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Abstract 
This paper presents a cost-effective robotic system capable of manual control via RF remote and autonomous 

navigation using GPS-based information. The system employs artificial intelligence to dynamically classify and 
avoid non-grass obstacles, ensuring safe operation in real environments. The prototype integrates affordable 
hardware including Arduino board, sensors, actuators and Raspberry Pi with lightweight algorithms to balance 
performance and cost. Experimental validation confirms its ability to follow predefined paths with ±1.5 meters 
deviation in open area and 90% obstacle avoidance success rate. With a total hardware cost under $200, this 
prototype highlights feasibility for larger-scale implementation. 
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1. Introduction 
The rising of autonomous technologies has 

revolutionized various industries, from automotive to 
agriculture, by enhancing efficiency, reducing human 
labor, and more intelligence. Among technological 
improvements, autonomous lawn mowers have 
emerged as a promising innovation in real fields. 
While traditional lawn mowing methods require 
significant manual effort and time, autonomous 
solutions can offer convenience, consistency, and 
environmental benefits [1]. 

The motivation for autonomous lawn mowers is 
from the growing demand for smart home 
technologies. Using machines makes it easier to 
maintain green spaces such as lawns, gardens, and 
orchards. Autonomous lawn mowers can play a crucial 
role in maintaining these spaces efficiently, reducing 
the need for humans. Moreover, the development of 
autonomous lawn mowers presents a unique set of 
challenges and opportunities in the fields of robotics, 
artificial intelligence, and sensor technology. Key 
research areas include navigation systems that can 
handle complex and dynamic environments, obstacle 
detection and avoidance mechanisms [2–4]. 

Autonomous lawn mowers have the potential to 
enhance safety by reducing the risk of accidents 
associated with manual mowing [5]. They can also 
contribute to environmental sustainability by utilizing 
renewable energy sources, such as solar power [6]. 
Recently, the integration of machine learning 
algorithms can enable these devices to adapt to 
varying lawn conditions and user preferences, further 
enhancing their utility and performance. 

The aim of this research is to develop a prototype 
capable of both manual and autonomous operation. 
Sensors such as GPS and ultrasonic devices are 
integrated with machine learning algorithms to 
enhance system ability. In autonomous mode, the 
system follows predefined waypoints using location 
data from GPS sensors and electronic compass. 
Ultrasonic sensors are used to measure the distance to 
objects along the path. Additionally, cameras 
equipped with AI algorithms are used to classify 
objects as either high grass or non-grass, enabling 
movement decisions. To develop a cost-effective 
autonomous version, off-the-shelf controller and 
processor boards, along with low-cost sensors are 
utilized. This approach has the potential to inspire 
further innovations in the broader field of specialized 
autonomous robotics, such as those used in 
agriculture. 

The next section is to explain the design 
methodology of both hardware and software, followed 
by experiments and results with discussions. The 
conclusion is presented in the last section. 

 
2. Design Methodology 

Traditional lawnmowers require labor intensity, 
environmental pollution, and safety risks. This work 
addresses these issues by proposing an electric, low- 
cost robotic lawnmower with dual-mode control, 
including RF remote for manual operation and GPS- 
guided for autonomous mode that follows predefine 
waypoints. Additionally in autonomous mode, it can 
properly make decisions using camera-based detection 
to classify and avoid non-grass obstacles. 
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2.1 Hardware Development 
This prototype lawn mower is designed using a 

steel frame as sketched in Figure 1, while the real one 
is shown in Figure 2. Its mobility is from two 12-inch 
front wheels powered by 12V DC motors (55 RPM), 
while 5-inch rear caster wheel aids gliding. The grass 
cutting mechanism is driven by a high-speed 12V 
brushless DC motor (3910 RPM). For navigation, it 
employs a GPS module (GY-NEO6M) to follow a 
predefined path, with an electronic compass (GY-271 
QMC5883) assisting in maintaining correct heading 
and compensating for GPS drift. Ultrasonic sensors 
mounted around the mower detect obstacles within a 
2-meter range, enabling it to avoid collisions and 
safely navigate through the mowing area. 

 

  
(a) (b) 

Figure 1 The designed lawn mower 
(a) Front view (b)Rear View 

 

 
Figure 2 The real prototype 

 
2.1.1 Motor Selection 
The desired speed is approximately the same as a 

walking person, around 0.8 m/s. Wheel size is 12 
inches (30.48 cm) diameter. The vehicle weight is 
approximately 20 kilograms. From the formula 𝑉𝑉 = 
𝜔𝜔𝜔𝜔, by substitution 0.8 = ω( 30.48

2×100
), then we can get 𝜔𝜔 

= 5.25𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠 
To calculate the power of a motor given torque, 

wheel radius, and angular velocity (omega), we can 
use Eq. (1): 

 
𝑃𝑃 = 𝜏𝜏 ⋅ 𝜔𝜔 (1) 

 
Where: 

𝑃𝑃  is the power (in watts, W), 
τ  is the torque (in Newton-meters, N·m), 
ω  is the angular velocity (in radians per second, 

rad/s). 

Driven by 2 wheels, so each motor is responsible 
for 10 kilograms (a half of its weight) or 10 × 9.8 = 98 
𝑁𝑁. As the torque which is calculated by 𝜏𝜏 = 𝐹𝐹𝐹𝐹, so τ =
98 × ( 30.48

2×100) = 14.94 N-m the power of the motor in 
this design is then at least 𝑃𝑃 = 14.94 × 5.25 = 78.4𝑊𝑊. 
This design, however, selects the 120W motor that can 
provide 20N-m torque, accounting for friction and 
system losses. 

The cutting speed referenced from the MAKITA 
ELM3720 GL300 lawn mower is 3400 RPM. 
Therefore, a 12V brushless DC motor with 3910 RPM 
150W is used in this prototype. 

2.1.2 Battery 
The drive motor draws a maximum current of 10A 

for 12VDC battery. The cutting motor draws a 
maximum current of 15A. The total current for all 
three motors is around 35A. Hence, a 12 VDC 40Ah 
battery is selected to allow the lawnmower to operate 
for about 67.5 minutes (when running all three motors 
at full load). However, the actual current drawn during 
operation depends on the load, surface roughness, and 
grass thickness. In practice, the current is typically 
much lower, as seen in experiments where the current 
during no-load conditions is only around 1A, allowing 
for longer operation than initially expected. 

2.1.3 Controller and Sensors 
In this project, the Arduino Mega was employed 

because there are enough number of pins compared to 
Arduino UNO. The main 12V battery and a DC buck 
converter can be used to supply all components in this 
system, containing an emergency stop button for 
safety, various types of sensors and peripherals as 
shown in Figure 3. 

 

 
Figure 3 Power connectivity diagram 
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The guidance system in this project is generally 
based on coordination from GPS, and direction from 
electronic compass. The average coordinating value 
from two GY-NEO6M GPS modules is used to 
determine the destination point, while the GY-271 
QMC5883 three-axis magnetic compass module is 
used to control moving directions. 

The prototype involves calibration and adjustment 
of coordinating systems using NMEA from the GPS 
and information from the compass. NMEA is a 
standard data format supported by all GPS 
manufacturers. It can output data in multiple formats. 
The transmitted data from the GPS sensors used in this 
project is as following example [7]. 

 
$GPRMC,225446,A,4916.45,N,12311.12,W, 
000.5,054.7,190125,020.3,E*68 

 
It is prefixed with $GPRMC and other identifiers 

such as UTC time (22:54:46), Navigation receiver 
status (A=OK, V=Warning), Latitude (49 deg. 16.45 
min North), Longitude (123 deg. 11.12 min West), 
Speed over ground (000.5Knot), Track angle (054.7 
deg.), Date (19/01/2025), Magnetic variation (20.3 
deg. East), and checksum (68). 

GY-271 electronic compass module is designed 
for low-field magnetic sensing. It converts any 
magnetic field to a differential voltage output on 3 
axes through I2C interface in degrees referring to the 
magnetic North. This voltage shift is the raw digital 
output value, which can then be used to calculate 
headings or sense magnetic fields coming from 
different directions. 

Since both the GPS and compass modules use 
different references, the GPS references true North 
(geographical North), whereas the compass references 
magnetic North. The difference today is about 500 
kilometers apart. Additionally, the magnetic North is 
recently moving around 25 kilometers a year towards 
Siberia. This phenomenon is known as the Polar Shift 
Theory [8]. For controlling the direction of movement 
to each waypoint, this consideration is included in our 
path calculation to correct direction errors 

2.1.4 Controller Program Coding 
To maneuver the mower, the program flowchart is 

shown in Figure 4. The radio-controlled operation 
mode is initiated by default hence the system can be 
controlled manually via the remote control. To set the 
path, waypoints can be input manually using the 
remote-control stick, e.g. moving left to set a waypoint 
or right to reset the waypoint. Multiple waypoints can 
then be added into the system. After completion, 
autonomous mode can then proceed. 

The autonomous operation is activated by pressing 
the start button, the GPS will compare the distance to 
the first waypoint. If the distance is not zero, the angle 
heading toward the destination will be periodically 
estimated using information from the current GPS 
location and the destination waypoint. While moving, 
the direction from the electronic compass is measured 
and compared with the estimated angle. If the 

measured angle differs from the estimated angle, the 
direction of movement will be adjusted until it is 
within some specific value. The mower will then 
continue moving for a few seconds and recheck the 
direction again till the distance is in the acceptable 
boundary. To complete the path, the process will 
repeat this moving process to other waypoints 
sequentially. 
 

 
 

Figure 4 The mower control flowchart 
 
2.2 Software Development: AI for Obstacle 

Avoidance 
The software development includes an object 

detection module that identifies obstacles in real time, 
along with a depth estimation component that 
determines the distance of detected objects. These two 
modules work together to enable effective obstacle 
avoidance, preventing collisions and minimizing 
potential damage to the autonomous lawn mower. As 
a result, the mower can be operated autonomously 
through a GPS-based navigation system incorporated 
with AI-based obstacle avoidance system explained in 
this section. 

Raspberry Pi 4B, a compact platform equipped 
with cameras, is adopted to implement AI-based 
algorithms for object classification and depth 
estimation. To avoid non-grass, the lightweight YOLO 
(You Only Look Once) classification algorithm is 
adopted in the Raspberry Pi. Stereo/monocular 
cameras are used for depth estimation that needs as 
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vital information to alter the course and avoid an 
object. Stereo cameras generated disparity maps using 
OpenCV’s StereoSGBM algorithm [9], while 
monocular cameras employed bounding box scaling 
and zone-based depth calculation. 

2.2.1 Object Detection and Classification 
Currently, YOLO models have gained widespread 

popularity and have undergone continuous 
development [10], resulting in a total of eight versions. 
In this research, YOLOV5 and YOLOV8 were 
compared for properly implementation. YOLOV5 is 
widely used due to its stability and extensive adoption 
in various applications, while YOLOV8 represents the 
latest iteration of the YOLO model, offering improved 
performance and advanced features. 

For custom object training, both online and offline 
platforms were utilized. Google Colab was chosen as 
the online platform for model training due to its cloud- 
based computational power, while Visual Studio Code 
was used for offline development and deployment. 
The trained models were initially built and optimized 
in Google Colab before being exported for further 
integration and testing in Visual Studio Code. 

We first take pictures from real sites and identify 
objects normally found in fields. In this case, there are 
six categories include trees, humans, rocks, trash, 
poles, and branches from trees. The process of labeling 
images for object detection and enhancing them 
through the Roboflow platform as shown in Figure 5. 
After running through all processes, the outcome is the 
YOLO model for the next use to detect objects. 
YOLOv8 seems to be more promising in terms of 
accuracy, processing speed, and model size, more 
results are shown in the next section. 

When a non-grass object is detected, the location 
of the object also with the depth are required for 
moving plan. The object's frame will be used to 
determine the center point and angle to identify the 
object's position in the image. The location and 
distance between the object and the mower are 
periodically updated and used as conditions to make 
avoidance. 
 

 
 

Figure 5 Labelling objects possibly in fields 
 

2.2.2 Depth Estimation 
Depth estimation refers to the process of determining 

the distance of objects within an image from a camera. It is 
a crucial technique in the fields of computer vision and 3D 
perception. Depth information plays a significant role in 
various applications, such as robotics, autonomous 
vehicles, and other related technologies [11]. Several 
methods can be employed to perform depth estimation, 
including the use of disparity maps, monocular depth 
estimation, and LiDAR technology. This paper will focus 
on the first two methods using USB cameras (QCAM-
M400) and software for analysis, instead of using the high-
cost LiDAR sensor. 

Disparity Map: it is a technique used to estimate depth 
by utilizing two cameras, commonly referred to as a stereo 
camera system. The principle behind stereo vision 
simulates the human visual system by creating two images 
from the left and right "eyes" (cameras). These two images 
are then analyzed to compute the disparity, which refers to 
the difference in position between the same corresponding 
points in the two images, allowing for depth estimation of 
the scene. 

As shown in Figure 6, O and O’ are left and right 
unique cameras with the focal length of 𝑓𝑓. B is the 
baseline distance between these two cameras. 𝑍𝑍 is a 
real distance between the camera plane and the object 
at point X. From trigonometric ratios, the disparity 
[12] can be calculated as follows Eq. (2): 

 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =  𝑥𝑥 − 𝑥́𝑥  =  
𝐵𝐵𝑓𝑓
𝑍𝑍   (2) 

 
where 𝑥𝑥  and 𝑥́𝑥  are the distance between points in 
image plane corresponding to the scene point and their 
camera center. It simply says that the depth of a point 
or object 𝑍𝑍 in a scene is inversely proportional to the 
difference in distance of 𝑥𝑥 - 𝑥𝑥′which is called disparity. 
 

 
Figure 6 Disparity map diagram 

 
Typically, a disparity map is visualized using a 

color scheme that combines red and blue. By coding 
in Python language to run OpenCV function 
StereoBM, in this representation, the red color 
indicates the highest disparity values, corresponding 
to objects that are closer to the camera, while the blue 
color represents the lowest disparity values, indicating 
objects that are further away. 
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Our preliminary results from our two USB 
cameras, as shown in Figures 7–8, can prove that the 
system could detect objects with high accuracy and 
estimate distances with relatively high precision, with 
only a slight margin of error. 
 

 
Figure 7 The result of color scheme disparity map 

 

 
Figure 8 The boundary boxes of detected objects 

(rocks) and distances calculated from disparity 
 

• Monocular Depth Estimation: This technique 
can estimate depth using a single camera to 
approximate the depth of objects [13]. In this paper, to 
predict the depth value from image input, the size of 
the boundary box refers to the real size of the known 
detected object and that information can be used to 
estimate the distance from some experiments. For 
example, the smaller size of the car in pixels refers to 
the longer distance from the camera. For the various 
sizes of the known objects such as rocks we might use 
the average size. The errors can be compensated by 
using the information from the camera updating the 
position while moving away from obstacles. This 
method allows for depth approximation with a single 
camera, making it applicable for low computational 
performance platform. 

From our investigation, both depth estimation 
methods provide nearly the same level of accuracy in 
determining depth, but each has its advantages. Using 
a stereo camera, depth values are obtained through 
mathematical calculations based on the detected object 
and its center point. However, this method consumes 
more processing time. On the other hand, monocular 
depth estimation allows for adjustments based on the 
actual size of objects. This enables quicker depth 
estimation. Additionally, it requires a single camera, 
making it more practical in this prototype. 

2.2.3 Obstacle Avoidance 
To avoid obstacles or classified objects on the path 

within some distance getting from depth estimation, 

the algorithm in this paper is to divide an input image 
into 3 zones, including left zone, right zone and middle 
zone as shown in Figure 9. As the flow in Figure 10, 
the mower will perform an evasive turn for one second 
at a time. It will steer toward the wider side based on 
the object's position in the image. The system 
continuously checks input images. If the object 
persists, it will keep moving and repeat this process 
until no further detection (indicating that the obstacle 
has been successfully avoided). 

Once the path is cleared, the system will execute 
the next function, returning to its original path. It will 
re-align with the predefined route using GPS to ensure 
proper navigation. 

 

 
Figure 9 Zoning a picture area into left/middle/right 

using the green lines 
 

 
Figure 10 The avoidance flowchart 
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3. Experimental Results 
3.1 AI and Video processing 

From the results of training and testing the YOLO 
model in both versions, it was found that YOLOv8 
provides higher accuracy and better performance 
compared to YOLOv5 when tested using the same 
source and test conditions. 

From Figure 11, the graphs for train/box_loss, 
train/clc_loss, val/box_loss and val/clc_loss show a 
downward trend in the Y-axis, indicating a reduction in 
detection errors as training progresses. When compared 
to the X-axis (number of epochs), it is observed that after 
50 epochs, the loss/error values become significantly low 
and slightly decrease.  

 

 

 
Figure 11 Training results from YOLOv8 

 
Similarly, the graphs for metrics/precision(B), 

metrics/recall(B), metrics/mAP50(B) and metrics/mAP50-
95(B) show an upward trend, indicating increased object 
detection accuracy. After 50 epochs, the accuracy 
values become relatively high and show minimal 
further improvement. This is the reason for selecting 
epoch = 70 for our training the model. 

Figure 12 shows the confusion matrix of the 
trained model follows a structure larger than 2×2, with 

a high True Positive (TP) rate, approaching 100%, 
indicating strong detection accuracy for the six trained 
objects. The error values (TN, FP, FN) in the graph are 
minimal, close to zero, which demonstrates high 
detection performance and accuracy for objects 
similar to those in the trained dataset. Some results are 
shown in Figure 13. 

 

 
Figure 12 Confusion matrix of all test objects 

 

 
Figure 13 Examples of object detection and 

classification from YOLO models 
 
YOLOv8 demonstrated superior performance over 

YOLOv5, achieving 98% precision and 96% recall 
compared to YOLOv5’s 92% precision and 89% 
recall. This improvement was attributed to Ultralytics’ 
enhanced library support and a balanced dataset with 
diverse augmentation. 

For the depth estimation, stereo cameras provided 
accurate measurements (±5 cm error) under controlled 
conditions but suffered from noise on grassy surfaces, 
while monocular depth estimation achieved ±8 cm 
error after calibrating scaling factors but required 
manual adjustments for irregular objects. 

When using Raspberry Pi 4B (8GB RAM) with a 
single camera to detect objects on the grassy field 
using custom model, it was found that the processing 
delay for object detection with one camera was 
approximately 6-9 seconds for 640x480 pixels images. 
Raspberry Pi board experienced significant latency 
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and resource consumption making it unable to detect 
objects faster enough for practical use. To alleviate 
this problem, the image resolution was reduced to 
enable faster processing on the Raspberry Pi, 
improving the detection speed. 
3.2 Autonomous Operation Mode 

The lawnmower can be controlled to move 
automatically to the specified destination points. It 
was capable of moving to the defined waypoints and 
can continue operating sequentially through the 
defined waypoints 1, 2, 3, and so on, based on the 
accuracy of the electronic compass and GPS module. 

3.2.1 GPS-guided system 
From the code, the mower should stop within 1 

meter of the destination point. Using a steel tape to 
measure distances as shown in Figure 14, although the 
coordination used in this system was averaged from 
two GPS sensors, the GPS accuracy could result in 
more deviations in different directions and distances 
in the range of 2.6 meters, as results shown in Tables 
1–2. These experiments were conducted in the area 
under trees and between high buildings that might 
affect the accuracy. This could be improved in open 
areas as shown in the next results when the mower was 
to follow predefined waypoints. 

The lawnmower operated effectively in all modes: 
remote control, manual joystick, and GPS-guided 
autonomy. It could run through rough terrain and 
complete a predefined pathway from A to D as shown 
in Figure 15 where the distance between points was 
about 50 meters. Autonomous navigation exhibited 
positional deviations of ±1.5 meters due to signal 
strength and environmental interference. Calibration 
with the electronic compass could also reduce 
directional errors. The battery provided around an 
hour of runtime under full load (35A total current 
draw). Noise levels were significantly lower than 
combustion-engine equivalents. 

3.2.2 Obstacle Avoidance in Autonomous Mode 
An experiment was conducted to measure the 

deviation after the lawnmower turned to avoid 
obstacles. The deviation was measured using a camera 
positioned in the center of the mower to determine 
how far it was from its starting point after completely 
avoiding the object. 

 

 
Figure 14 Experiment to measure deviation distance 

 
Figure 15 The comparison of real moving paths in 

Google Map 
 

As shown in Table 3, the lawn mower trajectories 
diverged by 21.2 cm on concrete versus 28.6–30.8 cm 
on grass, attributed to motor power fluctuations and 
uneven terrain resistance. The controller successfully 
executed avoidance maneuvers though different 
environments. In terms of success rate, it achieved 22 
times from 25 attempts or around 90%. 

 
Table 1 GPS deviation by direction 
Distance (m) from 
Starting Point Direction Average Deviation from 

Destination Point (m) 
15 N 2.30 
15 N/E 1.00 
15 E 2.30 
15 E/S 2.60 
15 S 2.30 
15 S/W 2.00 
15 W 2.10 
15 W/N 1.80 

 
Table 2 GPS deviation by distance 

Distance from 
Starting Point (m) 

Average Deviation from 
Destination Point (m) 

5 2.10 
10 2.30 
15 2.10 
20 2.30 
25 2.60 
30 2.60 

 
Table 3 Deviation when detecting obstacles 

Trial 
Deviation from Original Path (cm) 
Pole 

(on grass) 
People  

(on grass) 
People 

(on concrete) 
1 32.0 35.0 21.0 
2 29.0 27.0 18.0 
3 30.0 33.0 22.0 
4 25.0 32.0 26.0 
5 27.0 27.0 19.0 

Average 28.6 30.81 21.2 
 

Table 4 outlines how the proposed research 
compares with previous works as discussed earlier. It 
shows some differences in terms of the design aspects 
and results of this study.
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Table 4 Comparison with previous mentioned works 
Feature This Work Previous Works 

Navigation System GPS (NEO-6M) and Digital Compass 
(QMC5883) Vision based [2], GPS-based [3],[4] 

Control Modes Manual (RF)  and Autonomous Autonomous or manual-only operation 
Obstacle 

Avoidance YOLOv8 and Depth Estimation Machine vision [2], LIDAR [3], Sonar [4] 

AI 
Algorithm 

YOLOv8 is adopted after comparison 
with YOLOv5 

Basic ML techniques (e.g., CNN, AI) used in 
navigation [2] 

Depth Estimation Stereo disparity map & monocular 
estimation Depth info came from the RGB-D sensor [3] 

Total Hardware 
Cost < $200 USD Unspecified in most, typically higher due to 

advanced sensors such as LIDAR 
GPS 

Accuracy ±1.5 meters in open fields Deviation commonly 2–3 m or more in semi- 
obstructed areas  

Obstacle Avoidance 
Success Rate 90% (22 out of 25 trials) 92.7% for LIDAR-based [3] 

Power source Battery Battery, Solar panel [6] 
Processing 
Hardware Raspberry Pi 4B (8GB) PC or generic microcontroller  

4. Conclusions 
This paper demonstrates the successful 

implementation of a low-cost, dual-mode (manual RF and 
autonomous GPS-guided) system with object- avoidance 
capabilities. The prototype achieves reliable navigation 
and obstacle avoidance in controlled environments. 
Experimental validation confirms its ability to follow 
predefined paths and 90% obstacle avoidance success rate. 
The integration of YOLOv8 and monocular depth 
estimation successfully demonstrated obstacle avoidance, 
though path recovery mechanisms struggled on grass due 
to inconsistent traction. With a total hardware cost under 
$200, this work provides a foundational framework for 
larger-scale applications. 

Recommendations for future work include 
adopting optimized YOLO architecture (e.g., Tiny- 
YOLO) for Raspberry Pi devices, upgrading to 
NVIDIA Jetson for enhanced computational capacity, 
and using inertial sensor or LiDAR for robust 3D 
mapping. Real-time kinematic positioning (RTK) 
could be used to enhance position accuracy with more 
complex maneuvering control methods for different 
layouts that could broaden its applicability in 
agricultural activities or field operations. 

 
5. References 
[1] R. P. Kizhakkeyil and N. Patel, “Autonomous 

Lawn Mower – A Comprehensive Review,” 
International Research Journal on Advanced 
Science Hub, vol. 5, no. 12, pp. 420–428, 2023, 
doi: 10.47392/IRJASH.2023.079. 

[2] K. Inoue, Y. Kaizu, S. Igarashi, K. Furuhashi and K. 
Imou, “Autonomous Navigation and Obstacle 
Avoidance in an Orchard Using Machine Vision 
Techniques for a Robotic Mower,” Engineering in 
Agriculture, Environment and Food, vol. 15, no. 4, 
pp. 87–99, 2022, doi: 10.37221/eaef.15.4_87. 

[3] P. Xie, H. Wang, Y. Huang, Q. Gao, Z. Bai, L. 

Zhang and Y. Ye, “LiDAR-Based Negative 
Obstacle Detection for Unmanned Ground 
Vehicles in Orchards,” sensors, vol. 24, no. 24, 
2024, Art. no. 7929, doi: 10.3390/s24247929. 

[4] D. R. D. Wijewickrama, K. M. H. Karunanayaka, 
H. W. P. Senadheera and T. M. Godamulla, 
“Fabrication of an Autonomous Lawn Mower 
Prototype with Path Planning and Obstacle 
Avoiding Capabilities,” CINEC Academic 
Journal, vol. 2, pp. 30–33, 2017, doi: 
10.4038/caj.v2i0.51. 

[5] J. C. Mayoral Baños, P. J. From and G. Cielniak, 
“Towards Safe Robotic Agricultural Applications: 
Safe Navigation System Design for a Robotic Grass-
Mowing Application through the Risk Management 
Method,” robotics, vol. 12, no. 3, 2023, Art. no. 63, 
doi: 10.3390/robotics12030063. 

[6] T. Tahir, A. Khalid, J. Arshad, A. Haider, I. 
Rasheed, A. Rehman, S. Hussen, 
“Implementation of an IoT-Based Solar-Powered 
Smart Lawn Mower”, Wireless Communications 
and Mobile Computing, vol. 2022, pp. 1–12, 
2022, doi: 10.1155/2022/1971902 

[7] GPS - NMEA sentence information, Glenn 
Baddeley, Jul. 20, 2001. [Online]. Available: 
https://aprs.gids.nl/nmea/ 

[8] P. W. Livermore, C. C. Finlay and M. Bayliff, 
“Recent north magnetic pole acceleration towards 
Siberia caused by flux lobe elongation,” nature 
geoscience, vol. 13, pp. 387–391, 2020, doi: 
10.1038/s41561-020-0570-9. 

[9] H. Hirschmüller, “Stereo Processing by 
Semiglobal Matching and Mutual Information,” 
IEEE Transactions on Pattern Analysis and 
Machine Intelligence, vol. 30, no. 2, pp. 328–341, 
2008, doi: 10.1109/TPAMI.2007.1166. 

[10] J. Terven, D. -M Córdova-Esparza and J. -A. 
Romero-González, “A Comprehensive Review of 
YOLO Architectures in Computer Vision: From 



Eng. & Technol. Horiz., vol. 42, no. 3, 2025, Art. no. 420305 9 of 9 

YOLOv1 to YOLOv8 and YOLO-NAS,” machine 
learning & knowledge extraction, vol. 5, no. 4, pp. 
1680–1716, 2023, doi: 10.3390/make5040083. 

[11] Y. Hu, W. Zhen and S. Scherer, “Deep-Learning 
Assisted High-Resolution Binocular Stereo Depth 
Reconstruction,” in 2020 IEEE International 
Conference on Robotics and Automation (ICRA), 
Paris, France, May 2020, pp. 8637–8643, doi: 
10.1109/ICRA40945.2020.9196655.  

[12] Depth map from stereo images, OpenCV, 
Accessed: Mar 20, 2025. [Online]. Available: 
https://docs.opencv.org/3.4/ 
dd/d53/tutorial_py_depthmap.html. 

[13] C. Zhao, Q. Sun, C. Zhang, Y. Tang and F. Qian, 
“Monocular Depth Estimation Based On Deep 
Learning: An Overview,” Science China 
Technological Sciences, vol. 63, no. 9, pp. 1612–
1627, doi: 10.1007/s11431-020-1582-8.  

 


	1. Introduction
	2. Design Methodology
	2.1 Hardware Development
	2.1.1 Motor Selection
	2.1.2 Battery
	2.1.3 Controller and Sensors
	2.1.4 Controller Program Coding

	2.2 Software Development: AI for Obstacle Avoidance
	2.2.1 Object Detection and Classification
	2.2.2 Depth Estimation
	2.2.3 Obstacle Avoidance


	3. Experimental Results
	3.1 AI and Video processing
	3.2 Autonomous Operation Mode
	3.2.1 GPS-guided system
	3.2.2 Obstacle Avoidance in Autonomous Mode


	4. Conclusions
	5. References

