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Abstract

This paper presents a cost-effective robotic system capable of manual control via RF remote and autonomous
navigation using GPS-based information. The system employs artificial intelligence to dynamically classify and
avoid non-grass obstacles, ensuring safe operation in real environments. The prototype integrates affordable
hardware including Arduino board, sensors, actuators and Raspberry Pi with lightweight algorithms to balance
performance and cost. Experimental validation confirms its ability to follow predefined paths with +1.5 meters
deviation in open area and 90% obstacle avoidance success rate. With a total hardware cost under $200, this
prototype highlights feasibility for larger-scale implementation.
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1. Introduction

The rising of autonomous technologies has
revolutionized various industries, from automotive to
agriculture, by enhancing efficiency, reducing human
labor, and more intelligence. Among technological
improvements, autonomous lawn mowers have
emerged as a promising innovation in real fields.
While traditional lawn mowing methods require
significant manual effort and time, autonomous
solutions can offer convenience, consistency, and
environmental benefits [1].

The motivation for autonomous lawn mowers is
from the growing demand for smart home
technologies. Using machines makes it easier to
maintain green spaces such as lawns, gardens, and
orchards. Autonomous lawn mowers can play a crucial
role in maintaining these spaces efficiently, reducing
the need for humans. Moreover, the development of
autonomous lawn mowers presents a unique set of
challenges and opportunities in the fields of robotics,
artificial intelligence, and sensor technology. Key
research areas include navigation systems that can
handle complex and dynamic environments, obstacle
detection and avoidance mechanisms [2—4].

Autonomous lawn mowers have the potential to
enhance safety by reducing the risk of accidents
associated with manual mowing [5]. They can also
contribute to environmental sustainability by utilizing
renewable energy sources, such as solar power [6].
Recently, the integration of machine learning
algorithms can enable these devices to adapt to
varying lawn conditions and user preferences, further
enhancing their utility and performance.

The aim of this research is to develop a prototype
capable of both manual and autonomous operation.
Sensors such as GPS and ultrasonic devices are
integrated with machine learning algorithms to
enhance system ability. In autonomous mode, the
system follows predefined waypoints using location
data from GPS sensors and electronic compass.
Ultrasonic sensors are used to measure the distance to
objects along the path. Additionally, cameras
equipped with Al algorithms are used to classify
objects as either high grass or non-grass, enabling
movement decisions. To develop a cost-effective
autonomous version, off-the-shelf controller and
processor boards, along with low-cost sensors are
utilized. This approach has the potential to inspire
further innovations in the broader field of specialized
autonomous robotics, such as those used in
agriculture.

The next section is to explain the design
methodology of both hardware and software, followed
by experiments and results with discussions. The
conclusion is presented in the last section.

2. Design Methodology

Traditional lawnmowers require labor intensity,
environmental pollution, and safety risks. This work
addresses these issues by proposing an electric, low-
cost robotic lawnmower with dual-mode control,
including RF remote for manual operation and GPS-
guided for autonomous mode that follows predefine
waypoints. Additionally in autonomous mode, it can
properly make decisions using camera-based detection
to classify and avoid non-grass obstacles.
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2.1 Hardware Development

This prototype lawn mower is designed using a
steel frame as sketched in Figure 1, while the real one
is shown in Figure 2. Its mobility is from two 12-inch
front wheels powered by 12V DC motors (55 RPM),
while 5-inch rear caster wheel aids gliding. The grass
cutting mechanism is driven by a high-speed 12V
brushless DC motor (3910 RPM). For navigation, it
employs a GPS module (GY-NEO6M) to follow a
predefined path, with an electronic compass (GY-271
QMC5883) assisting in maintaining correct heading
and compensating for GPS drift. Ultrasonic sensors
mounted around the mower detect obstacles within a
2-meter range, enabling it to avoid collisions and
safely navigate through the mowing area.

(b)
Figure 1 The designed lawn mower
(a) Front view (b)Rear View

Figure 2 The real prototype

2.1.1 Motor Selection

The desired speed is approximately the same as a
walking person, around 0.8 m/s. Wheel size is 12
inches (30.48 cm) diameter. The vehicle weight is

approximately 20 kilograms. From the formula V =
30.48

2X100

wr, by substitution 0.8 = w(
= 5.25rad/s

To calculate the power of a motor given torque,
wheel radius, and angular velocity (omega), we can
use Eq. (1):

), then we can get w

P=7-w (1)

Where:
P is the power (in watts, W),
T is the torque (in Newton-meters, N-m),

o is the angular velocity (in radians per second,
rad/s).

Driven by 2 wheels, so each motor is responsible
for 10 kilograms (a half of its weight) or 10 x 9.8 =98
N. As the torque which is calculated by t=Fr,sot =

98 x (233'1280) = 14.94 N-m the power of the motor in

this design is then at least P = 14.94 x 5.25 = 78.4W.
This design, however, selects the 120W motor that can
provide 20N-m torque, accounting for friction and
system losses.

The cutting speed referenced from the MAKITA
ELM3720 GL300 lawn mower is 3400 RPM.
Therefore, a 12V brushless DC motor with 3910 RPM
150W is used in this prototype.

2.1.2 Battery

The drive motor draws a maximum current of 10A
for 12VDC battery. The cutting motor draws a
maximum current of 15A. The total current for all
three motors is around 35A. Hence, a 12 VDC 40Ah
battery is selected to allow the lawnmower to operate
for about 67.5 minutes (when running all three motors
at full load). However, the actual current drawn during
operation depends on the load, surface roughness, and
grass thickness. In practice, the current is typically
much lower, as seen in experiments where the current
during no-load conditions is only around 1A, allowing
for longer operation than initially expected.

2.1.3 Controller and Sensors

In this project, the Arduino Mega was employed
because there are enough number of pins compared to
Arduino UNO. The main 12V battery and a DC buck
converter can be used to supply all components in this
system, containing an emergency stop button for
safety, various types of sensors and peripherals as
shown in Figure 3.

12v

Switch 12 v

m§

Switch 5v

Figure 3 Power connectivity diagram
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The guidance system in this project is generally
based on coordination from GPS, and direction from
electronic compass. The average coordinating value
from two GY-NEO6M GPS modules is used to
determine the destination point, while the GY-271
QMC5883 three-axis magnetic compass module is
used to control moving directions.

The prototype involves calibration and adjustment
of coordinating systems using NMEA from the GPS
and information from the compass. NMEA is a
standard data format supported by all GPS
manufacturers. It can output data in multiple formats.
The transmitted data from the GPS sensors used in this
project is as following example [7].

SGPRMC, 225446,A,4916.45,N,12311.12,W,
000.5,054.7,190125,020.3,E*68

It is prefixed with $§GPRMC and other identifiers
such as UTC time (22:54:46), Navigation receiver
status (A=0OK, V=Warning), Latitude (49 deg. 16.45
min North), Longitude (123 deg. 11.12 min West),
Speed over ground (000.5Knot), Track angle (054.7
deg.), Date (19/01/2025), Magnetic variation (20.3
deg. East), and checksum (68).

GY-271 electronic compass module is designed
for low-field magnetic sensing. It converts any
magnetic field to a differential voltage output on 3
axes through 12C interface in degrees referring to the
magnetic North. This voltage shift is the raw digital
output value, which can then be used to calculate
headings or sense magnetic fields coming from
different directions.

Since both the GPS and compass modules use
different references, the GPS references true North
(geographical North), whereas the compass references
magnetic North. The difference today is about 500
kilometers apart. Additionally, the magnetic North is
recently moving around 25 kilometers a year towards
Siberia. This phenomenon is known as the Polar Shift
Theory [8]. For controlling the direction of movement
to each waypoint, this consideration is included in our
path calculation to correct direction errors

2.1.4 Controller Program Coding

To maneuver the mower, the program flowchart is
shown in Figure 4. The radio-controlled operation
mode is initiated by default hence the system can be
controlled manually via the remote control. To set the
path, waypoints can be input manually using the
remote-control stick, e.g. moving left to set a waypoint
or right to reset the waypoint. Multiple waypoints can
then be added into the system. After completion,
autonomous mode can then proceed.

The autonomous operation is activated by pressing
the start button, the GPS will compare the distance to
the first waypoint. If the distance is not zero, the angle
heading toward the destination will be periodically
estimated using information from the current GPS
location and the destination waypoint. While moving,
the direction from the electronic compass is measured
and compared with the estimated angle. If the

measured angle differs from the estimated angle, the
direction of movement will be adjusted until it is
within some specific value. The mower will then
continue moving for a few seconds and recheck the
direction again till the distance is in the acceptable
boundary. To complete the path, the process will
repeat this moving process to other waypoints
sequentially.
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Figure 4 The mower control flowchart

2.2 Software
Avoidance
The software development includes an object

detection module that identifies obstacles in real time,

along with a depth estimation component that
determines the distance of detected objects. These two
modules work together to enable effective obstacle
avoidance, preventing collisions and minimizing
potential damage to the autonomous lawn mower. As

a result, the mower can be operated autonomously

through a GPS-based navigation system incorporated

with Al-based obstacle avoidance system explained in
this section.

Raspberry Pi 4B, a compact platform equipped
with cameras, is adopted to implement Al-based
algorithms for object -classification and depth
estimation. To avoid non-grass, the lightweight YOLO
(You Only Look Once) classification algorithm is
adopted in the Raspberry Pi. Stereo/monocular
cameras are used for depth estimation that needs as

Development: AI for Obstacle
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vital information to alter the course and avoid an
object. Stereo cameras generated disparity maps using
OpenCV’s  StereoSGBM  algorithm [9], while
monocular cameras employed bounding box scaling
and zone-based depth calculation.

2.2.1 Object Detection and Classification

Currently, YOLO models have gained widespread
popularity and have undergone continuous
development [10], resulting in a total of eight versions.
In this research, YOLOVS5 and YOLOV8 were
compared for properly implementation. YOLOVS is
widely used due to its stability and extensive adoption
in various applications, while YOLOVS represents the
latest iteration of the YOLO model, offering improved
performance and advanced features.

For custom object training, both online and offline
platforms were utilized. Google Colab was chosen as
the online platform for model training due to its cloud-
based computational power, while Visual Studio Code
was used for offline development and deployment.
The trained models were initially built and optimized
in Google Colab before being exported for further
integration and testing in Visual Studio Code.

We first take pictures from real sites and identify
objects normally found in fields. In this case, there are
six categories include trees, humans, rocks, trash,
poles, and branches from trees. The process of labeling
images for object detection and enhancing them
through the Roboflow platform as shown in Figure 5.
After running through all processes, the outcome is the
YOLO model for the next use to detect objects.
YOLOvVS seems to be more promising in terms of
accuracy, processing speed, and model size, more
results are shown in the next section.

When a non-grass object is detected, the location
of the object also with the depth are required for
moving plan. The object's frame will be used to
determine the center point and angle to identify the
object's position in the image. The location and
distance between the object and the mower are
periodically updated and used as conditions to make
avoidance.

Figure 5 Labelling objects possibly in fields

2.2.2 Depth Estimation

Depth estimation refers to the process of determining
the distance of objects within an image from a camera. It is
a crucial technique in the fields of computer vision and 3D
perception. Depth information plays a significant role in
various applications, such as robotics, autonomous
vehicles, and other related technologies [11]. Several
methods can be employed to perform depth estimation,
including the use of disparity maps, monocular depth
estimation, and LiDAR technology. This paper will focus
on the first two methods using USB cameras (QCAM-
M400) and software for analysis, instead of using the high-
cost LiDAR sensor.

Disparity Map: it is a technique used to estimate depth
by utilizing two cameras, commonly referred to as a stereo
camera system. The principle behind stereo vision
simulates the human visual system by creating two images
from the left and right "eyes" (cameras). These two images
are then analyzed to compute the disparity, which refers to
the difference in position between the same corresponding
points in the two images, allowing for depth estimation of
the scene.

As shown in Figure 6, O and O’ are left and right
unique cameras with the focal length of f. B is the
baseline distance between these two cameras. Z is a
real distance between the camera plane and the object
at point X. From trigonometric ratios, the disparity
[12] can be calculated as follows Eq. (2):

disparity = x —x = — (2)

where x and % are the distance between points in
image plane corresponding to the scene point and their
camera center. It simply says that the depth of a point
or object Z in a scene is inversely proportional to the
difference in distance of x - x'which is called disparity.

Distance Z

%
\4

Baseline B

®.
¥
®

o
Q

Figure 6 Disparity map diagram

Typically, a disparity map is visualized using a
color scheme that combines red and blue. By coding
in Python language to run OpenCV function
StereoBM, in this representation, the red color
indicates the highest disparity values, corresponding
to objects that are closer to the camera, while the blue
color represents the lowest disparity values, indicating
objects that are further away.
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Our preliminary results from our two USB
cameras, as shown in Figures 7-8, can prove that the
system could detect objects with high accuracy and
estimate distances with relatively high precision, with
only a slight margin of error.

Figure 8 The boundry Xes of detected objects
(rocks) and distances calculated from disparity

o  Monocular Depth Estimation: This technique
can estimate depth using a single camera to
approximate the depth of objects [13]. In this paper, to
predict the depth value from image input, the size of
the boundary box refers to the real size of the known
detected object and that information can be used to
estimate the distance from some experiments. For
example, the smaller size of the car in pixels refers to
the longer distance from the camera. For the various
sizes of the known objects such as rocks we might use
the average size. The errors can be compensated by
using the information from the camera updating the
position while moving away from obstacles. This
method allows for depth approximation with a single
camera, making it applicable for low computational
performance platform.

From our investigation, both depth estimation
methods provide nearly the same level of accuracy in
determining depth, but each has its advantages. Using
a stereo camera, depth values are obtained through
mathematical calculations based on the detected object
and its center point. However, this method consumes
more processing time. On the other hand, monocular
depth estimation allows for adjustments based on the
actual size of objects. This enables quicker depth
estimation. Additionally, it requires a single camera,
making it more practical in this prototype.

2.2.3 Obstacle Avoidance

To avoid obstacles or classified objects on the path
within some distance getting from depth estimation,

the algorithm in this paper is to divide an input image
into 3 zones, including left zone, right zone and middle
zone as shown in Figure 9. As the flow in Figure 10,
the mower will perform an evasive turn for one second
at a time. It will steer toward the wider side based on
the object's position in the image. The system
continuously checks input images. If the object
persists, it will keep moving and repeat this process
until no further detection (indicating that the obstacle
has been successfully avoided).

Once the path is cleared, the system will execute
the next function, returning to its original path. It will
re-align with the predefined route using GPS to ensure
proper navigation.

Bt
Figure 9 Zoning a picture area into left/middle/right
using the green lines

Divide image into Left,
Middle, and Right Zones

—

P

Turn towards the

wider side for one
second

Found the
object?

NO

~
Move forward along the pathway
based on the GPS, ecompass and
the next defined waypoint
(checking direction and distance)

v

Get to the waypoint

NO

Figure 10 The avoidance flowchart
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3. Experimental Results
3.1 Al and Video processing

From the results of training and testing the YOLO
model in both versions, it was found that YOLOv8
provides higher accuracy and better performance
compared to YOLOv5 when tested using the same
source and test conditions.

From Figure 11, the graphs for train/box loss,
train/clc_loss, val/box_loss and val/clc_loss show a
downward trend in the Y-axis, indicating a reduction in
detection errors as training progresses. When compared
to the X-axis (number of epochs), it is observed that after
50 epochs, the loss/error values become significantly low
and slightly decrease.

train/box_loss train/cls_loss
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Figure 11 Training results from YOLOVS
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Similarly, the graphs for metrics/precision(B),
metrics/recall(B), metrics/mAP50(B) and metrics/mAP50-
95(B) show an upward trend, indicating increased object
detection accuracy. After 50 epochs, the accuracy
values become relatively high and show minimal
further improvement. This is the reason for selecting
epoch = 70 for our training the model.

Figure 12 shows the confusion matrix of the
trained model follows a structure larger than 2x2, with

a high True Positive (TP) rate, approaching 100%,
indicating strong detection accuracy for the six trained
objects. The error values (TN, FP, FN) in the graph are
minimal, close to zero, which demonstrates high
detection performance and accuracy for objects
similar to those in the trained dataset. Some results are
shown in Figure 13.

Confusion Matrix

-1.0

Predicted

background

True

Figure 12 Confusion matrix of all test objects

Figure 13 Examples of object detection and
classification from YOLO models

YOLOvVS8 demonstrated superior performance over
YOLOVS, achieving 98% precision and 96% recall
compared to YOLOV5’s 92% precision and 89%
recall. This improvement was attributed to Ultralytics’
enhanced library support and a balanced dataset with
diverse augmentation.

For the depth estimation, stereo cameras provided
accurate measurements (+5 cm error) under controlled
conditions but suffered from noise on grassy surfaces,
while monocular depth estimation achieved £8 cm
error after calibrating scaling factors but required
manual adjustments for irregular objects.

When using Raspberry Pi 4B (8GB RAM) with a
single camera to detect objects on the grassy field
using custom model, it was found that the processing
delay for object detection with one camera was
approximately 6-9 seconds for 640x480 pixels images.
Raspberry Pi board experienced significant latency
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and resource consumption making it unable to detect
objects faster enough for practical use. To alleviate
this problem, the image resolution was reduced to
enable faster processing on the Raspberry Pi,
improving the detection speed.

3.2 Autonomous Operation Mode

The lawnmower can be controlled to move
automatically to the specified destination points. It
was capable of moving to the defined waypoints and
can continue operating sequentially through the
defined waypoints 1, 2, 3, and so on, based on the
accuracy of the electronic compass and GPS module.

3.2.1 GPS-guided system

From the code, the mower should stop within 1
meter of the destination point. Using a steel tape to
measure distances as shown in Figure 14, although the
coordination used in this system was averaged from
two GPS sensors, the GPS accuracy could result in
more deviations in different directions and distances
in the range of 2.6 meters, as results shown in Tables
1-2. These experiments were conducted in the area
under trees and between high buildings that might
affect the accuracy. This could be improved in open
areas as shown in the next results when the mower was
to follow predefined waypoints.

The lawnmower operated effectively in all modes:
remote control, manual joystick, and GPS-guided
autonomy. It could run through rough terrain and
complete a predefined pathway from A to D as shown
in Figure 15 where the distance between points was
about 50 meters. Autonomous navigation exhibited
positional deviations of +1.5 meters due to signal
strength and environmental interference. Calibration
with the electronic compass could also reduce
directional errors. The battery provided around an
hour of runtime under full load (35A total current
draw). Noise levels were significantly lower than
combustion-engine equivalents.

3.2.2 Obstacle Avoidance in Autonomous Mode

An experiment was conducted to measure the
deviation after the lawnmower turned to avoid
obstacles. The deviation was measured using a camera
positioned in the center of the mower to determine
how far it was from its starting point after completely
avoiding the object.

Figure 14 Experiment to measure deviation distance

Figure 15 The comparison of real moving paths in
Google Map

As shown in Table 3, the lawn mower trajectories
diverged by 21.2 cm on concrete versus 28.6-30.8 cm
on grass, attributed to motor power fluctuations and
uneven terrain resistance. The controller successfully
executed avoidance maneuvers though different
environments. In terms of success rate, it achieved 22
times from 25 attempts or around 90%.

Table 1 GPS deviation by direction

Distance (m) from Direction Average Deviation from
Starting Point Destination Point (m)
15 N 2.30
15 N/E 1.00
15 E 2.30
15 E/S 2.60
15 S 2.30
15 S/W 2.00
15 W 2.10
15 W/N 1.80
Table 2 GPS deviation by distance
Distance from Average Deviation from
Starting Point (m) | Destination Point (m)
5 2.10
10 2.30
15 2.10
20 2.30
25 2.60
30 2.60

Table 3 Deviation when detecting obstacles

Deviation from Original Path (cm)
Trial Pole People People

(on grass) | (on grass) | (on concrete)

1 32.0 35.0 21.0

2 29.0 27.0 18.0

3 30.0 33.0 22.0

4 25.0 32.0 26.0

5 27.0 27.0 19.0

Average 28.6 30.81 21.2

Table 4 outlines how the proposed research
compares with previous works as discussed earlier. It
shows some differences in terms of the design aspects
and results of this study.
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Table 4 Comparison with previous mentioned works

Feature This Work

Previous Works

Navigation System (QMC5883)

GPS (NEO-6M) and Digital Compass

Vision based [2], GPS-based [3],[4]

Control Modes | Manual (RF) and Autonomous

Autonomous or manual-only operation

Obstacle YOLOVS and Depth Estimation Machine vision [2], LIDAR [3], Sonar [4]
Avoidance
Al YOLOVS is adopted after comparison Basic ML techniques (e.g., CNN, AI) used in
Algorithm with YOLOvS navigation [2]

Depth Estimation

Stereo disparity map & monocular

Depth info came from the RGB-D sensor [3]

estimation
Total Hardware Unspecified in most, typically higher due to
Cost <$200USD advanced sensors such as LIDAR
GPS £1.5 meters in open fields Deviation commonly 2—3 m or more in semi-
Accuracy obstructed areas

Obstacle Avoidance

o, .
Success Rate 90% (22 out of 25 trials)

92.7% for LIDAR-based [3]

Battery, Solar panel [6]

Power source Battery
Processing .
Hardware Raspberry Pi 4B (8GB)

PC or generic microcontroller

4. Conclusions

This  paper  demonstrates  the  successful
implementation of a low-cost, dual-mode (manual RF and
autonomous GPS-guided) system with object- avoidance
capabilities. The prototype achieves reliable navigation
and obstacle avoidance in controlled environments.
Experimental validation confirms its ability to follow
predefined paths and 90% obstacle avoidance success rate.
The integration of YOLOv8 and monocular depth
estimation successfully demonstrated obstacle avoidance,
though path recovery mechanisms struggled on grass due
to inconsistent traction. With a total hardware cost under
$200, this work provides a foundational framework for
larger-scale applications.

Recommendations for future work include
adopting optimized YOLO architecture (e.g., Tiny-
YOLO) for Raspberry Pi devices, upgrading to
NVIDIA Jetson for enhanced computational capacity,
and using inertial sensor or LiDAR for robust 3D
mapping. Real-time kinematic positioning (RTK)
could be used to enhance position accuracy with more
complex maneuvering control methods for different
layouts that could broaden its applicability in
agricultural activities or field operations.
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