
Eng. & Technol. Horiz., vol. 43, no. 1, 2026, Art. no. 430101 Research article 

DOI: 10.55003/ETH.430101 ISSN: 2985–1688 (Online) 

Hybrid Simulated Annealing for Multi–Objective Capacitated 
Vehicle Routing in School Milk Distribution 

 
Peerapong Pakawanich* 

Department of Industrial Engineering and Management, Faculty of Engineering and Industrial Technology, Silpakorn 
University Sanam Chandra Palace Campus, Phra Prathom Chedi, Mueang, Nakhon Pathom, 73000, Thailand 

*Corresponding Author E–mail: pakawanich_p@su.ac.th. 
Received: Oct 01, 2025; Revised: Dec 02, 2025; Accepted: Dec 11, 2025 

 
Abstract 

This study develops a Hybrid Multi–Objective Simulated Annealing (HMOSA) framework for solving the 
Multi–Objective Capacitated Vehicle Routing Problem in Thailand’s School Milk Program, where balancing 
efficiency and fairness is essential due to the manual unloading tasks performed by each delivery team. The model 
minimizes total travel distance and workload imbalance, quantified by the standard deviation of vehicle loads to 
better capture physical handling effort. The proposed HMOSA introduces two novel mechanisms: i) warm–start 
initialization using extreme seed solutions generated from Single–Objective SA (SOSA) and Weighted–Sum SA 
(WSSA), and ii) a guided neighborhood mechanism that selects promising neighbors using weighted scores to 
enhance search efficiency and diversity. These contributions improve convergence stability without relying on 
complex parameter tuning. Computational experiments on 10, 30, and 51–customer instances demonstrate that 
HMOSA consistently outperforms conventional MOSA and SA, and provides superior Pareto–front quality 
compared with Non-dominated Sorting Genetic Algorithm II NSGA–II. Performance was assessed using two 
widely adopted indicators: hypervolume (HV) for solution diversity and inverted generational distance (IGD) for 
convergence reliability. In the real–world 51–school case, small increases in total distance resulted in substantial 
improvements in workload equity, offering actionable compromise solutions between distance and fairness. 
Overall, HMOSA embeds fairness into routing decisions while maintaining scalability and robustness, serving as 
a practical decision–support tool for real routing applications where routing efficiency and equitable workload 
distribution are both essential. 

Keywords: Capacitated vehicle routing problem, Hybrid simulated annealing, workload balance, Multi–objective

1. Introduction 
Transportation and logistics services play a vital 

role in ensuring the smooth flow of goods across 
supply chains and enabling economic activities across 
regions. Efficient distribution planning is essential for 
minimizing delays, reducing transportation costs, and 
maintaining service reliability. However, real–world 
logistics operations often involve complexities such as 
limited vehicle capacities, irregular demand patterns, 
uncertain traffic conditions, and manual loading and 
unloading tasks. These factors frequently lead to planning 
difficulties, operational inefficiencies, and excessive 
workload on certain delivery teams, highlighting the need 
for operationally viable routing strategies that can support 
practical decision–making in logistics operations. 

To tackle these logistics challenges, a wide range of 
metaheuristic algorithms have been employed. 
Population–based approaches such as Genetic Algorithms 
[1–5], Particle Swarm Optimization [6] and Ant Colony 
Optimization [7] have been successfully applied to 
various routing scenarios. However, these methods 
often require complex parameter tuning and large 
population management. In contrast, Simulated 
Annealing (SA) provides a simpler yet flexible single–
solution framework and has demonstrated strong 
performance across multiple VRP variants [8–11]. 

Within the research community, the Vehicle 
Routing Problem (VRP) provides the primary modeling 
framework for studying distribution challenges. 

Classical VRP models focus on minimizing total 
transportation cost [1],[4],[12], while more recent 
studies incorporate broader objectives related to 
environmental sustainability, service quality, and 
operational reliability [13–18]. These developments 
demonstrate a growing interest in multi–objective 
routing models that better reflect practical logistics 
requirements. 

Workload balancing across delivery routes has 
gained increasing attention in vehicle routing studies 
[19], with various approaches proposed to reflect 
fairness and efficiency in distribution operations. 
Lehuédé et al. [20] introduced a lexicographic 
minimax approach for route balancing in the VRP. 
Unlike traditional min–max methods, their model 
sought to progressively equalize route durations in 
descending order, thereby avoiding inconsistencies 
and promoting a fairer workload distribution among 
drivers. Shahnejat–Bushehri et al. [21] addressed 
workload balancing in the context of healthcare 
logistics during the COVID–19 pandemic. Their 
model defined workload in terms of total working 
time, including travel and service duration, and aimed 
to fairly assign routes to testers. Using a mixed–
integer programming model and adaptive large 
neighborhood search (ALNS), they achieved 
significantly better outcomes than real–world 
operations. Li et al. [22] proposed a cluster–based 
optimization framework for the VRP with workload 
balance (VRPWB), where workload was defined as 
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the combination of travel distance and delivery 
volume. Their multi–phase solution, using micro 
cluster fusion and a modified ant colony optimization 
(ACO) algorithm, proved effective in both first–mile 
and last–mile logistics settings. In 2025, Zhao et al. 
[23] presented a bi–objective urban logistics VRP 
model that jointly optimized total delivery cost and 
route workload to improve both operational efficiency 
and employee satisfaction. Workload was represented 
using route duration, and the proposed hybrid 
metaheuristic (MDLS with path relinking) effectively 
balanced operational and social objectives. Most 
recently, Xu and Ouyang [24] studied physical load 
balance in pallet–based logistics through the 2L–
SDVRPTW–LB model. Their focus was on achieving 
axle weight balance across semi–trailer trucks to 
ensure vehicle stability and road safety. A branch–
and–cut algorithm was used to handle this complex 
problem, reflecting concerns unique to large–volume 
or palletized logistics systems. 

Prior research often approximated workload using 
route distance or the number of serviced customers, 
while some studies have adopted total working time 
that includes travel, waiting, and service durations to 
better reflect operational effort under time window 
constraints [23]. However, these approaches mainly 
capture time–related dimensions and may not fully 
represent the physical burden in logistics environments 
where manual handling is dominant. This limitation 
becomes particularly evident in real distribution settings, 
such as the Thai School Milk Program. 

In the distribution of school milk, for example, 
delivery teams are responsible not only for 
transportation but also for lifting and unloading a 
substantial volume of milk pouches at each school. 
Under such labor–intensive conditions, time–based 
metrics alone may not accurately quantify human 
workload. A related study by Li et al. [22] combined 
both travel distance and delivery load into a single 
workload index and balanced it using a ratio–based 
objective. While this formulation captures overall 
operational effort, the aggregation of travel and 
manual handling into one measure may dilute the 
relative impact of physical labor in contexts where 
human effort is a critical concern. Therefore, in the 
present study, workload is represented solely by the 
total carried load, and the imbalance across routes is 
minimized to more directly reflect physical effort and 
promote fairness in real delivery operations. Based on 
this motivation, the school milk distribution problem is 
formulated as a Multi–Objective Capacitated Vehicle 
Routing Problem (MO–CVRP) that simultaneously 
minimizes travel distance and workload imbalance 
across delivery routes. 

To support informed decision–making in real 
logistics environments, a Hybrid Multi–Objective 
Simulated Annealing (HMOSA) algorithm is proposed. 
A key aspect of the method is the use of structured 
warm–start initialization. Instead of relying on random 
solutions, HMOSA adapts Single–Objective SA 

(SOSA) and Weighted–Sum SA (WSSA) to generate 
extreme seed solutions for both objectives. This design 
serves two practical purposes. First, it accelerates early 
convergence and reduces sensitivity to parameter 
settings. Second, and more importantly from a 
managerial standpoint, extreme solutions allow 
decision–makers to explicitly observe how total 
distance increases when workload balance is introduced 
as an additional objective. In typical routing practices 
where only distance minimization is considered, such 
trade–offs are rarely visualized or evaluated. The use of 
extreme seed solutions therefore enables planners to 
understand the consequences of balancing fairness with 
total distance and select routing strategies aligned with 
operational priorities. 

Furthermore, a fixed–probability acceptance rule is 
incorporated to preserve diversity among mutually 
non–dominated neighbors. Conventional adaptive 
probability schemes may increase computational 
burden or require calibration that varies across problem 
instances, which introduces additional learning time 
before consistent solutions can be obtained. The fixed 
strategy proposed in this study provides a more practical 
alternative by eliminating the need for probability 
learning during runtime and enabling faster 
convergence toward diverse non–dominated solutions. 
Such responsiveness is important in real–world 
applications, where practitioners typically require 
decision support that delivers solutions quickly and 
consistently without extensive parameter tuning. 

Finally, standard deviation of vehicle loads is 
adopted as the second objective. This metric was 
chosen because it provides a clear and interpretable 
indication of workload imbalance that can be directly 
communicated to decision–makers. When multiple 
routes must be discussed with stakeholders, a 
transparent measure of variation supports more 
effective evaluation and justification of alternative 
routing plans.  

In this way, the proposed framework functions as 
a managerial decision–support tool that enables the 
comparison of routing scenarios under competing 
objectives. It guides planners in assessing when an 
improvement in fairness may justify a modest increase 
in total travel distance, thereby making the trade–off 
between routing efficiency and equitable task 
allocation explicit and actionable. 

 
2. Problem Statement 

The problem under consideration is a variant of the 
CVRP. A single depot is responsible for serving a set of 
customer nodes with known demands. A homogeneous 
fleet of vehicles, each with limited capacity, is available 
to perform the deliveries. Each vehicle must start and 
end its route at the depot, and each customer must be 
visited exactly once by a single vehicle. 

In the real distribution system of the School Milk 
Program, deliveries follow a daily cycle: refrigerated 
trucks are loaded at a central depot each morning, visit 
all assigned schools, and return after completing their 
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routes. No intermediate reloading or split delivery is 
allowed, and there are no strict time windows since all 
routes are typically completed within regular working 
hours. Each vehicle is staffed by a driver and a 
delivery assistant, who must manually unload all milk 
pouches at every school. These operational 
characteristics justify modeling the distribution task as 
a capacitated VRP while also considering workload 
fairness, as manual handling effort is directly related 
to the carried load. A detailed description of the 
numerical data is presented in the experimental 
section. 

Two conflicting objectives are considered. The 
first is to minimize the total travel distance of all 
vehicles. The second is to minimize the imbalance of 
vehicle workloads, measured by the standard 
deviation of vehicle loads, in order to ensure fairness 
among delivery teams. This formulation is referred to 
as a MO–CVRP. 

Based on this problem description, the MO–CVRP 
can be mathematically formulated as follows.  
2.1 Mathematical Formulation 
Indices and sets 

i  index of origin nodes, I = {0, 1, 2, …, n } 
j index of destination nodes, J  = 

{0, 1, 2,  …, n } where j ≠ i. 
k index of vehicles, K = {1, 2,  …, K} 
A  set of directed arcs between nodes, A = {(i, j)  

i ∈ I, j∈ J , i ≠ j } 
Input parameters 

Dj demand at customer node j 
Q  vehicle capacity 
Cij  travel distance from node i to node j  

Decision variable 
xijk =  1 if vehicle k travel from node i to node j, 0 

otherwise. 
Objective functions 
Minimize total distance 
 

Min z1=���Cijxijk
k∈Kj∈Ji∈I

 (1) 

 
Eq. (1) seeks to minimize the total distance 

traveled by all vehicles. 
Minimize the standard deviation of vehicle loads 
 

Min z2=�
1

|K|�(Lk − L�)2

k∈K

 (2) 

 
where 𝐿𝐿𝑘𝑘 =  ∑ ∑ 𝐷𝐷𝑗𝑗𝑥𝑥𝑖𝑖𝑖𝑖𝑘𝑘j∈J,  j≠0𝑖𝑖∈𝑰𝑰 , ∀k ∈ K  represents 
the total load assigned to vehicle 𝑘𝑘. The average Lk  (𝐿𝐿�) 
is computed from 𝐿𝐿� = ∑ 𝐿𝐿𝑘𝑘

|K|k∈K  and |K|  is the 
cardinality of set K. 

Eq. (2) minimizes the standard deviation of vehicle 
loads, thereby promoting balanced utilization of the fleet. 
Constraints 

Each customer is entered exactly once (across the fleet) 
 

�� xijk
k∈K

= 1,   ∀j ∈ J\{0} 
i∈I

 (3) 

 
Eq. (3) guarantees that each customer j (excluding 

the depot) is served exactly once by one vehicle, 
ensuring complete and non–redundant coverage of 
demand points. 
Flow conservation 
 

� xijk =  � xjik, ∀j ∈ J,
i∈I

∀k ∈ K 
i∈I

 (4) 

 
Eq. (4) enforces flow conservation at each 

customer node. For every vehicle k, the number of arcs 
entering a customer node j must equal the number of 
arcs leaving it, thereby maintaining route continuity. 
Each vehicle must depart from the depot at the start of 
its route. 
 

� x0jk = 1,    ∀k ∈ K
j∈J,  j≠0

 (5) 

 
Eq. (5) ensures that each vehicle departs from the 

depot exactly once, establishing the starting point of 
every route. 
Vehicle load capacity 
 

� � 𝐷𝐷𝑗𝑗𝑥𝑥𝑖𝑖𝑖𝑖𝑘𝑘
j∈J,  j≠0𝑖𝑖∈𝑰𝑰

 ≤ Q,    ∀k ∈ K (6) 

 
Eq. (6) restricts the total assigned load of vehicle k 

not to exceed its maximum capacity Q. This reflects 
real–world resource limitations and ensures feasibility 
of the delivery plan. 
Binary constraint 

Eq. (7) indicates that xijk is binary. 
 

xijk ∈{0, 1},∀i ∈ I,  ∀j ∈ J,  ∀k ∈ K (7) 
 

In classical CVRP formulations, subtour 
elimination constraints are often included to explicitly 
prevent the formation of disconnected cycles. In this 
study, such constraints are not incorporated in the 
mathematical model. Instead, feasibility is ensured 
through the design of the HMOSA algorithm, where 
candidate solutions are represented as complete 
vehicle routes starting and ending at the depot. The 
neighborhood operators (Swap, Insert, Reverse), 
together with the repair mechanism, inherently 
generate feasible routes without subtours. As a result, 
the algorithm is capable of producing valid solutions 
while avoiding the additional computational burden of 
subtour elimination constraints. 
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3. Methodology 
This study proposes a Hybrid Multi–Objective 

Simulated Annealing (HMOSA) to solve a Multi–
Objective CVRP (MO–CVRP) that minimizes both 
the total travel distance and the load imbalance among 
vehicles. The method extends the conventional MOSA 
by introducing two key components: (i) a warm–start 
strategy using extreme seed solutions generated from 
single–objective simulated annealing (SOSA) and 
weighted–sum simulated annealing (WSSA), and (ii) 
a guided neighborhood mechanism that selects the 
most promising neighbor among multiple candidates 
based on a normalized weighted score. HMOSA 
preserves Pareto–based acceptance and maintains an 
external archive of non–dominated solutions. 
3.1 Inputs 

The algorithm requires a distance matrix, customer 
demands, and vehicle capacities. Simulated annealing 
parameters are the initial temperature Tinitial, the 
minimum temperature Tmin, the cooling rate α, and the 
number of iterations per temperature level. HMOSA 
parameters include the maximum archive size and the 
probability paccept_nondominated for accepting mutually 
non–dominated neighbors. Guidance parameters are 
the probability pguided_use, the number of candidate 
neighbors kcandidates, and a discrete set of weights. 
3.2 Solution representation and feasibility 

A solution is encoded as a set of routes assigned to 
vehicles, where each route begins and ends at the depot. 
Feasibility requires that every customer is visited exactly 
once and that the vehicle load does not exceed its 
capacity. When any constraint is violated, a repair 
operator relocates customers to restore feasibility. 

In classical CVRP formulations, subtour elimination 
constraints are typically included to prevent disconnected 
cycles. In the proposed approach, such constraints are not 
added to the mathematical model because feasibility is 
maintained directly by the algorithmic structure of 
HMOSA. All candidate solutions are encoded as full 
depot–to–depot routes, and new solutions are generated 
using Swap, Insert and Reverse operators that operate only 
on feasible routes. As a result, fragmented tours do not 
occur during the search process. 

If any violation occurs, such as excess load or loss 
of route continuity, the repair mechanism immediately 
adjusts the solution. Furthermore, only feasible 
solutions are retained in the archive, ensuring that all 
stored solutions remain valid. In this way, subtours are 
inherently avoided without requiring additional 
constraints, which reduces computational effort while 
preserving feasibility at every iteration. 
3.3 Objectives and dominance 

Each solution S is evaluated by two objectives: 
f(S)=(d(S), σ(S)), where d(S) is the total travel distance 
and σ(S) is the standard deviation of route loads. 
Dominance follows the Pareto minimization rule: 
solution x dominates solution y if it is no worse in both 
objectives and strictly better in at least one objective. 

3.4 Warm–start with extreme seeds. 
The algorithm first generates a set of extreme seed 

solutions by running SOSA separately for distance and 
load imbalance, and WSSA for weight w=1.0 (distance 
only) and w=0.0 (load imbalance only). These seeds 
represent different search directions and are inserted into 
the external archive to provide diverse starting points for 
exploration. The initial solution for MOSA is then selected 
from the seed set using a balanced weighted score with 
w=0.5, which helps initiate the search from a reasonable 
compromise between distance and workload balance. 

This strategy avoids starting from a purely random 
solution and reduces the risk of premature convergence by 
allowing the algorithm to explore both extreme ends of the 
objective spectrum from the beginning. As a result, the 
search process is accelerated while maintaining diversity, 
which improves the overall convergence behavior of 
HMOSA. 
3.5 Guided neighborhood mechanism. 

At each iteration, with probability pguided_use, guided 
search is performed. A weight is drawn from the 
weights set, and up to kcandidates feasible neighbors are 
generated using Swap, Insert, or Reverse operators. 
The neighbor with the lowest normalized weighted 
score is selected. Distances and load imbalances are 
normalized by ranges estimated from sampled feasible 
solutions. This mechanism acts as a soft directional 
guide that improves exploitation without fully 
abandoning random exploration. By occasionally 
prioritizing neighbors with better weighted scores, 
HMOSA can focus the search toward promising 
regions of the Pareto front while still preserving 
diversity. This balance helps reduce random walk 
behavior and supports stable convergence toward 
well–distributed non–dominated solutions. 
3.6 Acceptance rules and archive update. 

Acceptance is determined by three cases: (i) a 
dominating neighbor is always accepted, (ii) a dominated 
neighbor is accepted with probability exp(−loss/T), where 
the loss is the normalized deterioration in objectives, and 
(iii) non–dominated neighbors are accepted with 
probability paccept_nondominated. Each accepted solution is 
added to the archive, which retains only non–dominated 
solutions and truncates to the maximum size if necessary. 
3.7 Cooling schedule and termination. 

The temperature decreases geometrically as 
T←α×T. The algorithm terminates when T≤Tmin, and 
the final archive is returned as the set of non–
dominated solutions. 
Based on the aforementioned design, the complete 
algorithmic flow of HMOSA is summarized in the 
pseudocode shown in Figure 1. 

To provide a standard evolutionary benchmark, the 
Non–dominated Sorting Genetic Algorithm II (NSGA–
II) was implemented using a permutation–based 
representation, where each chromosome encodes vehicle 
routes that start and end at the depot while satisfying 
capacity constraints. Binary tournament selection was 
employed, and offspring were generated using order 
crossover (OX) and swap mutation adapted to the CVRP 
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route structure. NSGA–II follows the classical process of 
combining parent and offspring populations, sorting 
them into non–dominated fronts, and preserving diversity 

via crowding distance. The method is included solely as 
a baseline to benchmark the proposed HMOSA 
framework under comparable computational effort. 

 

 
Figure 1 Pseudocode of the proposed HMOSA algorithm 

 
In addition to the metaheuristic baseline, an exact 

method was included to provide a reference for solution 
optimality. A simplified branch and bound (B&B) 
procedure was developed for the 10–customer pilot 
instance. The method was adapted specifically for the 
MO–CVRP by constructing routes sequentially for 
multiple vehicles, enforcing capacity feasibility during 

branching, and closing each route by returning to the 
depot before starting the next one. A cost–based bound 
was applied to prune partial solutions whose accumulated 
travel cost already exceeded the best complete solution 
found so far. Although this B&B variant does not 
incorporate load balancing, it offers an exact reference 

Hybrid Multi–Objective Simulated Annealing (HMOSA) 
Input: 
  Distance matrix, customer demands, vehicle capacities; SA parameters: Tinitial, Tmin, α (cooling rate), 

iterations_per_T 
  HMOSA parameters: archive_max_size, paccept_nondominated 
  Hybrid guidance parameters: pguided_use, kcandidates, weights_set; Neighborhood operators: Swap, Insert, 

Reverse 
Procedure HMOSA(): 
  // Step 1: Initialization with Warm–Start 
  Generate a set of extreme seed solutions Sseeds by running SOSA (for min distance and min sd) and WSSA 

(for w=0 and w=1). 
  Initialize a feasible solution Scurrent from Sseeds. 
  Initialize Archive A with all solutions from Sseeds. 
  T ← Tinitial 
  // Step 2: Main Simulated Annealing Loop 
  while T > Tmin do 
    for iter = 1 to iterations_per_T do 
      // Step 3: Hybrid Neighborhood Search 
      if random() < pguided_use then 
        // Guided search: generate k candidates and select the one with the best weighted score. 
        Select a random weight w from weights_set. 
        Generate a pool of kcandidates Sc from Scurrent using random operators. 
        Sneighbor ← argmin(Sc, weighted score(w)) 
      else 
        // Standard random search: generate one neighbor. 
        Sneighbor ← apply random operator (Scurrent) 
     // Ensure the neighbor is feasible. 
      Repair Sneighbor if infeasible 
      // Step 4: Multi–Objective Acceptance Criteria 
      Evaluate objectives f(Sneighbor) = (TotalDistance, LoadSTD). 
      if f(Sneighbor) dominates f(Scurrent) then 
        Scurrent ← Sneighbor 
      else if f(Scurrent) dominates f(Sneighbor) then 
        Calculate loss based on the normalized deterioration in objectives. 
        if random() < exp(–loss / T) then 
          Scurrent ← Sneighbor 
      else 
        // Both solutions are non–dominated. 
        if random() < paccept_nondominated then 
          Scurrent ← Sneighbor 
      // Step 5: Update Archive and Temperature 
      Update Archive A with Sneighbor if it is a non–dominated solution. 
    end for 
    T ← T * α 
  end while 
  return the set of non–dominated solutions from Archive A 
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for routing distance and serves as the benchmark for 
evaluating solution quality in the pilot test.  

 
4. Numerical example 

To demonstrate the applicability of the proposed 
MO–CVRP model and the HMOSA solution 
approach, a numerical example is conducted based on 
the school milk distribution problem. The example 
illustrates how the model can be instantiated with real 
operational data and how the algorithm performs in 
generating efficient and balanced delivery routes. 
4.1 Case Description 

This study is motivated by Thailand’s School Milk 
Program, a long–standing national initiative to 
promote children’s nutrition. In this program, 
pasteurized milk is transported daily from a central 
depot to designated schools within each region. The 
case investigated here involves a contractor 
responsible for distributing milk to 51 schools and one 
depot, making a total of 52 delivery points. The fleet 
consists of eight refrigerated trucks, each with a 
capacity of 3,500 pouches (pch.), giving an overall 
delivery capacity of 28,000 pch.. Daily school 
demands vary considerably, ranging from 120 to 1,247 
pch., with a total demand of 25,157 pch. 

Operational details add further complexity beyond 
routing. Each vehicle is manned by a driver and a delivery 
assistant, who are jointly responsible not only for 
transporting milk but also for unloading and physically 
delivering pouches to each school. Consequently, if a 
vehicle is assigned to schools with consistently higher 
demand, the delivery team faces disproportionately 
heavier manual workloads compared to other teams. This 
highlights the importance of balancing workloads in 
addition to minimizing travel distances. Although time 
windows are common in many VRP variations, they were 
not treated as binding constraints in this case study. In the 
real operation of the School Milk Program, milk is 
delivered using refrigerated vehicles, and all routes can be 
completed within the normal daily distribution period 
without approaching any critical time limit. Therefore, no 
strict delivery–time windows or maximum route duration 
are enforced by the distributor. The geographic distribution 
of the depot and schools is illustrated in Figure 2. 

 

 
Figure 2. Geographic distribution of the depot 

and school customers in the study area 

Based on the geographic coordinates illustrated in 
Figure 2, the distance matrix was constructed by 
applying the Haversine formula to compute the great–
circle distance between every pair of nodes. This 
approach provides a realistic approximation of travel 
distances from latitude and longitude values without 
requiring detailed road network data. 
4.2 Parameter Settings 

The HMOSA algorithm requires parameters 
related to simulated annealing as well as the multi–
objective search. To account for differences in 
problem scale, three configurations were adopted: a 
pilot test with 10 customers, an intermediate case with 
30 customers, and the main case study with 51 
customers. Table 1 summarizes the settings. 

 
Table 1 Parameter settings for pilot and main case study 

Parameter Number of Customers 
10 30 51  

T0 100 300 500 
Tmin 10–3 10–3 10–3 

Cooling rate 0.990 0.993 0.995 
Iterations per 
temperature 10 15 20 

Archive size 100 250 400 
paccept_nondominated 0.9 0.9 0.9 

Number of 
runs 10 10 10 

 
The smaller 10–customer instance was used as a 

pilot test to validate HMOSA against an exact 
algorithm (branch–and–bound). Accordingly, lighter 
settings were employed, such as a lower initial 
temperature and faster cooling rate, to reduce 
computational effort while still enabling meaningful 
exploration. The 30–customer case served as a 
transitional benchmark, for which moderately 
increased parameters were used to strike a balance 
between computational tractability and the need for a 
broader search space. For the 51–customer case study, 
more extensive settings were required to cope with the 
larger search space. A higher initial temperature and 
slower cooling schedule allowed broader exploration, 
while a larger archive size preserved the diversity of 
Pareto–approximated solutions. Across all three 
scales, the acceptance probability for non–dominated 
solutions was kept constant at 0.9 to maintain a 
consistent trade–off between exploration and 
exploitation. In addition, the probability of using 
guided search was fixed at 0.50, which provided a 
moderate level of direction without reducing search 
diversity. 

To enable a fair and competitive comparison, the 
NSGA–II was implemented as an evolutionary 
benchmark baseline. Although it is not the focus of 
this study, its parameters were chosen to match the 
computational effort of HMOSA. For each problem 
size, a fixed population size and generation limit were 
used: (pop = 40, gen = 120) for 10 customers, (pop = 
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60, gen = 350) for 30 customers, and (pop = 80, gen = 
650) for 51 customers. Binary tournament selection 
was adopted, and offspring were generated using order 
crossover (OX) and swap mutation, with crossover 
and mutation probabilities fixed at 0.9 and 0.2, 
respectively. All runs were executed ten times, as in 
HMOSA. These settings are commonly used in multi–
objective VRP studies and allow NSGA–II to remain 
competitive as a baseline, while HMOSA incorporates 
additional mechanisms to explicitly enhance diversity 
and guided local search. 

The algorithm was implemented in Python and 
executed on a desktop equipped with an Intel(R) 
Core(TM) i7–4720HQ CPU running at 2.60 GHz and 
8 GB of RAM. For each problem size, the algorithm 
was run independently ten times to account for the 
stochastic nature of the search process. 

 
5. Results and Discussion 
5.1 Computational Results and Performance 

Assessment 
This section presents the computational results of 

the proposed HMOSA. The algorithm was first 
validated on a small 10–customer instance using an 
exact algorithm (B&B) as a reference, before being 
applied to the 51–customer school milk distribution 
case. Each algorithm was executed independently 10 
times to account for stochastic variability, and the 
results are analyzed in terms of both solution quality 
and consistency. The performance comparison is 
shown in Table 2. 

 
Table 2 Performance comparison of B&B, SA, 
MOSA, NSGA–II and HMOSA on small case 
 BD 

(km.) 
BLSD 
(pch.) 

Avg.  
BD 

(km.) 

Avg. 
BLSD 
(pch.) 

Time 
(sec) 

B&B 149.67 – 149.67 – 2.06 
SA 149.67 2.50 149.67 3.00 0.67 
MOSA 149.67 2.50 154.99 2.50 0.96 
NSGA–II 149.67 102.50 149.67 102.50 0.75 
HMOSA 149.67 2.50 153.66 2.50 2.28 

Note: B&B = branch and bound; SA = simulated 
annealing; MOSA = multi–objective simulated 
annealing; NSGA–II = non–dominated sorting genetic 
algorithm II; HMOSA = hybrid multi–objective 
simulated annealing. BD = Best distance; BLSD = 
Best load standard deviation; “Avg.” = reports the 
mean over 10 independent runs. km. = kilometer and 
pch. = pouches. 

 
From Table 2, the exact algorithm (B&B) 

achieved the shortest routing distance of 149.67 km, 
which serves as the reference optimum for the small–
scale instance. Although it does not address load 
balancing, it provides a useful benchmark for 
evaluating optimality gaps. 

SA matched this best distance and improved load 
balance with a best standard deviation of 2.50 pch. Its 
performance was also highly stable, with an average 

distance of 149.67 km and an average load SD of 3.00 
pch., corresponding to 0.00% optimality gap relative 
to B&B. 

MOSA also reached the same best total distance, 
and its average distance of 154.99 km yielded an 
optimality gap of 3.56%, indicating a moderate 
deterioration in travel distance when compared with 
the reference solution. 

In contrast, NSGA–II, while achieving the same best 
distance, exhibited a significantly higher load imbalance 
of 102.50 pch. In terms of routing efficiency, its average 
distance resulted in an optimality gap of 0.00%, but its 
high variability in load indicates that further 
mechanisms are required to enhance workload fairness 
within population–based approaches. 

The proposed HMOSA achieved an average distance 
of 153.66 km, corresponding to an optimality gap of 
2.66%, while maintaining the same best load standard 
deviation of 2.50 pch. This represents a notable 
improvement over MOSA, both in terms of solution 
stability and load balancing. 
Overall, these results confirm that HMOSA achieves a 
balanced trade–off between routing efficiency and 
workload fairness. With a lower optimality gap than 
MOSA and a vastly smaller load imbalance than NSGA–
II, HMOSA demonstrates strong convergence properties 
and improved practical relevance. The next section 
expands the analysis to an intermediate 30–customer case 
to examine scalability before proceeding to the real–
world 51–customer distribution problem.  

Table 3 presents the results of the intermediate 30–

customer instance. Unlike the previous small case, this 
scenario involves greater routing complexity, leading 
to a wider performance gap among the algorithms. SA 
continued to provide a competitive routing solution 
with the lowest best distance of 648.61 km. and a best 
load SD of 0 .4 9  pch., although its average distance 
increased to 6 6 4 .1 4  km. MOSA, on the other hand, 
showed a notable deterioration in both distance and 
workload balance, with an average distance of 875.26 
km. and a high average load SD of 8.54 pch. 
 
Table 3 Performance comparison of B&B, SA, 
MOSA, NSGA–II and HMOSA on intermediate case 
 BD 

(km.) 
BLSD 
(pch.) 

Avg.  
BD 

(km.) 

Avg. 
BLSD 
(pch.) 

Time 
(sec) 

SA 648.61 0.49 664.14 1.93 2.01 
MOSA 842.97 4.76 875.26  8.54 2.52 
NSGA–II 732.79 5.00 766.75 5.79 4.43 
HMOSA 648.77 1.65 648.77 1.02 7.59 

Note: B&B = branch and bound; SA = simulated 
annealing; MOSA = multi–objective simulated 
annealing; NSGA–II = non–dominated sorting genetic 
algorithm II; HMOSA = hybrid multi–objective 
simulated annealing. BD = Best distance; BLSD = Best 
load standard deviation; “Avg.” = reports the mean over 
10 independent runs. km. = kilometer and pch. = 
pouches. 



8 of 13  Eng. & Technol. Horiz., vol. 43, no. 1, 2026, Art. no. 430101 

 

NSGA–II achieved a moderate routing distance 
and demonstrated reasonable consistency; however, 
its best and average load SD values remained higher 
than those of SA and HMOSA, which implies that 
while NSGA–II can maintain competitive routing 
performance, achieving adequate workload fairness 
may require additional balancing mechanisms. 

The proposed HMOSA obtained a balanced 
performance across objectives. It achieved a best 
distance of 6 4 8 .7 7  km. that was comparable to SA, 
while reducing the average load SD to 1 . 0 2  pch., 
yielding the lowest variability among all methods. 
These observations indicate that HMOSA preserved 
solution quality and stability when the problem scale 
increased, suggesting that its search mechanism can 
adapt effectively to larger routing instances. The next 
section applies the algorithm to the real–world 5 1 –
customer distribution case to assess its practical 
deployment potential. This reinforces the role of 
structured warm–start and archive–guided acceptance 
in sustaining performance under increased problem 
complexity. 

Table 4 presents the computational results for the 
real–world school milk distribution case. SA yielded 
relatively short routes, with a best distance of 1,348.67 
km. and an average distance of 1,369.67 km. It also 
produced low load variability (best = 1.57 pch., 
average = 1.93 pch.), demonstrating strong 
performance in the single–objective setting. However, 
SA does not generate a set of non–dominated 
solutions, which may limit practical decision–making 
when trade–offs between objectives must be 
considered. 

 
Table 4 Performance comparison of B&B, SA, 
MOSA, NSGA–II and HMOSA on the real–world 
case study 
 BD  

(km.) 
BLSD 
(pch.) 

Avg.  
BD (km.) 

Avg. 
BLSD 
(pch.) 

Time 
(sec) 

SA 1,348.67 1.57 1,369.67 1.93 5.53 
MOSA 2,308.40 36.75 2,357.20 45.61 7.25 
NSGA–II 1,706.80 5.15 1,797.33 9.09 15.27 
HMOSA 1,346.85 1.65 1,346.85 1.65 21.03 

Note: B&B = branch and bound; SA = simulated 
annealing; MOSA = multi–objective simulated 
annealing; NSGA–II = non–dominated sorting genetic 
algorithm II; HMOSA = hybrid multi–objective 
simulated annealing. BD = Best distance; BLSD = 
Best load standard deviation; “Avg.” = reports the 
mean over 10 independent runs. km. = kilometer and 
pch. = pouches. 

 
MOSA generated a more diverse solution set but 

tended to converge to regions with considerably 
higher distances, with a best of 2,308.40 km. and an 
average of 2,357.20 km. The workload imbalance was 
also significantly higher (best load SD = 36.75 pch., 
average = 45.61 pch.), indicating that it struggled to 

maintain consistent trade–offs between route 
efficiency and workload balance. 

NSGA–II provided a more balanced performance 
compared with MOSA, achieving a best routing 
distance of 1,706.80 km. and a best load SD of 5.15 
pch. Its average performance was also more stable 
across runs. These results confirm its capability to 
explore the Pareto front; however, the observed 
variability suggests that additional mechanisms may 
be required to refine workload balancing on complex 
real–world instances. 

HMOSA achieved the lowest values across both 
distance and workload objectives, with a best of 
1,346.85 km. and a consistently low load SD of 1.65 
pch. in both the best and average cases. This 
demonstrates the effectiveness of integrating warm–
start initialization, archive–based selection, and a 
guided neighborhood search, allowing the algorithm 
to explore promising regions of the solution space 
while preserving stability across runs. 

In addition to aggregated performance results, the 
comparison retains the best distance and best load 
standard deviation for each method. These values are 
not intended to imply overall superiority but to 
highlight extreme solutions that support managerial 
decisions. In practical routing operations, especially in 
the school milk context, planners often review the 
minimum–distance case and the most balanced–
workload case before choosing a compromise that 
matches operational priorities. Presenting these 
extremes helps visualize the trade–off frontier and 
allows stakeholders to assess how fairness 
improvements may require additional travel distance. 
Thus, including best values acts as a decision–support 
feature, aligning with the objective of using HMOSA 
for real–world planning. 

To evaluate the quality of the obtained Pareto 
solutions, two widely adopted metrics were used: 
Inverted Generational Distance (IGD) and 
Hypervolume (HV). IGD measures how close the 
obtained solutions are to the true Pareto front, where 
smaller values indicate stronger convergence, while 
HV quantifies the extent of the dominated objective 
space and reflects solution diversity. These indicators 
have been commonly employed in recent multi–
objective VRP studies and are considered essential for 
assessing both convergence reliability and Pareto–
front coverage [25–26]. As shown in Table 5, 
HMOSA achieved the lowest IGD and the highest HV 
values across all problem sizes, demonstrating 
consistent dominance in both convergence and 
solution diversity while preserving well–distributed 
trade–off solutions. As the problem size increased, this 
trend became more evident. For example, the IGD 
value of HMOSA decreased from 0.0997 in the 10–
customer case to 0.0286 in the intermediate 30–
customer case and remained comparatively low at 
0.0531 in the real–world instance of 51 customers. In 
contrast, both MOSA and NSGA–II reported 
considerably higher IGD values across all scales. 
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HMOSA also yielded the highest HV values in all 
cases, reaching 1.1524 and 1.0866 for the 30– and 51–
customer instances, which confirms that the algorithm 
consistently explored more promising regions of the 
objective space than MOSA and NSGA–II. 

These results demonstrate that HMOSA provides 
not only superior objective values but also strong 
convergence behavior and Pareto set diversity when 

the problem scale increases. This characteristic is 
important for practical routing applications where 
reliable performance is required across different 
operational environments. Overall, the findings 
confirm that the hybrid structure of HMOSA supports 
algorithmic robustness and practical scalability for 
real distribution planning.

 
Table 5 Comparison of IGD and HV results for MOSA, NSGA–II and HMOSA at different scales 

No. of 
customers 

MOSA NSGA–II HMOSA 
IGD HV IGD HV IGD HV 

10 0.1069 1.1171 0.1461 0.6494 0.0997 1.1163 
30 0.1506 0.9579 0.0706 1.0856 0.0286 1.1524 
51 0.2894 0.6488 0.1462 1.0052 0.0531 1.0866 

Figure 3 further illustrates the Pareto fronts 
obtained from MOSA and HMOSA. The Pareto front 
of MOSA appears widely scattered and biased toward 
solutions with longer distances and higher workload 
variability. In contrast, HMOSA produced a more 
compact and well–defined Pareto front that lies closer 
to the efficient frontier, demonstrating that it 
simultaneously improved both objectives. 
Importantly, HMOSA’s solutions clustered in the 
lower–left region of the graph, which represents 
desirable combinations of shorter travel distances and 
balanced vehicle loads. 

In addition, NSGA–II was also tested to provide a 
complementary reference from a population–based 
approach. Its Pareto front showed a wider exploratory 
spread, which indicates a strong search capability, yet 
the solutions tended to be more dispersed and 
demonstrated higher variability in load balance. When 
compared visually, HMOSA maintained a clearer 
trend toward the efficient region, especially in the 
lower–left portion of the objective space, suggesting 
that its guided neighborhood strategy helped preserve 
both convergence and practicality in the trade–off 
solutions. 

 

 
Figure 3 Pareto front from MOSA, NSGA–II and HMOSA

 

2,300 2,500 2,700 2,900 

200 

160 

120 

80 

40 SD
 o

f v
eh

ic
le

 lo
ad

s (
po

uc
he

s)
 

Total distance (kilometer) 

        Pareto front from MOSA 

Solutions near front 

Pareto front 

500 

300 

100 

0 

400 

200 

1,500 2,000 2,500 3,000 3,500 

SD
 v

eh
ic

le
 lo

ad
s (

po
uc

he
s)

 

Total distance (kilometer) 

Pareto front from HMOSA 

Solutions near front 

Pareto front 

 

1,500 2,000 2,500 3,000 

600 

400 

200 

0 SD
 o

f v
eh

ic
le

 lo
ad

s (
po

uc
he

s)
 

Total distance (kilometer) 

Pareto front from NSGA–II 

Solutions near front 

 Pareto front 

3,500 



10 of 13  Eng. & Technol. Horiz., vol. 43, no. 1, 2026, Art. no. 430101 

 

5.2 Sensitivity Analysis of Algorithm Parameters  
To further investigate the behavior of the proposed 

HMOSA algorithm and to assess its robustness under 
different parameter settings, a one–factor–at–a–time 
(OFAT) sensitivity analysis was conducted. The 
baseline configuration was first calibrated through 
preliminary experiments and adopted as the default 
setting for the HMOSA algorithm in the main study. 
The purpose of the sensitivity analysis was therefore 
not to replace the baseline, but to investigate how each 
parameter individually influences the algorithm’s 
behavior and to identify potential alternatives that 
might be beneficial under different operational 
requirements. After this primary comparison, seven 
configurations (S0–S6) were designed to examine the 
influence of individual parameters on search 
performance, while only one parameter was adjusted 
at a time and all the others were held constant. The full 
parameter settings adopted in this experiment are 
presented in Table 6. 

 
Table 6 Parameter settings for the HMOSA sensitivity 
analysis on the 51–customer case 
scenario T0 Tmin Cooling rate paccept_nondominated 

S0 500 10–3 0.995 0.90 
S1 400 10–3 0.995 0.90 
S2 600 10–3 0.995 0.90 
S3 500 10–3 0.985 0.90 
S4 500 10–3 0.999 0.90 
S5 500 10–3 0.995 0.70 
S6 500 10–3 0.995 0.95 

 
In this analysis, three parameters were selected for 

examination: the initial temperature (𝑇𝑇0), the cooling 
rate, and the acceptance probability for non–
dominated solutions (𝑝𝑝accept_nondominated) . These 
parameters were chosen because they directly 
influence the degree of exploration, convergence 
behavior, and diversity of the Pareto front. Scenarios 
S1 and S2 varied only the initial temperature to test the 
effect of faster convergence (S1) or increased 
randomness at the start of the process (S2). Scenarios 
S3 and S4 modified the cooling rate, which is known 
to be highly sensitive in simulated annealing–based 
approaches, to analyze whether broader exploration 
(S3) or prolonged diversification (S4) could influence 
computational cost and solution quality. Finally, 
Scenarios S5 and S6 focused on adjusting the 
acceptance probability for non–dominated solutions to 
explore how different levels of diversification and 
exploitation affect the overall performance. 

After running all seven scenarios using the same 
dataset and stopping criteria, the results were 
summarized in Table 7, which reports the best 
achieved distance, load standard deviation, 
hypervolume (HV), IGD, and computational time (in 
seconds) for each configuration. 

Table 7 HV and IGD values for HMOSA under 
different parameter settings (51–customer case) 

scenario 
Best 

Distance 
(km.) 

Best 
Load 
SD 

(pch.) 

HV IGD Time 
(sec) 

S0 1,346.85 1.65 0.0369 1.0864 21.03 
S1 1,346.98 1.87 0.0457 1.0637 20.76 
S2 1,368.35 1.57 0.0643 1.1029 21.52 
S3 1,391.09 2.06 0.0884 1.0688 7.82 
S4 1,360.13 0.70 0.0639 1.0601 104.95 
S5 1,358.41 1.58 0.0560 1.0891 21.70 
S6 1,358.38 2.28 0.0616 1.0670 22.46 
 
Table 7 shows that varying the parameter settings 

around the calibrated baseline (S0) did not lead to any 
severe performance degradation, indicating that the 
proposed HMOSA algorithm exhibits a reasonable 
degree of robustness. Across all scenarios, the best 
distance, load standard deviation, HV, and IGD values 
remain within a relatively narrow range, and the 
computational times are also stable, except for the 
intentionally extreme setting in S4. The baseline 
configuration (S0) continues to provide one of the best 
travel distances with a balanced load standard 
deviation and a moderate runtime, which reflects a 
conservative convergence towards a high–quality 
region in the objective space. This conservative yet 
reliable behavior is the main reason why S0 was 
adopted as the default parameter setting in the main 
experiments. 

The alternative scenarios mainly illustrate how small 
perturbations in the parameters shift the balance between 
convergence quality, Pareto–front diversity, and 
computational effort. For example, S1 slightly improves 
IGD and HV relative to S0, but the gains are modest and 
accompanied by a small increase in load variability. S2 
and S5 achieve somewhat higher HV values than S0 but 
at the cost of worse IGD, suggesting that a wider Pareto 
front does not always translate into better proximity to 
the reference set. S3 yields the highest HV and the 
shortest runtime, showing that a more exploratory 
cooling schedule can generate a more diverse set of 
solutions efficiently; however, this comes with 
noticeably higher total distance and load imbalance, 
which may be less desirable in practice. Conversely, S4 
produces the lowest IGD and an excellent load standard 
deviation, together with a reasonably high HV value, but 
requires a much longer computational time, limiting its 
suitability for time–sensitive applications. Scenario S6 
also illustrates a more exploratory behavior, with 
improved HV compared with S0 but again at the price 
of poorer load balancing. 

Overall, these results confirm that HMOSA 
maintains stable and acceptable performance under 
controlled parameter variation, supporting the robustness 
of the proposed framework. The differences between S0 
and the alternative configurations are relatively small in 
most metrics, and no scenario leads to a collapse in 
solution quality. In this context, S0 remains a suitable 
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default choice when a balanced and dependable 
performance is required, while configurations such as S3 
or S4 may be considered in situations where either a 
wider Pareto front or slightly better convergence is 
desired and additional computational effort is acceptable. 
The observed trade–offs therefore provide useful 
guidance for practical parameter tuning and reinforce the 
reliability and flexibility of the HMOSA algorithm for 
real–world applications. 
5.3 Managerial Interpretation and Decision–

Support Insights   
From a managerial perspective, this graphical 

representation is highly informative. The Pareto front 
reveals the inherent trade–off between minimizing 
distance and achieving workload balance. For instance, 
solutions on the extreme distance–minimizing side 
reduce total travel distance but result in uneven load 
distribution across vehicles, placing disproportionate 
burden on certain delivery teams. Conversely, solutions 
on the load–balancing extreme provide equitable 
workloads but require slightly longer travel distances. 
The compromise solutions generated by HMOSA 
highlight practical compromises, where moderate 

increases in distance can substantially improve 
workload equity, offering decision–makers viable 
trade–offs between distance and fairness. 

In the context of Thailand’s School Milk Program, 
these trade–offs are not merely theoretical. Distribution 
activities involve not only transportation but also manual 
unloading of pouches at each school, which means that 
workload imbalance translates directly into physical strain 
and fatigue for some delivery teams. If one vehicle is 
assigned disproportionately high demand, its driver–
assistant pair must spend substantially more time and 
effort compared to others, even if the overall distance is 
minimized. Conversely, evenly distributed workloads can 
enhance equity and morale among staff but often require 
longer travel distances. To illustrate these practical 
implications more clearly, three representative Pareto 
solutions were selected and analyzed at the vehicle level, 
as summarized in Table 8. These examples highlight how 
different routing strategies affect both total distance and 
workload allocation across the fleet, providing concrete 
evidence of the operational consequences behind abstract 
performance indicators.

 
Table 8 Comparison of Distance and Load Across Selected Pareto Solutions 

vehicle Distance (kilometer)/Load of each pareto solution (pouches) 
Pareto_01 (Min Distance) Pareto_45 (Compromise) Pareto_91 (Min SD) 

1 128.7 / 2,945 693.3 / 3,184 729.2 / 3,143 
2 101.8 / 3,427 187.0 / 3,247 433.3 / 3,145 
3 65.5 / 1,860 272.9 / 3,132 275.7 / 3,145 
4 74.0 / 3,262 157.2 / 2,983 702.8 / 3,148 
5 584.7 / 3,417 192.7 / 3,070 255.6 / 3,142 
6 98.7 / 3,483 136.5 / 3,226 220.6 / 3,145 
7 157.4 / 3,317 126.6 / 3,109 197.6 / 3,144 
8 136.0 / 3,446 151.4 / 3,206 624.1 / 3,145 

Table 8 illustrates the vehicle–level results for 
three representative Pareto solutions: the minimum–
distance solution (Pareto_01), a compromise solution 
(Pareto_45), and the minimum–imbalance solution 
(Pareto_91). In Pareto_01, the total distance is 
minimized at 1,346.9 km., representing the minimum 
distance routing plan in terms of fuel consumption and 
travel time. However, the workload imbalance is 
extreme: Vehicle 3 carries only 1,860 pch., while 
Vehicle 6 carries as much as 3,483 pch., a disparity of 
more than 1,600 pch. Such uneven distribution implies 
that certain delivery teams face nearly double the 
workload of others. Although this solution reduces 
total travel distance, it risks overburdening specific 
teams, which may lead to fatigue, slower service, and 
lower workforce satisfaction. 

At the opposite extreme, Pareto_91 achieves 
almost perfect workload balance, with every vehicle 
carrying approximately 3,140–3,148 pch. The 
standard deviation of load drops to only 1.65, meaning 
that no team bears a disproportionately higher burden. 
Yet, this comes at the expense of a very high total 
distance of 3,438.8 km, which is more than 2,000 km 
longer than the minimum–distance case. While this 

solution ensures fairness and equity across delivery 
teams, the additional travel would substantially 
increase fuel consumption and total travel distance, 
which directly translates into higher operating cost, as 
well as environmental impact, making it less practical 
under real–world budgetary constraints. 

A more pragmatic option is Pareto_45, the 
compromise solution, where the total distance is 
1,917.7 km., higher than Pareto_01 but still 
substantially lower than Pareto_91. In this case, the 
workload disparity is reduced significantly: the 
lightest–loaded vehicle (Vehicle 4 with 2,983 pch.) 
differs from the heaviest (Vehicle 2 with 3,247 pch.) 
by only 264 pch.. All other vehicles fall within a 
narrow range around 3,000 pch., providing a far more 
equitable distribution of workload while keeping 
travel distance at a manageable level. This solution 
exemplifies the strength of HMOSA in identifying 
balanced trade–offs: modest additional distance 
secures substantial gains in fairness without the 
excessive cost of the fully balanced solution. 

In practice, managers should not only view the 
Pareto solutions as abstract trade–offs but also 
integrate them into operational policies. Fairness can 
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be introduced as a managerial guideline, for example 
by monitoring the deviation in vehicle loads and 
keeping it within an acceptable range. Compromise 
solutions such as Pareto_45 can serve as baseline 
routing plans, which can be periodically updated when 
school demands fluctuate, ensuring that both 
efficiency and equity are maintained over time. 
Adopting balanced workloads reduces the hidden 
costs of worker fatigue, absenteeism, and turnover, 
thereby supporting the long–term sustainability of the 
program. Finally, the proposed HMOSA approach can 
be embedded into decision–support tools for regional 
contractors and policy makers, enabling them to 
compare scenarios and select routing strategies that 
best align with organizational priorities, budget 
constraints, and workforce well–being. 

 

6. Conclusion 
This study proposed a Hybrid Multi–Objective 

Simulated Annealing (HMOSA) framework for the 
school milk routing problem in Thailand, where 
workload distribution is directly linked to manual 
unloading tasks. By jointly minimizing total travel 
distance and balancing vehicle workloads, the 
proposed approach explicitly captures the trade-off 
between operational efficiency and labor fairness. 
Unlike studies that approximate workload from 
service time, the present formulation captures physical 
effort through the standard deviation of vehicle loads. 
This aligns with recent research on workload–
balancing vehicle routing problem and offers a more 
interpretable fairness indicator for labor–intensive 
logistics settings. The results showed that HMOSA 
outperformed SA and MOSA and achieved superior 
Pareto–front performance compared with NSGA–II. 
The structured warm–start strategy and guided 
neighborhood mechanism enhanced convergence and 
solution diversity and were validated using HV and 
IGD metrics. These findings extend current 
knowledge by demonstrating that trajectory–based 
heuristics can remain effective when both distance 
efficiency and fairness are considered in operational 
decision–making. 

Several limitations exist. The model uses only two 
objectives, relies on data from a single contractor, and 
does not incorporate driver fatigue. Future work may 
integrate additional operational constraints or multi–
period planning. Overall, HMOSA provides a 
practical and scalable decision–support framework 
that connects multi–objective optimization research 
with real routing applications. 
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