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Abstract 

Enhancing energy efficiency and operational reliability is crucial in power plant management, particularly 
for high-energy-consuming machines such as boiler feed water pumps (BFPs). These pumps play a vital role in 
the continuous generation of steam and electricity and must operate 24/7 to maintain power production stability. 
This study proposes the development of predictive models based on machine learning and deep learning techniques 
to accurately predict energy consumption and applies best models to detect anomalous behaviors in BFPs, enabling 
timely and preventive interventions. A dataset comprising 43,082 hourly records over five years, with 18 critical 
operational features, was analyzed using preprocessing and feature engineering techniques. Various predictive 
models were trained and evaluated, including Multiple Linear Regression, Regularized Regressions (Ridge, Lasso, 
ElasticNet), Support Vector Regression (SVR), Decision Tree, Ensemble Methods (Random Forest, XGBoost, 
CatBoost, LightGBM), and Deep Learning Architectures (DNN, RNN, GRU, LSTM). Among these models, SVR 
demonstrated the highest accuracy (MSE: 13.5573, R²: 0.9838), followed closely by LightGBM. Feature 
importance analysis revealed that boiler feed pump discharge pressure and bearing housing vibration levels were 
the most influential variables in energy consumption prediction. Anomaly detection using the Interquartile Range 
(IQR) method classified deviations into two warning levels, enabling proactive maintenance strategies. 
Additionally, a Graphical User Interface (GUI) web application was developed for real-time monitoring, 
integrating predictive models, anomaly detection, and an automated email alert system to assist operators in 
responding to abnormal energy consumption events promptly. These results highlight the potential of predictive 
analytics and real-time monitoring in optimizing power plant operations, providing a foundation for extending 
predictive capabilities to other critical energy-intensive systems. 

Keywords:  Power Consumption Prediction, Boiler Feed Water Pumps, Machine Learning, Deep Learning, 
Anomaly Detection.

1. Introduction 
The efficient operation and maintenance of power 

plants are essential for ensuring continuous and 
reliable electricity generation. Boiler feed water pump 
(BFPs) in Figure 1 plays a critical role in supplying 
water to boilers for steam production and power 
generation process in Figure 2 [1],[2]. Operating 
under high-pressure and high-temperature conditions, 
these pumps consume substantial energy, making 
efficiency optimization crucial. Inefficiencies or 
excessive energy use increase operational costs and 
may indicate mechanical degradation or suboptimal 
configurations. In the event of BFP failure or 
abnormal operation, the consequences can be severe—
not only interrupting the steam supply for electricity 
generation but also affecting downstream processes 
such as industrial steam delivery to external 
customers. This may lead to production downtime, 
revenue loss, unmet customer demands, and missed 
sales opportunities, particularly in cogeneration plants 
where steam and electricity must be delivered 
concurrently under contractual obligations. 

 
Figure 1 Boiler Feed Water Pump (BFP) 

 
Accurate energy consumption prediction enhances 

BFP performance by enabling early anomaly detection, 
optimizing maintenance schedules, and reducing energy 
waste. Advanced machine learning (ML) and deep 
learning (DL) methodologies [3–5] leverage sensor data—
including temperature, vibration, electrical power, and 
pressure differentials [6] to provide precise energy 
predictions. This predictive capability facilitates early 
inefficiency detection, cost reduction, and long-term 
sustainability in power plants.  
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Figure 2 Power Plant Process 

 
Numerous studies have explored ML-based energy 

consumption prediction in industrial settings, including 
power plants [3],[7]. These studies analyze historical 
operational data and key features such as pump speed, 
discharge pressure, flow rate, and ambient temperature to 
develop predictive models. Common ML techniques, 
including Support Vector Machines (SVM), Random 
Forest (RF), Decision Trees (DT), and XGBoost, each 
have distinct advantages and limitations [6]. For example, 
XGBoost excels in handling high-dimensional data and 
capturing complex relationships, achieving high accuracy 
in predictive tasks [8]. However, model effectiveness 
depends on dataset characteristics and power consumption 
patterns [4]. Further research is needed to identify the 
optimal ML approach for predicting BFP energy 
consumption across varying operational conditions. 

In parallel, deep learning (DL) techniques, particularly 
deep learning sequential architecture such as Long Short-
Term Memory (LSTM) networks, have proven to be 
powerful tools for time series forecasting [4]. LSTMs 
excel at processing sequential data and capturing temporal 
dependencies in power consumption patterns. Research 
has demonstrated their effectiveness in applications 
ranging from household appliances [7] to industrial 
facilities and large-scale power grid forecasting [4],[9]. 
However, DL models are computationally intensive and 
require substantial high-quality data for effective training 
[3]. Additionally, their “black box” nature poses 
interpretability challenges, making it difficult to 
understand the underlying predictive mechanisms. 

Anomaly detection complements energy prediction by 
identifying unexpected deviations in operational data that 
may indicate inefficiencies or mechanical faults. The 
Interquartile Range (IQR) method effectively isolates 
outliers based on deviations from central tendencies. By 
categorizing anomalies by severity, IQR helps prioritize 
maintenance and mitigate operational risks [9]. When 
integrated with advanced ML and DL techniques, 
IQR-based anomaly detection strengthens predictive 
maintenance, enabling early fault detection and 
optimizing energy consumption. 

Compared to previous studies, this study extends 
existing approaches by integrating anomaly detection into 
energy consumption prediction models and evaluating 

deployment feasibility in real-time environments. While 
earlier works have demonstrated the use of ML/DL for 
power consumption prediction, few have explicitly 
explored their integration with GUI-based interfaces 
and anomaly detection using statistical thresholds. 
This integration is crucial for improving real-world 
operational decision-making in power plants. 

This study aims to develop ML and DL-based 
predictive models for forecasting energy consumption and 
detecting anomalies in BFPs. These insights enable early 
fault detection and proactive maintenance, enhancing 
operational efficiency, promoting energy conservation, 
and supporting sustainable energy generation. 

 
2. Materials and Methods 

To systematically develop and evaluate predictive 
models for energy consumption in boiler feed water pumps 
(BFPs), this study followed a structured workflow as 
illustrated in Figure 3. The methodology encompasses 
data collection, preparation, feature selection, model 
development, performance evaluation, and deployment 
feasibility. This integrated pipeline ensures consistency, 
interpretability, and robustness across each stage, 
supporting both offline analysis and deployment. 

 

 
Figure 3 Methodological framework for BFP energy 

prediction. 
 

2.1 Data Collection and Features 
The dataset used in this study was collected from 

sensors installed in boiler feed water pump (BFP) 
systems in Figure 4, covering the period from January 
1, 2020, to November 30, 2024. It comprises 43,082 
hourly samples under varying operational conditions, 
featuring 18 critical attributes relevant to BFP 
operations, as shown in Table 1. These attributes were 
selected based on the expertise and practical 
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recommendations of experienced plant operators, 
focusing on parameters that are known to affect 
energy consumption, mechanical integrity, and 
thermal performance. The selected attributes were 
categorized into three primary groups: 
 Temperature parameters that reflect thermal load and 

potential overheating conditions. 
 Vibration parameters that serve as indicators of 

mechanical balance, bearing wear, and potential 
misalignment. 
 Energy performance parameters that directly 

influence and reflect energy consumption patterns. 

Sensor data was acquired through the Plant 
Information System (PI System) in Figure 5, which 
continuously stores and archives real-time operational 
data from distributed sensors at fixed one-hour 
intervals. To retrieve the data, the PI Add-in for 
Microsoft Excel was used by querying specific sensor 
Tag/IDs. Excel was chosen for its seamless integration 
with the PI System and flexibility in tag-level 
customization, which facilitated efficient data 
extraction and initial validation. The dataset was then 
transferred to a Python-based environment via Google 
Colab for data preprocessing and model development

  
Figure 4 Piping and Instrumentation Diagram for BFPs sensors

Table 1 Key Operational Features and Sensor Data 
BFPs Sensors Critical Attributes 

Temperature 
Parameters 

1. Bearing temperatures Pump A–C 
2. Bearing temperatures Motor A–B 
3. Motor winding temperatures A–F 

Vibration 
Parameters 1. Housing vibration levels A–B 

Energy 
Performance 
Parameters 

1. Pump discharge pressure 
2. Power output of gas turbines Units 
11–12 
3. Active power consumption of the 
BFP (Target variable) 

 

 
Figure 5 Plant Information System (PI System) 

2.2 Data Preparation 
To ensure dataset quality and optimize model 

performance, a structured data preparation pipeline was 
implemented. The process began with data cleaning, 
where duplicate records were removed, and outliers were 
handled using the Interquartile Range (IQR) method. 
Missing values were systematically addressed to 
maintain data completeness and consistency. 

Feature engineering was performed to enhance 
predictive capabilities. Numerical variables were 
standardized using StandardScaler to normalize data 
ranges, ensuring uniformity across models. The dataset 
was split into training (80%) and testing (20%) subsets 
for model evaluation, with cross-validation techniques 
applied to improve robustness and prevent overfitting. 

Exploratory data analysis (EDA) was performed to 
assess relationships among variables using descriptive 
statistics and correlation matrices in Figure 6 each cell 
represents the correlation coefficient between pairs of 
variables, ranging from -1 (strong negative correlation) to 
+1 (strong positive correlation). Darker red shades 
indicate stronger positive correlations, while blue tones 
reflect stronger negative correlations. 
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The BFP#1_MOTOR_ACTIVE_POWER (target variable) 
shows to strong correlations with features such as BFW#1 
_BEARING_HOUSING_VIBR_A and BFP#1_PUMP 
_DISCHARGE_PRESSURE indicating their potential 
predictive importance. Conversely, variables such as 
GTG12_POWER and BFW#1_PUMP_BEARING 
_TEMP#B show weak correlations, suggesting limited 
direct influence on the target variable. This heatmap 
supports the feature selection process by identifying 
redundant or highly collinear features (e.g., among 
winding temperatures A–F) and helps guide decisions in 
the subsequent modeling phase. 
 

 
Figure 6 Correlation Heatmap of Operational 

Features for Boiler Feed Water Pump 
 
2.3 Feature Selection for Model Development 

The cleaned and preprocessed dataset is divided into 
two main parts: a training set and a test set. Both datasets 
undergo a feature selection process to identify the most 
important variables under different conditions. This 
study applies multiple importance analysis techniques, 
including Coefficient Analysis, Feature Importance from 
Tree-based Models, Permutation Importance to ensure 
that the selected variables significantly impact energy 
consumption.  

To assess the influence of different variables on 
prediction accuracy, this study defines several feature 
selection conditions for model development, including: 

1) Comprehensive Feature Utilization: Assesses 
model performance using all available data 
features to determine overall effectiveness. 

2) Statistical Significance-Based Selection: Retains 
variables with p-values ≤ 0.05, ensuring only 
statistically significant predictors contribute to the 
target variable. 

3) Multicollinearity: Filters out variables with a 
Variance Inflation Factor (VIF) > 10 to minimize 
high correlations among independent variables. 

4) Feature Importance-Based Selection: Identifies the 
top 5 and top 10 most influential features based on 
their contribution to model performance. 

2.4 Predictive Model 
This study trained multiple ML and DL models 

using Python’s Scikit-learn and TensorFlow libraries. 
The key models evaluated included in Table 2. 
 
Table 2 Predictive Models for Energy Prediction 

Machine 
Learning 
Model 

1. Multiple Linear Regression 
2. Regularized Regressions 
3. Support Vector Regression 
4. Decision Trees Regression 
5. Random Forest Regression 
6. XGBoost Regression 
7. CatBoost Regression 
8. LightGBM Regression 

Deep 
Learning 
Model 

1. Deep Neural Networks (DNN) 
2. Recurrent Neural Networks (RNN) 
3. Gated Recurrent Units (GRU) 
4. Long Short-Term Memory (LSTM) 

 
In addition, multiple linear regression (MLR) served 

as the baseline model due to its simplicity and 
interpretability. While effective, it is prone to overfitting 
in high-dimensional settings. To improve MLR, 
regularized techniques such as Ridge, Lasso, and 
ElasticNet were applied. These methods add penalty 
terms to prevent overfitting and enhance generalization. 
Hyperparameter tuning via Random Search optimized 
the regularization strength (alpha). Support vector 
regression can handle non-linear relationships by 
mapping data to higher-dimensional feature spaces. 

Decision Trees Regression models the target variable 
by recursively splitting the data based on feature values. 
However, single decision trees can suffer from high 
variance, making them prone to overfitting. Random 
Forest addresses this by combining multiple trees to 
improve accuracy. XGBoost builds sequential trees to 
correct previous errors, offering high speed and accuracy. 
CatBoost efficiently handles categorical variables and 
reduces overfitting with ordered boosting. LightGBM 
accelerates training, reduces memory usage, and 
performs well with large datasets [10–11]. 

Building upon the Multilayer Perceptron architecture, 
Deep Neural Networks (DNNs) incorporate multiple 
hidden layers, significantly increasing the network's depth 
compared to the one or two hidden layers usually found in 
multilayer Perceptron architecture. Recurrent Neural 
Networks (RNN) excel at handling sequential data, but 
their performance can be hampered by challenges related 
to long-term dependencies, specifically the problems of 
vanishing and exploding gradients.  The Long Short-Term 
Memory (LSTM) network offers a solution to these long-
term dependency issues. There are three main gates in 
LSTM networks: input gate, output gate, and forget gate. 
This model effectively identifies dependent factors across 
multiple time scales and mitigates the vanishing gradient 
problem. Furthermore, the Gated Recurrent Unit (GRU) 
architecture simplifies the LSTM structure by eliminating 
a memory cell, leading to reduced computational 
requirements and accelerated training [12–13]. 
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2.5 Hyperparameter Tuning 
To achieve optimal model performance, this study 

implemented hyperparameter tuning for each model 
across different independent variable selection 
conditions. The tuning process employed Randomized 
Search in conjunction with K-fold Cross-Validation to 
identify the most suitable hyperparameters. This 
approach involved randomly selecting potential 
hyperparameter values within predefined ranges and 
evaluating their effectiveness using cross-validation. 

The hyperparameter tuning process for each model 
is summarized in Table 3 which outlines the models, 
their tuned hyperparameters, and the rationale behind 
the selected values. 
 
Table 3 Hyperparameter Tuning 

Model Hyperparameters 
Multiple Linear 
Regression 

Default Parameters of 
LinearRegression() 

Lasso, Ridge 
Regression alpha 

Elastic Net 
Regression alpha, l1_ratio 

Support Vector 
Regression Kernel, C, epsilon 

DecisionTrees 
Regression 

max_depth, min_samples_split, 
min_samples_leaf 

Random Forest 
Regression n_estimators, max_depth 

XGBoost, 
CatBoost, 
LightGBM 
Regression 

n_estimators, learning_rate 

Deep Learning 
Model 

dense layers, learning_rate, activation 
function, optimizer, batch size, epochs 

 
Each model was subjected to a hyperparameter 

tuning process designed to balance accuracy, 
complexity, and computational efficiency. The 
application of Randomized Search allowed for a broad 
yet computationally feasible exploration of parameter 
space, while K-fold Cross-Validation ensured robust 
evaluation of model performance across varying data 
partitions. 
2.6 Evaluation Metrics 

The performance of predictive models was 
assessed using Mean Squared Error (MSE) and 
coefficient of determination (R2) to measure the 
prediction effectiveness. The formulas are: 

 
𝑀𝑀𝑀𝑀𝑀𝑀 =  1

𝑁𝑁
∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2 𝑁𝑁
𝑖𝑖 = 1   (1) 

𝑅𝑅2 = 1 − ∑ (𝑦𝑦𝑖𝑖−𝑦𝑦�𝑖𝑖)
𝑁𝑁
𝑖𝑖=1

∑ (𝑦𝑦𝑖𝑖−𝑦𝑦�𝑖𝑖)𝑁𝑁
𝑖𝑖=1

  (2) 

 
Eqs. (1)–(2) refer to a set of 𝑁𝑁 represents the total 

number of samples, 𝑦𝑦�𝑖𝑖 represents the predicted values, 
and 𝑦𝑦�𝑖𝑖  is the meaning of the actual values. These 
metrics evaluate model accuracy and explanatory 
power, ensuring the effectiveness of predictive 
modeling for BFPs operations. 

2.7 Outlier Detection 
Outlier detection is a crucial step in assessing 

anomaly detection for boiler feed water pumps. This 
process uses residuals (the difference between 
predicted and actual values) to identify anomalies via 
the IQR method. The IQR was calculated as Q3 – Q1, 
with anomaly thresholds defined as: 

 
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑑𝑑𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑄𝑄1𝑟𝑟𝑟𝑟𝑟𝑟 − (1.5 × 𝐼𝐼𝐼𝐼𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟)  (3) 
𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑑𝑑𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑄𝑄3𝑟𝑟𝑟𝑟𝑟𝑟 + (1.5 × 𝐼𝐼𝐼𝐼𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟)  (4) 

 
For more severe anomalies: 
 
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑑𝑑𝑟𝑟𝑟𝑟𝑟𝑟 =  𝑄𝑄1𝑟𝑟𝑟𝑟𝑟𝑟 − (3 × 𝐼𝐼𝐼𝐼𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟)  (5) 
𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑑𝑑𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑄𝑄3𝑟𝑟𝑟𝑟𝑟𝑟 + (3 × 𝐼𝐼𝐼𝐼𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟 )  (6) 

 
This approach Eqs. (3)–(6) differs from 

conventional anomaly classification methods, such as 
supervised classification, by not requiring pre-labeled 
anomaly data, which is often unavailable in real-world 
settings. The IQR-based thresholding allows the 
model to remain adaptable and interpretable, aiding in 
early fault detection even without prior failure events 
in the dataset. 
2.8 Feasibility in Real-Time GUI Applications 

To facilitate real-time energy consumption 
prediction for boiler feed water pumps (BFPs), this 
study developed a web-based application utilizing 
Streamlit Platform on a local server. The selection of 
models for deployment ML and DL models in real-
time applications depends on balancing prediction 
accuracy and computational efficiency, ensuring 
seamless real-time processing of streaming sensor data 
on the PI system. 

The computational cost varies significantly based 
on the complexity of the models and the algorithms 
used. For practical deployment, models were 
categorized into 3 groups: 

1) Simple Models (Low Cost):  
- Multiple Linear Regression 
- Regularized Regression (Ridge, Lasso, 

ElasticNet) 
2) Intermediate Models (Moderate Cost):  

- Support Vector Regression 
- Decision Trees Regression 
- Ensemble Methods (Random Forest, 

XGBoost, CatBoost, LightGBM) 
3) Complex Models (High Cost): 

- Deep Neural Networks  
- Recurrent Neural Networks (RNN) 
- Long Short-Term Memory (LSTM) 
- Gated Recurrent Units (GRU) 

This categorization aids in selecting appropriate 
models tailored to the operational constraints of the 
local server environment. 

 
3. Results and Discussion 

The performance of the predictive models was 
evaluated using Mean Squared Error (MSE) and the 
coefficient of determination (R²) across three feature 
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selection strategies: all features, top 10 features, and 
top 5 features. The results are summarized in Table 4 
and illustrated in Figure 7. In the figure, the horizontal 
bars (in blue) represent the MSE values, while the red 
line indicates the corresponding R² scores. The 
visualization clearly highlights the performance 
differences among the models under each feature 
selection condition. 
3.1 Model Performance 

Among all models, Support Vector Regression 
(SVR) demonstrated the highest predictive accuracy, 
with an MSE of 13.5573 and an R² of 0.9838 using all 
available features. This confirms SVR's effectiveness 
in capturing complex, non-linear relationships 
between variables. LightGBM also performed 
remarkably well, achieving an MSE of 14.1922 and an 
R² of 0.9831, and consistently ranking among the top-
performing models. 

When reducing the input to the top 10 most 
important features, both SVR and LightGBM 
maintained nearly the same level of accuracy. SVR 
recorded an MSE of 14.2818 and an R² of 0.9830, 
while LightGBM achieved an MSE of 14.1443 and an 
R² of 0.9831. This indicates that most of the predictive 
power is concentrated in a relatively small subset of 
features. 

However, further reduction to the top 5 features 
resulted in a noticeable decline in model performance. 
SVR’s MSE increased to 20.8288 (R²: 0.9751), and 
similar declines were observed in other models, 
suggesting that broader feature inclusion is necessary 
to capture the full variability of energy consumption 
behavior in BFPs. 

Ensemble models such as XGBoost and CatBoost 
also achieved strong results, with XGBoost yielding 
an MSE of 15.1769 and CatBoost 15.1286 using all 
features. Although slightly less accurate than SVR and 
LightGBM, they remained competitive across all 
feature configurations. 

Regularized regression models (Lasso, Ridge, and 
ElasticNet) produced results similar to Multiple Linear 
Regression (MLR), but struggled with non-linear 
relationships, limiting their overall performance. 
Meanwhile, deep learning models, including GRU 
(MSE: 15.6378, R²: 0.9813) and LSTM (MSE: 
17.8306, R²: 0.9787), demonstrated good accuracy 
and alignment with observed consumption patterns. 

In summary, SVR and LightGBM consistently 
outperformed other models in terms of predictive 
accuracy, particularly when all or the top 10 features 
were used. These findings support their use as reliable 
predictive tools for monitoring and managing energy 
consumption in boiler feed water pumps. 

 
Figure 7 Model Performance of All Strategies 

 
3.2 Feature Important  

The analysis of feature importance various models 
identified BFW_PUMP_DISCHARGE_PRESSURE 
as the most influential variable. This feature directly 
reflects the hydraulic load imposed on the pump, 
which is closely linked to the energy required for water 
circulation within the steam generation process. Its 
high predictive contribution across all model types 
underscores its central role in energy consumption 
dynamics. 

In addition, bearing housing vibration levels 
(BFW#1_BEARING_HOUSING_VIBR_A and 
BFW#1_BEARING_HOUSING_VIBR_B) emerged 
as critical indicators in several model families, 
including kernel-based regressors, tree-based models, 
and ensemble methods. Elevated vibration may 
indicate mechanical imbalance, wear, or 
misalignment—factors that can increase friction and 
reduce pump efficiency, thereby increasing energy 
usage. Their consistently high ranking across 
modeling techniques further validates their relevance 
as condition-monitoring variables. 

Conversely, temperature variables were among the 
least influential features. This finding suggests that, 
within the normal operational temperature range, 
variations in temperature do not significantly affect 
energy consumption. This trend was consistently 
observed across all models, reinforcing their limited 
predictive value in the context of BFP energy 
modeling. 

These results support the conclusion that features 
directly associated with mechanical health are more 
impactful for predicting energy usage than those 
related to internal electrical temperature conditions. 
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Table 4 Performance Metrics for Predictive Mode 

Model Group Predictive Model Feature Selection 
Performance Metrics 

(Test Dataset) 
MSE R2 

Linear Regression Models Multiple Linear Regression (MLR) All features 23.3543 0.9721 
Features with both p-values ≤ 0.05 and VIF ≤ 10. 36.4519 0.9565 

Linear Regression with Regularization 
Lasso Regression All features 23.3730 0.9721 
Ridge Regression All features 23.3543 0.9721 
ElasticNet Regression All features 23.3810 0.9721 

Kernel-Based Regression Model Support Vector Regression (SVR) 
All features 13.5573 0.9838 
Top 5 most features 20.8288 0.9751 
Top 10 most important features 14.2818 0.9830 

Tree-Based Regression Models Decision Tree Regression 
All features 21.4189 0.9744 
Top 5 most important features 21.3150 0.9746 
Top 10 most important features 21.0988 0.9748 

Ensemble Method 

Random Forest Regression 
All features 15.7650 0.9812 
Top 5 most important features 16.7989 0.9800 
Top 10 most important features 15.7012 0.9813 

XGBoost Regression 
All features 15.1769 0.9819 
Top 5 most important features 16.0858 0.9808 
Top 10 most important features 15.2126 0.9818 

CatBoost Regression 
All features 15.1286 0.9819 
Top 5 most important features 15.5188 0.9815 
Top 10 most important features 15.2559 0.9818 

LightGBM Regression 
All features 14.1922 0.9831 
Top 5 most important features 15.1394 0.9819 
Top 10 most important features 14.1443 0.9831 

Neural Network Models 

Deep Neural Network (DNN) All features 22.7365 0.9729 
Recurrent Neural Network (RNN) All features 19.5486 0.9767 
Gated Recurrent Unit (GRU) All features 15.6378 0.9813 
Long Short-Term Memory (LSTM) All features 17.8306 0.9787 
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3.3 Anomaly Detection 
Energy consumption anomalies were identified using 

the IQR method, with anomaly thresholds set at 1.5 and 3 
to define the lower and upper bounds. These thresholds 
categorized anomalies into two severity levels. For the 
three top-performing models, the anomaly detection 
boundaries were calculated separately as follows: 

1) SVR (All features):  
Warning Level 1 (-7.5079, +7.6733) 
Warning Level 2 (-13.2008, +13.3662) 

2) LightGBM (Top 10 features):  
Warning Level 1 (-7.5156, +7.5226) 
Warning Level 2 (-13.1550, +13.1620) 

3) LightGBM (All features):  
Warning Level 1 (-7.4368, +7.4404) 
Warning Level 2 (-13.0158, +13.0193) 

A confirmed anomaly was defined only when all three 
models simultaneously detected a deviation at the same 

severity level. The final detection identified 183 
Warning Level 1 events and 5 Warning Level 2 events 
between January 2020 and November 2024 in Figure 8 
illustrates the predictions from the three top-performing 
models—SVR (All Features) in green line, LightGBM 
(Top 10 Features) in yellow line, and LightGBM (All 
Features) in purple line—over the full evaluation period. 
The chart shows actual power consumption alongside 
predicted values, with orange and red markers denoting 
Level 1 and Level 2 anomalies, respectively. Notably, 
anomaly points are highlighted only when all three 
models simultaneously detect deviations beyond defined 
thresholds. This consensus-based strategy enhances 
anomaly detection robustness, reducing false positives 
and reinforcing the system's reliability. The time series 
visualization also demonstrates how well the predictive 
models align with actual energy patterns, capturing both 
regular trends and deviations. 

 

Figure 8 Time series plot comparing actual power consumption with predictions from SVR and LightGBM model 
 

3.4  GUI Development and Notification System  
To support the practical implementation of the 

developed predictive models and anomaly detection 
system, a web-based graphical user interface (GUI) 
was developed, as shown in Figure 9. This interactive 
dashboard enables real-time monitoring of boiler feed 
water pump (BFP) energy consumption and enhances 
operational decision-making. 

 

 
Figure 9 GUI interactive Web Application 

 
The GUI integrates predictive models—

specifically SVR and LightGBM—and displays real-
time comparisons between actual and predicted power 
consumption. It also overlays anomaly detection 
results based on predefined IQR thresholds, with 

Warning Level 1 and Level 2 clearly marked on the 
time-series graph for intuitive visualization. 
Key features of the system include: 

1) Real-time Monitoring: The GUI visualizes 
actual power consumption versus predicted 
values. 

2) Anomaly Detection: The system identifies and 
highlight anomalies periods using selected 
model based on predefined warning level. 

3) Email Notification System: When an 
anomaly is detected, an automated email alert 
is sent to the operators with relevant details 
and CSV logs. 

4) Customizable Settings: Operators can 
configure the update interval for prediction 
and visualization between 1 to 60 seconds, 
enable or disable email notifications for 
different warning levels. 

The integration of this GUI and automated alert system 
significantly improves operational awareness and energy 
management efficiency by reducing response time to 
unexpected anomalies, enabling operators to take swift 
corrective actions. It minimizes operational risks by 
facilitating proactive intervention, ensuring that energy 
anomalies are addressed before they escalate. 
Additionally, it enhances predictive maintenance planning, 
which helps reduce equipment downtime, optimize energy 
usage, and extend the operational life of critical machinery. 
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4. Conclusion 
This study developed and evaluated predictive models 

for energy consumption and applied best models for 
anomaly detection in boiler feed water pumps (BFPs) 
using machine learning (ML) and deep learning (DL) 
techniques. The results demonstrate that Support Vector 
Regression (SVR) with all features and LightGBM with 
both all-feature and top-10 feature selections achieved the 
highest prediction accuracy. Feature importance analysis 
identified boiler feed pump discharge pressure and bearing 
housing vibration levels as the most influential factors 
affecting energy consumption, providing critical insights 
for predictive maintenance. 

Anomalies were detected using the Interquartile Range 
(IQR) method applied to model residuals, with thresholds 
categorized into two severity levels. A consensus-based 
strategy was employed, where anomalies were confirmed 
only when all top-performing models agreed. This method 
yielded 183 Level 1 and 5 Level 2 anomaly events, 
demonstrating the framework’s potential in early 
identification of inefficiencies and mechanical issues. 

To enable real-time application, a graphical user 
interface (GUI) web application was developed. The 
system integrates energy prediction, anomaly 
visualization, and automated email notifications, 
allowing plant operators to monitor performance 
continuously and respond promptly to abnormal 
conditions before inefficiencies escalate into 
significant energy losses or unplanned outages. This 
supports improved maintenance planning, reduced 
energy waste, and enhanced operational efficiency. 

While the framework shows promising results, it 
was developed without access to historical failure 
records, limiting validation of anomaly detection 
against actual fault events. Future deployments should 
include mechanisms for field verification, such as 
coordinated feedback from operators and maintenance 
logs, to support ongoing model retraining and 
accuracy improvement. Establishing operational 
policies for real-time monitoring and human-in-the-
loop validation will further strengthen the reliability of 
the predictive system and allow scalable extension to 
other critical equipment within power plant 
operations. 

 
5. Acknowledgments 

I sincerely thank Global Power Synergy Company 
(GPSC) for providing crucial knowledge and data, making 
this research possible. 

 
6. References 
[1] M. Moleda, A. Momot and D. Mrozek, 

“Predictive maintenance of boiler feed water 
pumps using SCADA data,” sensors, vol. 20, no. 
2, 2020, Art. no. 571, doi:10.3390/s20020571. 

[2] L. Drbal, K. Westra and P. Boston, “Steam 
Generators,” in Power Plant Engineering. New 
York, NY, USA: Chapman & Hall, 1996, ch. 7, 
sec. 7.1, pp. 185–217. 

[3] H. A. Al-Jamimi, G. M. BinMakhashen, M. Y. 
Worku and M. A. Hassan, “Advancements in 
household load forecasting: Deep learning model 
with hyperparameter optimization,” electronics, 
vol. 12, no. 24, 2023, Art. no. 4909, doi: 
10.3390/electronics12244909. 

[4] B. Farsi, M. Amayri, N. Bouguila and U. Eicker, 
“On Short-Term Load Forecasting Using 
Machine Learning Techniques and a Novel 
Parallel Deep LSTM-CNN Approach,” IEEE 
Access, vol. 9, pp. 31191–31212, 2021, doi: 
10.1109/ACCESS.2021.3060290.  

[5] V. J. Mawson and B. R. Hughes, “Deep learning 
techniques for energy forecasting and condition 
monitoring in the manufacturing sector,” Energy 
and Buildings, vol. 217, 2020, Art. no. 109966, 
doi: 10.1016/j.enbuild.2020.109966 

[6] Z. Yin, L. Shi, J. Luo, S. Xu, Y. Yuan, X. Tan and 
J. Zhu, “Pump feature construction and electrical 
energy consumption prediction based on feature 
engineering and LightGBM algorithm,” 
sustainability, vol. 15, no. 1, 2023, Art. no. 789, 
doi: 10.3390/su15010789. 

[7] M. R. Mano Jemila, P. K. S, M. H. R, S. C, K. T. 
Maheswari and R. M, “A Novel Strategy to Estimate 
and Manage the Power Consumption of Household 
Appliances,” in 2024 International Conference on 
Inventive Computation Technologies (ICICT), 
Lalitpur, Nepal, Apr. 24–26, 2024, pp. 1949–1954, 
doi: 10.1109/ICICT60155.2024.10544992. 

[8] Z. Allal, H. Noura, O. Salman and F. Vernier, 
“Predicting Power Consumption Using Machine 
Learning Techniques,” in 2024 International Wireless 
Communications and Mobile Computing (IWCMC), 
Ayia Napa, Cyprus, May 27–31, 2024, pp. 1522-1527, 
doi: 10.1109/IWCMC61514.2024.10592560.  

[9] P. Schummer, A. del Rio, J. Serrano, D. Jimenez, 
G. Sánchez, and Á. Llorente, “Machine learning-
based network anomaly detection: Design, 
implementation, and evaluation,” AI, vol. 5, no. 4, 
pp. 2967–2983, 2024, doi: 10.3390/ai5040143. 

[10] J. M. Ahn, J. Kim and K. Kim, “Ensemble 
Machine Learning of Gradient Boosting 
(XGBoost, LightGBM, CatBoost) and Attention-
Based CNN-LSTM for Harmful Algal Blooms 
Forecasting,” toxins, vol. 15, no. 10, 2023, Art. 
no. 608, doi: 10.3390/toxins15100608. 

[11] N. Son, S. Yang and J. Na, “Deep neural network and 
long short-term memory for electric power load 
forecasting,” applied sciences., vol. 10, no. 18, 2020, 
Art. no. 6489, doi: 10.3390/app10186489. 

[12] S. Emshagin, W. K. Halim and R. Kashef, “Short-
term Prediction of Household Electricity 
Consumption Using Customized LSTM and GRU 
Models,” arXiv, 2022, doi: 10.48550/ARXIV. 
2212.08757  

[13] J. Chung, C. Gulcehre, K. Cho and Y. Bengio, 
“Empirical evaluation of gated recurrent neural 
networks on sequence modeling,” arXiv, 2014, 
doi: 10.48550/arXiv.1412.3555. 


	1. Introduction
	2. Materials and Methods
	2.1 Data Collection and Features
	2.2 Data Preparation
	2.3 Feature Selection for Model Development
	2.4 Predictive Model
	2.5 Hyperparameter Tuning
	2.6 Evaluation Metrics
	2.7 Outlier Detection

	3. Results and Discussion
	3.1 Model Performance
	3.2 Feature Important
	3.3 Anomaly Detection
	3.4  GUI Development and Notification System

	4. Conclusion
	5. Acknowledgments
	6. References

