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Abstract

Enhancing energy efficiency and operational reliability is crucial in power plant management, particularly
for high-energy-consuming machines such as boiler feed water pumps (BFPs). These pumps play a vital role in
the continuous generation of steam and electricity and must operate 24/7 to maintain power production stability.
This study proposes the development of predictive models based on machine learning and deep learning techniques
to accurately predict energy consumption and applies best models to detect anomalous behaviors in BFPs, enabling
timely and preventive interventions. A dataset comprising 43,082 hourly records over five years, with 18 critical
operational features, was analyzed using preprocessing and feature engineering techniques. Various predictive
models were trained and evaluated, including Multiple Linear Regression, Regularized Regressions (Ridge, Lasso,
ElasticNet), Support Vector Regression (SVR), Decision Tree, Ensemble Methods (Random Forest, XGBoost,
CatBoost, LightGBM), and Deep Learning Architectures (DNN, RNN, GRU, LSTM). Among these models, SVR
demonstrated the highest accuracy (MSE: 13.5573, R% 0.9838), followed closely by LightGBM. Feature
importance analysis revealed that boiler feed pump discharge pressure and bearing housing vibration levels were
the most influential variables in energy consumption prediction. Anomaly detection using the Interquartile Range
(IQR) method classified deviations into two warning levels, enabling proactive maintenance strategies.
Additionally, a Graphical User Interface (GUI) web application was developed for real-time monitoring,
integrating predictive models, anomaly detection, and an automated email alert system to assist operators in
responding to abnormal energy consumption events promptly. These results highlight the potential of predictive
analytics and real-time monitoring in optimizing power plant operations, providing a foundation for extending
predictive capabilities to other critical energy-intensive systems.

Keywords: Power Consumption Prediction, Boiler Feed Water Pumps, Machine Learning, Deep Learning,
Anomaly Detection.

1. Introduction

The efficient operation and maintenance of power
plants are essential for ensuring continuous and
reliable electricity generation. Boiler feed water pump
(BFPs) in Figure 1 plays a critical role in supplying
water to boilers for steam production and power
generation process in Figure 2 [1],[2]. Operating
under high-pressure and high-temperature conditions,
these pumps consume substantial energy, making
efficiency optimization crucial. Inefficiencies or
excessive energy use increase operational costs and
may indicate mechanical degradation or suboptimal
configurations. In the event of BFP failure or
abnormal operation, the consequences can be severe—
not only interrupting the steam supply for electricity

Figure 1 Boiler Fee Water Pump (FP)

Accurate energy consumption prediction enhances
BFP performance by enabling early anomaly detection,

generation but also affecting downstream processes
such as industrial steam delivery to external
customers. This may lead to production downtime,
revenue loss, unmet customer demands, and missed
sales opportunities, particularly in cogeneration plants
where steam and electricity must be delivered
concurrently under contractual obligations.

optimizing maintenance schedules, and reducing energy
waste. Advanced machine learning (ML) and deep
learning (DL) methodologies [3—5] leverage sensor data—
including temperature, vibration, electrical power, and
pressure differentials [6] to provide precise energy
predictions. This predictive capability facilitates early
inefficiency detection, cost reduction, and long-term
sustainability in power plants.
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Figure 2 Power Plant Process

Numerous studies have explored ML-based energy
consumption prediction in industrial settings, including
power plants [3],[7]. These studies analyze historical
operational data and key features such as pump speed,
discharge pressure, flow rate, and ambient temperature to
develop predictive models. Common ML techniques,
including Support Vector Machines (SVM), Random
Forest (RF), Decision Trees (DT), and XGBoost, each
have distinct advantages and limitations [6]. For example,
XGBoost excels in handling high-dimensional data and
capturing complex relationships, achieving high accuracy
in predictive tasks [8]. However, model effectiveness
depends on dataset characteristics and power consumption
patterns [4]. Further research is needed to identify the
optimal ML approach for predicting BFP energy
consumption across varying operational conditions.

In parallel, deep learning (DL) techniques, particularly
deep learning sequential architecture such as Long Short-
Term Memory (LSTM) networks, have proven to be
powerful tools for time series forecasting [4]. LSTMs
excel at processing sequential data and capturing temporal
dependencies in power consumption patterns. Research
has demonstrated their effectiveness in applications
ranging from household appliances [7] to industrial
facilities and large-scale power grid forecasting [4],[9].
However, DL models are computationally intensive and
require substantial high-quality data for effective training
[3]. Additionally, their ‘“black box” nature poses
interpretability challenges, making it difficult to
understand the underlying predictive mechanisms.

Anomaly detection complements energy prediction by
identifying unexpected deviations in operational data that
may indicate inefficiencies or mechanical faults. The
Interquartile Range (IQR) method effectively isolates
outliers based on deviations from central tendencies. By
categorizing anomalies by severity, IQR helps prioritize
maintenance and mitigate operational risks [9]. When
integrated with advanced ML and DL techniques,
IQR-based anomaly detection strengthens predictive
maintenance, enabling early fault detection and
optimizing energy consumption.

Compared to previous studies, this study extends
existing approaches by integrating anomaly detection into
energy consumption prediction models and evaluating

deployment feasibility in real-time environments. While
earlier works have demonstrated the use of ML/DL for
power consumption prediction, few have explicitly
explored their integration with GUI-based interfaces
and anomaly detection using statistical thresholds.
This integration is crucial for improving real-world
operational decision-making in power plants.

This study aims to develop ML and DL-based
predictive models for forecasting energy consumption and
detecting anomalies in BFPs. These insights enable early
fault detection and proactive maintenance, enhancing
operational efficiency, promoting energy conservation,
and supporting sustainable energy generation.

2. Materials and Methods

To systematically develop and evaluate predictive
models for energy consumption in boiler feed water pumps
(BFPs), this study followed a structured workflow as
illustrated in Figure 3. The methodology encompasses
data collection, preparation, feature selection, model
development, performance evaluation, and deployment
feasibility. This integrated pipeline ensures consistency,
interpretability, and robustness across each stage,
supporting both offline analysis and deployment.
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Figure 3 Methodological framework for BFP energy
prediction.

2.1 Data Collection and Features

The dataset used in this study was collected from
sensors installed in boiler feed water pump (BFP)
systems in Figure 4, covering the period from January
1, 2020, to November 30, 2024. It comprises 43,082
hourly samples under varying operational conditions,
featuring 18 critical attributes relevant to BFP
operations, as shown in Table 1. These attributes were
selected based on the expertise and practical
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recommendations of experienced plant operators,
focusing on parameters that are known to affect
energy consumption, mechanical integrity, and
thermal performance. The selected attributes were
categorized into three primary groups:
= Temperature parameters that reflect thermal load and
potential overheating conditions.
= Vibration parameters that serve as indicators of
mechanical balance, bearing wear, and potential
misalignment.
= Energy performance parameters that directly
influence and reflect energy consumption patterns.

BT

Sensor data was acquired through the Plant
Information System (PI System) in Figure 5, which
continuously stores and archives real-time operational
data from distributed sensors at fixed one-hour
intervals. To retrieve the data, the PI Add-in for
Microsoft Excel was used by querying specific sensor
Tag/IDs. Excel was chosen for its seamless integration
with the PI System and flexibility in tag-level
customization, which facilitated efficient data
extraction and initial validation. The dataset was then
transferred to a Python-based environment via Google
Colab for data preprocessing and model development
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Figure 4 Piping and Instrumentation Diagram for BFPs sensors

Table 1 Key Operational Features and Sensor Data

BFPs Sensors Critical Attributes
1. Bearing temperatures Pump A—-C
Temperature .
Parameters 2. Bearing temperatures Motor A-B
3. Motor winding temperatures A—F
Vibration 1. Housing vibration levels A-B
Parameters
1. Pump discharge pressure
Energy 2. Power output of gas turbines Units
Performance 11-12
Parameters 3. Active power consumption of the
BFP (Target variable)
Data
Data |__PI Server consumer
Source Pl Visualization Tool Q
5 @ @
g Asset Framework i

b

Pl Interface
PI Connector
PI Adapter

Data Archive

Figure 5 Plant Information System (PI System)

2.2 Data Preparation

To ensure dataset quality and optimize model
performance, a structured data preparation pipeline was
implemented. The process began with data cleaning,
where duplicate records were removed, and outliers were
handled using the Interquartile Range (IQR) method.
Missing values were systematically addressed to
maintain data completeness and consistency.

Feature engineering was performed to enhance
predictive capabilities. Numerical variables were
standardized using StandardScaler to normalize data
ranges, ensuring uniformity across models. The dataset
was split into training (80%) and testing (20%) subsets
for model evaluation, with cross-validation techniques
applied to improve robustness and prevent overfitting.

Exploratory data analysis (EDA) was performed to
assess relationships among variables using descriptive
statistics and correlation matrices in Figure 6 each cell
represents the correlation coefficient between pairs of
variables, ranging from -1 (strong negative correlation) to
+1 (strong positive correlation). Darker red shades
indicate stronger positive correlations, while blue tones
reflect stronger negative correlations.
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The BFP#1_ MOTOR_ACTIVE POWER (target variable)
shows to strong correlations with features such as BFW#1
_BEARING HOUSING VIBR A and BFP#1 PUMP
_DISCHARGE PRESSURE indicating their potential
predictive importance. Conversely, variables such as
GTG12 POWER and BFW#1 PUMP BEARING
_TEMP#B show weak correlations, suggesting limited
direct influence on the target variable. This heatmap
supports the feature selection process by identifying
redundant or highly collinear features (e.g., among
winding temperatures A—F) and helps guide decisions in
the subsequent modeling phase.
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Figure 6 Correlation Heatmap of Operational
Features for Boiler Feed Water Pump

2.3 Feature Selection for Model Development

The cleaned and preprocessed dataset is divided into
two main parts: a training set and a test set. Both datasets
undergo a feature selection process to identify the most
important variables under different conditions. This
study applies multiple importance analysis techniques,
including Coefficient Analysis, Feature Importance from
Tree-based Models, Permutation Importance to ensure
that the selected variables significantly impact energy
consumption.

To assess the influence of different variables on
prediction accuracy, this study defines several feature
selection conditions for model development, including:

1) Comprehensive Feature Utilization: Assesses
model performance using all available data
features to determine overall effectiveness.

2) Statistical Significance-Based Selection: Retains
variables with p-values < 0.05, ensuring only
statistically significant predictors contribute to the
target variable.

3) Multicollinearity: Filters out variables with a
Variance Inflation Factor (VIF) > 10 to minimize
high correlations among independent variables.

4) Feature Importance-Based Selection: Identifies the
top 5 and top 10 most influential features based on
their contribution to model performance.

2.4 Predictive Model

This study trained multiple ML and DL models
using Python’s Scikit-learn and TensorFlow libraries.
The key models evaluated included in Table 2.

Table 2 Predictive Models for Energy Prediction

1. Multiple Linear Regression
2. Regularized Regressions
. 3. Support Vector Regression

LM;crI;lir;eg 4. Decision Trees Regression
Model 5. Random Forest Regression

6. XGBoost Regression

7. CatBoost Regression

8. LightGBM Regression
Deep 1. Deep Neural Networks (DNN)
Vot 2. Recurrent Neural Ne.tworks (RNN)
Model 3. Gated Recurrent Units (GRU)

4. Long Short-Term Memory (LSTM)

In addition, multiple linear regression (MLR) served
as the baseline model due to its simplicity and
interpretability. While effective, it is prone to overfitting
in high-dimensional settings. To improve MLR,
regularized techniques such as Ridge, Lasso, and
ElasticNet were applied. These methods add penalty
terms to prevent overfitting and enhance generalization.
Hyperparameter tuning via Random Search optimized
the regularization strength (alpha). Support vector
regression can handle non-linear relationships by
mapping data to higher-dimensional feature spaces.

Decision Trees Regression models the target variable
by recursively splitting the data based on feature values.
However, single decision trees can suffer from high
variance, making them prone to overfitting. Random
Forest addresses this by combining multiple trees to
improve accuracy. XGBoost builds sequential trees to
correct previous errors, offering high speed and accuracy.
CatBoost efficiently handles categorical variables and
reduces overfitting with ordered boosting. LightGBM
accelerates training, reduces memory usage, and
performs well with large datasets [10—11].

Building upon the Multilayer Perceptron architecture,
Deep Neural Networks (DNNs) incorporate multiple
hidden layers, significantly increasing the network's depth
compared to the one or two hidden layers usually found in
multilayer Perceptron architecture. Recurrent Neural
Networks (RNN) excel at handling sequential data, but
their performance can be hampered by challenges related
to long-term dependencies, specifically the problems of
vanishing and exploding gradients. The Long Short-Term
Memory (LSTM) network offers a solution to these long-
term dependency issues. There are three main gates in
LSTM networks: input gate, output gate, and forget gate.
This model effectively identifies dependent factors across
multiple time scales and mitigates the vanishing gradient
problem. Furthermore, the Gated Recurrent Unit (GRU)
architecture simplifies the LSTM structure by eliminating
a memory cell, leading to reduced computational
requirements and accelerated training [12—13].
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2.5 Hyperparameter Tuning

To achieve optimal model performance, this study
implemented hyperparameter tuning for each model
across different independent variable selection
conditions. The tuning process employed Randomized
Search in conjunction with K-fold Cross-Validation to
identify the most suitable hyperparameters. This
approach involved randomly selecting potential
hyperparameter values within predefined ranges and
evaluating their effectiveness using cross-validation.

The hyperparameter tuning process for each model
is summarized in Table 3 which outlines the models,
their tuned hyperparameters, and the rationale behind
the selected values.

Table 3 Hyperparameter Tuning

Model Hyperparameters
Multiple Linear | Default Parameters of
Regression LinearRegression()
Lasso, Ridge
Regressiong alpha
Elastic Net alpha, 11_ratio
Regression
Support.Vector Kernel, C, epsilon
Regression
DecisionTrees |max_depth, min_samples_split,
Regression min_samples_leaf
Random Forest n_estimators, max_depth
Regression
XGBoost,
CatBoost, . .
LightGBM n_estimators, learning_rate
Regression
Deep Learning |dense layers, learning_rate, activation
Model function, optimizer, batch size, epochs

Each model was subjected to a hyperparameter
tuning process designed to balance accuracy,
complexity, and computational efficiency. The
application of Randomized Search allowed for a broad
yet computationally feasible exploration of parameter
space, while K-fold Cross-Validation ensured robust
evaluation of model performance across varying data
partitions.

2.6 Evaluation Metrics

The performance of predictive models was
assessed using Mean Squared Error (MSE) and
coefficient of determination (R?) to measure the
prediction effectiveness. The formulas are:

1 ~

MSE = ~ 3N, = 91)? (1)
I 9D
2 _ q _ 2i=aYiTVi)

R 1 Zli\il(yl'—)_’i) @)

Egs. (1)—(2) refer to a set of N represents the total
number of samples, j; represents the predicted values,
and y; is the meaning of the actual values. These
metrics evaluate model accuracy and explanatory
power, ensuring the effectiveness of predictive
modeling for BFPs operations.

2.7 Outlier Detection

Outlier detection is a crucial step in assessing
anomaly detection for boiler feed water pumps. This
process uses residuals (the difference between
predicted and actual values) to identify anomalies via
the IQR method. The IQR was calculated as Q3 — Q1,
with anomaly thresholds defined as:

LowerBound,,; = Q1l,,s — (1.5 X IQR,.s) (3)
UpperBound,es = Q3¢5 + (1.5 X IQRyes)  (4)

For more severe anomalies:

LowerBound,.s = Ql,.s — (3 XIQR,os) (5)
UpperBound,es = Q3,5+ (3 X IQRyes)  (6)

This approach Egs. (3)—(6) differs from
conventional anomaly classification methods, such as
supervised classification, by not requiring pre-labeled
anomaly data, which is often unavailable in real-world
settings. The IQR-based thresholding allows the
model to remain adaptable and interpretable, aiding in
early fault detection even without prior failure events
in the dataset.

2.8 Feasibility in Real-Time GUI Applications

To facilitate real-time energy consumption
prediction for boiler feed water pumps (BFPs), this
study developed a web-based application utilizing
Streamlit Platform on a local server. The selection of
models for deployment ML and DL models in real-
time applications depends on balancing prediction
accuracy and computational efficiency, ensuring
seamless real-time processing of streaming sensor data
on the PI system.

The computational cost varies significantly based
on the complexity of the models and the algorithms
used. For practical deployment, models were
categorized into 3 groups:

1) Simple Models (Low Cost):

- Multiple Linear Regression
- Regularized Regression (Ridge, Lasso,
ElasticNet)
2) Intermediate Models (Moderate Cost):
- Support Vector Regression
- Decision Trees Regression
- Ensemble Methods (Random Forest,
XGBoost, CatBoost, LightGBM)
3) Complex Models (High Cost):
- Deep Neural Networks
- Recurrent Neural Networks (RNN)
- Long Short-Term Memory (LSTM)
- Gated Recurrent Units (GRU)

This categorization aids in selecting appropriate
models tailored to the operational constraints of the
local server environment.

3. Results and Discussion

The performance of the predictive models was
evaluated using Mean Squared Error (MSE) and the
coefficient of determination (R?) across three feature
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selection strategies: all features, top 10 features, and
top 5 features. The results are summarized in Table 4
and illustrated in Figure 7. In the figure, the horizontal
bars (in blue) represent the MSE values, while the red
line indicates the corresponding R? scores. The
visualization clearly highlights the performance
differences among the models under each feature
selection condition.

3.1 Model Performance

Among all models, Support Vector Regression
(SVR) demonstrated the highest predictive accuracy,
with an MSE of 13.5573 and an R? of 0.9838 using all
available features. This confirms SVR's effectiveness
in capturing complex, non-linear relationships
between variables. LightGBM also performed
remarkably well, achieving an MSE of 14.1922 and an
R? 0 0.9831, and consistently ranking among the top-
performing models.

When reducing the input to the top 10 most
important features, both SVR and LightGBM
maintained nearly the same level of accuracy. SVR
recorded an MSE of 14.2818 and an R2? of 0.9830,
while LightGBM achieved an MSE of 14.1443 and an
R?0f 0.9831. This indicates that most of the predictive
power is concentrated in a relatively small subset of
features.

However, further reduction to the top 5 features
resulted in a noticeable decline in model performance.
SVR’s MSE increased to 20.8288 (R* 0.9751), and
similar declines were observed in other models,
suggesting that broader feature inclusion is necessary
to capture the full variability of energy consumption
behavior in BFPs.

Ensemble models such as XGBoost and CatBoost
also achieved strong results, with XGBoost yielding
an MSE of 15.1769 and CatBoost 15.1286 using all
features. Although slightly less accurate than SVR and
LightGBM, they remained competitive across all
feature configurations.

Regularized regression models (Lasso, Ridge, and
ElasticNet) produced results similar to Multiple Linear
Regression (MLR), but struggled with non-linear
relationships, limiting their overall performance.
Meanwhile, deep learning models, including GRU
(MSE: 15.6378, R* 0.9813) and LSTM (MSE:
17.8306, R* 0.9787), demonstrated good accuracy
and alignment with observed consumption patterns.

In summary, SVR and LightGBM consistently
outperformed other models in terms of predictive
accuracy, particularly when all or the top 10 features
were used. These findings support their use as reliable
predictive tools for monitoring and managing energy
consumption in boiler feed water pumps.

Comparison of Models: MSE and R?
R (Coefficient of Determination)
0345 0950 0955 0.960 0.965 0970 0975 0980 0985

SVR (Al Features)

XGBoost (Top 10
CatBoost (Top 10

ElasticNet (All Features) MSE
MR (VIF <= 10) - R

0 10 20 £l Ll
Mean Squared Error (MSE)

Figure 7 Model Performance of All Strategies

3.2 Feature Important

The analysis of feature importance various models
identified BFW_PUMP_DISCHARGE PRESSURE
as the most influential variable. This feature directly
reflects the hydraulic load imposed on the pump,
which is closely linked to the energy required for water
circulation within the steam generation process. Its
high predictive contribution across all model types
underscores its central role in energy consumption
dynamics.

In addition, bearing housing vibration levels
(BFW#1_BEARING HOUSING VIBR A and
BFW#1 BEARING HOUSING VIBR B) emerged
as critical indicators in several model families,
including kernel-based regressors, tree-based models,
and ensemble methods. Elevated vibration may
indicate  mechanical  imbalance, wear, or
misalignment—factors that can increase friction and
reduce pump efficiency, thereby increasing energy
usage. Their consistently high ranking across
modeling techniques further validates their relevance
as condition-monitoring variables.

Conversely, temperature variables were among the
least influential features. This finding suggests that,
within the normal operational temperature range,
variations in temperature do not significantly affect
energy consumption. This trend was consistently
observed across all models, reinforcing their limited
predictive value in the context of BFP energy
modeling.

These results support the conclusion that features
directly associated with mechanical health are more
impactful for predicting energy usage than those
related to internal electrical temperature conditions.
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Table 4 Performance Metrics for Predictive Mode

Performance Metrics

Model Group Predictive Model Feature Selection (Test Dataset)

MSE R?
. . . . . All features 23.3543 0.9721
Linear Regression Models Multiple Linear Regression (MLR) Features with both p-values < 0.05 and VIF < 10. 36.4519 0.9565
Lasso Regression All features 23.3730 0.9721
Linear Regression with Regularization Ridge Regression All features 23.3543 0.9721
ElasticNet Regression All features 23.3810 0.9721
All features 13.5573 0.9838
Kernel-Based Regression Model Support Vector Regression (SVR) Top 5 most features 20.8288 0.9751
Top 10 most important features 14.2818 0.9830
All features 21.4189 0.9744
Tree-Based Regression Models Decision Tree Regression Top 5 most important features 21.3150 0.9746
Top 10 most important features 21.0988 0.9748
All features 15.7650 0.9812
Random Forest Regression Top 5 most important features 16.7989 0.9800
Top 10 most important features 15.7012 0.9813
All features 15.1769 0.9819
XGBoost Regression Top 5 most important features 16.0858 0.9808
Top 10 most important features 15.2126 0.9818
Ensemble Method All features 151286 | 09819
CatBoost Regression Top 5 most important features 15.5188 0.9815
Top 10 most important features 15.2559 0.9818
All features 14.1922 0.9831
LightGBM Regression Top 5 most important features 15.1394 0.9819
Top 10 most important features 14.1443 0.9831
Deep Neural Network (DNN) All features 22.7365 0.9729
Neural Network Models Recurrent Neural Network (RNN) All features 19.5486 0.9767
Gated Recurrent Unit (GRU) All features 15.6378 0.9813
Long Short-Term Memory (LSTM) All features 17.8306 0.9787
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3.3 Anomaly Detection
Energy consumption anomalies were identified using
the IQR method, with anomaly thresholds set at 1.5 and 3
to define the lower and upper bounds. These thresholds
categorized anomalies into two severity levels. For the
three top-performing models, the anomaly detection
boundaries were calculated separately as follows:
1) SVR (All features):
Warning Level 1 (-7.5079, +7.6733)
Warning Level 2 (-13.2008, +13.3662)
2) LightGBM (Top 10 features):
Warning Level 1 (-7.5156, +7.5226)
Warning Level 2 (-13.1550, +13.1620)
3) LightGBM (All features):
Warning Level 1 (-7.4368, +7.4404)
Warning Level 2 (-13.0158, +13.0193)
A confirmed anomaly was defined only when all three
models simultaneously detected a deviation at the same

Interactive Chart: Predictions from All Models with Confirmed Anomalies

BFW#1 Motor Active Power

Jan 2021

Jul 2021

Jan 2022

severity level. The final detection identified 183
Warning Level 1 events and 5 Warning Level 2 events
between January 2020 and November 2024 in Figure 8
illustrates the predictions from the three top-performing
models—SVR (All Features) in green line, LightGBM
(Top 10 Features) in yellow line, and LightGBM (All
Features) in purple line—over the full evaluation period.
The chart shows actual power consumption alongside
predicted values, with orange and red markers denoting
Level 1 and Level 2 anomalies, respectively. Notably,
anomaly points are highlighted only when all three
models simultaneously detect deviations beyond defined
thresholds. This consensus-based strategy enhances
anomaly detection robustness, reducing false positives
and reinforcing the system's reliability. The time series
visualization also demonstrates how well the predictive
models align with actual energy patterns, capturing both
regular trends and deviations.

—— Actual = = SUR Predictions LGBM (Top 10 Featuras) Predictions —-= LGBM (All Features) Predictions Warning Lvi % Warning Lv2

Jan 2023 Jul 2023 Jul 2024 Jan 2025

Time

Figure 8 Time series plot comparing actual power consumption with predictions from SVR and LightGBM model

3.4 GUI Development and Notification System

To support the practical implementation of the
developed predictive models and anomaly detection
system, a web-based graphical user interface (GUI)
was developed, as shown in Figure 9. This interactive
dashboard enables real-time monitoring of boiler feed
water pump (BFP) energy consumption and enhances
operational decision-making.

© configuaton

KMITL
u— g - a2 o0

4 Accumulative Energy Consumption
Figure 9 GUI interactive Web Application

The GUI integrates predictive models—
specifically SVR and LightGBM—and displays real-
time comparisons between actual and predicted power
consumption. It also overlays anomaly detection
results based on predefined IQR thresholds, with

Warning Level 1 and Level 2 clearly marked on the
time-series graph for intuitive visualization.
Key features of the system include:

1) Real-time Monitoring: The GUI visualizes
actual power consumption versus predicted
values.

2) Anomaly Detection: The system identifies and
highlight anomalies periods using selected
model based on predefined warning level.

3) Email Notification System: When an
anomaly is detected, an automated email alert
is sent to the operators with relevant details
and CSV logs.

4) Customizable Settings: Operators can
configure the update interval for prediction
and visualization between 1 to 60 seconds,
enable or disable email notifications for
different warning levels.

The integration of this GUI and automated alert system
significantly improves operational awareness and energy
management efficiency by reducing response time to
unexpected anomalies, enabling operators to take swift
corrective actions. It minimizes operational risks by
facilitating proactive intervention, ensuring that energy
anomalies are addressed before they escalate.
Additionally, it enhances predictive maintenance planning,
which helps reduce equipment downtime, optimize energy
usage, and extend the operational life of critical machinery.
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4. Conclusion

This study developed and evaluated predictive models
for energy consumption and applied best models for
anomaly detection in boiler feed water pumps (BFPs)
using machine learning (ML) and deep learning (DL)
techniques. The results demonstrate that Support Vector
Regression (SVR) with all features and LightGBM with
both all-feature and top-10 feature selections achieved the
highest prediction accuracy. Feature importance analysis
identified boiler feed pump discharge pressure and bearing
housing vibration levels as the most influential factors
affecting energy consumption, providing critical insights
for predictive maintenance.

Anomalies were detected using the Interquartile Range
(IQR) method applied to model residuals, with thresholds
categorized into two severity levels. A consensus-based
strategy was employed, where anomalies were confirmed
only when all top-performing models agreed. This method
yielded 183 Level 1 and 5 Level 2 anomaly events,
demonstrating the framework’s potential in early
identification of inefficiencies and mechanical issues.

To enable real-time application, a graphical user
interface (GUI) web application was developed. The
system integrates energy prediction, anomaly
visualization, and automated email notifications,
allowing plant operators to monitor performance
continuously and respond promptly to abnormal
conditions before inefficiencies escalate into
significant energy losses or unplanned outages. This
supports improved maintenance planning, reduced
energy waste, and enhanced operational efficiency.

While the framework shows promising results, it
was developed without access to historical failure
records, limiting validation of anomaly detection
against actual fault events. Future deployments should
include mechanisms for field verification, such as
coordinated feedback from operators and maintenance
logs, to support ongoing model retraining and
accuracy improvement. Establishing operational
policies for real-time monitoring and human-in-the-
loop validation will further strengthen the reliability of
the predictive system and allow scalable extension to
other critical equipment within power plant
operations.
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