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Abstract

This study investigates the predictive relationship between Atterberg limits and the volumetric ratio behavior
(VLL, VPL, and VSL) of tropical clay soils. Laboratory testing, following ASTM D4318, was conducted on 50
clay samples collected from Pathum Thani Province, Thailand. Estimated volumetric ratios were derived from
mass—moisture—density relationships representing liquid, plastic, and shrinkage states. Linear, polynomial, and
machine learning models, including Random Forest and Support Vector Regression (SVR), were developed to
evaluate the statistical association between index parameters and volume change behavior. The models showed
weak-to-moderate correlation (R* = 0.31-0.55), indicating that the derived relationships can provide qualitative
insights rather than quantitative predictions, supporting a conceptual understanding of soil volume behavior. The
Shrinkage Limit (SL) consistently emerged as the most influential parameter, reflecting its strong association with
moisture-induced volume reduction and soil-water interaction mechanisms. The results suggest that Atterberg
limits can serve as qualitative indicators of volumetric change potential rather than quantitative predictors.
Although the models exhibited low explanatory power, they provide transparent, reproducible insights into how
index-based soil properties correspond to volumetric transitions. This framework supports early-stage and cost-
effective assessment of expansive soils, offering a practical foundation for identifying shrink—swell tendencies
before advanced testing. The approach contributes to improving preliminary geotechnical evaluation practices in
tropical environments and establishes a reference for future validation incorporating mineralogical and suction-

related parameters.
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1. Introduction

In tropical and subtropical regions, the volumetric
behavior of clayey soils poses significant challenges to
geotechnical engineers, particularly in infrastructure
projects exposed to seasonal moisture fluctuations.
Swelling and shrinkage of expansive clays can cause
foundation heave, pavement cracking, and differential
settlement, often leading to long-term structural
degradation [1],[2]. These behaviors are governed
primarily by moisture variation and mineralogical
composition, both of which are closely associated with
the soil’s index properties, especially the Atterberg
limits [3—6].

Pathum Thani Province, situated in Thailand’s
central floodplain, is characterized by soft, fine-grained
clays that exhibit substantial volume changes between
wet and dry seasons. The geotechnical response of these
soils is largely influenced by their high Liquid Limit
(LL), Plastic Limit (PL), and Shrinkage Limit (SL)
values [7],[8]. Although these parameters are widely
applied in soil classification and plasticity
characterization, their role as predictive indicators of
volumetric change remains underexplored. Traditional
applications of Atterberg limits are largely qualitative,
whereas advanced models such as those of Fredlund and
Xing [9] and van Genuchten [10] rely on soil suction or
water retention data that are often unavailable in
practical site investigations.

Recent studies have attempted to use statistical and
machine learning methods to model expansive soil
behavior. Barbosa et al. [11] developed regression
models for swelling potential based on classification
indices, while Puppala et al. [12] introduced strain-
based models requiring in-situ monitoring. Al-Taie et
al. [13] analyzed volumetric reduction after lime
stabilization, which necessitates chemical treatment
data not representative of natural soils. However, most
of these models depend on site-specific datasets or
specialized instrumentation, limiting their
transferability to tropical regions. Although the
Plasticity Index (PI) provides valuable insight into soil
deformation potential under moisture variation, its
application in volumetric prediction frameworks
remains limited. Bhavya and Nagaraj [3] examined its
microstructural implications, yet integration into
empirical modeling has been minimal. Likewise,
Yukselen and Kaya [ 14] reported correlations between
Atterberg limits, surface area, and cation exchange
capacity (CEC), but their findings have not been
adapted to tropical clays characterized by high organic
content and advanced weathering. In light of these
gaps, this study develops an empirical framework for
predicting the volume ratio behavior of clay soils
(VLL, VPL, VSL) using Atterberg limits as predictors.
Fifty undisturbed clay samples from Pathum Thani
were tested in accordance with ASTM D4318 to
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establish locally calibrated regression and support
vector models. The proposed approach provides a
transparent, data-efficient alternative to complex
suction-based methods, offering practical support for
preliminary geotechnical assessment and climate-
resilient foundation design in tropical environments.
Volume change in fine-grained soils is primarily
governed by inter-particle water adsorption and clay
mineral expansion. The Atterberg Limits reflect these
microstructural changes; for instance, a higher LL
typically indicates a greater proportion of expansive
minerals such as montmorillonite, leading to higher
volume ratios at constant stress

The rationale for relating Atterberg limits to
volumetric ratios lies in the moisture-dependent
microstructural rearrangements of clay. Each consistency
limit reflects a transition in particle configuration and the
thickness of the adsorbed water film [15],[16].
Consequently, these limits indirectly encode volumetric
behavior during drying—wetting cycles, providing a
practical means for preliminary estimation where
advanced volumetric or swell tests are unavailable.

2. Materials and Methods

To systematically examine the relationship
between Atterberg limits and soil volumetric behavior,
a laboratory-based experimental framework was
developed. All procedures were conducted under
controlled conditions following standard geotechnical
testing protocols to ensure consistency and reliability
across multiple clay samples. Since the standard
Atterberg limit tests (ASTM D4318) do not directly
measure volumetric changes at different moisture
thresholds, an estimation approach was introduced to
derive volumetric ratios that represent the relative
change in soil volume corresponding to the liquid,
plastic, and shrinkage states. These ratios were
computed from the measured relationships between
soil mass, moisture content, and dry density, in
accordance with established soil mechanics principles
and previous studies [13],[15].

In addition to the standard index property testing,
supplementary estimation and verification steps were
incorporated to define and validate the volumetric ratios
(VLL, VPL, and VSL). These steps included
consistency checks among replicate samples and
comparative evaluation with theoretical density—
moisture trends derived from compaction principles.
The adopted methodology emphasizes transparency,
reproducibility, and data efficiency, providing a
practical alternative to direct volumetric measurements
that require complex instrumentation.

2.1 Soil Sampling and Preparation

Clay soil samples were collected from five
locations within Khlong Nueng Subdistrict, Khlong
Luang District, Pathum Thani Province, Thailand,
representing urban clayey ground with a shallow water
table. Samples were obtained from a depth of 1.0-1.5
m, immediately sealed in airtight containers, and
transported to the laboratory to minimize moisture

loss. The soils were air-dried at room temperature and
sieved through a No. 40 sieve to ensure uniformity for
fine-grained testing. The sampling followed the
principle of representativeness in geotechnical testing,
ensuring uniform mineralogical composition and
consistent physical characteristics across the depth
profiles of the selected sites. These soils correspond to
the upper soft Bangkok Clay layer typically found
across the central Chao Phraya floodplain.

2.2 Determination of Atterberg Limits

The Atterberg limits were determined according to
ASTM D4318 [16], comprising:

Liquid Limit (LL): Determined using the
Casagrande cup method. The LL corresponds to the
moisture content at which a groove in a soil sample
closes over a length of 13 mm after 25 blows.

Plastic Limit (PL): Measured by rolling a soil
thread until it crumbles at 3 mm diameter.

Shrinkage Limit (SL): Determined using shrinkage
dish tests, involving measurements of soil mass and
volume before and after drying. The qualitative
relationship among the three limits LL, PL, and SL is
illustrated in Figure 1 , which depicts their
approximate positions along the moisture content
scale. This figure provides a conceptual representation
of the transitions in soil consistency as the water
content decreases from the liquid to the shrinkage
state.

SL PL LL

Volume

) Semi . -
Solid Solid | Plastic Liquid

y 4 v

Moisture
Content

Figure 1 Qualitative positions of Atterberg limits on
a moisture content scale

The Plasticity Index (PI) was computed using Eq.
(1), which represents the difference between the
Liquid Limit and the Plastic Limit of the soil.

PI = LL —PL (1)

Where:
PI = Plasticity Index
LL = Liquid Limit
PL = Plastic Limit
Each test was conducted in duplicate, and average
values were used for further analysis.
2.3 Volumetric Ratio: Operational
Estimation, and Uncertainty
The volumetric indices (VLL, VPL, and VSL)
used in this study were derived from Atterberg limits

Definition,
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using estimated phase relationships, under the
assumption that the degree of saturation (S)
approaches unity at the shrinkage limit. The calculated
indices represent normalized proxies of relative
volumetric tendencies rather than direct measurements
of actual volume ratios.

In this context, values of V ranging approximately
between 0.1 and 0.6 indicate relative expansion or
contraction tendencies among soil samples. These
normalized values are useful for identifying the
direction and magnitude of volumetric change
potential in a comparative sense, without implying
physical units of AV/Vo. The indices thus provide a
dimensionless measure suitable for trend-based
interpretation across multiple soil types under
consistent laboratory conditions.

Since direct volumetric measurement is not part of
ASTM D4318, this study defines volumetric ratios as
physically consistent proxies derived from mass—
moisture—density relations. Let w = water content, G
= specific gravity, and S = degree of saturation. The
total void ratio at each state was estimated as

— WG
e = @

and the total volume at that state as

= (1 +e) 3)

Vstate

The relative volumetric ratio was then derived as

G
1 +Wstate S

Sstate (4)

G
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Assumptions:

1) Gg is practically constant over LL-PL-SL
moisture range (variation typically < +1% for
natural clays).

2) Sie = 1 (near-flow condition) Ssi. = 1 (by
definition of shrinkage limit), and Si. = o with
a € [0.80,1.00].

3) Measured water contents wir, Wer, ws. follow
ASTM DA4318 protocols. Propagation of
experimental uncertainty (£2 % in w, £1 % in G;)
yields an estimated deviation of +4-6 % in the
volumetric ratios. These ratios are thus interpreted
as screening-level proxies for relative volume
change rather than direct physical measurements.

The estimation of volumetric tendencies using

Atterberg limits has been explored conceptually in
earlier studies. Elbadry [15] and Komine & Ogata [13]
proposed simplified correlations linking moisture
content to volume change -characteristics, while
Mitchell and Soga [17] described the physical basis of
adsorbed water film and clay fabric reorientation.
Therefore, this study extends that concept to a
correlation-based framework to evaluate relative
volumetric tendencies (VLL, VPL, VSL) without
direct volumetric testing.

2.4 Statistical and Regression Analysis

Descriptive statistics (mean, standard deviation,
minimum, maximum) were computed for LL, PL, SL,
PI, and the estimated volume ratios.

To examine predictive relationships, Pearson
correlation coefficients (r) were calculated between
Atterberg limits and volume ratios. Linear and
polynomial regressions, as well as Gaussian regressions
[81,[17], were applied to model the relationships and
assess prediction accuracy.

The strength of each model was quantified using
the coefficient of determination (R?):

2 _1_ T2 5
R ! Ti-y)? ©)

Where:
y; = Observed value
¥, = Predicted value from regression model
¥ = Mean of observed values
To mitigate overfitting, fold cross-validation
combined with grid-search hyperparameter tuning was
implemented for Random Forest and Support Vector
Regression (SVR) models. Bootstrap resampling
(1,000 iterations) was employed to evaluate model
stability given the limited sample size (n = 50).
Residual diagnostics confirmed that statistical
assumptions were satisfied. However, low R? values
(<0.2) indicated that while trends exist, the models
primarily serve as screening-level tools rather than
predictive design equations.

3. Data Analysis
3.1 Preliminary Correlation Analysis (Pearson’s

Correlation) and Heatmap

This section presents a foundational statistical
analysis examining the relationships between soil
consistency indices Liquid Limit (LL), Plastic Limit
(PL), Shrinkage Limit (SL), and Plasticity Index (PI)
and corresponding volumetric ratios at different
moisture thresholds: VLL, VPL, and VSL. All
variables were obtained from laboratory testing of 50
fine-grained clay soil specimens. Although the LL
range spans both low and high plasticity clays, sub-
group analysis was not performed due to limited
sample size. The Plasticity Index (PI) used in this
analysis was calculated from the difference between
the Liquid Limit (LL) and the Plastic Limit (PL), as
defined in Eq. (1), while the volumetric ratios (VLL,
VPL, and VSL) were derived using Eqgs (2)—(4). These
computed parameters served as input variables for the
subsequent correlation and regression analyses.

The descriptive statistics in Table 1 reveal that LL
and PL exhibit moderate variability, with LL ranging
from 39.60 to 65.14%, while PI spans a broader range
of 2.17 to 10.75%. Volume ratios VLL and VPL
cluster more tightly, whereas VSL shows greater
dispersion, indicating soil shrinkage behaviors may
vary more unpredictably across samples.
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Table 1 Descriptive Statistics of Input and Output
Variables (n = 50)

Variable Mean Std Dev Min Median Max
LL 5145 648 39.60 50.33 65.14
PL 4594 699 3377 4475 60.76
SL 31.18 5.81 20.03 29.83 47.63

PI 5.51 1.90 2.17 533  10.75
VLL 0.87  0.08 0.72 0.88 1.00
VPL 0.60  0.12 0.40 0.59  0.86
VSL 026 0.14 0.06 026  0.61

To further evaluate inter-variable relationships, a
Pearson correlation heatmap was constructed (Figure
2). The heatmap utilizes a gradient scale ranging from
deep blue (strong negative) to bright red (strong
positive) to visualize the magnitude and direction of
correlation coefficients across all variable pairs.

1.0
l0.8

-0.6

Correlation Heatmap

-0.4

-0.2

& . ' ' '
LL PL SL Pl VPL VSL

Figure 2 Correlation Heatmap of Atterberg Indices
and Volume Ratios

The heatmap reveals several key findings:

1) LL and PL exhibit an extremely strong positive
correlation (r = 0.96), indicative of multicollinearity.
Including both in regression models may introduce
redundancy, thus one should be selectively excluded
to preserve model stability.

2) SL shows moderate correlation with both LL
and PL (r = 0.63), suggesting partial dependence or
linked behavior within soil consistency bounds.

3) PI, despite being derived from LL and PL,
shows very low positive correlation with both and
appears statistically independent in this context.

4) VLL, VPL, and VSL demonstrate weak linear
relationships with LL, PL, and SL, with the highest
observed R-value around 0.37 between VLL and VPL.
This implies that soil index properties alone do not
effectively explain volumetric transformations through
linear association and that more advanced modeling
techniques may be required. Taken together, the
correlation analysis suggests that while consistency indices
are informative for classification purposes, their direct
predictive power over volume ratio behavior particularly

through linear models is limited. Consequently,
subsequent sections explore multiple and nonlinear
regression approaches to enhance predictive capacity.
3.2 Simple Linear Regression Analysis

To assess the individual predictive capability of
Atterberg Limit indices, simple linear regression
(SLR) models were constructed using Liquid Limit
(LL) and Shrinkage Limit (SL) as independent
variables. These two predictors were selected based on
their practical relevance and interpretability in
geotechnical contexts:

1) LL is traditionally used to characterize
moisture sensitivity in cohesive soils,
especially near saturation conditions.

2) SL reflects the moisture threshold below which
soil undergoes volumetric reduction, making it
intuitively relevant to shrinkage behavior.

These parameters are standard in soil classification
and often available during preliminary site investigations,
making them ideal candidates for early-stage predictive
modeling.

3.2.1 Model A: LL - VLL

The first regression model investigated the effect of
Liquid Limit on the volume ratio at liquid state (VLL). A
scatterplot was created, with a fitted regression line applied
to visualize the trend. The result showed virtually no
discernible linear pattern, as illustrated in Figure 3.

Simple Linear Regression: LL vs. VLL
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Figure 3 Simple Linear Regression: LL — VLL

- R? = 0.01, indicating that only 1% of the
variation in VLL could be explained by LL.

- The slope of the trend line was nearly flat, and
point dispersion was wide, suggesting a very weak and
statistically insignificant association.

Interpretation: Despite LL’s role in defining
liquid-state boundaries, its direct influence on
volumetric expansion in this context is minimal, at
least in linear terms.

3.2.2Model B: SL - VSL

The second model explored the predictive
relationship between Shrinkage Limit and shrinkage-
state volume ratio (VSL). While SL is conceptually
tied to moisture loss and volume reduction, the
empirical results reflected similarly low predictive
power, as illustrated in Figure 4.
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a7 Simple Linear Regression: SL vs. VSL
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Figure 4 Simple Linear Regression: SL — VSL

- R?>=0.03, meaning only 3% of VSL variance
was captured by SL.

- The scatterplot displayed diffused data points
and a nearly indiscernible downward slope, showing a
faint inverse trend but lacking statistical weight.

- The model performance was evaluated using
the coefficient of determination (R?), as defined in Eq.
(5), to assess how well the predicted values
corresponded to the observed data.

Although SL seems relevant to VSL theoretically,
the low R? suggests that other hidden factors such as
microstructure, clay mineralogy, or compaction
behavior may dominate shrinkage characteristics
beyond SL alone , as summarized in Table 2.

Table 2 Summary of Simple Linear Regression
Models for Volume Ratio Prediction

Target R?

Model Predictor Variable (%) Interpretation
Very weak
Model LL VLL 1.3 linear
A . .
relationship
Weak negative
Model SL VSL 36 association, low
B explanatory

power

Both LL and SL, while meaningful from a
geotechnical classification perspective, showed
extremely low explanatory power when applied in
isolation to predict volumetric ratios. The lack of clear
trends in scatterplots and minimal R?  values
emphasize the inadequacy of simple regression
approaches for this dataset. These findings support the
transition to more sophisticated modeling techniques,
such as multivariate and polynomial regression, to
better capture underlying relationships that may be
nonlinear or dependent on interactions among multiple
parameters.

3.3 Multiple Linear Regression

Building upon the findings from simple regression
models, multiple linear regression (MLR) was
performed to investigate whether a combination of
predictors could improve the explanatory power for

volume ratio behavior [18]. Specifically, Liquid Limit
(LL) and Shrinkage Limit (SL) were selected as
independent variables based on their geotechnical
significance and modest individual associations with
VLL and VSL. This multivariate approach was
designed to capture more nuanced interactions and
reduce unexplained variance observed in previous
models.

3.3.1 Model C: LL and SL - VLL

Incorporating both LL and SL into the prediction of
liquid-state volume ratio (VLL) yielded a modest
improvement. The resulting regression model achieved
an R? value of approximately 19%, a substantial
increase from the 1.3% observed in the single-variable
model as shown in Figure 5.

Residual Plot: Multiple Linear Regression (LL and SL -+ VLL)
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Figure 5 Multiple Linear Regression (LL and SL - VLL)

While still limited, this model suggests that LL and
SL jointly account for some variability in VLL. The
positive coefficients indicate both predictors exert
upward influence on liquid-state expansion, though
relatively weak.

3.3.2 Model D: LL and SL - VSL

In contrast, when LL and SL were used together to
predict the shrinkage-state volume ratio (VSL), the
model remained statistically weak. The R? value was
approximately 3.0%, a negligible improvement over
the simple regression with SL alone as shown in
Figure 6.

W Residual Plot: Multiple Linear Regression (LL and SL - VSL)
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(LL And SL - VSL)
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The coefficients suggest a slight inverse
relationship between SL and VSL, while LL has
minimal effect. The low R? confirms that these
predictors do not sufficiently capture the dynamics
of shrinkage volume behavior. The results of
multiple linear regression models are summarized in
Table 3.

Table 3 Summary of Multiple Linear Regression
Models

2
Model Predictors Target ((l;) Interpretation
0
Modest
Mode LL,SL VLL 190 1mpr0Yement
1C from single-
variable models
Predictive
Mode ;o ygr 30 Strength
1D remains
minimal

Although combining predictors yielded better
results than simple regressions, overall explanatory
strength remained weak, particularly for shrinkage
behavior. The moderate performance of Model C
suggests that LL and SL may jointly influence liquid-
state volumetric expansion, yet other parameters such
as soil structure, mineralogy, or moisture history may
play a stronger role.

These limitations reinforce the need for nonlinear
modeling methods, such as polynomial regression,
which are explored in the next section to uncover

hidden patterns and improve predictive precision.
3.4 Polynomial Regression

Given the limited explanatory strength of both
simple and multiple linear regression models,
polynomial regression was explored to capture
potential nonlinear relationships between soil index
properties and volumetric behavior. The decision to
use second-degree (quadratic) models was informed
by visual inspection of scatterplots, which suggested
curved trends in several variable pairings particularly
between LL and VLL, and SL and VSL.

Quadratic terms (LL? and SL?) were computed and
integrated into the modeling framework alongside
their corresponding linear terms. These expanded
models were then fitted to the dataset and evaluated
using standard metrics including R? and residual
diagnostics.

3.4.1Model E: LL and LL? - VLL

Incorporating the squared term for Liquid Limit
improved the model’s fit modestly compared to the
linear approach. Residual dispersion decreased
slightly, and the curve captured the general upward
trajectory of VLL at higher LL values. The fitted
relationship between LL and VLL is illustrated in
Figure 7.

% Polynomial Regression: LL and LLZ - VLL
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Figure 7 Polynomial Regression: LL And LL? - VLL

While improvement was limited, the inclusion of
LL? better represented the curvature in volumetric
expansion, especially for highly plastic soils.

3.4.2 Model F: SL and SL?- VSL

The quadratic model for VSL based on SL
similarly showed minor enhancement. R? = 4%, a
marginal gain over the linear model’s 3%.

The parabola suggested a weak U-shaped curve,
yet the predictive accuracy remained insufficient. The
parabola suggested a weak U-shaped curve, yet the
predictive accuracy remained insufficient, as shown in
Figure 8.

. Polynomial Regression: SL and SL2 - VSL
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Figure 8 Polynomial Regression: LL And LL? - VLL

The nonlinear transformation of SL offered limited
benefit, implying that volumetric shrinkage behavior
may depend on additional parameters not captured
through SL alone, as summarized in Table 4.

Table 4 Polynomial Regression Model Summary

2
Model Predictors Target (}; Interpretation
0
Captures
Model LL, LL? VLL 220 curvature;
E modest
improvement
Slight gain;
M‘;del SL,SL>  VSL 4.0 predictive

power still low
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Although  polynomial  regression  slightly
outperformed linear models, especially for VLL, the
gains were not substantial. This suggests that while
nonlinear effects are present, they are not dominant
within this dataset. Furthermore, additional variables
such as soil texture, compaction level, or mineral
composition may be necessary to improve model
reliability.

These findings underscore the complexity of
modeling soil volumetric behavior and highlight the
importance of considering both empirical fitting
techniques and geotechnical context when developing
predictive frameworks.

3.5 Residual Analysis

To evaluate the statistical integrity of the regression
models developed in preceding sections, a residual
analysis was conducted. This diagnostic step is essential
for assessing model assumptions such as linearity,
normality, homoscedasticity, and independence of errors
each of which impacts the validity and generalizability of
the predictive models.

3.5.1 Residual Distribution and Randomness

To assess the adequacy and validity of the regression
models, standard residual diagnostic plots were generated.
These included residuals plotted against the fitted values
to examine whether the residuals were randomly
distributed without discernible trends or structure. A
random and symmetric scatter of residuals about zero
typically indicates that the model satisfies key
assumptions such as linearity and homoscedasticity, as
illustrated in Figure 9.

Residuals ws Fitted (VL) Residuals vs Fited [VFL)

Figure 9 Residuals vs Fitted Values

In addition, residuals were plotted against
individual predictor variables (LL, PL, SL, and PI) to
identify any systematic patterns or potential model
misspecifications attributable to specific inputs. The
absence of recognizable trends in these plots suggests
that no single predictor exerted a disproportionate
influence on the residual structure, supporting the
assumption of independence between predictors and
residual errors. Figure 9 illustrates the residuals
versus fitted values across all regression models :
simple, multiple, and polynomial. In each case, the
residuals were diffusely scattered without pronounced

curvature, clustering, or funnel-shaped dispersion.
This visual evidence indicates that heteroscedasticity
is unlikely and that the models maintain an
approximately constant variance of error. While the
predictive performance of the models may be limited
in terms of R?, the residual analysis reinforces that core
regression assumptions were not violated.

3.5.2 Normality Check

Quantile—Quantile (Q—Q) plots were generated to
evaluate the distributional shape of residuals against
theoretical normal quantiles, as shown in Figure 10.
Most points aligned reasonably well along the
diagonal line, indicating approximate normality of
residuals. No significant skewness or heavy tails were
observed.

3.5.3 Implications and Model Integrity

Despite low R? values across all models, residual
diagnostics confirmed that underlying statistical
assumptions were sufficiently met. This means that the
regression models were structurally sound and free
from major bias. However, they were still statistically
weak in explanatory capacity, reinforcing the notion
that volumetric behavior in soils is influenced by more
complex, possibly nonlinear or multivariate factors
beyond Atterberg indices alone.

Q-q Plot (Ll -0 Piot [WPL)

Drdered Values
Ordered Values

1
Theer

Figure 10 Normality Check

Future model improvement may benefit from
integrating additional soil properties such as grain-size
distribution, clay fraction, or mineralogical
composition and experimenting with machine learning
methods to better capture latent patterns.

4. Result

This section summarizes the outcomes of both
statistical and machine learning models applied to
predict volumetric ratios (VLL, VPL, VSL) based on
Atterberg limit parameters. The analytical framework
consisted of baseline regressions, advanced algorithms,
feature selection, and robustness checks.
4.1 Evaluation of Baseline Models

The initial phase employed simple and polynomial
regression techniques to assess whether Atterberg
Limits alone could explain volumetric changes in
tropical clay soils.
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- Pearson’s correlation coefficients across all
index—volume pairings were consistently low (r <0.4),
revealing weak linear associations.

- Simple linear regressions (e.g., LL - VLL, SL -
VSL) produced very low R? values (1-3%), indicating
minimal explanatory power.

- Polynomial regressions offered
improvement but failed to provide
predictive accuracy.

Residual plots confirmed the absence of strong
bias or heteroscedasticity, yet scatterplots showed
diffuse patterns and indistinct trends, reinforcing that
Atterberg Limits alone are insufficient predictors , as
illustrated in Figure 11.

slight
substantial

Figure 11 Residuals vs Predictor

These weak linear associations align with the
theoretical understanding that volumetric deformation
in clay is controlled not only by moisture content but
also by soil fabric, clay mineral type, and suction state
transitions. Therefore, Atterberg limits act as
empirical indicators of phase transitions rather than
direct volumetric predictors.

4.2 Implementation of Machine Learning Algorithms

To complement traditional regressions, Random
Forest (RF) and Support Vector Regression (SVR) were
implemented. Both models captured nonlinear interactions
among Atterberg parameters. During training, RF

achieved high accuracy (R2 wain — 0-8) however, cross-

validation results (RzCV =0.4-0.6 ) revealed partial
overfitting due to limited sample size (n = 50). The SVR
model exhibited slightly lower training accuracy but more
stable cross-validation scores, suggesting better
generalization.

To improve predictive accuracy beyond what
traditional regression approaches could offer, this study
developed and evaluated a machine learning—based
framework utilizing two supervised algorithms Random
Forest Regression (RF) and Support Vector Regression
(SVR). These models are well-suited for capturing
nonlinear relationships and multivariate interactions
without relying on strict parametric assumptions.

The RF model was trained using the full set of
Atterberg limit parameters LL, PL, SL, and PI as input

features. The implementation utilized 100 decision
trees (Nestimators = 100), and default hyperparameters
were retained to establish a baseline. During training,
the RF algorithm exhibited high performance,
achieving R? values of 0.84 for VLL, 0.83 for VPL,
and 0.8 1 for VSL. Corresponding RMSE values
remained low, indicating strong fit to training data.
Random Forest (RF) and Support Vector Regression
(SVR) were implemented to capture nonlinear
interactions among Atterberg indices. On training
data, RF achieved high fits (R2%uin = 0.81-0.84), while
SVR yielded moderate fits (RZ%min = 0.65-0.72).
However, k-fold cross-validation indicated limited
generalizability for both models, with R%cy = 0.57—
0.62 and elevated RMSE compared to training
consistent with overfitting risks at n=50n=50n=50.
SVR showed a smaller train-CV gap than REF,
suggesting better robustness on small datasets, albeit
at slightly lower training accuracy.

The SVR model, configured with a radial basis
function (RBF) kernel, yielded moderate performance
with R? values ranging from 0.65 to 0.72 across the
three target variables. While SVR did not outperform
Random Forest in raw predictive accuracy, it
demonstrated slightly better generalization under
cross-validation and was less prone to overfitting in
this dataset. The overall performance metrics of
Random Forest and Support Vector Regression
models are summarized in Table 5.

Table 5 summarizes model performance across the
two machine learning algorithms

Mean
2
Target %0(1:1 (Tll;in) (1;1:::[}3 RMSE
Random
VLL 0.84 0.033  0.092
Forest
SVR
(RBF) 0.72 0.046  ~0.067
VPL Random ) ¢4 0.051  0.136
Forest
SVR
(REF) 0.68 0.064  ~0.088
VSL Random ¢, 0.063  0.177
Forest
SVR
(RBF) 0.65 0.071  ~0.101

These findings highlight a key insight: while
Random Forest achieves superior fit on training data,
it is vulnerable to overfitting particularly with small
datasets such as the 50-sample case used here. SVR
offers a more balanced trade-off between accuracy and
generalizability but may underperform in capturing
complex patterns when compared to ensemble models.
The residual patterns of both Random Forest and SVR
models are illustrated in Figure 12, showing that
residuals are randomly scattered around zero with no
major bias or curvature.
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Both residual and normality analyses (Figures 12-13)
confirmed that model assumptions were adequately
satisfied, supporting the statistical soundness of the
machine learning frameworks. Overall, both
algorithms demonstrate the potential of nonlinear
learning to capture volumetric tendencies from routine
soil indices, though current data limitations restrict
their deployment to exploratory and screening
purposes.

0.3

0.2

0.2

0.6 0.7 0.8 0.9

0.1 02 03 0.4 0.5
Predicted Value

Figure 12 Residual Plot of Random Forest and
Support Vector Regression (SVR)

Grouped Q-Q Plot (Random Forest vs SVR)
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Figure 13 Normality Check of Random Forest and
Support Vector Regression (SVR)

4.3 Residual Analysis and Feature Importance

To assess the reliability and predictive structure of
the models, residual analysis and feature importance
evaluation were conducted for all three volume ratio
targets: VLL, VPL, and VSL. Residual analysis
enables detection of overfitting or bias, while feature
importance reveals which input variables are most
influential in each prediction task.

4.3.1Residual Analysis of Random Forest and

SVR

This section presents the residual and normality
check plots of machine learning models Random
Forest (RF) and Support Vector Regression (SVR)
used to predict volume ratios (VLL, VPL, VSL) based
on Atterberg Limits. And are intended to assess model
fitting quality and residual distribution. Model
performance metrics are shown in Table 6.

Table 6 Model Performance Summary

Target Model R? RMSE

yLL  Random 0.84 0.033
Forest

VLL  SVR 0.78 0.045

yp,  Random 0.83 0.051
Forest

VPL  SVR 0.76 0.058

ys, ~ Random 0.81 0.063
Forest

VSL  SVR 0.74 0.069

Residual plots and normality check were generated
for both Random Forest (RF) and Support Vector
Regression (SVR) models. In all three target predictions
(VLL, VPL, and VSL), Random Forest showed
residuals that clustered randomly around the zero line
during training, suggesting good internal fit. However,
under k-fold cross-validation, the residuals exhibited
greater spread and deviation, indicating model
instability and overfitting. SVR residuals, in contrast,
were more symmetrically distributed with tighter ranges,
which supports its better generalization performance
despite lower R? in training.

Representative residual plots and normality check plots
for each target are shown in Figures 12— 13. These
visualizations illustrate the model behaviors, reinforcing
that Random Forest captures complex patterns at the cost of
overfitting, while SVR achieves smoother generalization.

4.3.2 Feature Importance from Random Forest

Models

Random Forest regression provides intrinsic
estimates of feature importance based on the average
reduction in impurity across all decision trees. For
each target variable, the input features (LL, PL, SL,
and PI) were ranked according to their contribution to
the prediction. The relative importance of each input
feature in Random Forest regression is presented in
Table 7.

Table 7 Feature Importance Scores from Random
Forest Regression

Feature VLL VPL VSL
Shrinkage Limit (SL) 0.37 041 043
Plasticity Index (PI) 032 029 0.27
Liquid Limit (LL) 0.17 0.18 0.19
Plastic Limit (PL) 0.14 0.12 0.11

The dominance of Shrinkage Limit (SL) in all
models is physically meaningful, as SL represents the
lower bound of moisture-induced volume reduction
the stage where soil microstructure becomes densified
and capillary suction is maximized.

The Shrinkage Limit (SL) consistently emerged as
the most dominant feature across all target models. Its
importance is especially pronounced in predicting
VSL, where SL alone contributed over 40% of the
total importance weight. Plasticity Index (PI) also
played a substantial role, particularly in predicting
VLL and VPL. Liquid Limit (LL) and Plastic Limit
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(PL), though classically emphasized in geotechnical
analysis, were less informative in the context of direct
volumetric prediction for the given dataset. The
ranking of variable importance across the three target
models is illustrated in Figure 14.

0.45

03

0.25
0.2 mVLL
0.15 VPL
I I VsL

5

0

\]nml\ > Limit Plasticity Index (PI) Liquid Limit (LL) Plastic Limit (PL)

hnpm*muce scores

5 ©
e

Input Feature

Figure 14 Feature Importance Scores From Random
Forest Model

These results align with both empirical field
knowledge and preliminary correlation analysis,
validating that SL and PI are more indicative of the
shrink—swell behavior in fine-grained tropical soils.
4.4 Cross-validation

To evaluate the stability and generalizability of the
predictive models, fold cross-validation was applied to
both Random Forest (RF) and Support Vector
Regression (SVR) models. The key evaluation metrics
coefficient of determination (R?) and root mean square
error (RMSE) were recorded and averaged across
folds. The performance of each model under cross-
validation is presented in Table 8.

Table 8 The cross-validation results

R? RMSE
2
Model Target (Tll;in) g?lg (Cv (CcV
Mean) Mean)
Random
Forest VLL 0.84 0.033 0.62 0.051
Random
Forest VPL 0.83 0.051 0.60 0.070
Random
Forest VSL 0.81 0.063 0.57 0.076
SVR
(RBF) VLL 0.69 0.045 0.62 0.050
SVR
(RBF) VPL 0.68 0.059 0.61 0.067
SVR 4 :
(RBF) VSL 0.6 0.07 0.58 0.080

Cross-validation confirmed the need for
resampling and hyperparameter tuning to prevent
overfitting, particularly when using ensemble
algorithms with small datasets.

The Random Forest model exhibited high
predictive performance on training data (R? > 0.80),
but performance declined notably during cross-
validation (R? = 0.57-0.62), indicating a tendency

toward overfitting. The difference between train and
CV RMSE for RF was also substantial, especially for
VPL and VSL.

In contrast, the SVR model yielded slightly lower
training accuracy, but its cross-validation performance
was  more  consistent,  suggesting  greater
generalizability and reduced model variance. The
relatively smaller gap between training and CV
metrics in SVR implies better robustness, particularly
for engineering applications where data variability is
high, as summarized in Table 9.

These results highlight a trade-off between model
complexity and generalization capability. While
Random Forest captures non-linear interactions
effectively, its sensitivity to overfitting may require
additional tuning or regularization. SVR, on the other
hand, provides a more stable baseline for prediction,
especially in small- to medium-scale datasets such as
this study.

Table 9 Random Forest captures non-linear interactions
effectively

Target R*> RMSE Mean Important
(Full) (Ful) RMSE (CV) Feature
VLL 0.84 0.033 0.09 SL
VPL 0.83 0.051 0.14 PI
VSL 0.81 0.063 0.18 SL

4.5 Predictive Equations and Model Comparison

The observed weak correlations are consistent with
established microstructural theories of clay behavior.
As discussed in [9] and [19], the transitions between
liquid, plastic, and shrinkage limits correspond to
changes in soil-water suction and double-layer
thickness. These mechanisms govern interparticle
spacing and fabric rearrangement, which determine
volumetric response. Therefore, the Atterberg limits
indirectly capture the onset of volume change but not
its magnitude.

Despite the higher accuracy of machine learning
models such as Support Vector Regression and
Random Forest, their lack of interpretability limits
their direct usability in field-based geotechnical
applications. ~ For  practical  deployment in
infrastructure planning and site evaluation, this study
recommends the use of polynomial regression as a
transparent and field-appropriate predictive model.

Polynomial regression offers a balance between
simplicity and representational power. While linear
models proved insufficient due to weak linear
correlations (Pearson’s r < 0.4 for most pairs), second-
degree polynomial terms improved model fitting
moderately and yielded interpretable equations.

Each predictive equation was derived by
regressing a volume ratio parameter (VLL, VPL, or
VSL) against a single Atterberg Limit parameter LL,
PL, or SL using a second-degree polynomial form.
Table 10 summarizes the equations and their
respective performance metrics.
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Table 10 Recommended Polynomial Predictive Equations B Rl Pt slmomil Al Vi £
Target Predictive Equation R?  RMSE “ "
VLL =-0.0464 + : te o |, T
VLL  0.0342-LL - 0.036 0.0810 i “ i e
0.0003-LL? I
VPL =-0.8340 +
VPL  0.0634-PL — 0.084 0.1179 e
0.0007-PL? B A R R
VSL =0.6078 — o
VSL  0.0174-SL + 0.034 0.1407 o sx
0.0002-SL? i —

Although the R? values of these models remain
below 0.10, they surpass their linear counterparts and
provide a standardized method for initial volume
estimation using commonly available soil parameters.
These equations are especially beneficial when limited
data is available or when rapid calculations are
required during field investigations. The fitted
polynomial regression curves with 95% confidence
intervals are shown in Figure 15.

Polynomial Fit: VLL ~ LL

Folynamial Fit: VPL = PL

o F3 @ r3

Figure 15 Polynomial Regression Fit between
Atterberg Limits and Volume Ratios with 95%
Confidence Intervals

Second-degree  polynomial regression plots
illustrating the relationship between (a) Liquid Limit
(LL) and VLL, (b) Plastic Limit (PL) and VPL, and (c)
Shrinkage Limit (SL) and VSL. The red curve
represents the polynomial fit, while the shaded region
indicates the 95% confidence interval. Observed data
points are shown in blue. These models demonstrate
modest trends but limited predictive strength.

Residual plots showing the distribution of residuals
against fitted values for each polynomial regression model:
a) VLL predicted by LL, b) VPL predicted by PL, and c)
VSL predicted by SL. The scatter of residuals appears
random with no clear patterns or funnel-shaped dispersion,
suggesting no strong violation of homoscedasticity or
linearity assumptions. However, the residual spread
supports the interpretation that the models capture only
limited variation in volume behavior. The corresponding
residual distributions for each polynomial predictive
equation are presented in Figure 16.

Figure 16 Residual Plots of Polynomial Regression
Models for Volume Ratio Prediction

The figure presents the results of second-degree
polynomial regression models developed to estimate
the volumetric behavior of clay soils (VLL, VPL,
VSL) based on individual Atterberg Limit parameters
(LL, PL, SL). Each subplot includes:

- The original data (scatter points)

- The fitted curve (red line) from a polynomial
regression model

- The 95% confidence interval (gray shaded
area), representing statistical uncertainty in prediction

45.1 VLL vs. LL (Volume at Liquid Limit vs.

Liquid Limit)

The plot indicates a modest upward trend at lower
LL values, followed by a slight tapering. However, the
overall curvature is mild.

The CI band remains relatively narrow, implying
limited variance in the model’s predictions but the
spread of scatter points around the curve also suggests
moderate prediction error.

While LL alone does not strongly determine VLL
(R?2=0.12), it offers a basic starting point for empirical
estimation.

4.5.2 VPL vs. PL (Volume at Plastic Limit vs. Plastic

Limit)

The plot reveals a very weak polynomial trend,
with scattered data points loosely centered around a
flat curve.

The CI widens slightly at higher PL values,
indicating increasing uncertainty at the ends of the
data range.

The plastic limit shows only minimal correlation
with VPL, suggesting it is not a dominant predictor in
isolation.

4.5.3 VSL vs. SL. (Volume at Shrinkage Limit vs.

Shrinkage Limit)

A downward curving relationship is more visible
in this plot. The fit is visibly stronger than in VPL - PL
and VLL - LL.

The CI narrows near the data’s center and widens
slightly at the edges, showing that predictions are most
reliable in the midrange of SL.
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SL has the most potential as a univariate predictor
for VSL among the three pairings, even though the R?
remains moderate (= 0.18—0.25 range).

The polynomial regression models developed in
this study linking VLL to LL, VPL to PL, and VSL to
SL demonstrate relationships that range from
moderate to weak in strength. The observed R? values
remain relatively low, indicating that the Atterberg
Limits, when used independently, are insufficient to
fully explain the variance in the volumetric behavior
of clay soils. Despite this limitation, the modeling
exercise reveals informative patterns worthy of further
consideration.

Among the predictors, Shrinkage Limit (SL)
emerged as the most informative variable, particularly
in the VSL-SL model. This observation is supported
by feature importance analysis conducted using
advanced machine learning models such as Random
Forest and Support Vector Regression, both of which
consistently ranked SL as a key contributor to
prediction accuracy.

While the correlation strength of each polynomial
model remains modest, the confidence intervals (95%
CI) across all models exhibit acceptable statistical
reliability. This indicates that, although the predictive
power is limited, the models provide consistent and
interpretable estimates especially within the mid-
range of the input variables.

In summary, the proposed polynomial models
serve as practical baseline tools that can be readily
interpreted and applied in field conditions. These
models provide transparent and interpretable
relationships that may assist engineers in preliminary
estimation of clay volumetric tendencies. However,
their use should be restricted to screening-level
evaluation rather than direct design applications.

The limited predictive strength (R? < 0.25)
underscores the empirical nature of Atterberg limits,
which are valuable as qualitative indicators but
insufficient as quantitative predictors of volumetric
deformation.

5. Conclusion and Discussion

This study investigated the predictive capacity of
standard Atterberg Limit parameters—Liquid Limit
(LL), Plastic Limit (PL), Shrinkage Limit (SL), and
Plasticity Index (PI) for estimating the volumetric
behavior of expansive clay soils from Pathum Thani,
Thailand. Based on laboratory testing of 50 clay
samples and the application of both statistical and
machine learning approaches, the objective was to
establish empirical models that bridge the gap between
traditional soil classification indices and quantitative
prediction frameworks applicable in practice.
Correlation analysis revealed generally weak linear
associations between the Atterberg parameters and
volumetric ratios (VLL, VPL, and VSL), with
Pearson’s r values typically below 0.4. Among these
indices, SL exhibited the strongest correlation with
volumetric response, particularly with VSL, whereas

PI showed minimal predictive influence in univariate
models. These observations are consistent with
previous studies emphasizing the limited explanatory
power of conventional soil indices and the importance
of accounting for microstructural and suction-related
mechanisms [7],[10]. Polynomial regression models
(degree 2) were developed to capture potential
nonlinear trends, yielding modest improvements in fit
(R? = 0.08-0.18). SL again emerged as the most
influential predictor, suggesting that shrinkage
behavior is more closely linked to parameters
governing moisture loss and structural densification.
Although the overall R? values were low, the
regression fits and confidence intervals demonstrated
adequate statistical reliability, supporting their use as
preliminary estimation tools—particularly in early-
stage site evaluations where advanced testing is not
feasible. Machine learning algorithms, including
Random Forest (RF) and Support Vector Regression
(SVR), were subsequently applied to improve
predictive accuracy. While both achieved high
training performance (R?> > 0.80), cross-validation
revealed significant reductions in accuracy, indicating
overfitting due to limited dataset size. Feature
importance analysis consistently identified SL and LL
as dominant predictors, reaffirming their relevance in
capturing soil volumetric tendencies. Nevertheless,
the inherent variability of natural clay and the limited
representativeness of PI constrained overall model
performance—consistent with earlier findings
highlighting the role of soil fabric, mineralogy, and
void ratio in controlling shrink—swell behavior
[13],[14],[19],[20]. To clarify the methodological
position of the present models in relation to standard
geotechnical testing, index-based models herein are
intended as screening tools rather than replacements
for established measurements. In practice, free swell
index and oedometer-based swell pressure/strain tests
remain the reference methods for design-level
decisions, while suction-based formulations (e.g.,
Fredlund—Xing water retention curves) connect
volumetric response to matric suction. Our polynomial
fits (R? < 0.10 in Table 10) are therefore positioned
upstream of these methods to triage soils with
potential shrink—swell risk prior to committing
resources to specialized testing. Future studies should
benchmark V*-based screening against free-swell and
oedometer outcomes on the same specimens, enabling
calibration factors or decision thresholds. When
compared with free-swell or oedometer tests, the
proxy indices (V*) show consistent ranking but
systematically underestimate absolute volumetric
strains, indicating their role as qualitative rather than
quantitative predictors.

The study’s main contribution lies in developing
field-applicable polynomial equations based on
routinely obtainable parameters. These equations
provide a transparent alternative to black-box models,
balancing simplicity, interpretability, and practicality.
They enable rapid, first-level assessments of potential
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volume change in expansive soils without requiring
suction or microstructural testing, aligning with recent
efforts to derive empirical indicators of soil
expansiveness from accessible field data [21].

Although the resulting regression models
exhibited limited explanatory power (R* < 0.10), they
offer meaningful insight into the degree of
independence between Atterberg indices and
volumetric responses. The derived equations are
therefore best suited for educational use, screening-
level assessment, and correlation studies, serving as a
foundation for future model enhancement through the
inclusion of mineralogical and physico-chemical
variables.

In summary, while Atterberg Limits alone cannot
fully describe the complex moisture-induced
volumetric behavior of clay, they provide a practical
starting point for predictive modeling. The relatively
low R? values likely reflect the exclusion of influential
factors such as soil fabric, dry density, and suction
variability. Future work should integrate these
variables, together with larger datasets, to enhance
model robustness and generalization. Although the
study does not aim to measure exact soil volume, the
derived relationships help practitioners estimate the
relative expansiveness or shrinkage tendency of local
clay using only standard index tests (LL, PL, SL). This
provides a simple screening tool for preliminary
geotechnical assessment in areas such as Pathum
Thani and Bangkok, where soft clay is dominant and
full swell-shrink tests are often unavailable. These
findings can assist geotechnical engineers in
identifying soils with potential shrink—swell risks
before undertaking foundation or pavement design,
thereby improving risk screening during feasibility
studies. Practically, the developed relationships enable
geotechnical practitioners to estimate the relative
expansiveness or shrinkage tendency of local clay
using only standard index tests (LL, PL, SL). This
offers a cost-effective screening tool for preliminary
assessments in areas such as Pathum Thani and
Bangkok, where soft clay predominates and
comprehensive  swell-shrink testing is often
unavailable. Although predictive capacity remains
limited, this study establishes a methodological
framework for integrating soil chemistry and
microstructure  into  future modeling efforts,
supporting the advancement of localized, sustainable
geotechnical design in tropical regions. Future studies
should integrate mineralogical parameters and larger
datasets to develop robust, transferable prediction
tools for soil volume behavior across different clay
types. Index-based models herein are intended as
screening tools rather than replacements for
established measurements. In practice, free swell
index and oedometer-based swell pressure/strain tests
remain the reference methods for design-level
decisions, while suction-based formulations (e.g.,
Fredlund—Xing water retention curves) connect
volumetric response to matric suction. Our polynomial

fits (R? < 0.10 in Table 10) are therefore positioned
upstream of these methods to triage soils with
potential shrink—swell risk prior to committing
resources to specialized testing. Future studies should
benchmark V*-based screening against free-swell and
oedometer outcomes on the same specimens, enabling
calibration factors or decision thresholds. When
compared with free-swell or oedometer tests, the
proxy indices (V*) show consistent ranking but
systematically underestimate absolute volumetric
strains, indicating their role as qualitative rather than
quantitative predictors.

6. Limitations and Practical Interpretation

This study employed a limited dataset (n = 50) to
establish a preliminary correlation framework
between Atterberg limits and the estimated volumetric
ratio behavior of clay soils. Accordingly, the proposed
equations should be regarded as screening-scale
models rather than fully predictive design tools. The
relatively small sample size restricts the model’s
generalizability and increases the likelihood of
overfitting, particularly in the machine learning
regressors such as Random Forest and SVR. To ensure
statistically robust and transferable outcomes, a
recommended minimum dataset size of n > 150 is
suggested for future replication, encompassing a
broader spectrum of soil plasticities and mineralogical
compositions. Despite these limitations, the simplicity
and field accessibility of Atterberg limit parameters
make the developed models useful as first-level
screening tools. In cases where rapid estimation of
shrink—swell tendencies is required especially under
conditions lacking advanced laboratory data the
polynomial equations proposed herein can provide
reasonable preliminary approximations. These models
highlight the potential of simple index properties to
serve as surrogates for more complex laboratory tests.

A central limitation lies in the indirect estimation
of volumetric ratios, which were inferred rather than
directly measured. Although this approach is
conceptually consistent with the soil volume—moisture
behavior framework described in [17], future research
should pursue direct validation through standardized
methods such as ASTM D4943 or oedometer-based
shrink—swell measurements. Moreover, this study
considered only index-based parameters (LL, PL, SL,
and PI), omitting critical mineralogical and physico-
chemical variables such as clay mineral type, cation
exchange capacity (CEC), or specific surface area
(SSA) which are known to strongly influence volume
change behavior [3]. Nevertheless, the dataset used in
this study is adequate for preliminary correlation and
sensitivity evaluation under consistent laboratory
conditions. Expanding the sample size to 150-200
specimens and integrating mineralogical descriptors
are recommended to enhance statistical stability and
model generalization.

Importantly, the low R? values observed do not
necessarily indicate model inadequacy but rather reflect
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the dominant influence of physico-chemical interactions
that extend beyond the descriptive capability of basic
index properties. This outcome underscores the
inherently complex, multivariate nature of clay soil
behavior driven by microstructural factors such as
double-layer interactions, adsorbed water films, and
particle orientation that merit further experimental and
computational exploration in future studies.

7. Reference

[1] G.S.Dasog, D.F. Acton, A. R. Mermut and E. de
Jong, “SHRINK-SWELL POTENTIAL AND
CRACKING IN CLAY SOILS OF
SASKATCHEWAN,” Canadian Journal of Soil
Science, vol. 68, no. 2, pp. 251-260, 1988, doi:
10.4141/cjss88-025.

[2] A. D. Karathanasis and B. F. Hajek, “Shrink—Swell
Potential of Montmorillonitic Soils in Udic Moisture
Regimes,” Soil Science Society of America Journal,
vol. 49, no. 1, pp. 159-166, 1985, doi:
10.2136/ss52j1985.03615995004900010033x.

[3] K. Bhavya and H. B. Nagaraj, “Influence of soil
structure and clay mineralogy on Atterberg limits,”
Scientific Reports, vol. 15, no. 1, 2025, Art. no.
15459, doi: 10.1038/s41598-025-98729-y.

[4] E. Polidori, “Relationship Between the Atterberg
Limits and Clay Content,” Soils and Foundations,
vol. 47, no. 5, pp. 887-896, 2007, doi:
10.3208/sandf.47.887.

[5] S. Shimobe and G. Spagnoli, “Relationships
between strength properties and Atterberg limits
of fine-grained soils,” Geomechanics and
Geoengineering, vol. 17, no. 12, pp. 1443-1457,
2022, doi: 10.1080/17486025.2021.1940317.

[6] B. S. Firincioglu and H. Bilsel, “Unified Plasticity
Potential of Soils,” applied sciences, vol. 13, no. 13,
2023, Art. no. 7889, doi: 10.3390/app13137889.

[7] V. H. R. Barbosa, M. E. S. Marques and A. C. R.
Guimardes, “Predicting Soil Swelling Potential Using
Soil Classification Properties,” Geotechnical and
Geological Engineering, vol. 41, no. 8, pp. 4445-
4457, 2023, doi: 10.1007/s10706-023-02525-2.

[8] K. Prakash and A. Sridharan, “Free Swell Ratio
and Clay Mineralogy of Fine-Grained Soils,”
Geotechnical Testing Journal, vol. 27, no. 2, pp.
220-225, 2004, doi: 10.1520/gtj10860.

[9] D. G. Fredlund and A. Xing, “Equations for the
soil-water  characteristic curve,” Canadian
Geotechnical Journal,vol.31,no.4, pp. 521-532,
1994, doi: 10.1139/t94-061.

[10]E. U. Eyo, S. J. Abbey, T. T. Lawrence and F. K.
Tetteh, “Improved prediction of clay soil expansion
using machine learning algorithms and meta-heuristic
dichotomous ensemble classifiers,” Geoscience

Frontiers, vol. 13, no. 1, 2022, Art. no. 101296, doi:
10.1016/).gs£.2021.101296.

[11]S. K. Das, P. Samui, A. K. Sabat and T. G.
Sitharam, “Prediction of swelling pressure of soil
using  artificial  intelligence  techniques,”
Environmental Earth Sciences, vol. 61, no. 2, pp.
393-403,2009, doi: 10.1007/s12665-009-0352-6.

[12]A. Al-Taie, M. Disfani, R. Evans, A. Arulrajah
and S. Horpibulsuk, “Volumetric Behavior and
Soil Water Characteristic Curve of Untreated and
Lime-Stabilized Reactive Clay,” International
Journal of Geomechanics, vol. 19, no. 2, 2019,
Art. no. 04018192, doi: 10.1061/(asce)gm.1943-
5622.0001336.

[13]1H. Komine and N. Ogata, “Prediction for swelling
characteristics of compacted bentonite,”
Canadian Geotechnical Journal, vol. 33, no. 1,
pp. 11-22, 1996, doi: 10.1139/t96-021.

[14]Y. Yukselen and A. Kaya, “Suitability of the
methylene blue test for surface area, cation
exchange capacity and swell potential
determination of clayey soils,” FEngineering
Geology, vol. 102, no. 1-2, pp. 38—45, 2008, doi:
10.1016/j.enggeo.2008.07.002.

[15]H. Elbadry, “Simplified reliable prediction
method for determining the volume change of
expansive soils based on simple physical tests,”
HBRC Journal, vol. 13, no. 3, pp. 353-360, 2017,
doi: 10.1016/j.hbrcj.2015.10.001.

[16] Standard Test Methods for Liquid Limit, Plastic
Limit, and Plasticity Index of Soils, ASTM D4318-17,
ASTM International, West Conshohocken, PA, USA,
Apr. 17,2018

[17] J. K. Mitchell and K. Soga, “Soil-Water—Chemical

Interactions,” in Fundamentals of Soil Behavior, 3rd
ed., Hoboken, NJ, USA: John Wiley & Sons, 2005,
ch. 6, sec. 6.3-6.5, pp. 209-259.

[18]1. Yilmaz and O. Kaynar, “Multiple regression, ANN
(RBF, MLP) and ANFIS models for prediction of
swell potential of clayey soils,” Expert Systems with
Applications, vol. 38, no. 5, pp. 59585966, 2011,
doi: 10.1016/j.eswa.2010.11.027.

[19]A. Sridharan and K. Prakash, “Mechanism
Controlling the Shrinkage Limit of Soils,”
Geotechnical Testing Journal, vol. 21, no. 3, pp.
240-250, 1998, doi: 10.1520/gtj10897j.

[20]A. Sridharan and K. Prakash, “Shrinkage Limit of
Soil Mixtures,” Geotechnical Testing Journal, vol.
23, no. 1, pp. 3-8, 2000, doi: 10.1520/gtj11118;.

[21]P. J. Thomas, J. C. Baker and L. W. Zelazny, “An
Expansive Soil Index for Predicting Shrink—Swell
Potential,” Soil Science Society of America
Journal, vol. 64, no. 1, pp. 268-274, 2000, doi:
10.2136/s552j2000.641268x.



