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Abstract 
Reliable solar irradiance prediction is necessary for an easier transition from dependence on fossil fuels to 

renewable energy sources. The features of solar irradiance, such as its non-linearity and high variability, make predicting 

it a challenging task. This challenge is traditionally addressed by using regression and other ensemble models that 

require significantly large historical data to adequately train and rely on domain-specific knowledge. In this study, a 

data-driven framework that employed dynamic mode decomposition for solar irradiance forecasting was proposed. The 

efficiency of the dynamic mode decomposition-based framework was verified by employing it for short-term 

forecasting using two distinct datasets from geographically diverse locations. The comparative advantage over 

traditional regression was confirmed using performance assessment measures, including mean absolute error, mean bias 

error, and root mean square error. The resulting forecasts significantly outperformed the benchmark models, 

demonstrating that the proposed model could effectively forecast short-term solar irradiance with improved accuracy. 
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1. Introduction 
The use of solar energy as a substitute to 

hydrocarbon fuel has increased significantly in recent 

years due to the environmental benefits it presents [1]. 

This increase in adoption has also been accompanied 

by improvements in solar photovoltaic technology due 

to a reduction in material costs and governmental 

support for sustainable development [2]. While 

research is still ongoing to enhance the efficiency of 

solar cells, accurate forecasts of solar irradiance 

variation is critical to the integration of existing solar 

energy infrastructure into the electric grid [3].  

Solar energy is not a resource that is easily predictable 

due to its dependence on a myriad of factors including the 

location, orientation of the sun, aerosol, time of day, and 

weather patterns, among many other variables. Various 

methods for solar irradiance prediction have been 

proposed in recent studies. Numerical weather prediction 

models simulate the dynamic states of the atmosphere to 

generate predictions [4]. Image-based models such as sky 

camera image-based models and satellite image-based 

models utilize predictions of cloud movements and their 

effects on solar irradiance [5]. Machine learning models 

and statistical models employ meteorological parameters 

such as pressure, humidity, and temperature, together with 

historical observations of solar irradiance as inputs.  

Ensemble models such as the Weather Research and 

Forecasting Solar Ensemble Prediction System [6] and the 

Conditional Entropy Embedded Wasserstein Generative 

Adversarial Network with Long Short-Term Memory 

model [7] utilized a combination of different models to 

predict solar irradiance.  Other hybrid models also 

combined the advantages of various methods to enhance 

forecast accuracy [8],[9]. Furthermore, among models that 

utilize artificial intelligence, specifically artificial neural 

networks [10–12] were the machine learning methods that 

are most often utilized for solar irradiance forecasting. 

Several studies showed that Long Short-Term Memory 

(LSTM) is one of the best forecasting techniques [13–16] 

but to achieve this optimal performance, the availability of 

extensive training datasets is crucial [17]. While sufficient 

data might be available for certain regions, many other 

areas lacked sufficient data, particularly for longer 

forecasting horizons. Furthermore, the execution of these 

models requires substantial computational power, which 

may not be readily accessible in all locations. Therefore, 

the need for forecasting methods that are not only highly 

effective but also computationally efficient is evident. 

Dynamic mode decomposition (DMD) was 

considered for its ability to extract system dynamics 

directly from limited data without the need for extensive 

training [18]. Unlike LSTM and Convolutional Neural 

Network, which require large datasets and significant 

computational resources [19], DMD efficiently identifies 

key spatial and temporal patterns using dynamic modes 

and eigenvalues [19]. Its reliance on mathematical 

decomposition rather than iterative training allows it to 

work effectively with sparse data, making it well-suited for 

solar irradiance forecasting in scenarios where data is 

limited. 

Solar irradiance demonstrates significant 

variability influenced by several external factors, 

including seasonal fluctuations and geographic 

location [20]. This inherent variability necessitates the 

use of advanced forecasting techniques to enhance the 

accuracy of predictions. In their study, Mohan et al. 

[21] proposed a data-driven method for short-term 

electric load prediction utilizing DMD. Building on 

this approach, the present study proposes the 

application of dynamic mode decomposition for short-

term solar irradiance forecasting. By adopting this 

technique, we aim to improve the precision of solar 
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irradiance predictions using relatively little training 

data and limited computational cost employing 

truncated singular value decomposition (SVD) [22]. 

 

2. Model Framework 
2.1 DMD Mathematical Background 

A DMD is a matrix decomposition procedure 

advanced from linear Koopman operator concept [23]. 

It is a data-driven method that probes the fundamental 

dynamics of a given system. The DMD algorithm can 

extract both temporal and spatial patterns where other 

methods are limited to either pattern [24]. The 

proficiency of dynamic mode decomposition in 

forecasting future solar irradiance by learning the 

historical solar irradiance data characteristics is 

leveraged in this paper. The dynamic modes and 

associated eigenvalues are sufficient to characterize 

the non-stationary and non-linear behaviour of solar 

irradiance data. If measurements 𝑀 is taken over time, 

for a particular system, two “snapshot” matrices X1 

and X2 expressed by Eq. (1)–(2) are created, separated 

by an interval of ∆t [21]. 

 

𝑋1 = [𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑀−1] ∈ 𝑅𝑁×(𝑀−1) (1) 

𝑋2 = [𝑥2, 𝑥3, 𝑥4, … , 𝑥𝑀] ∈ 𝑅𝑁×(𝑀−1) (2) 

 

The measurement vectors have a size of 𝑁, and the 

two observation matrices overlap throughout time. By 

assuming that the system is undergoing gradual 

changes, it is possible to represent the 𝑀 th snapshot 

with Eq. (3) which is a linear combination of the 

preceding M - 1 snapshots, together with a residual 

error (𝑟) [21]. 

 

𝑥𝑀 = 𝑎1𝑥1 + 𝑎2𝑥2 + ⋯+ 𝑎𝑀−1𝑥𝑀−1 + 𝑟 (3) 

 

The goal of the algorithm is to calculate the eigen 

decomposition of the linear operator A  using the 

Koopman approximation [23]. It is expressed as: 

 

𝐴𝑋1 ≈ 𝑋2 ⇒ 𝐴 = 𝑋2𝑋1
† (4) 

 

where † represents the pseudo-inverse operation. The 

operator matrix 𝐴 in Eq. (4) is a time-independent linear 

approximation to the inherent dynamics of the system. 

The dynamic modes denoted as 𝜙𝑖 , refer to the 

eigenvectors of matrix A  that correspond to a single 

eigenvalue𝜆𝑖. However, in numerous practical scenarios, 

matrix 𝐴 will have a substantial number of dimensions, 

making its eigen decomposition a computationally 

demanding task. Therefore, Eq. (5)–(6) is used to address 

the problem, a matrix 𝑍 with reduced rank is introduced, 

which has the same non-zero eigenvalues as matrix 𝐴. 

The following expression can be used to obtain matrix 𝑍. 

 

𝑋2 ≈ 𝑋1𝑍 (5) 

 

The purpose of the relation above is to show the 

columns of 𝑋2  as the linear combination of the 

columns of 𝑋1 and 𝑍. The low-rank matrix 𝑍 can be 

expressed as a companion-type matrix with undefined 

coefficients [𝑎1, 𝑎2, … , 𝑎𝑀−1] as follows, 

 

𝑍 =

[
 
 
 
 
0 0 ⋯ 0 0 𝑎1

1 0 ⋯ 0 0 𝑎2

⋮ ⋮ ⋱ ⋮ ⋮ ⋮
0 0 ⋯ 1 0 𝑎𝑀−2

0 0 ⋯ 0 1 𝑎𝑀−1]
 
 
 
 

∈ 𝑅(𝑀−1)×(𝑀−1)  (6) 

 

2.2 DMD Algorithm 

The DMD algorithm is explained in the following 

major steps [24], 

i. Perform singular value decomposition (SVD) 

on the observation matrix X1: 

 

𝑋1 ≈ 𝑈𝛴𝑉𝐻 (7) 

 

where, N KU C  ,  K KC , M KV C  , K is the 

rank of the reduced SVD approximation to 1X  

ii. Calculate the companion-type matrix Z  from 

the reduced SVD components 

 

𝑋2 ≅ 𝑋1𝑍 ⇒ 𝑈𝛴𝑉𝐻𝑍 (8) 

Z = VΣ†UHX2 (9) 

 

iii. Derive the matrix Z̃, that is analogous to Z, 

 

𝑍 = 𝑈𝐻𝑋2𝑉𝛴† (10) 

 

Since analogous matrices have the identical eigenvalues, 𝑍 

is used to approximate the eigen decomposition of 𝐴. 

iv. Carry out the computation of the eigen 

decomposition of 𝑍 to determine the system's dynamic 

modes and eigen values. 

 

𝐴𝑈𝛴𝑉𝐻=X2 ⇒ 𝐴U=X2𝑉𝛴† (11) 

 

Multiply first by UH on both sides to yield 

 

𝑈𝐻𝐴U=U𝐻𝑋2𝑉𝛴†=Z̃ (12) 

𝐴U=UZ̃=U(𝑊𝛺𝑊†) ⇒ 𝐴(UW) = (UW)𝛺 (13) 

 

where the eigen decomposition of 𝑍 is given by 

𝑊𝛺𝑊†. We have the eigenvector matrix expressed by 

Eq. (14), W given by 

 

𝑊 = [𝑤1𝑤2𝑤3 . . . 𝑤𝑀−1] (14) 

 

 in Eq. (15) is the diagonal matrix of the 

eigenvalues which is expressed as 

 

𝛺 =

[
 
 
 
 
𝜆1 0 ⋯ 0 0
0 𝜆2 ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮
0 0 ⋯ 𝜆𝑀−2 0
0 0 ⋯ 0 𝜆𝑀−1]

 
 
 
 

  (15) 
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v. Formulate the dynamic mode matrixFrom 

 

𝛷 = 𝑈𝑊 ⇒ 𝛷 = 𝑋2𝑉𝛴†𝑊 (16) 

 

The matrix 𝛷 consists of M - 1 columns, each 

representing an eigenvector of matrix A , with the 

diagonal matrix 𝛺  containing the eigenvalues of 𝐴 . 

Each column of the matrix represents a dynamic mode 

associated with a unique eigenvalue, 𝜆𝑖. 

 

3. Methodology 
3.1 DMD-Based Irradiance Forecasting Model 

This study seeks to employ the DMD model to 

predict solar irradiance using limited historical data to 

train. Short-term irradiance prediction using DMD is 

particularly advantageous due to the model’s ability to 

take into account the underlying multi-level temporal 

patterns of the system. The proposed DMD-based 

forecasting method involves the following key steps: 

i. Normalizing the dataset  

The input solar irradiance data is normalised using 

Eq. (17). It compresses the data into a consistent range 

between 0 and 1. It is performed using the formula 

 

𝑥𝑗 =
𝑥𝑖 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛

 (17) 

 

where, 𝑖, 𝑗 ∈ [1,2, . . . , 𝑀], 𝑥𝑗 ∈ 𝑅 represents the 

normalized value, 𝑥𝑚𝑎𝑥 and 𝑥𝑚𝑖𝑛 represent the 

maximum and minimum values in 𝑥. 

ii. Transforming the normalized linear dataset 

into multi-dimensional data using Hankelization. 

To effectively capture the temporal dynamics 

inherent in solar irradiance time series data, 

Hankelization is employed to convert the normalized 

one-dimensional dataset into a structured matrix. This 

transformation facilitates the capture of time-

dependent patterns, such as trends, seasonality, and 

temporal correlations, by embedding historical 

observations in overlapping sequences. Each row of 

the resulting Hankel matrix in Eq. (18) serves as a 

snapshot of consecutive data points, allowing the 

model to infer relationships between past and future 

values. This approach is particularly advantageous for 

solar irradiance forecasting, where understanding 

temporal dependencies is critical for achieving 

accurate predictions. The Hankel matrix, X defined as, 

 

𝑋 = [

𝑥1 𝑥2 ⋯ 𝑥𝐿

𝑥2 𝑥3 ⋯ 𝑥𝐿+1

⋮ ⋮ ⋱ ⋮
𝑥𝑆 𝑥𝑆+1 ⋯ 𝑥𝑆+𝐿−1

] (18) 

 

Where S = M - L + 1  is the number of rows in the 

resulting Hankel matrix, M is the total length of the 

time series data and L is the window length. For this 

study, this was set as 
𝑀

2
. Figure 1 provides a simplified 

illustration of this transformation. 

 

 
Figure 1. Illustration of Hankelization, employed  in 

the transformation of a one-dimensional time 

series[𝑥1,𝑥2,𝑥3, … , 𝑥8,] into a structured matrix with 

overlapping rows. Adapted from [25] with 

modifications. 

iii. Performing eigendecompostion and estimating the 

dynamic modes 

The dynamic modes are computed using eigen 

decomposition using Eq. (7)–(13). Eq. (16) is used to 

estimate the dynamic mode matrix, with each column 

𝜙𝑖 representing a dynamic mode as described earlier. 

By understanding the cyclicity, seasonality, and 

intrinsic trends in the solar irradiance data, the non-

orthogonal dynamic modes are able to describe the 

behaviour of the system [24]. Visualizing the 

eigenvalues in the complex plane [24] can be seen to 

better identify the dynamics, and this is depicted in 

Figure 2. All the eigenvalues lie perfectly across the 

unit circle indicating the stable dynamic modes. The 

time-series solar irradiance data's trend is captured by 

the modes. 

iv. Initial prediction and data rearrangement  

The forecast of the solar irradiance series data vector, 
𝑥𝑃  obtained by solving Eq. (19) is based on the 

calculated dynamic mode matrix Φ, 

 

𝑥𝑃 = 𝛷 𝑒𝑥𝑝(𝛺𝑡𝐹)𝑏, 𝑥𝑃 ∈ 𝑅𝑆 (19) 

 

where, Ω is the diagonal matrix of eigenvalues, 𝑏 =
𝛷†𝑥̄1is the initial amplitude of dynamic modes, and 𝑡𝐹 

is the time of future prediction. 

The resulting matrix 𝑋𝑃 , converted into a linear 

dataset 𝑃 , that integrates both the reconstructed 

training data and the predicted data by performing the 

inverse Hankelization process. The forecasted values 

commence at the index, 𝑖 = 𝐿 + 𝑆 . For short-term 

predictions, the first six values from this index are 

selected. 

v. De-normalization and final solar irradiance 

forecast 

Finally, P is denormalised to the original data scale 

using Eq. (20) 

 

𝑋(𝑗)= P(𝑗)(𝑃𝑚𝑎𝑥- 𝑃𝑚𝑖𝑛) + 𝑃𝑚𝑖𝑛 (20) 
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Where 𝑗 ∈ [1,2, … ,𝑀], 𝑃(𝑗)represents the elements of 

the dataset 𝑃 , and 𝑋(𝑗)  denotes the de-normalized 

solar irradiance value. 

 

 
Figure 2. Visualization of the eigenvalues of intra-

hour data over the unit circle in the complex plane 

 

3.2 Data Description and Preprocessing 

For this study, datasets obtained from two different 

public sources were utilized: 

i. Folsom Dataset 

Pedro et al. [26] made the dataset available via the 

Zenodo repository. It comprises three years (2014–

2016) of high-resolution ground-based measurements, 

including direct normal irradiance and global 

horizontal irradiance, recorded at 1-minute intervals. 

In addition, commonly used exogenous variables such 

as Numerical Weather Prediction forecasts, satellite 

imagery, sky images, and weather data were also 

provided. The irradiance data was collected in Folsom 

(38.642, -121.148), a city located in Sacramento 

County within California's Central Valley shown on 

the map in Figure 3. The region is characterized by a 

temperate climate with dry, hot summers, classified as 

Csa under the Köppen climate system [26].  

Pedro et al. [26] generated secondary datasets from 

the primary dataset, featuring irradiance data tailored 

to various time horizons. For the Folsom dataset, the 

secondary data utilized included clear sky irradiance 

for intra-hour (5-minute intervals), intra-day (30-

minute intervals), and day-ahead (26-hour intervals) 

time horizon. This choice of time horizons was made 

to correspond to the forecasting time horizons used by 

Pedro et al. [26], making it become more convenient 

to compare the results obtained. 

For intra-hour forecasting, 4000 data points, (about 

one month of data, 2015-11-27 23:20:00 to 2015-12-

31 23:55:00), were used for training the model and a 

forecast of 6 future data points (2016-01-01 16:00:00 

to 2016-01-01 16:25:00) were made.  For intra-day 

forecasting, 1000 data points (about one month, 2015-

11-14 20:00:00 to 2015-12-31 23:00:00) were utilized 

for training and testing the model.  

 
Figure 3. Map showing the area around the Folsom, 

California site [18]. 

 

Six data points from 2016-01-01 16:00:00 to 2016-

01-01 18:30:00 at 30-minute intervals were used to 

validate the performance of the model used for the 

prediction. 

This forecasting horizon is particularly beneficial 

to utility companies and system operators in system 

control and real-time electricity bidding [27].  

For day-ahead forecasting, 800 data points, 2014-

03-30 12:00:00 to 2016-06-08 12:00:00, were used to 

train and test the model. The short-term irradiance 

forecasting capability of the model was assessed using 

the predictions of 6 data points, 2016-01-01 to 2016-

01-06 based on all the prior data points. 

The Folsom site is specified by the star marker in 

the insert plot while the other circle markers indicate 

the four nearest North American Mesoscale (NAM) 

model grid points [26]. The Folsom dataset presented 

some challenges, most notably the occurrence of 

missing data points across various forecast horizons. 

The missing values, denoted as ‘NaN’, were 

particularly evident in the intra-hour dataset, resulting 

in data gaps that required attention. There were also 

negligible outliners. 

These challenges were addressed through the 

implementation of adequate preprocessing techniques. 

The outliners were retained, missing values were excluded 

by filtering out ‘NaN’ entries, and the remaining data was 

normalized using the MinMaxScaler to achieve a 

standardized range. Additionally, seasonal decomposition 

was utilized to extract and visualize the underlying trends 

and periodic patterns in the data. These steps ensured the 

dataset's integrity and reliability for forecasting, despite its 

inherent limitations. It is advisable to account for the 

documented uncertainties when utilizing datasets for 

forecasting. 

ii. National Aeronautics and Space 

Administration (NASA) Prediction of Worldwide 

Energy Resources (POWER) Project Dataset 

To further verify the results of the study, data from the 

NASA POWER Project was employed [28]. The utilized 

dataset consists of Clear Sky Surface Shortwave 

Downward Irradiance and All Sky Surface Shortwave 
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Downward Irradiance for hourly and daily time horizons 

from 2014 to 2023 for Osogbo, Osun state, Nigeria 

(7.78N, 4.55E) shown on the map in Figure 4. For the 

hourly time horizon, the DMD model was trained and 

tested using 3,656 data points from 2022-01-01 06:00:00 

to 2022-10-18 06:00:00. The other benchmarking models 

were trained and tested using 40,544 entries, 2014-01-01 

06:00:00 to 2022-10-18 06:00:00. For the daily time 

horizon, the DMD model was trained and tested using 725 

data points, 2014-01-02 to 2015-12-28 at 24-hour 

intervals. The other benchmarking models were trained 

and tested using 11684 entries, from 1984-01-01 to 2015-

12-28. The dataset exhibits challenges similar to those 

encountered with the Folsom dataset, and they were 

addressed using the same mitigation strategies applied to 

Folsom's data. 

iii. Data Pre-processing 

In addition to the Clear Sky Surface Shortwave 

Downward Irradiance and All Sky Surface Shortwave 

Downward Irradiance that were used, the clear sky 

index 𝐾𝑐 was computed using Eq. (21). 

 

 

Figure 4. Map showing Osogbo. The circle marker in 

the insert plot shows the zoomed in map of Osogbo. 

 

𝐾𝑐= I/Iclear (21) 

 

where, 𝐼 is the All-Sky Surface Shortwave Downward 

Irradiance, and 𝐼𝑐𝑙𝑒𝑎𝑟  is the Clear Sky Surface Shortwave 

Downward Irradiance. The computed clear sky index is 

then added as an additional feature for training the 

benchmarking models. To ensure uniformity and facilitate 

further analysis, the input solar irradiance series data 𝑥 ∈
𝑅𝑀,𝑥𝑖 ∈ 𝑅, 𝑖 = 1,2, . . . , 𝑀 undergoes a normalization 

process as described in Eq. (17). 

3.3 Benchmark Models Description 

Pedro et al. [26] presented some models for 

benchmarking the performance of solar irradiance 

forecasting models. In this present work, to evaluate 

the performance of the proposed DMD model, three 

well-established regression techniques,Ordinary Least 

Squares (OLS), Least Absolute Shrinkage and 

Selection Operator (LASSO), and Ridge regression 

described by Eq. (22)–(24) were utilized as benchmark 

models. The performance of the proposed DMD 

technique is compared against these benchmark 

models. Each of these models is summarily presented 

below: 

i. Ordinary Least Squares (OLS) 

Ordinary Least Square (OLS) is one of the most 

frequently used methods of regression studies. It aims 

to minimize the sum of squared residuals between the 

forecasted values 𝑦̂𝑖and the observed values 𝑦𝑖 . The 

OLS objective function is given by, 

 

𝑚𝑖𝑛𝜷(∑ (𝑦𝑖 − 𝑥𝑖
𝑇𝛽)2𝑁

i=1 )  (22) 

 

Where, 𝑥𝑖 denotes the feature vector for the 𝑖-th 

observation, 𝛽 is the vector of coefficients, and 𝑁 is 

the number of observations.  Although OLS gives 

unbiased estimates of 𝛽, it sometimes exhibits high 

variance, particularly in the presence of 

multicollinearity [29]. 

ii. Least Absolute Shrinkage and Selection 

Operator (LASSO) Model 

The LASSO is a regularization method that 

performs both variable selection and coefficient 

shrinkage. It introduces an L1 penalty term that 

penalizes the sum of the absolute values of the 

coefficients, encouraging some coefficients to be 

exactly zero. The objective function for LASSO is 

expressed as: 

 

𝑚𝑖𝑛𝜷(∑ (𝑦𝑖-𝑥𝑖
𝑇𝛽)2𝑁

i=1 + 𝜆 ∑ |𝛽𝑗|
𝑝
j=1 )  (23) 

 

where 𝛽 is the vector of coefficients, and 𝛽𝑗 represents 

the 𝑗 -th coefficient, which quantifies the contribution 

of the 𝑗 -th predictor to the response variable. Here, 𝑦𝑖 

is the observed value, 𝑥𝑖 is the predictor vector, N is 

the number of observations, and 𝑝 is the number of 

predictors. The regularization parameter 𝜆 ≥ 0 

controls the sparsity level, with larger values of 𝜆 

shrinking more𝛽𝑗 values to zero. The optimal value of 

𝜆 is determined through a grid search combined with 

k-fold cross-validation on the training dataset. 

iii. Ridge 

Ridge regression - also known as L2 regularization 

- is a method that reduces errors caused by overfitting 

training data. It does this by introducing a penalty term 

which reduces the coefficient estimates. The objective 

function for Ridge regression is given by, 

 

𝑚𝑖𝑛𝜷(∑ (𝑦𝑖 − 𝑥𝑖
𝑇𝛽)2𝑁

i=1 + 𝜆 ∑ 𝛽𝑗
2𝑝

j=1 )  (24) 

 

where, λ ≥ 0 is the regularization parameter and p is 

the number of predictors. 

The penalty term λ ∑ β
j

2p

j=1  constrains the 

coefficients 𝛽𝑗 to be smaller, thereby reducing overfitting 

by discouraging large coefficients. This becomes 

especially useful when the predictors are highly correlated, 

as it stabilizes the estimation process [29]. 
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3.4 Performance Assessment 

The performance of the proposed DMD-based 

forecasting model is evaluated using three error 

metrics described with Eq. (25)–(27), selected for their 

ability to capture distinct aspects of forecast accuracy: 

i. Mean Absolute Error (MAE) 

This Measures the average magnitude of errors 

without considering their direction. This metric 

provides an overall measure of model accuracy and is 

simple to interpret, making it useful for general 

performance comparison. 

 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑌𝑖 − 𝑌̂𝑖|

𝑛
𝑖=1   (25) 

 

ii. Mean Bias Error (MBE) 

This Captures the bias in the model's predictions, 

indicating whether forecasts are systematically 

overestimated (positive MBE) or underestimated 

(negative MBE). This metric is essential for 

identifying and correcting directional errors in solar 

irradiance forecasts. 

 

𝑀𝐵𝐸 =
1

𝑛
∑ (𝑌𝑖 − 𝑌̂𝑖)

𝑛
𝑖=1   (26) 

 

iii. Root Mean Square Error (RMSE) 

This Highlights the magnitude of larger errors by 

squaring the residuals, thus penalizing significant 

deviations more heavily. This makes RMSE 

particularly useful for applications where large errors 

have a critical impact. 

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑌𝑖 − 𝑌̂𝑖)

𝑛
𝑖=1

2
  (27) 

 

In all the cases described above, 𝑌𝑖 is the actual 

value (original data), 𝑌𝑖̂ is the forecasted value while 𝑛 

is the total number of observations.  

These metrics collectively provide a 

comprehensive evaluation of model performance, 

addressing overall accuracy (MAE), bias (MBE), and 

error magnitude (RMSE), ensuring a robust 

assessment of the forecasting model. 

 

4. Results and Discussions 
4.1 Folsom Dataset 

To demonstrate the effectiveness of the proposed 

DMD-based solar irradiance forecasting model, the 

Folsom dataset as described in section 3.2 was 

utilized. Rather than train with all the data available 

from 2014 to 2015 as done by Pedro et al. [26], data 

from within a limited timeframe was selected to serve 

as training data, depicted by Figure 5. This is because 

the selected data describes the system’s dynamics, 

emphasizes the main trends and periodicities, and 

sufficiently represents the complexity of the system 

being studied without introducing unnecessary noise 

or being too computationally intensive, making it easy 

for the DMD model to decompose more accurately, 

especially for the intra-hour and intra-day data. 

 

 

 
Figure 5. Illustrations of selected solar irradiance 

data from the Folsom dataset used to train the model. 

(a) Intra-hour (b) Intra-day (c)Day-ahead 

 

The results obtained for short-term intra-hour solar 

irradiance forecasting (5–30 minutes) and intra-day 

forecasting (30 minutes–3 hours) for January 1, 2016, are 

shown in Figure 6(a)–(b) while the results for day-ahead 

forecasting (1–6 days) are presented in Figure 6(c). The 
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results obtained are compared with that of linear regression 

models utilized by Pedro et al. [18] for benchmarking such 

as OLS, LASSO, and Ridge [18]. The  proposed approach 

outperformed the other models in predicting future solar 

irradiance as reflected by the significantly lower errors.  

As shown in Table 1, the DMD model achieved 

exceptional accuracy, recording a MAE of 12.68 ± 2.6 

W/m², which was significantly lower than all the 

benchmark models. This result highlights the model’s 

consistent ability to provide precise predictions. The 

MBE of 12.68 ± 2.6 W/m² further confirms its 

minimal forecasting bias, while the RMSE of 12.95 ± 

8.4 W/m² underscores its robustness in handling short-

term solar irradiance variability effectively. 

For intra-day forecasts, the DMD model exhibited a 

remarkable performance. With MAE and MBE values of 

5.46 ± 2.3 W/m², it achieved an approximate 90% 

improvement in accuracy compared to benchmark models. 

The significantly lower RMSE further emphasizes the 

model’s reliability in managing intra-day solar irradiance 

predictions under varying conditions 

Day-ahead results also showed the DMD model to 

be better than the benchmark models. DMD model 

recorded MAE and RMSE values being approximately 

0.1% those of the benchmark models. While OLS 

model exhibits a slightly lower MBE of 0.7W/m2 

implying that it slightly overpredicted when compared 

to -0.90 of the DMD model which slightly 

underpredicts the GHI. However, the DMD model is 

still better because it exhibits a lower level of 

variability with a standard deviation of just 0.3 W/m2 

compared to 7.9 W/m2 of OLS. 

 

  

 
Figure 6. Illustration of the proposed DMD approach forecasting results using data from the Folsom dataset for 

(a) Intra-hour data for 01-Jan-2016 (b) Intra-day data for 01-Jan-2016 (c) Day-ahead data for July 2016 
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Table 1 GHI forecast results for the Folsom dataset by horizon and model. For each error metric, the mean ± the 

standard deviation over all horizons is reported. Adapted from Pedro et al. [26] with modifications 

Time Horizon Model MAE (W/m²) MBE (W/m²) RMSE (W/m²) 

Intra-hour DMD 12.68 ± 2.6 12.68 ± 2.6 12.95 ± 8.4 

 Pers. 32.3 ± 7.1 0.9 ± 0.5 73.2 ± 11.9 

 OLS 33.0 ± 6.9 -1.9 ± 2.6 67.5 ± 9.8 

 Ridge 33.0 ± 6.9 -1.9 ± 2.6 67.5 ± 9.8 

 Lasso 33.0 ± 6.9 -1.9 ± 2.6 67.5 ± 9.8 

Intra-day DMD 5.46 ± 2.3 5.46 ± 2.3 5.92 ± 5.5 

 Pers. 49.9 ± 13.7 8.0 ± 6.0 89.6 ± 20.3 

 OLS 50.1 ± 11.1 -16.8 ± 14.4 89.2 ± 20.6 

 Ridge 50.1 ± 11.1 -16.8 ± 14.4 89.2 ± 20.6 

 Lasso 50.1 ± 11.1 -16.9 ± 14.4 89.2 ± 20.6 

Day-ahead DMD 1.49 ± 0.18 -1.49 ± 0.18 1.50 ± 0.72 

 NAM 85.1 ± 21.6 -20.5 ± 62.3 110.0 ± 29.3 

 OLS 72.0 ± 42.2 0.7 ± 7.9 101.0 ± 56.7 

 Ridge 70.4 ± 40.9 0.9 ± 8.2 98.5 ± 54.6 

 Lasso 70.9 ± 41.4 2.5 ± 9.3 96.9 ± 53.2 

4.2  Osogbo Dataset 

To further evaluate the effectiveness of the DMD 

model, data from Osogbo (7.78°N, 4.55°E), Nigeria, 

obtained through the NASA POWER Project, was 

utilized. The dataset comprises hourly and daily 

measurements of clear-sky surface shortwave 

downward irradiance for this location. 

To train the model for intra-day irradiance 

prediction, data spanning from 2022-01-01 06:00:00 

to 2022-10-17 06:00:00 was utilized while the model 

was trained using data collected between 2014-01-02 

and 2015-12-22 for day-ahead solar irradiance 

forecasting.  The benchmark the models - OLS, 

LASSO, and Ridge, were trained on a larger dataset 

for better performance. The benchmark models were 

trained with data from 2014-01-01 06:00:00 to 2022-

10-17 13:00:00 for intra-day forecasting, while for 

day-ahead irradiance forecasting, the training period 

spanned from 2020-07-01 to 2022-10-01. 

The comparative results obtained for intra-day and 

day-ahead irradiance forecasting for the Osogbo 

dataset were presented visually in Figure 7. As 

observed by Pedro et al. [26] in their analysis of the 

Folsom, dataset, the OLS, Ridge, and LASSO models 

produced similar results.This is most likely due to the 

high correlation between the features used to train the 

model. Though Ridge and Lasso are expected to deal 

with the multicollinearity and the shrinkage penalty of 

models,  λ even after cross-validation was likely very 

low or equal to zero, resulting in similar predictions 

across all three models. 

It can be observed that for the intraday Folsom 

forecast, the DMD model also performed well, 

yielding near-perfect predictions. The other models, 

however, fall short of the mark more significantly. 

 

The extremity of the variance between the proposed 

DMD model and the other models could be observed 

in Table 1, which for MAE, the DMD model performs 

significantly better with values less than 10% of those 

of the other models. MAE is about 25% of the values 

obtained from the benchmark models as shown in 

Table 2, which can generally be described as similar 

to the results obtained when comparing the error 

metrics of the models provided by Pedro et al. [26] 

with those of the DMD model. The results further 

validated the model's superiority. 

The forecasts of all the benchmark models for the 

day-ahead irradiance showed more visual discrepancy 

from the actual data, particularly after the third day as 

illustrated in Figure 7(b). However, The DMD model 

outperforms the benchmark models across the time 

horizons and datasets, signifying its competence in 

short duration solar irradiance predictions.  
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Figure 7. Illustration of forecasting results using the 

proposed DMD approach compared with other 

models on NASA POWER Project data for (a) hourly 

irradiance data for 17-October 2022 and (b) daily 

irradiance data for 17–22 October 2022. 

 

Figure 8. present a comparison of the error 

metrics—MAE, MBE, and RMSE across the DMD, 

OLS, Ridge, and LASSO models for different 

forecasting horizons.  Figure 8(a). illustrates the 

results for intra-day solar irradiance forecasting, 

while Figure 8(b). focuses on day-ahead forecasts. The 

DMD model demonstrated superior performance, 

achieving significantly lower error values across all 

metrics when compared to the benchmark models. These 

results highlight the robustness and reliability of the DMD 

model in handling diverse solar irradiance forecasting 

scenarios. 

 

 
(a) 

 
(b) 

Figure 8 A bar chart illustrating error metrics (MAE, 

MBE, and RMSE) for the forecasting models: (a) intra-

day solar irradiance forecasting and (b) day-ahead solar 

irradiance forecasting. The DMD model demonstrates 

superior performance across both horizons compared to 

the benchmark models

Table 2 GHI forecast results by horizon and model. For each error metric, we report the mean ± the standard 

deviation over all horizons for the NASA POWER Project 

Time Horizon Model MAE (W/m²) MBE (W/m²) RMSE (W/m²) 

Intra-day DMD 18.18 ± 5.9 18.18 ± 5.9 19.10 ± 14.5 

OLS 73.80 ± 70.1 -72.24 ± 71.7 101.79 ± 113 

Ridge 73.80 ± 70.1 -72.24 ± 71.7 101.79 ± 113 

Lasso 73.91 ± 70.1 -72.10 ± 71.9 101.85 ± 113 

Day-ahead DMD 18.75 ± 2.8 3.33 ± 2.8 22.08± 7.28 

OLS 21.25 ± 4.9 18.33 ± 6.45 23.75 ± 8.69 

Ridge 21.25 ± 4.9 18.33 ± 6.45 23.75 ± 8.69 

Lasso 21.25 ± 4.9 18.33 ± 6.45 23.75 ± 8.69 

5. Conclusion 
A data-driven approach for short-term solar 

irradiance prediction using DMD has been presented. 

The intrinsic capability of the DMD-based algorithm to 

extract the underlying dynamics of the time-reliant solar 

irradiance data was utilized for precise future solar 

irradiance forecasting. To validate the efficiency of the 

presented framework, an extensive comparison with 

other benchmarking models, including OLS, LASSO, 

and Ridge model was conducted using data from two 

public data sources. The precision and efficiency of the 

proposed model when compared to the benchmark 

models are satisfactory. The model’s implementation is 

straight forward. The conspicuously lower values of the 

employed error metrics (MAE. MBE and RMSE) points 

to DMD’s robustness and efficiency, thereby validating 

the forecasting performance of the presented model. 

Therefore, the presented DMD-based framework is 

demonstrated to be suitable for short term solar irradiance 

forecasting, even when utilizing relatively limited 

training data. 

However, DMD has some practical limitations that 

should be considered. First, it is highly dependent on 

data quality; missing values or noise in the dataset can 

significantly affect its accuracy, therefore, proper data 

preprocessing is often required to address this issue. 

Second, the model requires careful tuning of 

parameters, such as the embedding window length and 

the number of dynamic modes retained, which can be 

computationally intensive. Additionally, DMD is most 
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effective for short- to medium-term forecasting, as its 

reliance on linear dynamics can limit its ability to 

capture complex, nonlinear behaviors in very long-

term predictions. Finally, while DMD is 

computationally efficient for small- to moderate-sized 

datasets, scaling to high-dimensional or extremely 

large datasets can lead to significant computational 

demands during singular value decomposition. 

Addressing these limitations in future research, such 

as through hybrid approaches that combine DMD with 

machine learning techniques, may further enhance its 

applicability to diverse forecasting scenarios. 
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