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Abstract

This study develops a Hybrid Multi—Objective Simulated Annealing (HMOSA) framework for solving the
Multi—Objective Capacitated Vehicle Routing Problem in Thailand’s School Milk Program, where balancing
efficiency and fairness is essential due to the manual unloading tasks performed by each delivery team. The model
minimizes total travel distance and workload imbalance, quantified by the standard deviation of vehicle loads to
better capture physical handling effort. The proposed HMOSA introduces two novel mechanisms: i) warm—start
initialization using extreme seed solutions generated from Single—Objective SA (SOSA) and Weighted—Sum SA
(WSSA), and ii) a guided neighborhood mechanism that selects promising neighbors using weighted scores to
enhance search efficiency and diversity. These contributions improve convergence stability without relying on
complex parameter tuning. Computational experiments on 10, 30, and 51—customer instances demonstrate that
HMOSA consistently outperforms conventional MOSA and SA, and provides superior Pareto—front quality
compared with Non-dominated Sorting Genetic Algorithm II NSGA-II. Performance was assessed using two
widely adopted indicators: hypervolume (HV) for solution diversity and inverted generational distance (IGD) for
convergence reliability. In the real-world 51-school case, small increases in total distance resulted in substantial
improvements in workload equity, offering actionable compromise solutions between distance and fairness.
Overall, HMOSA embeds fairness into routing decisions while maintaining scalability and robustness, serving as
a practical decision—support tool for real routing applications where routing efficiency and equitable workload
distribution are both essential.
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1. Introduction

Transportation and logistics services play a vital
role in ensuring the smooth flow of goods across
supply chains and enabling economic activities across
regions. Efficient distribution planning is essential for
minimizing delays, reducing transportation costs, and
maintaining service reliability. However, real-world
logistics operations often involve complexities such as
limited vehicle capacities, irregular demand patterns,
uncertain traffic conditions, and manual loading and
unloading tasks. These factors frequently lead to planning
difficulties, operational inefficiencies, and excessive
workload on certain delivery teams, highlighting the need
for operationally viable routing strategies that can support
practical decision—making in logistics operations.

To tackle these logistics challenges, a wide range of
metaheuristic  algorithms have been employed.
Population—based approaches such as Genetic Algorithms
[1-5], Particle Swarm Optimization [6] and Ant Colony
Optimization [7] have been successfully applied to
various routing scenarios. However, these methods
often require complex parameter tuning and large
population management. In contrast, Simulated
Annealing (SA) provides a simpler yet flexible single—
solution framework and has demonstrated strong
performance across multiple VRP variants [8—11].

Within the research community, the Vehicle
Routing Problem (VRP) provides the primary modeling
framework for studying distribution challenges.

Classical VRP models focus on minimizing total
transportation cost [1],[4],[12], while more recent
studies incorporate broader objectives related to
environmental sustainability, service quality, and
operational reliability [13—18]. These developments
demonstrate a growing interest in multi-objective
routing models that better reflect practical logistics
requirements.

Workload balancing across delivery routes has
gained increasing attention in vehicle routing studies
[19], with various approaches proposed to reflect
fairness and efficiency in distribution operations.
Lehuédé et al. [20] introduced a lexicographic
minimax approach for route balancing in the VRP.
Unlike traditional min—max methods, their model
sought to progressively equalize route durations in
descending order, thereby avoiding inconsistencies
and promoting a fairer workload distribution among
drivers. Shahnejat-Bushehri et al. [21] addressed
workload balancing in the context of healthcare
logistics during the COVID-19 pandemic. Their
model defined workload in terms of total working
time, including travel and service duration, and aimed
to fairly assign routes to testers. Using a mixed—
integer programming model and adaptive large
neighborhood search (ALNS), they achieved
significantly better outcomes than real-world
operations. Li et al. [22] proposed a cluster—based
optimization framework for the VRP with workload
balance (VRPWB), where workload was defined as
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the combination of travel distance and delivery
volume. Their multi-phase solution, using micro
cluster fusion and a modified ant colony optimization
(ACO) algorithm, proved effective in both first-mile
and last-mile logistics settings. In 2025, Zhao et al.
[23] presented a bi—objective urban logistics VRP
model that jointly optimized total delivery cost and
route workload to improve both operational efficiency
and employee satisfaction. Workload was represented
using route duration, and the proposed hybrid
metaheuristic (MDLS with path relinking) effectively
balanced operational and social objectives. Most
recently, Xu and Ouyang [24] studied physical load
balance in pallet-based logistics through the 2L-
SDVRPTW-LB model. Their focus was on achieving
axle weight balance across semi-trailer trucks to
ensure vehicle stability and road safety. A branch—
and—cut algorithm was used to handle this complex
problem, reflecting concerns unique to large—volume
or palletized logistics systems.

Prior research often approximated workload using
route distance or the number of serviced customers,
while some studies have adopted total working time
that includes travel, waiting, and service durations to
better reflect operational effort under time window
constraints [23]. However, these approaches mainly
capture time-related dimensions and may not fully
represent the physical burden in logistics environments
where manual handling is dominant. This limitation
becomes particularly evident in real distribution settings,
such as the Thai School Milk Program.

In the distribution of school milk, for example,
delivery teams are responsible not only for
transportation but also for lifting and unloading a
substantial volume of milk pouches at each school.
Under such labor—intensive conditions, time—based
metrics alone may not accurately quantify human
workload. A related study by Li et al. [22] combined
both travel distance and delivery load into a single
workload index and balanced it using a ratio—based
objective. While this formulation captures overall
operational effort, the aggregation of travel and
manual handling into one measure may dilute the
relative impact of physical labor in contexts where
human effort is a critical concern. Therefore, in the
present study, workload is represented solely by the
total carried load, and the imbalance across routes is
minimized to more directly reflect physical effort and
promote fairness in real delivery operations. Based on
this motivation, the school milk distribution problem is
formulated as a Multi-Objective Capacitated Vehicle
Routing Problem (MO-CVRP) that simultaneously
minimizes travel distance and workload imbalance
across delivery routes.

To support informed decision—making in real
logistics environments, a Hybrid Multi-Objective
Simulated Annealing (HMOSA) algorithm is proposed.
A key aspect of the method is the use of structured
warm-—start initialization. Instead of relying on random
solutions, HMOSA adapts Single—Objective SA

(SOSA) and Weighted—Sum SA (WSSA) to generate
extreme seed solutions for both objectives. This design
serves two practical purposes. First, it accelerates early
convergence and reduces sensitivity to parameter
settings. Second, and more importantly from a
managerial standpoint, extreme solutions allow
decision—makers to explicitly observe how total
distance increases when workload balance is introduced
as an additional objective. In typical routing practices
where only distance minimization is considered, such
trade—offs are rarely visualized or evaluated. The use of
extreme seed solutions therefore enables planners to
understand the consequences of balancing fairness with
total distance and select routing strategies aligned with
operational priorities.

Furthermore, a fixed—probability acceptance rule is
incorporated to preserve diversity among mutually
non—dominated neighbors. Conventional adaptive
probability schemes may increase computational
burden or require calibration that varies across problem
instances, which introduces additional learning time
before consistent solutions can be obtained. The fixed
strategy proposed in this study provides a more practical
alternative by eliminating the need for probability
learning during runtime and enabling faster
convergence toward diverse non—dominated solutions.
Such responsiveness is important in real-world
applications, where practitioners typically require
decision support that delivers solutions quickly and
consistently without extensive parameter tuning.

Finally, standard deviation of vehicle loads is
adopted as the second objective. This metric was
chosen because it provides a clear and interpretable
indication of workload imbalance that can be directly
communicated to decision—-makers. When multiple
routes must be discussed with stakeholders, a
transparent measure of variation supports more
effective evaluation and justification of alternative
routing plans.

In this way, the proposed framework functions as
a managerial decision—support tool that enables the
comparison of routing scenarios under competing
objectives. It guides planners in assessing when an
improvement in fairness may justify a modest increase
in total travel distance, thereby making the trade—off
between routing efficiency and equitable task
allocation explicit and actionable.

2. Problem Statement

The problem under consideration is a variant of the
CVRP. A single depot is responsible for serving a set of
customer nodes with known demands. A homogeneous
fleet of vehicles, each with limited capacity, is available
to perform the deliveries. Each vehicle must start and
end its route at the depot, and each customer must be
visited exactly once by a single vehicle.

In the real distribution system of the School Milk
Program, deliveries follow a daily cycle: refrigerated
trucks are loaded at a central depot each morning, visit
all assigned schools, and return after completing their
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routes. No intermediate reloading or split delivery is
allowed, and there are no strict time windows since all
routes are typically completed within regular working
hours. Each vehicle is staffed by a driver and a
delivery assistant, who must manually unload all milk
pouches at every school. These operational
characteristics justify modeling the distribution task as
a capacitated VRP while also considering workload
fairness, as manual handling effort is directly related
to the carried load. A detailed description of the
numerical data is presented in the experimental
section.

Two conflicting objectives are considered. The
first is to minimize the total travel distance of all
vehicles. The second is to minimize the imbalance of
vehicle workloads, measured by the standard
deviation of vehicle loads, in order to ensure fairness
among delivery teams. This formulation is referred to
as a MO-CVRP.

Based on this problem description, the MO—-CVRP
can be mathematically formulated as follows.

2.1 Mathematical Formulation
Indices and sets
i index of origin nodes, I={0, 1,2, ...,n}
j index of destination nodes, J =
{0,1,2, ...,n} wherej#i.
k index of vehicles, K={1,2, ..., K}
A set of directed arcs between nodes, A = {(, j)
i€LjES,i#)}
Input parameters

D, demand at customer node j

(0] vehicle capacity

C;  travel distance from node i to node j
Decision variable
1 if vehicle k travel from node i to node j, 0
otherwise.

Objective functions
Minimize total distance

Xijk =

Min 7= Zz nyljk (1)

i€l jeJ kek

Eq. (1) seeks to minimize the total distance
traveled by all vehicles.
Minimize the standard deviation of vehicle loads

)

Min z,=

where Ly = Yier Xjg j20DjXiji » Vk € K represents
the total load assigned to vehicle k. The average L (L)
is computed from L = ZkeK% and |K| is the
cardinality of set K.

Eq. (2) minimizes the standard deviation of vehicle

loads, thereby promoting balanced utilization of the fleet.
Constraints

Each customer is entered exactly once (across the fleet)

D w1, vieno) 3

i€l kek

Eq. (3) guarantees that each customer j (excluding
the depot) is served exactly once by one vehicle,
ensuring complete and non-redundant coverage of
demand points.

Flow conservation

injk = ijlk, Vj€J Vk €K 4)

i€l i€l

Eq. (4) enforces flow conservation at each
customer node. For every vehicle k, the number of arcs
entering a customer node j must equal the number of
arcs leaving it, thereby maintaining route continuity.
Each vehicle must depart from the depot at the start of
its route.

Z xp=1, Vk€K )

J€L j#0

Eq. (5) ensures that each vehicle departs from the
depot exactly once, establishing the starting point of
every route.

Vehicle load capacity

> ) Dy <0, vkek ©)

i€l jej, j=0

Eq. (6) restricts the total assigned load of vehicle &
not to exceed its maximum capacity Q. This reflects
real-world resource limitations and ensures feasibility
of the delivery plan.

Binary constraint
Eq. (7) indicates that x; is binary.

X €40, 11.Vi€ I, Vj € J, Vk€ K 7

In classical CVRP formulations, subtour
elimination constraints are often included to explicitly
prevent the formation of disconnected cycles. In this
study, such constraints are not incorporated in the
mathematical model. Instead, feasibility is ensured
through the design of the HMOSA algorithm, where
candidate solutions are represented as complete
vehicle routes starting and ending at the depot. The
neighborhood operators (Swap, Insert, Reverse),
together with the repair mechanism, inherently
generate feasible routes without subtours. As a result,
the algorithm is capable of producing valid solutions
while avoiding the additional computational burden of
subtour elimination constraints.
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3. Methodology

This study proposes a Hybrid Multi—Objective
Simulated Annealing (HMOSA) to solve a Multi—
Objective CVRP (MO-CVRP) that minimizes both
the total travel distance and the load imbalance among
vehicles. The method extends the conventional MOSA
by introducing two key components: (i) a warm—start
strategy using extreme seed solutions generated from
single—objective simulated annealing (SOSA) and
weighted—sum simulated annealing (WSSA), and (ii)
a guided neighborhood mechanism that selects the
most promising neighbor among multiple candidates
based on a normalized weighted score. HMOSA
preserves Pareto—based acceptance and maintains an
external archive of non—dominated solutions.

3.1 Inputs

The algorithm requires a distance matrix, customer
demands, and vehicle capacities. Simulated annealing
parameters are the initial temperature T, the
minimum temperature 7., the cooling rate a, and the
number of iterations per temperature level. HMOSA
parameters include the maximum archive size and the
probability paccept nondominatea for accepting mutually
non—dominated neighbors. Guidance parameters are
the probability pguided use, the number of candidate
neighbors kcangidates, and a discrete set of weights.

3.2 Solution representation and feasibility

A solution is encoded as a set of routes assigned to
vehicles, where each route begins and ends at the depot.
Feasibility requires that every customer is visited exactly
once and that the vehicle load does not exceed its
capacity. When any constraint is violated, a repair
operator relocates customers to restore feasibility.

In classical CVRP formulations, subtour elimination
constraints are typically included to prevent disconnected
cycles. In the proposed approach, such constraints are not
added to the mathematical model because feasibility is
maintained directly by the algorithmic structure of
HMOSA. All candidate solutions are encoded as full
depot—to—depot routes, and new solutions are generated
using Swap, Insert and Reverse operators that operate only
on feasible routes. As a result, fragmented tours do not
occur during the search process.

If any violation occurs, such as excess load or loss
of route continuity, the repair mechanism immediately
adjusts the solution. Furthermore, only feasible
solutions are retained in the archive, ensuring that all
stored solutions remain valid. In this way, subtours are
inherently avoided without requiring additional
constraints, which reduces computational effort while
preserving feasibility at every iteration.

3.3 Objectives and dominance

Each solution § is evaluated by two objectives:
AS=(d(S), 6(S)), where d(S) is the total travel distance
and o(S) is the standard deviation of route loads.
Dominance follows the Pareto minimization rule:
solution x dominates solution y if it is no worse in both
objectives and strictly better in at least one objective.

3.4 Warm-start with extreme seeds.

The algorithm first generates a set of extreme seed
solutions by running SOSA separately for distance and
load imbalance, and WSSA for weight w=1.0 (distance
only) and w=0.0 (load imbalance only). These seeds
represent different search directions and are inserted into
the external archive to provide diverse starting points for
exploration. The initial solution for MOSA is then selected
from the seed set using a balanced weighted score with
w=0.5, which helps initiate the search from a reasonable
compromise between distance and workload balance.

This strategy avoids starting from a purely random
solution and reduces the risk of premature convergence by
allowing the algorithm to explore both extreme ends of the
objective spectrum from the beginning. As a result, the
search process is accelerated while maintaining diversity,
which improves the overall convergence behavior of
HMOSA.

3.5 Guided neighborhood mechanism.

At each iteration, with probability pguided use, guided
search is performed. A weight is drawn from the
weights set, and up to kcandidares feasible neighbors are
generated using Swap, Insert, or Reverse operators.
The neighbor with the lowest normalized weighted
score is selected. Distances and load imbalances are
normalized by ranges estimated from sampled feasible
solutions. This mechanism acts as a soft directional
guide that improves exploitation without fully
abandoning random exploration. By occasionally
prioritizing neighbors with better weighted scores,
HMOSA can focus the search toward promising
regions of the Pareto front while still preserving
diversity. This balance helps reduce random walk
behavior and supports stable convergence toward
well-distributed non—dominated solutions.

3.6 Acceptance rules and archive update.

Acceptance is determined by three cases: (i) a
dominating neighbor is always accepted, (ii) a dominated
neighbor is accepted with probability exp(—loss/T), where
the loss is the normalized deterioration in objectives, and
(iii) non—dominated neighbors are accepted with
probability Paccept nondominaed. Each accepted solution is
added to the archive, which retains only non—dominated
solutions and truncates to the maximum size if necessary.
3.7 Cooling schedule and termination.

The temperature decreases geometrically as
T—axT. The algorithm terminates when T<Tm,, and
the final archive is returned as the set of non-
dominated solutions.

Based on the aforementioned design, the complete
algorithmic flow of HMOSA is summarized in the
pseudocode shown in Figure 1.

To provide a standard evolutionary benchmark, the
Non—dominated Sorting Genetic Algorithm II (NSGA—
I) was implemented using a permutation—based
representation, where each chromosome encodes vehicle
routes that start and end at the depot while satisfying
capacity constraints. Binary tournament selection was
employed, and offspring were generated using order
crossover (OX) and swap mutation adapted to the CVRP
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route structure. NSGA-II follows the classical process of
combining parent and offspring populations, sorting

via crowding distance. The method is included solely as
a baseline to benchmark the proposed HMOSA

them into non—dominated fronts, and preserving diversity framework under comparable computational effort.

Hybrid Multi-Objective Simulated Annealing (HMOSA)
Input:
Distance matrix, customer demands, vehicle capacities; SA parameters: Tinitiat, Tmin, @ (cooling rate),
iterations_per T
HMOSA parameters: archive _max_size, paccept nondominated
Hybrid guidance parameters: pguided use, Keandidates; Weights_set; Neighborhood operators: Swap, Insert,
Reverse
Procedure HMOSA():
// Step 1: Initialization with Warm—Start
Generate a set of extreme seed solutions Sseeqs by running SOSA (for min distance and min sd) and WSSA
(for w=0 and w=1).
Initialize a feasible solution Securren: from Syeeds.
Initialize Archive A with all solutions from Sseeds.
T« Tinitial
// Step 2: Main Simulated Annealing Loop
while 7> T, do
for iter = 1 to iterations_per 7 do
// Step 3: Hybrid Neighborhood Search
if random() < peuided use then
// Guided search: generate k candidates and select the one with the best weighted score.
Select a random weight w from weights_set.
Generate a pool of keandidates Sc from Seurrens using random operators.
Sheighbor <— argmin(S,, weighted score(w))
else
// Standard random search: generate one neighbor.
Sheighbor <— apply random operator (Scurrent)
// Ensure the neighbor is feasible.
Repair Syeignvor if infeasible
/I Step 4: Multi—Objective Acceptance Criteria
Evaluate objectives f(Syeighsor) = (TotalDistance, LoadSTD).
if f(Sheighvor) dominates f(Scurren) then
Scurrent «— Sneighbor
else if f(Scurrenr) dominates f(Syeighsor) then
Calculate loss based on the normalized deterioration in objectives.
if random() < exp(—loss / T) then
Scurrent < Sneighbar
else
// Both solutions are non—dominated.
lf random() < Paccept_nondominated then
Scurrent < Sneighbar
// Step 5: Update Archive and Temperature
Update Archive A with Speignsor if it is @ non—dominated solution.
end for
T—T*a
end while
return the set of non—dominated solutions from Archive A

Figure 1 Pseudocode of the proposed HMOSA algorithm

In addition to the metaheuristic baseline, an exact
method was included to provide a reference for solution
optimality. A simplified branch and bound (B&B)
procedure was developed for the 10—customer pilot
instance. The method was adapted specifically for the
MO-CVRP by constructing routes sequentially for
multiple vehicles, enforcing capacity feasibility during

branching, and closing each route by returning to the
depot before starting the next one. A cost-based bound
was applied to prune partial solutions whose accumulated
travel cost already exceeded the best complete solution
found so far. Although this B&B variant does not
incorporate load balancing, it offers an exact reference
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for routing distance and serves as the benchmark for
evaluating solution quality in the pilot test.

4. Numerical example

To demonstrate the applicability of the proposed
MO-CVRP model and the HMOSA solution
approach, a numerical example is conducted based on
the school milk distribution problem. The example
illustrates how the model can be instantiated with real
operational data and how the algorithm performs in
generating efficient and balanced delivery routes.

4.1 Case Description

This study is motivated by Thailand’s School Milk
Program, a long—standing national initiative to
promote children’s nutrition. In this program,
pasteurized milk is transported daily from a central
depot to designated schools within each region. The
case investigated here involves a contractor
responsible for distributing milk to 51 schools and one
depot, making a total of 52 delivery points. The fleet
consists of eight refrigerated trucks, each with a
capacity of 3,500 pouches (pch.), giving an overall
delivery capacity of 28,000 pch.. Daily school
demands vary considerably, ranging from 120 to 1,247
pch., with a total demand of 25,157 pch.

Operational details add further complexity beyond
routing. Each vehicle is manned by a driver and a delivery
assistant, who are jointly responsible not only for
transporting milk but also for unloading and physically
delivering pouches to each school. Consequently, if a
vehicle is assigned to schools with consistently higher
demand, the delivery team faces disproportionately
heavier manual workloads compared to other teams. This
highlights the importance of balancing workloads in
addition to minimizing travel distances. Although time
windows are common in many VRP variations, they were
not treated as binding constraints in this case study. In the
real operation of the School Milk Program, milk is
delivered using refrigerated vehicles, and all routes can be
completed within the normal daily distribution period
without approaching any critical time limit. Therefore, no
strict delivery—time windows or maximum route duration
are enforced by the distributor. The geographic distribution
of the depot and schools is illustrated in Figure 2.

Geographic distribution of depot and customer schools

105.50
Depot

105.00
104.50 *
104.00

103.50

Longitude

103.00

102.50

102.00
1440 14.60 1480 15.00 1520 1540 1560 15.80 16.00
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Figure 2. Geographic distribution of the depot
and school customers in the study area

Based on the geographic coordinates illustrated in
Figure 2, the distance matrix was constructed by
applying the Haversine formula to compute the great—
circle distance between every pair of nodes. This
approach provides a realistic approximation of travel
distances from latitude and longitude values without
requiring detailed road network data.

4.2 Parameter Settings

The HMOSA algorithm requires parameters
related to simulated annealing as well as the multi—
objective search. To account for differences in
problem scale, three configurations were adopted: a
pilot test with 10 customers, an intermediate case with
30 customers, and the main case study with 51
customers. Table 1 summarizes the settings.

Table 1 Parameter settings for pilot and main case study

P ¢ Number of Customers
arameter 10 30 51
Ty 100 300 500
Tmin 1 073 1 073 1 073
Cooling rate 0.990 0.993 0.995
Iterations per 10 15 20
temperature
Archive size 100 250 400
Paccept nondominated 0.9 0.9 0.9
Number of 10 10 10
runs

The smaller 10—customer instance was used as a
pilot test to validate HMOSA against an exact
algorithm (branch—and-bound). Accordingly, lighter
settings were employed, such as a lower initial
temperature and faster cooling rate, to reduce
computational effort while still enabling meaningful
exploration. The 30-customer case served as a
transitional benchmark, for which moderately
increased parameters were used to strike a balance
between computational tractability and the need for a
broader search space. For the 51—customer case study,
more extensive settings were required to cope with the
larger search space. A higher initial temperature and
slower cooling schedule allowed broader exploration,
while a larger archive size preserved the diversity of
Pareto—approximated solutions. Across all three
scales, the acceptance probability for non—dominated
solutions was kept constant at 0.9 to maintain a
consistent trade—off between exploration and
exploitation. In addition, the probability of using
guided search was fixed at 0.50, which provided a
moderate level of direction without reducing search
diversity.

To enable a fair and competitive comparison, the
NSGA-II was implemented as an evolutionary
benchmark baseline. Although it is not the focus of
this study, its parameters were chosen to match the
computational effort of HMOSA. For each problem
size, a fixed population size and generation limit were
used: (pop = 40, gen = 120) for 10 customers, (pop =
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60, gen = 350) for 30 customers, and (pop = 80, gen =
650) for 51 customers. Binary tournament selection
was adopted, and offspring were generated using order
crossover (OX) and swap mutation, with crossover
and mutation probabilities fixed at 0.9 and 0.2,
respectively. All runs were executed ten times, as in
HMOSA. These settings are commonly used in multi—
objective VRP studies and allow NSGA-II to remain
competitive as a baseline, while HMOSA incorporates
additional mechanisms to explicitly enhance diversity
and guided local search.

The algorithm was implemented in Python and
executed on a desktop equipped with an Intel(R)
Core(TM) i7-4720HQ CPU running at 2.60 GHz and
8 GB of RAM. For each problem size, the algorithm
was run independently ten times to account for the
stochastic nature of the search process.

5. Results and Discussion
5.1 Computational Results

Assessment

This section presents the computational results of
the proposed HMOSA. The algorithm was first
validated on a small 10—customer instance using an
exact algorithm (B&B) as a reference, before being
applied to the 51-customer school milk distribution
case. Each algorithm was executed independently 10
times to account for stochastic variability, and the
results are analyzed in terms of both solution quality
and consistency. The performance comparison is
shown in Table 2.

and Performance

Table 2 Performance comparison of B&B, SA,
MOSA, NSGA-II and HMOSA on small case

BD |BLSD | AV& | AVE |y,
(km.) | (pch.) BD | BLSD (sec)
(km.) | (pch.)

B&B 149.67| - 149.67 - 2.06
SA 149.67| 2.50 |149.67| 3.00 | 0.67
MOSA 149.67| 2.50 |154.99| 2.50 | 0.96
NSGA-II [149.67]102.50 | 149.67 | 102.50 | 0.75
HMOSA |149.67| 2.50 |153.66| 2.50 | 2.28

Note: B&B = branch and bound; SA = simulated
annealing; MOSA = multi-objective simulated
annealing; NSGA-II = non—dominated sorting genetic
algorithm II; HMOSA = hybrid multi-objective
simulated annealing. BD = Best distance; BLSD =
Best load standard deviation; “Avg.” = reports the
mean over 10 independent runs. km. = kilometer and
pch. = pouches.

From Table 2, the exact algorithm (B&B)
achieved the shortest routing distance of 149.67 km,
which serves as the reference optimum for the small-
scale instance. Although it does not address load
balancing, it provides a useful benchmark for
evaluating optimality gaps.

SA matched this best distance and improved load
balance with a best standard deviation of 2.50 pch. Its
performance was also highly stable, with an average

distance of 149.67 km and an average load SD of 3.00
pch., corresponding to 0.00% optimality gap relative
to B&B.

MOSA also reached the same best total distance,
and its average distance of 154.99 km yielded an
optimality gap of 3.56%, indicating a moderate
deterioration in travel distance when compared with
the reference solution.

In contrast, NSGA-II, while achieving the same best
distance, exhibited a significantly higher load imbalance
of 102.50 pch. In terms of routing efficiency, its average
distance resulted in an optimality gap of 0.00%, but its
high wvariability in load indicates that further
mechanisms are required to enhance workload fairness
within population—based approaches.

The proposed HMOSA achieved an average distance

of 153.66 km, corresponding to an optimality gap of
2.66%, while maintaining the same best load standard
deviation of 2.50 pch. This represents a notable
improvement over MOSA, both in terms of solution
stability and load balancing.
Overall, these results confirm that HMOSA achieves a
balanced trade—off between routing efficiency and
workload fairness. With a lower optimality gap than
MOSA and a vastly smaller load imbalance than NSGA—
I, HMOSA demonstrates strong convergence properties
and improved practical relevance. The next section
expands the analysis to an intermediate 30—customer case
to examine scalability before proceeding to the real—
world 51—customer distribution problem.

Table 3 presents the results of the intermediate 30-

customer instance. Unlike the previous small case, this
scenario involves greater routing complexity, leading
to a wider performance gap among the algorithms. SA
continued to provide a competitive routing solution
with the lowest best distance of 648.61 km. and a best
load SD of 0.49 pch., although its average distance
increased to 664.14 km. MOSA, on the other hand,
showed a notable deterioration in both distance and
workload balance, with an average distance of 875.26
km. and a high average load SD of 8.54 pch.

Table 3 Performance comparison of B&B, SA,
MOSA, NSGA-II and HMOSA on intermediate case

Avg. | Avg.

BD |BLSD Time
BD |BLSD
(km.) | (pch.) (km.) | (pch.) (sec)
SA 648.61 | 0.49 |664.14| 1.93 2.01

MOSA | 842.97| 4.76 |875.26| 8.54 | 2.52
NSGA-II| 732.79 | 5.00 |766.75| 5.79 | 4.43
HMOSA | 648.77| 1.65 |648.77| 1.02 | 7.59

Note: B&B = branch and bound; SA = simulated
annealing; MOSA = multi-objective simulated
annealing; NSGA-II = non—dominated sorting genetic
algorithm II; HMOSA = hybrid multi-objective
simulated annealing. BD = Best distance; BLSD = Best
load standard deviation; “Avg.” = reports the mean over
10 independent runs. km. = kilometer and pch. =
pouches.
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NSGA-II achieved a moderate routing distance
and demonstrated reasonable consistency; however,
its best and average load SD values remained higher
than those of SA and HMOSA, which implies that
while NSGA-II can maintain competitive routing
performance, achieving adequate workload fairness
may require additional balancing mechanisms.

The proposed HMOSA obtained a balanced
performance across objectives. It achieved a best
distance of 648.77 km. that was comparable to SA,
while reducing the average load SD to 1.02 pch,,
yielding the lowest variability among all methods.
These observations indicate that HMOSA preserved
solution quality and stability when the problem scale
increased, suggesting that its search mechanism can
adapt effectively to larger routing instances. The next
section applies the algorithm to the real-world 51—
customer distribution case to assess its practical
deployment potential. This reinforces the role of
structured warm—start and archive—guided acceptance
in sustaining performance under increased problem
complexity.

Table 4 presents the computational results for the
real-world school milk distribution case. SA yielded
relatively short routes, with a best distance of 1,348.67
km. and an average distance of 1,369.67 km. It also
produced low load variability (best = 1.57 pch.,,
average = 1.93 pch.), demonstrating strong
performance in the single-objective setting. However,
SA does not generate a set of non—dominated
solutions, which may limit practical decision—making
when trade—offs between objectives must be
considered.

Table 4 Performance comparison of B&B, SA,
MOSA, NSGA-II and HMOSA on the real-world
case study

BD |BLSD| Avg. ];vaSg].) Time
(km.) |(pch.) BD (km.) (pch.) (sec)
SA 1,348.67| 1.57 [1,369.67| 1.93 | 5.53
MOSA |2,308.40| 36.75 |2,357.20| 45.61 | 7.25
NSGA-II|1,706.80| 5.15 [1,797.33| 9.09 |15.27
HMOSA |1,346.85| 1.65 |1,346.85| 1.65 [21.03

Note: B&B = branch and bound; SA = simulated
annealing; MOSA = multi-objective simulated
annealing; NSGA-II = non—dominated sorting genetic
algorithm II; HMOSA = hybrid multi—objective
simulated annealing. BD = Best distance; BLSD =
Best load standard deviation; “Avg.” = reports the
mean over 10 independent runs. km. = kilometer and
pch. = pouches.

MOSA generated a more diverse solution set but
tended to converge to regions with considerably
higher distances, with a best of 2,308.40 km. and an
average of 2,357.20 km. The workload imbalance was
also significantly higher (best load SD = 36.75 pch.,
average = 45.61 pch.), indicating that it struggled to

maintain  consistent trade—offs between route
efficiency and workload balance.

NSGA-II provided a more balanced performance
compared with MOSA, achieving a best routing
distance of 1,706.80 km. and a best load SD of 5.15
pch. Its average performance was also more stable
across runs. These results confirm its capability to
explore the Pareto front; however, the observed
variability suggests that additional mechanisms may
be required to refine workload balancing on complex
real-world instances.

HMOSA achieved the lowest values across both
distance and workload objectives, with a best of
1,346.85 km. and a consistently low load SD of 1.65
pch. in both the best and average cases. This
demonstrates the effectiveness of integrating warm—
start initialization, archive—based selection, and a
guided neighborhood search, allowing the algorithm
to explore promising regions of the solution space
while preserving stability across runs.

In addition to aggregated performance results, the
comparison retains the best distance and best load
standard deviation for each method. These values are
not intended to imply overall superiority but to
highlight extreme solutions that support managerial
decisions. In practical routing operations, especially in
the school milk context, planners often review the
minimum—distance case and the most balanced—
workload case before choosing a compromise that
matches operational priorities. Presenting these
extremes helps visualize the trade—off frontier and
allows stakeholders to assess how fairness
improvements may require additional travel distance.
Thus, including best values acts as a decision—support
feature, aligning with the objective of using HMOSA
for real-world planning.

To evaluate the quality of the obtained Pareto
solutions, two widely adopted metrics were used:
Inverted  Generational Distance (IGD) and
Hypervolume (HV). IGD measures how close the
obtained solutions are to the true Pareto front, where
smaller values indicate stronger convergence, while
HV quantifies the extent of the dominated objective
space and reflects solution diversity. These indicators
have been commonly employed in recent multi—
objective VRP studies and are considered essential for
assessing both convergence reliability and Pareto—
front coverage [25-26]. As shown in Table 5,
HMOSA achieved the lowest IGD and the highest HV
values across all problem sizes, demonstrating
consistent dominance in both convergence and
solution diversity while preserving well-distributed
trade—off solutions. As the problem size increased, this
trend became more evident. For example, the IGD
value of HMOSA decreased from 0.0997 in the 10—
customer case to 0.0286 in the intermediate 30—
customer case and remained comparatively low at
0.0531 in the real-world instance of 51 customers. In
contrast, both MOSA and NSGA-II reported
considerably higher IGD values across all scales.
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HMOSA also yielded the highest HV values in all
cases, reaching 1.1524 and 1.0866 for the 30— and 51—
customer instances, which confirms that the algorithm
consistently explored more promising regions of the
objective space than MOSA and NSGA-II.

These results demonstrate that HMOSA provides
not only superior objective values but also strong
convergence behavior and Pareto set diversity when

the problem scale increases. This characteristic is
important for practical routing applications where
reliable performance is required across different
findings
confirm that the hybrid structure of HMOSA supports
algorithmic robustness and practical scalability for

operational environments. Overall, the

real distribution planning.

Table 5 Comparison of IGD and HV results for MOSA, NSGA-II and HMOSA at different scales

No. of MOSA NSGA-II HMOSA
customers IGD HV I1GD HV I1GD HV
10 0.1069 1.1171 0.1461 0.6494 0.0997 1.1163
30 0.1506 0.9579 0.0706 1.0856 0.0286 1.1524
51 0.2894 0.6488 0.1462 1.0052 0.0531 1.0866

Figure 3 further illustrates the Pareto fronts
obtained from MOSA and HMOSA. The Pareto front
of MOSA appears widely scattered and biased toward
solutions with longer distances and higher workload
variability. In contrast, HMOSA produced a more
compact and well-defined Pareto front that lies closer
to the efficient frontier, demonstrating that it
simultaneously improved both objectives.
Importantly, HMOSA’s solutions clustered in the
lower—left region of the graph, which represents
desirable combinations of shorter travel distances and
balanced vehicle loads.

Pareto front from MOSA
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In addition, NSGA-II was also tested to provide a
complementary reference from a population—based
approach. Its Pareto front showed a wider exploratory
spread, which indicates a strong search capability, yet
the solutions tended to be more dispersed and
demonstrated higher variability in load balance. When
compared visually, HMOSA maintained a clearer
trend toward the efficient region, especially in the
lower—left portion of the objective space, suggesting
that its guided neighborhood strategy helped preserve
both convergence and practicality in the trade—off

solutions.

Pareto front from NSGA-II
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Figure 3 Pareto front from MOSA, NSGA-II and HMOSA
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5.2 Sensitivity Analysis of Algorithm Parameters

To further investigate the behavior of the proposed
HMOSA algorithm and to assess its robustness under
different parameter settings, a one—factor—at—a—time
(OFAT) sensitivity analysis was conducted. The
baseline configuration was first calibrated through
preliminary experiments and adopted as the default
setting for the HMOSA algorithm in the main study.
The purpose of the sensitivity analysis was therefore
not to replace the baseline, but to investigate how each
parameter individually influences the algorithm’s
behavior and to identify potential alternatives that
might be beneficial under different operational
requirements. After this primary comparison, seven
configurations (S0—S6) were designed to examine the
influence of individual parameters on search
performance, while only one parameter was adjusted
at a time and all the others were held constant. The full
parameter settings adopted in this experiment are
presented in Table 6.

Table 6 Parameter settings for the HMOSA sensitivity
analysis on the 51—customer case

scenario | 7o | Twmin |Cooling rate|paccept nondominated
SO 500 1073 0.995 0.90
S1 400| 1073 0.995 0.90
S2 600| 1073 0.995 0.90
S3 500 1073 0.985 0.90
S4 500 1073 0.999 0.90
S5 500| 1073 0.995 0.70
S6 500| 1073 0.995 0.95

In this analysis, three parameters were selected for
examination: the initial temperature (T;), the cooling
rate, and the acceptance probability for non—
dominated  solutions  (Paccept nondominated) - 1HESE
parameters were chosen because they directly
influence the degree of exploration, convergence
behavior, and diversity of the Pareto front. Scenarios
S1 and S2 varied only the initial temperature to test the
effect of faster convergence (S1) or increased
randomness at the start of the process (S2). Scenarios
S3 and S4 modified the cooling rate, which is known
to be highly sensitive in simulated annealing—based
approaches, to analyze whether broader exploration
(S3) or prolonged diversification (S4) could influence
computational cost and solution quality. Finally,
Scenarios S5 and S6 focused on adjusting the
acceptance probability for non—dominated solutions to
explore how different levels of diversification and
exploitation affect the overall performance.

After running all seven scenarios using the same
dataset and stopping criteria, the results were
summarized in Table 7, which reports the best
achieved distance, load standard deviation,
hypervolume (HV), IGD, and computational time (in
seconds) for each configuration.

Table 7 HV and IGD values for HMOSA under
different parameter settings (51—customer case)

Best
Best Load Time
scenario | Distance HYV IGD
(km.) SD (sec)
| (pch.)

0.0369 | 1.0864 | 21.03
0.0457]1.0637| 20.76
0.0643 1.1029 | 21.52
0.0884 1.0688 | 7.82
0.0639 | 1.0601 | 104.95
0.0560]1.0891 | 21.70
0.0616|1.0670 | 22.46

SO 1,346.85| 1.65
S1 1,346.98 | 1.87
S2 1,368.35| 1.57
S3 1,391.09 | 2.06
S4 1,360.13 | 0.70
S5 1,358.41 | 1.58
S6 1,358.38 | 2.28

Table 7 shows that varying the parameter settings
around the calibrated baseline (S0) did not lead to any
severe performance degradation, indicating that the
proposed HMOSA algorithm exhibits a reasonable
degree of robustness. Across all scenarios, the best
distance, load standard deviation, HV, and IGD values
remain within a relatively narrow range, and the
computational times are also stable, except for the
intentionally extreme setting in S4. The baseline
configuration (S0) continues to provide one of the best
travel distances with a balanced load standard
deviation and a moderate runtime, which reflects a
conservative convergence towards a high—quality
region in the objective space. This conservative yet
reliable behavior is the main reason why SO was
adopted as the default parameter setting in the main
experiments.

The alternative scenarios mainly illustrate how small
perturbations in the parameters shift the balance between
convergence quality, Pareto—front diversity, and
computational effort. For example, S1 slightly improves
IGD and HV relative to SO, but the gains are modest and
accompanied by a small increase in load variability. S2
and S5 achieve somewhat higher HV values than SO but
at the cost of worse IGD, suggesting that a wider Pareto
front does not always translate into better proximity to
the reference set. S3 yields the highest HV and the
shortest runtime, showing that a more exploratory
cooling schedule can generate a more diverse set of
solutions efficiently; however, this comes with
noticeably higher total distance and load imbalance,
which may be less desirable in practice. Conversely, S4
produces the lowest IGD and an excellent load standard
deviation, together with a reasonably high HV value, but
requires a much longer computational time, limiting its
suitability for time—sensitive applications. Scenario S6
also illustrates a more exploratory behavior, with
improved HV compared with SO but again at the price
of poorer load balancing.

Overall, these results confirm that HMOSA
maintains stable and acceptable performance under
controlled parameter variation, supporting the robustness
of the proposed framework. The differences between SO
and the alternative configurations are relatively small in
most metrics, and no scenario leads to a collapse in
solution quality. In this context, SO remains a suitable
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default choice when a balanced and dependable
performance is required, while configurations such as S3
or S4 may be considered in situations where either a
wider Pareto front or slightly better convergence is
desired and additional computational effort is acceptable.
The observed trade—offs therefore provide useful
guidance for practical parameter tuning and reinforce the
reliability and flexibility of the HMOSA algorithm for
real-world applications.
5.3 Managerial Interpretation and Decision—

Support Insights

From a managerial perspective, this graphical
representation is highly informative. The Pareto front
reveals the inherent trade—off between minimizing
distance and achieving workload balance. For instance,
solutions on the extreme distance—minimizing side
reduce total travel distance but result in uneven load
distribution across vehicles, placing disproportionate
burden on certain delivery teams. Conversely, solutions
on the load-balancing extreme provide equitable
workloads but require slightly longer travel distances.
The compromise solutions generated by HMOSA
highlight practical compromises, where moderate

increases in distance can substantially improve
workload equity, offering decision—makers viable
trade—offs between distance and fairness.

In the context of Thailand’s School Milk Program,
these trade—offs are not merely theoretical. Distribution
activities involve not only transportation but also manual
unloading of pouches at each school, which means that
workload imbalance translates directly into physical strain
and fatigue for some delivery teams. If one vehicle is
assigned disproportionately high demand, its driver—
assistant pair must spend substantially more time and
effort compared to others, even if the overall distance is
minimized. Conversely, evenly distributed workloads can
enhance equity and morale among staff but often require
longer travel distances. To illustrate these practical
implications more clearly, three representative Pareto
solutions were selected and analyzed at the vehicle level,
as summarized in Table 8. These examples highlight how
different routing strategies affect both total distance and
workload allocation across the fleet, providing concrete
evidence of the operational consequences behind abstract
performance indicators.

Table 8 Comparison of Distance and Load Across Selected Pareto Solutions

. Distance (kilometer)/Load of each pareto solution (pouches)
vehicle Pareto_01 (Min Distance) Pareto_45 (Compromise) Pareto 91 (Min SD)

1 128.7/2,945 693.3/3,184 729.2/3,143
2 101.8/3,427 187.0/3,247 433.3/3,145
3 65.5 /1,860 272.9/3,132 275.7/3,145
4 74.0/3,262 157.2/2,983 702.8 /3,148
5 584.7/3,417 192.7 /3,070 255.6/3,142
6 98.7 /3,483 136.5/3,226 220.6 /3,145
7 157.4/3,317 126.6/3,109 197.6/3,144
8 136.0/3,446 151.4/3,206 624.1/3,145

Table 8 illustrates the vehicle—level results for
three representative Pareto solutions: the minimum-—
distance solution (Pareto 01), a compromise solution
(Pareto_45), and the minimum-—imbalance solution
(Pareto 91). In Pareto 01, the total distance is
minimized at 1,346.9 km., representing the minimum
distance routing plan in terms of fuel consumption and
travel time. However, the workload imbalance is
extreme: Vehicle 3 carries only 1,860 pch., while
Vehicle 6 carries as much as 3,483 pch., a disparity of
more than 1,600 pch. Such uneven distribution implies
that certain delivery teams face nearly double the
workload of others. Although this solution reduces
total travel distance, it risks overburdening specific
teams, which may lead to fatigue, slower service, and
lower workforce satisfaction.

At the opposite extreme, Pareto 91 achieves
almost perfect workload balance, with every vehicle
carrying approximately 3,140-3,148 pch. The
standard deviation of load drops to only 1.65, meaning
that no team bears a disproportionately higher burden.
Yet, this comes at the expense of a very high total
distance of 3,438.8 km, which is more than 2,000 km
longer than the minimum-—distance case. While this

solution ensures fairness and equity across delivery
teams, the additional travel would substantially
increase fuel consumption and total travel distance,
which directly translates into higher operating cost, as
well as environmental impact, making it less practical
under real-world budgetary constraints.

A more pragmatic option is Pareto 45, the
compromise solution, where the total distance is
1,917.7 km., higher than Pareto 01 but still
substantially lower than Pareto 91. In this case, the
workload disparity is reduced significantly: the
lightest—loaded vehicle (Vehicle 4 with 2,983 pch.)
differs from the heaviest (Vehicle 2 with 3,247 pch.)
by only 264 pch.. All other vehicles fall within a
narrow range around 3,000 pch., providing a far more
equitable distribution of workload while keeping
travel distance at a manageable level. This solution
exemplifies the strength of HMOSA in identifying
balanced trade—offs: modest additional distance
secures substantial gains in fairness without the
excessive cost of the fully balanced solution.

In practice, managers should not only view the
Pareto solutions as abstract trade—offs but also
integrate them into operational policies. Fairness can
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be introduced as a managerial guideline, for example
by monitoring the deviation in vehicle loads and
keeping it within an acceptable range. Compromise
solutions such as Pareto 45 can serve as baseline
routing plans, which can be periodically updated when
school demands fluctuate, ensuring that both
efficiency and equity are maintained over time.
Adopting balanced workloads reduces the hidden
costs of worker fatigue, absenteeism, and turnover,
thereby supporting the long—term sustainability of the
program. Finally, the proposed HMOSA approach can
be embedded into decision—support tools for regional
contractors and policy makers, enabling them to
compare scenarios and select routing strategies that
best align with organizational priorities, budget
constraints, and workforce well-being.

6. Conclusion

This study proposed a Hybrid Multi-Objective
Simulated Annealing (HMOSA) framework for the
school milk routing problem in Thailand, where
workload distribution is directly linked to manual
unloading tasks. By jointly minimizing total travel
distance and balancing vehicle workloads, the
proposed approach explicitly captures the trade-off
between operational efficiency and labor fairness.
Unlike studies that approximate workload from
service time, the present formulation captures physical
effort through the standard deviation of vehicle loads.
This aligns with recent research on workload—
balancing vehicle routing problem and offers a more
interpretable fairness indicator for labor—intensive
logistics settings. The results showed that HMOSA
outperformed SA and MOSA and achieved superior
Pareto—front performance compared with NSGA-II.
The structured warm-—start strategy and guided
neighborhood mechanism enhanced convergence and
solution diversity and were validated using HV and
IGD metrics. These findings extend current
knowledge by demonstrating that trajectory—based
heuristics can remain effective when both distance
efficiency and fairness are considered in operational
decision—making.

Several limitations exist. The model uses only two
objectives, relies on data from a single contractor, and
does not incorporate driver fatigue. Future work may
integrate additional operational constraints or multi—
period planning. Overal, HMOSA provides a
practical and scalable decision—support framework
that connects multi—objective optimization research
with real routing applications.
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