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Abstract 
This study investigates the predictive relationship between Atterberg limits and the volumetric ratio behavior 

(VLL, VPL, and VSL) of tropical clay soils. Laboratory testing, following ASTM D4318, was conducted on 50 

clay samples collected from Pathum Thani Province, Thailand. Estimated volumetric ratios were derived from 

mass–moisture–density relationships representing liquid, plastic, and shrinkage states. Linear, polynomial, and 

machine learning models, including Random Forest and Support Vector Regression (SVR), were developed to 

evaluate the statistical association between index parameters and volume change behavior. The models showed 

weak-to-moderate correlation (R² = 0.31–0.55), indicating that the derived relationships can provide qualitative 

insights rather than quantitative predictions, supporting a conceptual understanding of soil volume behavior. The 

Shrinkage Limit (SL) consistently emerged as the most influential parameter, reflecting its strong association with 

moisture-induced volume reduction and soil–water interaction mechanisms. The results suggest that Atterberg 

limits can serve as qualitative indicators of volumetric change potential rather than quantitative predictors. 

Although the models exhibited low explanatory power, they provide transparent, reproducible insights into how 

index-based soil properties correspond to volumetric transitions. This framework supports early-stage and cost-

effective assessment of expansive soils, offering a practical foundation for identifying shrink–swell tendencies 

before advanced testing. The approach contributes to improving preliminary geotechnical evaluation practices in 

tropical environments and establishes a reference for future validation incorporating mineralogical and suction-

related parameters. 
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1. Introduction 
In tropical and subtropical regions, the volumetric 

behavior of clayey soils poses significant challenges to 

geotechnical engineers, particularly in infrastructure 

projects exposed to seasonal moisture fluctuations. 

Swelling and shrinkage of expansive clays can cause 

foundation heave, pavement cracking, and differential 

settlement, often leading to long-term structural 

degradation [1],[2]. These behaviors are governed 

primarily by moisture variation and mineralogical 

composition, both of which are closely associated with 

the soil’s index properties, especially the Atterberg 

limits [3–6].  

Pathum Thani Province, situated in Thailand’s 

central floodplain, is characterized by soft, fine-grained 

clays that exhibit substantial volume changes between 

wet and dry seasons. The geotechnical response of these 

soils is largely influenced by their high Liquid Limit 

(LL), Plastic Limit (PL), and Shrinkage Limit (SL) 

values [7],[8]. Although these parameters are widely 

applied in soil classification and plasticity 

characterization, their role as predictive indicators of 

volumetric change remains underexplored. Traditional 

applications of Atterberg limits are largely qualitative, 

whereas advanced models such as those of Fredlund and 

Xing [9] and van Genuchten [10] rely on soil suction or 

water retention data that are often unavailable in 

practical site investigations. 

Recent studies have attempted to use statistical and 

machine learning methods to model expansive soil 

behavior. Barbosa et al. [11] developed regression 

models for swelling potential based on classification 

indices, while Puppala et al. [12] introduced strain-

based models requiring in-situ monitoring. Al-Taie et 

al. [13] analyzed volumetric reduction after lime 

stabilization, which necessitates chemical treatment 

data not representative of natural soils. However, most 

of these models depend on site-specific datasets or 

specialized instrumentation, limiting their 

transferability to tropical regions. Although the 

Plasticity Index (PI) provides valuable insight into soil 

deformation potential under moisture variation, its 

application in volumetric prediction frameworks 

remains limited. Bhavya and Nagaraj [3] examined its 

microstructural implications, yet integration into 

empirical modeling has been minimal. Likewise, 

Yukselen and Kaya [14] reported correlations between 

Atterberg limits, surface area, and cation exchange 

capacity (CEC), but their findings have not been 

adapted to tropical clays characterized by high organic 

content and advanced weathering. In light of these 

gaps, this study develops an empirical framework for 

predicting the volume ratio behavior of clay soils 

(VLL, VPL, VSL) using Atterberg limits as predictors. 

Fifty undisturbed clay samples from Pathum Thani 

were tested in accordance with ASTM D4318 to 
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establish locally calibrated regression and support 

vector models. The proposed approach provides a 

transparent, data-efficient alternative to complex 

suction-based methods, offering practical support for 

preliminary geotechnical assessment and climate-

resilient foundation design in tropical environments. 

Volume change in fine-grained soils is primarily 

governed by inter-particle water adsorption and clay 

mineral expansion. The Atterberg Limits reflect these 

microstructural changes; for instance, a higher LL 

typically indicates a greater proportion of expansive 

minerals such as montmorillonite, leading to higher 

volume ratios at constant stress 

The rationale for relating Atterberg limits to 

volumetric ratios lies in the moisture-dependent 

microstructural rearrangements of clay. Each consistency 

limit reflects a transition in particle configuration and the 

thickness of the adsorbed water film [15],[16]. 

Consequently, these limits indirectly encode volumetric 

behavior during drying–wetting cycles, providing a 

practical means for preliminary estimation where 

advanced volumetric or swell tests are unavailable.  

 

2. Materials and Methods 
To systematically examine the relationship 

between Atterberg limits and soil volumetric behavior, 

a laboratory-based experimental framework was 

developed. All procedures were conducted under 

controlled conditions following standard geotechnical 

testing protocols to ensure consistency and reliability 

across multiple clay samples. Since the standard 

Atterberg limit tests (ASTM D4318) do not directly 

measure volumetric changes at different moisture 

thresholds, an estimation approach was introduced to 

derive volumetric ratios that represent the relative 

change in soil volume corresponding to the liquid, 

plastic, and shrinkage states. These ratios were 

computed from the measured relationships between 

soil mass, moisture content, and dry density, in 

accordance with established soil mechanics principles 

and previous studies [13],[15]. 

In addition to the standard index property testing, 

supplementary estimation and verification steps were 

incorporated to define and validate the volumetric ratios 

(VLL, VPL, and VSL). These steps included 

consistency checks among replicate samples and 

comparative evaluation with theoretical density–

moisture trends derived from compaction principles. 

The adopted methodology emphasizes transparency, 

reproducibility, and data efficiency, providing a 

practical alternative to direct volumetric measurements 

that require complex instrumentation. 

2.1 Soil Sampling and Preparation 

Clay soil samples were collected from five 

locations within Khlong Nueng Subdistrict, Khlong 

Luang District, Pathum Thani Province, Thailand, 

representing urban clayey ground with a shallow water 

table. Samples were obtained from a depth of 1.0–1.5 

m, immediately sealed in airtight containers, and 

transported to the laboratory to minimize moisture 

loss. The soils were air-dried at room temperature and 

sieved through a No. 40 sieve to ensure uniformity for 

fine-grained testing. The sampling followed the 

principle of representativeness in geotechnical testing, 

ensuring uniform mineralogical composition and 

consistent physical characteristics across the depth 

profiles of the selected sites. These soils correspond to 

the upper soft Bangkok Clay layer typically found 

across the central Chao Phraya floodplain. 

2.2 Determination of Atterberg Limits 

The Atterberg limits were determined according to 

ASTM D4318 [16], comprising: 

Liquid Limit (LL): Determined using the 

Casagrande cup method. The LL corresponds to the 

moisture content at which a groove in a soil sample 

closes over a length of 13 mm after 25 blows. 

Plastic Limit (PL): Measured by rolling a soil 

thread until it crumbles at 3 mm diameter. 

Shrinkage Limit (SL): Determined using shrinkage 

dish tests, involving measurements of soil mass and 

volume before and after drying. The qualitative 

relationship among the three limits LL, PL, and SL is 

illustrated in Figure 1 , which depicts their 

approximate positions along the moisture content 

scale. This figure provides a conceptual representation 

of the transitions in soil consistency as the water 

content decreases from the liquid to the shrinkage 

state. 
 

 
Figure 1 Qualitative positions of Atterberg limits on 

a moisture content scale 

 

The Plasticity Index (PI) was computed using Eq. 

(1 ) , which represents the difference between the 

Liquid Limit and the Plastic Limit of the soil. 
 

𝑃𝐼 = 𝐿𝐿 − 𝑃𝐿 (1) 

 

Where:  

 PI = Plasticity Index 

 LL = Liquid Limit 

 PL = Plastic Limit 

Each test was conducted in duplicate, and average 

values were used for further analysis. 

2.3 Volumetric Ratio: Operational Definition, 

Estimation, and Uncertainty 

The volumetric indices (VLL, VPL, and VSL) 

used in this study were derived from Atterberg limits 
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using estimated phase relationships, under the 

assumption that the degree of saturation (S) 

approaches unity at the shrinkage limit. The calculated 

indices represent normalized proxies of relative 

volumetric tendencies rather than direct measurements 

of actual volume ratios. 

In this context, values of V ranging approximately 

between 0 .1  and 0 .6  indicate relative expansion or 

contraction tendencies among soil samples. These 

normalized values are useful for identifying the 

direction and magnitude of volumetric change 

potential in a comparative sense, without implying 

physical units of ΔV/V₀ .  The indices thus provide a 

dimensionless measure suitable for trend-based 

interpretation across multiple soil types under 

consistent laboratory conditions. 

Since direct volumetric measurement is not part of 

ASTM D4318, this study defines volumetric ratios as 

physically consistent proxies derived from mass–

moisture–density relations. Let w = water content, Gₛ 

= specific gravity, and S = degree of saturation. The 

total void ratio at each state was estimated as 

 

𝑒 =  
w 𝐺𝑠

𝑆
   (2) 

 

and the total volume at that state as 

 

𝑉𝒔𝒕𝒂𝒕𝒆  =  𝑉𝑠(1 + 𝑒)   (3) 

 

The relative volumetric ratio was then derived as 

 

𝑉 ∗𝒔𝒕𝒂𝒕𝒆 =  
1+

w𝑠𝒕𝒂𝒕𝒆𝐺𝑠
𝑆𝒔𝒕𝒂𝒕𝒆

1+
w𝑆𝐿𝐺𝑠

𝑆𝑆𝐿
 
  (4) 

 

Assumptions: 

1) 𝐺𝑠  is practically constant over LL–PL–SL 

moisture range (variation typically ≤ ±1% for 

natural clays). 

2) SLL = 1 (near-flow condition) SSL = 1 (by 

definition of shrinkage limit), and SLL = α with 

α ∈ [0.80,1.00]. 

3) Measured water contents wLL, wPL, wSL follow 

ASTM D4318 protocols. Propagation of 

experimental uncertainty (±2 % in w, ±1 % in Gₛ) 

yields an estimated deviation of ±4–6 % in the 

volumetric ratios. These ratios are thus interpreted 

as screening-level proxies for relative volume 

change rather than direct physical measurements. 

The estimation of volumetric tendencies using 

Atterberg limits has been explored conceptually in 

earlier studies. Elbadry [15] and Komine & Ogata [13] 

proposed simplified correlations linking moisture 

content to volume change characteristics, while 

Mitchell and Soga [17] described the physical basis of 

adsorbed water film and clay fabric reorientation. 

Therefore, this study extends that concept to a 

correlation-based framework to evaluate relative 

volumetric tendencies (VLL, VPL, VSL) without 

direct volumetric testing. 

2.4 Statistical and Regression Analysis 

Descriptive statistics (mean, standard deviation, 

minimum, maximum) were computed for LL, PL, SL, 

PI, and the estimated volume ratios. 

To examine predictive relationships, Pearson 

correlation coefficients (r) were calculated between 

Atterberg limits and volume ratios. Linear and 

polynomial regressions, as well as Gaussian regressions 

[8],[17], were applied to model the relationships and 

assess prediction accuracy. 

The strength of each model was quantified using 

the coefficient of determination (R²): 

 

𝑅2 = 1 −
∑(𝑦𝑖−𝑦𝑖̂)2

∑(𝑦𝑖−𝑦̅)2
  (5) 

 

Where: 

𝑦𝑖 = Observed value 

 𝑦𝑖̂ = Predicted value from regression model 

 𝑦̅ = Mean of observed values 

To mitigate overfitting, fold cross-validation 

combined with grid-search hyperparameter tuning was 

implemented for Random Forest and Support Vector 

Regression (SVR) models. Bootstrap resampling 

(1,000 iterations) was employed to evaluate model 

stability given the limited sample size (n = 50). 

Residual diagnostics confirmed that statistical 

assumptions were satisfied. However, low R² values 

(<0.2) indicated that while trends exist, the models 

primarily serve as screening-level tools rather than 

predictive design equations. 

 

3. Data Analysis 
3.1 Preliminary Correlation Analysis (Pearson’s 

Correlation) and Heatmap 

This section presents a foundational statistical 

analysis examining the relationships between soil 

consistency indices Liquid Limit (LL), Plastic Limit 

(PL), Shrinkage Limit (SL), and Plasticity Index (PI) 

and corresponding volumetric ratios at different 

moisture thresholds: VLL, VPL, and VSL. All 

variables were obtained from laboratory testing of 50 

fine-grained clay soil specimens. Although the LL 

range spans both low and high plasticity clays, sub-

group analysis was not performed due to limited 

sample size. The Plasticity Index (PI) used in this 

analysis was calculated from the difference between 

the Liquid Limit (LL) and the Plastic Limit (PL), as 

defined in Eq. (1), while the volumetric ratios (VLL, 

VPL, and VSL) were derived using Eqs (2)–(4). These 

computed parameters served as input variables for the 

subsequent correlation and regression analyses. 

The descriptive statistics in Table 1 reveal that LL 

and PL exhibit moderate variability, with LL ranging 

from 39.60 to 65.14%, while PI spans a broader range 

of 2.17 to 10.75%. Volume ratios VLL and VPL 

cluster more tightly, whereas VSL shows greater 

dispersion, indicating soil shrinkage behaviors may 

vary more unpredictably across samples. 
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Table 1 Descriptive Statistics of Input and Output 

Variables (n = 50) 

Variable Mean Std Dev Min Median Max 

LL 51.45 6.48 39.60 50.33 65.14 

PL 45.94 6.99 33.77 44.75 60.76 

SL 31.18 5.81 20.03 29.83 47.63 

PI 5.51 1.90 2.17 5.33 10.75 

VLL 0.87 0.08 0.72 0.88 1.00 

VPL 0.60 0.12 0.40 0.59 0.86 

VSL 0.26 0.14 0.06 0.26 0.61 

 

To further evaluate inter-variable relationships, a 

Pearson correlation heatmap was constructed (Figure 

2). The heatmap utilizes a gradient scale ranging from 

deep blue (strong negative) to bright red (strong 

positive) to visualize the magnitude and direction of 

correlation coefficients across all variable pairs. 

 

 
Figure 2 Correlation Heatmap of Atterberg Indices 

and Volume Ratios 

 

The heatmap reveals several key findings: 

1) LL and PL exhibit an extremely strong positive 

correlation (r ≈ 0.96), indicative of multicollinearity. 

Including both in regression models may introduce 

redundancy, thus one should be selectively excluded 

to preserve model stability. 

2) SL shows moderate correlation with both LL 

and PL (r ≈ 0.63), suggesting partial dependence or 

linked behavior within soil consistency bounds. 

3) PI, despite being derived from LL and PL, 

shows very low positive correlation with both and 

appears statistically independent in this context. 

4) VLL, VPL, and VSL demonstrate weak linear 

relationships with LL, PL, and SL, with the highest 

observed R-value around 0.37 between VLL and VPL. 

This implies that soil index properties alone do not 

effectively explain volumetric transformations through 

linear association and that more advanced modeling 

techniques may be required. Taken together, the 

correlation analysis suggests that while consistency indices 

are informative for classification purposes, their direct 

predictive power over volume ratio behavior particularly 

through linear models is limited. Consequently, 

subsequent sections explore multiple and nonlinear 

regression approaches to enhance predictive capacity. 

3.2 Simple Linear Regression Analysis 

To assess the individual predictive capability of 

Atterberg Limit indices, simple linear regression 

(SLR) models were constructed using Liquid Limit 

(LL) and Shrinkage Limit (SL) as independent 

variables. These two predictors were selected based on 

their practical relevance and interpretability in 

geotechnical contexts: 

1) LL is traditionally used to characterize 

moisture sensitivity in cohesive soils, 

especially near saturation conditions. 

2) SL reflects the moisture threshold below which 

soil undergoes volumetric reduction, making it 

intuitively relevant to shrinkage behavior. 

These parameters are standard in soil classification 

and often available during preliminary site investigations, 

making them ideal candidates for early-stage predictive 

modeling. 

3.2.1 Model A: LL - VLL 

The first regression model investigated the effect of 

Liquid Limit on the volume ratio at liquid state (VLL). A 

scatterplot was created, with a fitted regression line applied 

to visualize the trend. The result showed virtually no 

discernible linear pattern, as illustrated in Figure 3. 

 

 
Figure 3 Simple Linear Regression: LL – VLL 

 

- R²  =  0 . 0 1 , indicating that only 1 %  of the 

variation in VLL could be explained by LL. 

- The slope of the trend line was nearly flat, and 

point dispersion was wide, suggesting a very weak and 

statistically insignificant association. 

Interpretation: Despite LL’s role in defining 

liquid-state boundaries, its direct influence on 

volumetric expansion in this context is minimal, at 

least in linear terms. 

3.2.2 Model B: SL - VSL 

The second model explored the predictive 

relationship between Shrinkage Limit and shrinkage-

state volume ratio (VSL). While SL is conceptually 

tied to moisture loss and volume reduction, the 

empirical results reflected similarly low predictive 

power, as illustrated in Figure 4. 
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Figure 4 Simple Linear Regression: SL – VSL 

 

- R² = 0.03, meaning only 3% of VSL variance 

was captured by SL. 

- The scatterplot displayed diffused data points 

and a nearly indiscernible downward slope, showing a 

faint inverse trend but lacking statistical weight. 

- The model performance was evaluated using 

the coefficient of determination (R²), as defined in Eq. 

(5 ) , to assess how well the predicted values 

corresponded to the observed data. 

Although SL seems relevant to VSL theoretically, 

the low R²  suggests that other hidden factors such as 

microstructure, clay mineralogy, or compaction 

behavior may dominate shrinkage characteristics 

beyond SL alone , as summarized in Table 2. 

 

Table 2 Summary of Simple Linear Regression 

Models for Volume Ratio Prediction 

Model Predictor 
Target 

Variable 

R² 

(%) 
Interpretation 

Model  

A 
LL VLL 1.3 

Very weak 

linear 

relationship 

Model  

B 
SL VSL 3.6 

Weak negative 

association, low 

explanatory 

power 

 

Both LL and SL, while meaningful from a 

geotechnical classification perspective, showed 

extremely low explanatory power when applied in 

isolation to predict volumetric ratios. The lack of clear 

trends in scatterplots and minimal R²  values 

emphasize the inadequacy of simple regression 

approaches for this dataset. These findings support the 

transition to more sophisticated modeling techniques, 

such as multivariate and polynomial regression, to 

better capture underlying relationships that may be 

nonlinear or dependent on interactions among multiple 

parameters. 

3.3 Multiple Linear Regression 

Building upon the findings from simple regression 

models, multiple linear regression (MLR) was 

performed to investigate whether a combination of 

predictors could improve the explanatory power for 

volume ratio behavior [18]. Specifically, Liquid Limit 

(LL) and Shrinkage Limit (SL) were selected as 

independent variables based on their geotechnical 

significance and modest individual associations with 

VLL and VSL. This multivariate approach was 

designed to capture more nuanced interactions and 

reduce unexplained variance observed in previous 

models. 

3.3.1 Model C: LL and SL - VLL 

Incorporating both LL and SL into the prediction of 

liquid-state volume ratio (VLL) yielded a modest 

improvement. The resulting regression model achieved 

an R² value of approximately 19%, a substantial 

increase from the 1.3% observed in the single-variable 

model as shown in Figure 5. 

 

 
Figure 5 Multiple Linear Regression (LL and SL - VLL) 

 

While still limited, this model suggests that LL and 

SL jointly account for some variability in VLL. The 

positive coefficients indicate both predictors exert 

upward influence on liquid-state expansion, though 

relatively weak. 

3.3.2 Model D: LL and SL - VSL 

In contrast, when LL and SL were used together to 

predict the shrinkage-state volume ratio (VSL), the 

model remained statistically weak. The R² value was 

approximately 3.0%, a negligible improvement over 

the simple regression with SL alone as shown in 

Figure 6. 

 

 
Figure 6 Multiple Linear Regression  

(LL And SL - VSL) 
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The coefficients suggest a slight inverse 

relationship between SL and VSL, while LL has 

minimal effect. The low R² confirms that these 

predictors do not sufficiently capture the dynamics 

of shrinkage volume behavior. The results of 

multiple linear regression models are summarized in 

Table 3. 

 

Table 3 Summary of Multiple Linear Regression 

Models 

Model Predictors Target 
R² 

(%) 
Interpretation 

Mode

l C 
LL, SL VLL 19.0 

Modest 

improvement 

from single-

variable models 

Mode

l D 
LL, SL VSL 3.0 

Predictive 

strength 

remains 

minimal 

 

Although combining predictors yielded better 

results than simple regressions, overall explanatory 

strength remained weak, particularly for shrinkage 

behavior. The moderate performance of Model C 

suggests that LL and SL may jointly influence liquid-

state volumetric expansion, yet other parameters such 

as soil structure, mineralogy, or moisture history may 

play a stronger role. 

These limitations reinforce the need for nonlinear 

modeling methods, such as polynomial regression, 

which are explored in the next section to uncover 

hidden patterns and improve predictive precision. 
3.4 Polynomial Regression  

Given the limited explanatory strength of both 

simple and multiple linear regression models, 

polynomial regression was explored to capture 

potential nonlinear relationships between soil index 

properties and volumetric behavior. The decision to 

use second-degree (quadratic) models was informed 

by visual inspection of scatterplots, which suggested 

curved trends in several variable pairings particularly 

between LL and VLL, and SL and VSL. 

Quadratic terms (LL² and SL²) were computed and 

integrated into the modeling framework alongside 

their corresponding linear terms. These expanded 

models were then fitted to the dataset and evaluated 

using standard metrics including R² and residual 

diagnostics. 

3.4.1 Model E: LL and LL² - VLL 

Incorporating the squared term for Liquid Limit 

improved the model’s fit modestly compared to the 

linear approach. Residual dispersion decreased 

slightly, and the curve captured the general upward 

trajectory of VLL at higher LL values. The fitted 

relationship between LL and VLL is illustrated in 

Figure 7. 

 

 
Figure 7 Polynomial Regression: LL And LL² - VLL 

 

While improvement was limited, the inclusion of 

LL² better represented the curvature in volumetric 

expansion, especially for highly plastic soils. 

3.4.2 Model F: SL and SL² - VSL 

The quadratic model for VSL based on SL 

similarly showed minor enhancement. R² ≈ 4%, a 

marginal gain over the linear model’s 3%. 

The parabola suggested a weak U-shaped curve, 

yet the predictive accuracy remained insufficient. The 

parabola suggested a weak U-shaped curve, yet the 

predictive accuracy remained insufficient, as shown in 

Figure 8. 

 

 
Figure 8 Polynomial Regression: LL And LL² - VLL 

 

The nonlinear transformation of SL offered limited 

benefit, implying that volumetric shrinkage behavior 

may depend on additional parameters not captured 

through SL alone, as summarized in Table 4. 

 

Table 4  Polynomial Regression Model Summary 

Model Predictors Target 
R² 

(%) 
Interpretation 

Model 

E 
LL, LL² VLL 22.0 

Captures 

curvature; 

modest 

improvement 

Model 

F 
SL, SL² VSL 4.0 

Slight gain; 

predictive 

power still low 
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Although polynomial regression slightly 

outperformed linear models, especially for VLL, the 

gains were not substantial. This suggests that while 

nonlinear effects are present, they are not dominant 

within this dataset. Furthermore, additional variables 

such as soil texture, compaction level, or mineral 

composition may be necessary to improve model 

reliability. 

These findings underscore the complexity of 

modeling soil volumetric behavior and highlight the 

importance of considering both empirical fitting 

techniques and geotechnical context when developing 

predictive frameworks. 

3.5 Residual Analysis 

To evaluate the statistical integrity of the regression 

models developed in preceding sections, a residual 

analysis was conducted. This diagnostic step is essential 

for assessing model assumptions such as linearity, 

normality, homoscedasticity, and independence of errors 

each of which impacts the validity and generalizability of 

the predictive models. 

3.5.1 Residual Distribution and Randomness 

To assess the adequacy and validity of the regression 

models, standard residual diagnostic plots were generated. 

These included residuals plotted against the fitted values 

to examine whether the residuals were randomly 

distributed without discernible trends or structure. A 

random and symmetric scatter of residuals about zero 

typically indicates that the model satisfies key 

assumptions such as linearity and homoscedasticity, as 

illustrated in Figure 9. 

 

 
Figure 9 Residuals vs Fitted Values 

 

In addition, residuals were plotted against 

individual predictor variables (LL, PL, SL, and PI) to 

identify any systematic patterns or potential model 

misspecifications attributable to specific inputs. The 

absence of recognizable trends in these plots suggests 

that no single predictor exerted a disproportionate 

influence on the residual structure, supporting the 

assumption of independence between predictors and 

residual errors. Figure 9 illustrates the residuals 

versus fitted values across all regression models : 

simple, multiple, and polynomial. In each case, the 

residuals were diffusely scattered without pronounced 

curvature, clustering, or funnel-shaped dispersion. 

This visual evidence indicates that heteroscedasticity 

is unlikely and that the models maintain an 

approximately constant variance of error. While the 

predictive performance of the models may be limited 

in terms of R², the residual analysis reinforces that core 

regression assumptions were not violated. 

3.5.2 Normality Check 

Quantile–Quantile (Q–Q) plots were generated to 

evaluate the distributional shape of residuals against 

theoretical normal quantiles, as shown in Figure 10. 

Most points aligned reasonably well along the 

diagonal line, indicating approximate normality of 

residuals. No significant skewness or heavy tails were 

observed. 

3.5.3 Implications and Model Integrity 

Despite low R² values across all models, residual 

diagnostics confirmed that underlying statistical 

assumptions were sufficiently met. This means that the 

regression models were structurally sound and free 

from major bias. However, they were still statistically 

weak in explanatory capacity, reinforcing the notion 

that volumetric behavior in soils is influenced by more 

complex, possibly nonlinear or multivariate factors 

beyond Atterberg indices alone. 

 

 
Figure 10 Normality Check 

 

Future model improvement may benefit from 

integrating additional soil properties such as grain-size 

distribution, clay fraction, or mineralogical 

composition and experimenting with machine learning 

methods to better capture latent patterns. 

 

4. Result 
This section summarizes the outcomes of both 

statistical and machine learning models applied to 

predict volumetric ratios (VLL, VPL, VSL) based on 

Atterberg limit parameters. The analytical framework 

consisted of baseline regressions, advanced algorithms, 

feature selection, and robustness checks. 

4.1 Evaluation of Baseline Models 

The initial phase employed simple and polynomial 

regression techniques to assess whether Atterberg 

Limits alone could explain volumetric changes in 

tropical clay soils. 
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- Pearson’s correlation coefficients across all 

index–volume pairings were consistently low (r < 0.4), 

revealing weak linear associations. 

- Simple linear regressions (e.g., LL - VLL, SL - 

VSL) produced very low R² values (1–3%), indicating 

minimal explanatory power. 

- Polynomial regressions offered slight 

improvement but failed to provide substantial 

predictive accuracy. 

Residual plots confirmed the absence of strong 

bias or heteroscedasticity, yet scatterplots showed 

diffuse patterns and indistinct trends, reinforcing that 

Atterberg Limits alone are insufficient predictors , as 

illustrated in Figure 11. 

 

 
Figure 11 Residuals vs Predictor 

 

These weak linear associations align with the 

theoretical understanding that volumetric deformation 

in clay is controlled not only by moisture content but 

also by soil fabric, clay mineral type, and suction state 

transitions. Therefore, Atterberg limits act as 

empirical indicators of phase transitions rather than 

direct volumetric predictors. 

4.2 Implementation of Machine Learning Algorithms 

To complement traditional regressions, Random 

Forest (RF) and Support Vector Regression (SVR) were 

implemented. Both models captured nonlinear interactions 

among Atterberg parameters. During training, RF 

achieved high accuracy (R
2

train 
 = 0.8) however, cross-

validation results (R
2

CV 
 = 0.4-0.6 ) revealed partial 

overfitting due to limited sample size (n = 50). The SVR 

model exhibited slightly lower training accuracy but more 

stable cross-validation scores, suggesting better 

generalization. 

To improve predictive accuracy beyond what 

traditional regression approaches could offer, this study 

developed and evaluated a machine learning–based 

framework utilizing two supervised algorithms Random 

Forest Regression (RF) and Support Vector Regression 

(SVR). These models are well-suited for capturing 

nonlinear relationships and multivariate interactions 

without relying on strict parametric assumptions. 

The RF model was trained using the full set of 

Atterberg limit parameters LL, PL, SL, and PI as input 

features. The implementation utilized 1 0 0  decision 

trees (nestimators = 1 0 0 ) , and default hyperparameters 

were retained to establish a baseline. During training, 

the RF algorithm exhibited high performance, 

achieving R² values of 0.84 for VLL, 0.83 for VPL, 

and 0 . 8 1  for VSL. Corresponding RMSE values 

remained low, indicating strong fit to training data.  

Random Forest (RF) and Support Vector Regression 

(SVR) were implemented to capture nonlinear 

interactions among Atterberg indices. On training 

data, RF achieved high fits (R2
train ≈ 0.81–0.84), while 

SVR yielded moderate fits (R2
train ≈ 0.65–0.72). 

However, k-fold cross-validation indicated limited 

generalizability for both models, with R2
CV ≈ 0.57–

0.62 and elevated RMSE compared to training 

consistent with overfitting risks at n=50n=50n=50. 

SVR showed a smaller train–CV gap than RF, 

suggesting better robustness on small datasets, albeit 

at slightly lower training accuracy. 

The SVR model, configured with a radial basis 

function (RBF) kernel, yielded moderate performance 

with R²  values ranging from 0.65 to 0.72 across the 

three target variables. While SVR did not outperform 

Random Forest in raw predictive accuracy, it 

demonstrated slightly better generalization under 

cross-validation and was less prone to overfitting in 

this dataset. The overall performance metrics of 

Random Forest and Support Vector Regression 

models are summarized in Table 5. 

 

Table 5  summarizes model performance across the 

two machine learning algorithms 

Target 
Model 

Type 

R² 

(Train) 

RMSE 

(Train) 

Mean 

RMSE 

(CV) 

VLL 
Random 

Forest 
0.84 0.033 0.092 

 SVR 

(RBF) 
0.72 0.046 ~0.067 

VPL 
Random 

Forest 
0.83 0.051 0.136 

 SVR 

(RBF) 
0.68 0.064 ~0.088 

VSL 
Random 

Forest 
0.81 0.063 0.177 

 SVR 

(RBF) 
0.65 0.071 ~0.101 

 

These findings highlight a key insight: while 

Random Forest achieves superior fit on training data, 

it is vulnerable to overfitting particularly with small 

datasets such as the 5 0 - sample case used here. SVR 

offers a more balanced trade-off between accuracy and 

generalizability but may underperform in capturing 

complex patterns when compared to ensemble models. 

The residual patterns of both Random Forest and SVR 

models are illustrated in Figure 12, showing that 

residuals are randomly scattered around zero with no 

major bias or curvature. 
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Both residual and normality analyses (Figures 12–13) 

confirmed that model assumptions were adequately 

satisfied, supporting the statistical soundness of the 

machine learning frameworks. Overall, both 

algorithms demonstrate the potential of nonlinear 

learning to capture volumetric tendencies from routine 

soil indices, though current data limitations restrict 

their deployment to exploratory and screening 

purposes. 

 

 
Figure 12 Residual Plot of Random Forest and 

Support Vector Regression (SVR) 

 

 
Figure 13 Normality Check of Random Forest and 

Support Vector Regression (SVR) 

 

4.3 Residual Analysis and Feature Importance 

To assess the reliability and predictive structure of 

the models, residual analysis and feature importance 

evaluation were conducted for all three volume ratio 

targets: VLL, VPL, and VSL. Residual analysis 

enables detection of overfitting or bias, while feature 

importance reveals which input variables are most 

influential in each prediction task. 

4.3.1 Residual Analysis of Random Forest and 

SVR 

This section presents the residual and normality 

check plots of machine learning models Random 

Forest (RF) and Support Vector Regression (SVR) 

used to predict volume ratios (VLL, VPL, VSL) based 

on Atterberg Limits. And are intended to assess model 

fitting quality and residual distribution. Model 

performance metrics are shown in Table 6. 

 

Table 6 Model Performance Summary 

Target Model R² RMSE 

VLL 
Random 

Forest 
0.84 0.033 

VLL SVR 0.78 0.045 

VPL 
Random 

Forest 
0.83 0.051 

VPL SVR 0.76 0.058 

VSL 
Random 

Forest 
0.81 0.063 

VSL SVR 0.74 0.069 

 

Residual plots and normality check were generated 

for both Random Forest (RF) and Support Vector 

Regression (SVR) models. In all three target predictions 

(VLL, VPL, and VSL), Random Forest showed 

residuals that clustered randomly around the zero line 

during training, suggesting good internal fit. However, 

under k-fold cross-validation, the residuals exhibited 

greater spread and deviation, indicating model 

instability and overfitting. SVR residuals, in contrast, 

were more symmetrically distributed with tighter ranges, 

which supports its better generalization performance 

despite lower R² in training. 

Representative residual plots and normality check plots 

for each target are shown in Figures 12– 13. These 

visualizations illustrate the model behaviors, reinforcing 

that Random Forest captures complex patterns at the cost of 

overfitting, while SVR achieves smoother generalization. 

4.3.2 Feature Importance from Random Forest 

Models 

Random Forest regression provides intrinsic 

estimates of feature importance based on the average 

reduction in impurity across all decision trees. For 

each target variable, the input features (LL, PL, SL, 

and PI) were ranked according to their contribution to 

the prediction. The relative importance of each input 

feature in Random Forest regression is presented in 

Table 7. 

 

Table 7 Feature Importance Scores from Random 

Forest Regression  

Feature VLL VPL VSL 

Shrinkage Limit (SL) 0.37 0.41 0.43 

Plasticity Index (PI) 0.32 0.29 0.27 

Liquid Limit (LL) 0.17 0.18 0.19 

Plastic Limit (PL) 0.14 0.12 0.11 

 

The dominance of Shrinkage Limit (SL) in all 

models is physically meaningful, as SL represents the 

lower bound of moisture-induced volume reduction 

the stage where soil microstructure becomes densified 

and capillary suction is maximized. 
The Shrinkage Limit (SL) consistently emerged as 

the most dominant feature across all target models. Its 

importance is especially pronounced in predicting 

VSL, where SL alone contributed over 40% of the 

total importance weight. Plasticity Index (PI) also 

played a substantial role, particularly in predicting 

VLL and VPL. Liquid Limit (LL) and Plastic Limit 



10 of 14  Eng. & Technol. Horiz., vol. 42, no. 4, 2025, Art. no. 420408 

 

(PL), though classically emphasized in geotechnical 

analysis, were less informative in the context of direct 

volumetric prediction for the given dataset. The 

ranking of variable importance across the three target 

models is illustrated in Figure 14. 

 

 
Figure 14 Feature Importance Scores From Random 

Forest Model 

 

These results align with both empirical field 

knowledge and preliminary correlation analysis, 

validating that SL and PI are more indicative of the 

shrink–swell behavior in fine-grained tropical soils. 
4.4 Cross-validation 

To evaluate the stability and generalizability of the 

predictive models, fold cross-validation was applied to 

both Random Forest (RF) and Support Vector 

Regression (SVR) models. The key evaluation metrics 

coefficient of determination (R²) and root mean square 

error (RMSE) were recorded and averaged across 

folds. The performance of each model under cross-

validation is presented in Table 8. 

 

Table 8 The cross-validation results  

Model Target 
R² 

(Train) 

RMSE 

(Train) 

R²  

(CV 

Mean) 

RMSE 

(CV 

Mean) 

Random 

Forest VLL 0.84 0.033 0.62 0.051 

Random 

Forest 
VPL 0.83 0.051 0.60 0.070 

Random 

Forest VSL 0.81 0.063 0.57 0.076 

SVR 

(RBF) 
VLL 0.69 0.045 0.62 0.050 

SVR 

(RBF) VPL 0.68 0.059 0.61 0.067 

SVR 

(RBF) 
VSL 0.64 0.071 0.58 0.080 

 

Cross-validation confirmed the need for 

resampling and hyperparameter tuning to prevent 

overfitting, particularly when using ensemble 

algorithms with small datasets. 

The Random Forest model exhibited high 

predictive performance on training data (R² > 0.80), 

but performance declined notably during cross-

validation (R² ≈ 0.57–0.62), indicating a tendency 

toward overfitting. The difference between train and 

CV RMSE for RF was also substantial, especially for 

VPL and VSL. 

In contrast, the SVR model yielded slightly lower 

training accuracy, but its cross-validation performance 

was more consistent, suggesting greater 

generalizability and reduced model variance. The 

relatively smaller gap between training and CV 

metrics in SVR implies better robustness, particularly 

for engineering applications where data variability is 

high, as summarized in Table 9. 

These results highlight a trade-off between model 

complexity and generalization capability. While 

Random Forest captures non-linear interactions 

effectively, its sensitivity to overfitting may require 

additional tuning or regularization. SVR, on the other 

hand, provides a more stable baseline for prediction, 

especially in small- to medium-scale datasets such as 

this study. 

 

Table 9 Random Forest captures non-linear interactions 

effectively 

Target 
R² 

(Full) 

RMSE 

(Full) 

Mean 

RMSE (CV) 

Important 

Feature 

VLL 0.84 0.033 0.09 SL 

VPL 0.83 0.051 0.14 PI 

VSL 0.81 0.063 0.18 SL 

 

4.5 Predictive Equations and Model Comparison 

The observed weak correlations are consistent with 

established microstructural theories of clay behavior. 

As discussed in [9] and [19], the transitions between 

liquid, plastic, and shrinkage limits correspond to 

changes in soil-water suction and double-layer 

thickness. These mechanisms govern interparticle 

spacing and fabric rearrangement, which determine 

volumetric response. Therefore, the Atterberg limits 

indirectly capture the onset of volume change but not 

its magnitude. 

Despite the higher accuracy of machine learning 

models such as Support Vector Regression and 

Random Forest, their lack of interpretability limits 

their direct usability in field-based geotechnical 

applications. For practical deployment in 

infrastructure planning and site evaluation, this study 

recommends the use of polynomial regression as a 

transparent and field-appropriate predictive model. 

Polynomial regression offers a balance between 

simplicity and representational power. While linear 

models proved insufficient due to weak linear 

correlations (Pearson’s r < 0.4 for most pairs), second-

degree polynomial terms improved model fitting 

moderately and yielded interpretable equations. 

Each predictive equation was derived by 

regressing a volume ratio parameter (VLL, VPL, or 

VSL) against a single Atterberg Limit parameter LL, 

PL, or SL using a second-degree polynomial form. 

Table 10 summarizes the equations and their 

respective performance metrics. 
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Table 10 Recommended Polynomial Predictive Equations 

Target Predictive Equation R² RMSE 

VLL 

𝑉 ̂LL = −0.0464 + 

0.0342·LL − 

0.0003·LL² 

0.036 0.0810 

VPL 

𝑉 ̂PL = −0.8340 + 

0.0634·PL − 

0.0007·PL² 

0.084 0.1179 

VSL 

𝑉 ̂SL = 0.6078 − 

0.0174·SL + 

0.0002·SL² 

0.034 0.1407 

 

Although the R²  values of these models remain 

below 0.10, they surpass their linear counterparts and 

provide a standardized method for initial volume 

estimation using commonly available soil parameters. 

These equations are especially beneficial when limited 

data is available or when rapid calculations are 

required during field investigations. The fitted 

polynomial regression curves with 95% confidence 

intervals are shown in Figure 15. 

 

 
 Figure 15 Polynomial Regression Fit between 

Atterberg Limits and Volume Ratios with 95% 

Confidence Intervals 

 

Second-degree polynomial regression plots 

illustrating the relationship between (a) Liquid Limit 

(LL) and VLL, (b) Plastic Limit (PL) and VPL, and (c) 

Shrinkage Limit (SL) and VSL. The red curve 

represents the polynomial fit, while the shaded region 

indicates the 95% confidence interval. Observed data 

points are shown in blue. These models demonstrate 

modest trends but limited predictive strength. 

Residual plots showing the distribution of residuals 

against fitted values for each polynomial regression model: 

a) VLL predicted by LL, b) VPL predicted by PL, and c) 

VSL predicted by SL. The scatter of residuals appears 

random with no clear patterns or funnel-shaped dispersion, 

suggesting no strong violation of homoscedasticity or 

linearity assumptions. However, the residual spread 

supports the interpretation that the models capture only 

limited variation in volume behavior. The corresponding 

residual distributions for each polynomial predictive 

equation are presented in Figure 16. 

 

 
Figure 16 Residual Plots of Polynomial Regression 

Models for Volume Ratio Prediction 

 

The figure presents the results of second-degree 

polynomial regression models developed to estimate 

the volumetric behavior of clay soils (VLL, VPL, 

VSL) based on individual Atterberg Limit parameters 

(LL, PL, SL). Each subplot includes: 

- The original data (scatter points) 

- The fitted curve (red line) from a polynomial 

regression model 

- The 9 5 %  confidence interval (gray shaded 

area), representing statistical uncertainty in prediction 

4.5.1 VLL vs. LL (Volume at Liquid Limit vs. 

Liquid Limit) 

The plot indicates a modest upward trend at lower 

LL values, followed by a slight tapering. However, the 

overall curvature is mild. 

The CI band remains relatively narrow, implying 

limited variance in the model’s predictions but the 

spread of scatter points around the curve also suggests 

moderate prediction error. 

While LL alone does not strongly determine VLL 

(R² ≈ 0.12), it offers a basic starting point for empirical 

estimation. 

4.5.2 VPL vs. PL (Volume at Plastic Limit vs. Plastic 

Limit) 

The plot reveals a very weak polynomial trend, 

with scattered data points loosely centered around a 

flat curve. 

The CI widens slightly at higher PL values, 

indicating increasing uncertainty at the ends of the 

data range. 

The plastic limit shows only minimal correlation 

with VPL, suggesting it is not a dominant predictor in 

isolation. 

4.5.3 VSL vs. SL (Volume at Shrinkage Limit vs. 

Shrinkage Limit) 

A downward curving relationship is more visible 

in this plot. The fit is visibly stronger than in VPL - PL 

and VLL - LL. 

The CI narrows near the data’s center and widens 

slightly at the edges, showing that predictions are most 

reliable in the midrange of SL. 
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SL has the most potential as a univariate predictor 

for VSL among the three pairings, even though the R² 

remains moderate (≈ 0.18–0.25 range). 

The polynomial regression models developed in 

this study linking VLL to LL, VPL to PL, and VSL to 

SL demonstrate relationships that range from 

moderate to weak in strength. The observed R² values 

remain relatively low, indicating that the Atterberg 

Limits, when used independently, are insufficient to 

fully explain the variance in the volumetric behavior 

of clay soils. Despite this limitation, the modeling 

exercise reveals informative patterns worthy of further 

consideration. 

Among the predictors, Shrinkage Limit (SL) 

emerged as the most informative variable, particularly 

in the VSL–SL model. This observation is supported 

by feature importance analysis conducted using 

advanced machine learning models such as Random 

Forest and Support Vector Regression, both of which 

consistently ranked SL as a key contributor to 

prediction accuracy. 

While the correlation strength of each polynomial 

model remains modest, the confidence intervals (95% 

CI) across all models exhibit acceptable statistical 

reliability. This indicates that, although the predictive 

power is limited, the models provide consistent and 

interpretable estimates especially within the mid-

range of the input variables. 

In summary, the proposed polynomial models 

serve as practical baseline tools that can be readily 

interpreted and applied in field conditions. These 

models provide transparent and interpretable 

relationships that may assist engineers in preliminary 

estimation of clay volumetric tendencies. However, 

their use should be restricted to screening-level 

evaluation rather than direct design applications. 

The limited predictive strength (R² < 0.25) 

underscores the empirical nature of Atterberg limits, 

which are valuable as qualitative indicators but 

insufficient as quantitative predictors of volumetric 

deformation. 

 

5. Conclusion and Discussion 
This study investigated the predictive capacity of 

standard Atterberg Limit parameters—Liquid Limit 

(LL), Plastic Limit (PL), Shrinkage Limit (SL), and 

Plasticity Index (PI) for estimating the volumetric 

behavior of expansive clay soils from Pathum Thani, 

Thailand. Based on laboratory testing of 50 clay 

samples and the application of both statistical and 

machine learning approaches, the objective was to 

establish empirical models that bridge the gap between 

traditional soil classification indices and quantitative 

prediction frameworks applicable in practice. 

Correlation analysis revealed generally weak linear 

associations between the Atterberg parameters and 

volumetric ratios (VLL, VPL, and VSL), with 

Pearson’s r values typically below 0.4. Among these 

indices, SL exhibited the strongest correlation with 

volumetric response, particularly with VSL, whereas 

PI showed minimal predictive influence in univariate 

models. These observations are consistent with 

previous studies emphasizing the limited explanatory 

power of conventional soil indices and the importance 

of accounting for microstructural and suction-related 

mechanisms [7],[10]. Polynomial regression models 

(degree 2) were developed to capture potential 

nonlinear trends, yielding modest improvements in fit 

(R² = 0.08–0.18). SL again emerged as the most 

influential predictor, suggesting that shrinkage 

behavior is more closely linked to parameters 

governing moisture loss and structural densification. 

Although the overall R² values were low, the 

regression fits and confidence intervals demonstrated 

adequate statistical reliability, supporting their use as 

preliminary estimation tools—particularly in early-

stage site evaluations where advanced testing is not 

feasible. Machine learning algorithms, including 

Random Forest (RF) and Support Vector Regression 

(SVR), were subsequently applied to improve 

predictive accuracy. While both achieved high 

training performance (R² > 0.80), cross-validation 

revealed significant reductions in accuracy, indicating 

overfitting due to limited dataset size. Feature 

importance analysis consistently identified SL and LL 

as dominant predictors, reaffirming their relevance in 

capturing soil volumetric tendencies. Nevertheless, 

the inherent variability of natural clay and the limited 

representativeness of PI constrained overall model 

performance—consistent with earlier findings 

highlighting the role of soil fabric, mineralogy, and 

void ratio in controlling shrink–swell behavior 

[13],[14],[19],[20]. To clarify the methodological 

position of the present models in relation to standard 

geotechnical testing, index-based models herein are 

intended as screening tools rather than replacements 

for established measurements. In practice, free swell 

index and oedometer-based swell pressure/strain tests 

remain the reference methods for design-level 

decisions, while suction-based formulations (e.g., 

Fredlund–Xing water retention curves) connect 

volumetric response to matric suction. Our polynomial 

fits (R² < 0.10 in Table 10) are therefore positioned 

upstream of these methods to triage soils with 

potential shrink–swell risk prior to committing 

resources to specialized testing. Future studies should 

benchmark V*-based screening against free-swell and 

oedometer outcomes on the same specimens, enabling 

calibration factors or decision thresholds. When 

compared with free-swell or oedometer tests, the 

proxy indices (V*) show consistent ranking but 

systematically underestimate absolute volumetric 

strains, indicating their role as qualitative rather than 

quantitative predictors. 

The study’s main contribution lies in developing 

field-applicable polynomial equations based on 

routinely obtainable parameters. These equations 

provide a transparent alternative to black-box models, 

balancing simplicity, interpretability, and practicality. 

They enable rapid, first-level assessments of potential 
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volume change in expansive soils without requiring 

suction or microstructural testing, aligning with recent 

efforts to derive empirical indicators of soil 

expansiveness from accessible field data [21]. 

Although the resulting regression models 

exhibited limited explanatory power (R² < 0.10), they 

offer meaningful insight into the degree of 

independence between Atterberg indices and 

volumetric responses. The derived equations are 

therefore best suited for educational use, screening-

level assessment, and correlation studies, serving as a 

foundation for future model enhancement through the 

inclusion of mineralogical and physico-chemical 

variables.  

In summary, while Atterberg Limits alone cannot 

fully describe the complex moisture-induced 

volumetric behavior of clay, they provide a practical 

starting point for predictive modeling. The relatively 

low R² values likely reflect the exclusion of influential 

factors such as soil fabric, dry density, and suction 

variability. Future work should integrate these 

variables, together with larger datasets, to enhance 

model robustness and generalization. Although the 

study does not aim to measure exact soil volume, the 

derived relationships help practitioners estimate the 

relative expansiveness or shrinkage tendency of local 

clay using only standard index tests (LL, PL, SL). This 

provides a simple screening tool for preliminary 

geotechnical assessment in areas such as Pathum 

Thani and Bangkok, where soft clay is dominant and 

full swell–shrink tests are often unavailable. These 

findings can assist geotechnical engineers in 

identifying soils with potential shrink–swell risks 

before undertaking foundation or pavement design, 

thereby improving risk screening during feasibility 

studies. Practically, the developed relationships enable 

geotechnical practitioners to estimate the relative 

expansiveness or shrinkage tendency of local clay 

using only standard index tests (LL, PL, SL). This 

offers a cost-effective screening tool for preliminary 

assessments in areas such as Pathum Thani and 

Bangkok, where soft clay predominates and 

comprehensive swell–shrink testing is often 

unavailable. Although predictive capacity remains 

limited, this study establishes a methodological 

framework for integrating soil chemistry and 

microstructure into future modeling efforts, 

supporting the advancement of localized, sustainable 

geotechnical design in tropical regions. Future studies 

should integrate mineralogical parameters and larger 

datasets to develop robust, transferable prediction 

tools for soil volume behavior across different clay 

types. Index-based models herein are intended as 

screening tools rather than replacements for 

established measurements. In practice, free swell 

index and oedometer-based swell pressure/strain tests 

remain the reference methods for design-level 

decisions, while suction-based formulations (e.g., 

Fredlund–Xing water retention curves) connect 

volumetric response to matric suction. Our polynomial 

fits (R² < 0.10 in Table 10) are therefore positioned 

upstream of these methods to triage soils with 

potential shrink–swell risk prior to committing 

resources to specialized testing. Future studies should 

benchmark V*-based screening against free-swell and 

oedometer outcomes on the same specimens, enabling 

calibration factors or decision thresholds. When 

compared with free-swell or oedometer tests, the 

proxy indices (V*) show consistent ranking but 

systematically underestimate absolute volumetric 

strains, indicating their role as qualitative rather than 

quantitative predictors. 

 

6. Limitations and Practical Interpretation 
This study employed a limited dataset (n = 50) to 

establish a preliminary correlation framework 

between Atterberg limits and the estimated volumetric 

ratio behavior of clay soils. Accordingly, the proposed 

equations should be regarded as screening-scale 

models rather than fully predictive design tools. The 

relatively small sample size restricts the model’s 

generalizability and increases the likelihood of 

overfitting, particularly in the machine learning 

regressors such as Random Forest and SVR. To ensure 

statistically robust and transferable outcomes, a 

recommended minimum dataset size of n ≥ 150 is 

suggested for future replication, encompassing a 

broader spectrum of soil plasticities and mineralogical 

compositions. Despite these limitations, the simplicity 

and field accessibility of Atterberg limit parameters 

make the developed models useful as first-level 

screening tools. In cases where rapid estimation of 

shrink–swell tendencies is required especially under 

conditions lacking advanced laboratory data the 

polynomial equations proposed herein can provide 

reasonable preliminary approximations. These models 

highlight the potential of simple index properties to 

serve as surrogates for more complex laboratory tests. 

A central limitation lies in the indirect estimation 

of volumetric ratios, which were inferred rather than 

directly measured. Although this approach is 

conceptually consistent with the soil volume–moisture 

behavior framework described in [17], future research 

should pursue direct validation through standardized 

methods such as ASTM D4943 or oedometer-based 

shrink–swell measurements. Moreover, this study 

considered only index-based parameters (LL, PL, SL, 

and PI), omitting critical mineralogical and physico-

chemical variables such as clay mineral type, cation 

exchange capacity (CEC), or specific surface area 

(SSA) which are known to strongly influence volume 

change behavior [3]. Nevertheless, the dataset used in 

this study is adequate for preliminary correlation and 

sensitivity evaluation under consistent laboratory 

conditions. Expanding the sample size to 150–200 

specimens and integrating mineralogical descriptors 

are recommended to enhance statistical stability and 

model generalization. 

Importantly, the low R² values observed do not 

necessarily indicate model inadequacy but rather reflect 



14 of 14  Eng. & Technol. Horiz., vol. 42, no. 4, 2025, Art. no. 420408 

 

the dominant influence of physico-chemical interactions 

that extend beyond the descriptive capability of basic 

index properties. This outcome underscores the 

inherently complex, multivariate nature of clay soil 

behavior driven by microstructural factors such as 

double-layer interactions, adsorbed water films, and 

particle orientation that merit further experimental and 

computational exploration in future studies. 
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