (2004), Myneni et al. (2002), Gao (1996), and 

McFeeters (1996), the explanatory power of 

these indicators can be diminished in specific 

contexts, particularly when applied to localized or 

complex systems. Based on key findings from the 

existing literature, we have identified the 

following technical limitations that influence these 

discrepancies. 

High heterogeneity terrain: The capabilities of 

capturing geographical features, especially 

vegetation and water bodies, are lowered in 

mountainous regions or complex landscapes. 

Threshold sensitivity and underlying 

assumption: These remote-sensing indices are 

sensitive to the thresholds used to classify some 
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localized conditions. Specifically, generalizing 

thresholds over wide areas can lead to 

misinterpretations. Moreover, assumptions about 

light-use efficiency and climatic factors can lead 

to errors in estimating agricultural outputs. 

Semi-arid and arid regions: These satellite 

indicators often have a lower correlation with 

actual agricultural yields in the areas 

experiencing drought. Technically, soil 

reflectance and sparse vegetation make it difficult 

to differentiate between wet and dry conditions in 

such regions, leading to reduced accuracy and 

subsequently generating discrepancies in 

predicting the agricultural income of rural 

households. 

Atmospheric noise: Atmospheric noise, such as 

clouds or aerosols, diminishes the explanatory 

powers of many satellite-based indices.  

As previously stated, we recognize that the 

predictive power is a significant limitation of our 

study. Therefore, future improvements should 

focus on enhancing the model's accuracy by 

addressing three key aspects. First, 

computational methodology could benefit from 

integrating advanced approaches, including the 

latest machine learning techniques and deep 

learning algorithms (Tochaiwat & Pultawee, 

2024). Second, enhancing the model with diverse 

data sources, ranging from additional satellite 

indicators to social media metrics and mobility 

indices, could refine its predictive precision. 

Furthermore, factors representing local 

environmental conditions and city planning 

should be included (John et al., 2019; 

Thammapornpilas, 2015).  Third, applying pre-

processing methods—such as Principal 

Component Analysis (PCA)—can significantly 

enrich the data quality. PCA helps reduce 

dimensionality by transforming the original 

variables into a smaller set of uncorrelated 

components that capture most of the variance in 

the data. This eliminates redundant information 

and highlights the most significant features 

contributing to the predictive model.  

In addition to enhancing accuracy, incorporating 

survey data from various time periods would 

facilitate robust spatiotemporal analysis. This 

would enable extended monitoring focused on 

the geographical distribution of poverty 

dynamics. 

CONCLUSION  

This study introduced a new analytical model 

integrating satellite indices, survey data, and 

machine learning to monitor developmental 

progress. An application on Google Earth Engine 

has been specifically developed to extract 

satellite-based indicators. Among several 

machine learning methodologies utilized, RF 

yielded the most accurate prediction. Moreover, 

the results obtained from feature analyses 

identified the significant association between 

economic activity density, settlement pattern, and 

household socioeconomic status—as proxied by 

non-food expenditure.  

The obtained findings essentially unveiled the 

intimate correlation between economic activity 

density and population patterns, emphasizing the 

necessity for governments to promote regional 

development. Strategic investments in 

infrastructure and the diversification from 

agricultural activities could be critical, catalyzing 

job creation and fostering alternative economic 

opportunities for enhanced income generation. 

For further refinement of this analytical approach, 

its predictive power must be enhanced. 

Integrating more variables and exploring 

additional machine learning models are advised 

to achieve a more accurate and robust analysis. 
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APPENDIX 

The alternative version of the application has been developed and launched, publicly accessible at: 

https://nattapong.users.earthengine.app/view/cambodia---provincial-time-series---satellite-data. This 

application provides a collection of satellite data, which is the annual average at the provincial level. 

Figures A1 and A2 exemplify the user interface and the result generated by this application.   

  

Figure A1 

The User Interface of the Alternative Version of Web-Based Application 

 

Note. From Combodia: Satellite-based indicators, by Google Earth Engine Apps, 2024 ( 

https://nattapong.users.earthengine.app/view/cambodia----districtdata----version-1). Copyright 2024 by 

Google LLC.
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Figure A2 

Satellite Data at the Provincial Level Extracted by the Application   

 

Note. From Satellite-based indicators (Combodia: district level), by Google Earth Engine Apps, 2024 

(https://nattapong.users.earthengine.app/view/cambodia----districtdata----version-1). Copyright 2024 by 

Google LLC. 
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