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Abstract

Reliable solar irradiance prediction is necessary for an easier transition from dependence on fossil fuels to
renewable energy sources. The features of solar irradiance, such as its non-linearity and high variability, make predicting
it a challenging task. This challenge is traditionally addressed by using regression and other ensemble models that
require significantly large historical data to adequately train and rely on domain-specific knowledge. In this study, a
data-driven framework that employed dynamic mode decomposition for solar irradiance forecasting was proposed. The
efficiency of the dynamic mode decomposition-based framework was verified by employing it for short-term
forecasting using two distinct datasets from geographically diverse locations. The comparative advantage over
traditional regression was confirmed using performance assessment measures, including mean absolute error, mean bias
error, and root mean square error. The resulting forecasts significantly outperformed the benchmark models,
demonstrating that the proposed model could effectively forecast short-term solar irradiance with improved accuracy.
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1. Introduction

The use of solar energy as a substitute to
hydrocarbon fuel has increased significantly in recent
years due to the environmental benefits it presents [1].
This increase in adoption has also been accompanied
by improvements in solar photovoltaic technology due
to a reduction in material costs and governmental
support for sustainable development [2]. While
research is still ongoing to enhance the efficiency of
solar cells, accurate forecasts of solar irradiance
variation is critical to the integration of existing solar
energy infrastructure into the electric grid [3].

Solar energy is not a resource that is easily predictable
due to its dependence on a myriad of factors including the
location, orientation of the sun, aerosol, time of day, and
weather patterns, among many other variables. Various
methods for solar irradiance prediction have been
proposed in recent studies. Numerical weather prediction
models simulate the dynamic states of the atmosphere to
generate predictions [4]. Image-based models such as sky
camera image-based models and satellite image-based
models utilize predictions of cloud movements and their
effects on solar irradiance [5]. Machine learning models
and statistical models employ meteorological parameters
such as pressure, humidity, and temperature, together with
historical observations of solar irradiance as inputs.

Ensemble models such as the Weather Research and
Forecasting Solar Ensemble Prediction System [6] and the
Conditional Entropy Embedded Wasserstein Generative
Adversarial Network with Long Short-Term Memory
model [7] utilized a combination of different models to
predict solar irradiance.  Other hybrid models also
combined the advantages of various methods to enhance
forecast accuracy [8],[9]. Furthermore, among models that
utilize artificial intelligence, specifically artificial neural
networks [10-12] were the machine learning methods that

are most often utilized for solar irradiance forecasting.
Several studies showed that Long Short-Term Memory
(LSTM) is one of the best forecasting techniques [13-16]
but to achieve this optimal performance, the availability of
extensive training datasets is crucial [17]. While sufficient
data might be available for certain regions, many other
areas lacked sufficient data, particularly for longer
forecasting horizons. Furthermore, the execution of these
models requires substantial computational power, which
may not be readily accessible in all locations. Therefore,
the need for forecasting methods that are not only highly
effective but also computationally efficient is evident.

Dynamic mode decomposition (DMD) was
considered for its ability to extract system dynamics
directly from limited data without the need for extensive
training [18]. Unlike LSTM and Convolutional Neural
Network, which require large datasets and significant
computational resources [19], DMD efficiently identifies
key spatial and temporal patterns using dynamic modes
and eigenvalues [19]. Its reliance on mathematical
decomposition rather than iterative training allows it to
work effectively with sparse data, making it well-suited for
solar irradiance forecasting in scenarios where data is
limited.

Solar irradiance  demonstrates  significant
variability influenced by several external factors,
including seasonal fluctuations and geographic
location [20]. This inherent variability necessitates the
use of advanced forecasting techniques to enhance the
accuracy of predictions. In their study, Mohan et al.
[21] proposed a data-driven method for short-term
electric load prediction utilizing DMD. Building on
this approach, the present study proposes the
application of dynamic mode decomposition for short-
term solar irradiance forecasting. By adopting this
technique, we aim to improve the precision of solar
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irradiance predictions using relatively little training
data and limited computational cost employing
truncated singular value decomposition (SVD) [22].

2. Model Framework
2.1 DMD Mathematical Background

A DMD is a matrix decomposition procedure
advanced from linear Koopman operator concept [23].
It is a data-driven method that probes the fundamental
dynamics of a given system. The DMD algorithm can
extract both temporal and spatial patterns where other
methods are limited to either pattern [24]. The
proficiency of dynamic mode decomposition in
forecasting future solar irradiance by learning the
historical solar irradiance data characteristics is
leveraged in this paper. The dynamic modes and
associated eigenvalues are sufficient to characterize
the non-stationary and non-linear behaviour of solar
irradiance data. If measurements M is taken over time,
for a particular system, two “snapshot” matrices X
and X, expressed by Eq. (1)—(2) are created, separated
by an interval of At [21].

X1 = [xl,xz,x3, ""xM—l] € RNX(M—l) (1)
X, =[x, X3, X4, ..., Xy ] € RV¥M=D) )

The measurement vectors have a size of N, and the
two observation matrices overlap throughout time. By
assuming that the system is undergoing gradual
changes, it is possible to represent the M th snapshot
with Eq. (3) which is a linear combination of the
preceding M - 1 snapshots, together with a residual
error (r) [21].

Xy = A1Xq + a,Xx, + -+ Ap—1Xpm-1 +r (3)

The goal of the algorithm is to calculate the eigen
decomposition of the linear operator A using the
Koopman approximation [23]. It is expressed as:

AX, = X, > A = X,X] 4

where t represents the pseudo-inverse operation. The
operator matrix A in Eq. (4) is a time-independent linear
approximation to the inherent dynamics of the system.
The dynamic modes denoted as ¢; , refer to the
eigenvectors of matrix A that correspond to a single
eigenvaluel;. However, in numerous practical scenarios,
matrix A will have a substantial number of dimensions,
making its eigen decomposition a computationally
demanding task. Therefore, Eq. (5)—(6) is used to address
the problem, a matrix Z with reduced rank is introduced,
which has the same non-zero eigenvalues as matrix A.
The following expression can be used to obtain matrix Z.

X, ~ X,Z 5)

The purpose of the relation above is to show the
columns of X, as the linear combination of the

columns of X; and Z. The low-rank matrix Z can be
expressed as a companion-type matrix with undefined
coefficients [a,, a,, ..., ay_1] as follows,

0 0 0 0 a
10 - 0 0 a

Z=|: : =~ &+ i i |eRWM-DXM-D (g)
0 0 1 0 ay_,
0 0 0 1 ay_q

2.2 DMD Algorithm

The DMD algorithm is explained in the following
major steps [24],

i. Perform singular value decomposition (SVD)
on the observation matrix X :

X, ~UZVH (7)

where, U eCV*, zeC% v eC"¥, Kis the
rank of the reduced SVD approximation to X,

ii. Calculate the companion-type matrix Z from
the reduced SVD components

X, =X,Z=>UsViz (8)
7 = Vstutx, 9)

iii. Derive the matrix Z, that is analogous to Z,

7 =U0tx,vst (10)
Since analogous matrices have the identical eigenvalues, Z
is used to approximate the eigen decomposition of A.

iv. Carry out the computation of the eigen
decomposition of Z to determine the system's dynamic
modes and eigen values.

AUZVH=X, = AU=X,V Xt (11)

Multiply first by UH on both sides to yield

Ut AU=U"X,VEt=Z (12)
AU=UZ=UWawt) = A(UW) = (UW)2 (13)

where the eigen decomposition of Zis given by
WaowT. We have the eigenvector matrix expressed by
Eqg. (14), W given by

W = [Wiwawz  ...Wy_4] (14)

Q in Eg. (15) is the diagonal matrix of the
eigenvalues which is expressed as

A 0 0 0
0 A - O 0
o=|: + = (15)
0 0 Ay—a O
0 0 0 Ay
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v. Formulate the dynamic mode matrixFrom
& =UW=d=X,VZw (16)

The matrix @ consists of M - 1 columns, each
representing an eigenvector of matrix A, with the
diagonal matrix 2 containing the eigenvalues of A.
Each column of the matrix represents a dynamic mode
associated with a unique eigenvalue, A;.

3. Methodology
3.1DMD-Based Irradiance Forecasting Model
This study seeks to employ the DMD model to
predict solar irradiance using limited historical data to
train. Short-term irradiance prediction using DMD is
particularly advantageous due to the model’s ability to
take into account the underlying multi-level temporal
patterns of the system. The proposed DMD-based
forecasting method involves the following key steps:
i. Normalizing the dataset
The input solar irradiance data is normalised using
Eq. (17). It compresses the data into a consistent range
between 0 and 1. It is performed using the formula

x] — L min (17)

Xmax — Xmin

where, i,j €[1,2,...,M],x; €R represents the
normalized value, x4, and x,,;, represent the
maximum and minimum values in x.

ii. Transforming the normalized linear dataset
into multi-dimensional data using Hankelization.

To effectively capture the temporal dynamics
inherent in solar irradiance time series data,
Hankelization is employed to convert the normalized
one-dimensional dataset into a structured matrix. This
transformation facilitates the capture of time-
dependent patterns, such as trends, seasonality, and
temporal correlations, by embedding historical
observations in overlapping sequences. Each row of
the resulting Hankel matrix in Eq. (18) serves as a
snapshot of consecutive data points, allowing the
model to infer relationships between past and future
values. This approach is particularly advantageous for
solar irradiance forecasting, where understanding
temporal dependencies is critical for achieving
accurate predictions. The Hankel matrix, X defined as,

xl xz e xL
X2 X3 o X4

X=1. . . . (18)
Xs  Xs+1 Xs+L-1

Where S=M-L+ 1 is the number of rows in the
resulting Hankel matrix, M is the total length of the
time series data and L is the window length. For this

study, this was set as % Figure 1 provides a simplified
illustration of this transformation.

L=4

M o “ : s eomiae data o
one dimensional time series data X, | x5
(BTSN —
Xy | X5 | Xg

Ay | X5 | Xg | X7

X5 | Xg | X7 | Xg

Asstructured 5x4 matrix with
nverlnpplng TOWS

Figure 1. Illustration of Hankelization, employed in
the transformation of a one-dimensional time
series[x; x, X3 ..., xg | into a structured matrix with
overlapping rows. Adapted from [25] with
modifications.

iii. Performing eigendecompostion and estimating the
dynamic modes

The dynamic modes are computed using eigen
decomposition using Eq. (7)—(13). Eq. (16) is used to
estimate the dynamic mode matrix, with each column
¢, representing a dynamic mode as described earlier.
By understanding the cyclicity, seasonality, and
intrinsic trends in the solar irradiance data, the non-
orthogonal dynamic modes are able to describe the
behaviour of the system [24]. Visualizing the
eigenvalues in the complex plane [24] can be seen to
better identify the dynamics, and this is depicted in
Figure 2. All the eigenvalues lie perfectly across the
unit circle indicating the stable dynamic modes. The
time-series solar irradiance data's trend is captured by
the modes.

iv. Initial prediction and data rearrangement
The forecast of the solar irradiance series data vector,
xp obtained by solving Eq. (19) is based on the
calculated dynamic mode matrix @,

xp = ® exp(0tp)b,xp € RS (19)

where, Q is the diagonal matrix of eigenvalues, b =
@ *x,is the initial amplitude of dynamic modes, and ¢,
is the time of future prediction.

The resulting matrix Xp, converted into a linear
dataset P, that integrates both the reconstructed
training data and the predicted data by performing the
inverse Hankelization process. The forecasted values
commence at the index, i = L+ S. For short-term
predictions, the first six values from this index are
selected.

v. De-normalization and final solar irradiance
forecast

Finally, P is denormalised to the original data scale
using Eqg. (20)

X(j)= p(j) (Brax™ Pmin) + Prin (20)
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Where j € [1,2, ..., M], P ;yrepresents the elements of
the dataset P, and X(;, denotes the de-normalized
solar irradiance value.

Visualisation of A over the unit circle in complex plane
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Figure 2. Visualization of the eigenvalues of intra-
hour data over the unit circle in the complex plane

3.2 Data Description and Preprocessing

For this study, datasets obtained from two different
public sources were utilized:

i. Folsom Dataset

Pedro et al. [26] made the dataset available via the
Zenodo repository. It comprises three years (2014-—
2016) of high-resolution ground-based measurements,
including direct normal irradiance and global
horizontal irradiance, recorded at 1-minute intervals.
In addition, commonly used exogenous variables such
as Numerical Weather Prediction forecasts, satellite
imagery, sky images, and weather data were also
provided. The irradiance data was collected in Folsom
(38.642°, -121.148°), a city located in Sacramento
County within California's Central Valley shown on
the map in Figure 3. The region is characterized by a
temperate climate with dry, hot summers, classified as
Csa under the Koppen climate system [26].

Pedro et al. [26] generated secondary datasets from
the primary dataset, featuring irradiance data tailored
to various time horizons. For the Folsom dataset, the
secondary data utilized included clear sky irradiance
for intra-hour (5-minute intervals), intra-day (30-
minute intervals), and day-ahead (26-hour intervals)
time horizon. This choice of time horizons was made
to correspond to the forecasting time horizons used by
Pedro et al. [26], making it become more convenient
to compare the results obtained.

For intra-hour forecasting, 4000 data points, (about
one month of data, 2015-11-27 23:20:00 to 2015-12-
31 23:55:00), were used for training the model and a
forecast of 6 future data points (2016-01-01 16:00:00
to 2016-01-01 16:25:00) were made. For intra-day
forecasting, 1000 data points (about one month, 2015-
11-14 20:00:00 to 2015-12-31 23:00:00) were utilized
for training and testing the model.

o -
Los Angeles 4

Figure 3. Map showing the area around the Folsom,
California site [18].

Six data points from 2016-01-01 16:00:00 to 2016-
01-01 18:30:00 at 30-minute intervals were used to
validate the performance of the model used for the
prediction.

This forecasting horizon is particularly beneficial
to utility companies and system operators in system
control and real-time electricity bidding [27].

For day-ahead forecasting, 800 data points, 2014-
03-30 12:00:00 to 2016-06-08 12:00:00, were used to
train and test the model. The short-term irradiance
forecasting capability of the model was assessed using
the predictions of 6 data points, 2016-01-01 to 2016-
01-06 based on all the prior data points.

The Folsom site is specified by the star marker in
the insert plot while the other circle markers indicate
the four nearest North American Mesoscale (NAM)
model grid points [26]. The Folsom dataset presented
some challenges, most notably the occurrence of
missing data points across various forecast horizons.
The missing values, denoted as ‘NaN’, were
particularly evident in the intra-hour dataset, resulting
in data gaps that required attention. There were also
negligible outliners.

These challenges were addressed through the
implementation of adequate preprocessing techniques.
The outliners were retained, missing values were excluded
by filtering out “NaN’ entries, and the remaining data was
normalized using the MinMaxScaler to achieve a
standardized range. Additionally, seasonal decomposition
was utilized to extract and visualize the underlying trends
and periodic patterns in the data. These steps ensured the
dataset's integrity and reliability for forecasting, despite its
inherent limitations. It is advisable to account for the
documented uncertainties when utilizing datasets for
forecasting.

ii. National Aeronautics and Space
Administration (NASA) Prediction of Worldwide
Energy Resources (POWER) Project Dataset

To further verify the results of the study, data from the
NASA POWER Project was employed [28]. The utilized
dataset consists of Clear Sky Surface Shortwave
Downward Irradiance and All Sky Surface Shortwave
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Downward Irradiance for hourly and daily time horizons
from 2014 to 2023 for Osogbo, Osun state, Nigeria
(7.78°N, 4.55°E) shown on the map in Figure 4. For the
hourly time horizon, the DMD model was trained and
tested using 3,656 data points from 2022-01-01 06:00:00
to 2022-10-18 06:00:00. The other benchmarking models
were trained and tested using 40,544 entries, 2014-01-01
06:00:00 to 2022-10-18 06:00:00. For the daily time
horizon, the DMD model was trained and tested using 725
data points, 2014-01-02 to 2015-12-28 at 24-hour
intervals. The other benchmarking models were trained
and tested using 11684 entries, from 1984-01-01 to 2015-
12-28. The dataset exhibits challenges similar to those
encountered with the Folsom dataset, and they were
addressed using the same mitigation strategies applied to
Folsom's data.

iii. Data Pre-processing

In addition to the Clear Sky Surface Shortwave
Downward Irradiance and All Sky Surface Shortwave
Downward Irradiance that were used, the clear sky
index K, was computed using Eq. (21).

_____________________

Figure 4. Map showing Osogho. The circle marker in
the insert plot shows the zoomed in map of Osogbo.

Kc= I/Iclear (21)

where, [ is the All-Sky Surface Shortwave Downward
Irradiance, and I, is the Clear Sky Surface Shortwave
Downward Irradiance. The computed clear sky index is
then added as an additional feature for training the
benchmarking models. To ensure uniformity and facilitate
further analysis, the input solar irradiance series data x €
RMx; €R, i=1,2,...,M undergoes a normalization
process as described in Eq. (17).
3.3Benchmark Models Description

Pedro et al. [26] presented some models for
benchmarking the performance of solar irradiance
forecasting models. In this present work, to evaluate
the performance of the proposed DMD model, three
well-established regression techniques,Ordinary Least
Squares (OLS), Least Absolute Shrinkage and
Selection Operator (LASSO), and Ridge regression
described by Eq. (22)—(24) were utilized as benchmark

models. The performance of the proposed DMD
technique is compared against these benchmark
models. Each of these models is summarily presented
below:

i. Ordinary Least Squares (OLS)

Ordinary Least Square (OLS) is one of the most
frequently used methods of regression studies. It aims
to minimize the sum of squared residuals between the
forecasted values 9;and the observed values y;. The
OLS objective function is given by,

ming (S, v, — x78)2) (22)

Where, x; denotes the feature vector for the i-th
observation, B is the vector of coefficients, and N is
the number of observations. Although OLS gives
unbiased estimates of 3, it sometimes exhibits high
variance, particularly in the presence of
multicollinearity [29].

ii. Least Absolute Shrinkage and Selection
Operator (LASSO) Model

The LASSO is a regularization method that
performs both variable selection and coefficient
shrinkage. It introduces an L1 penalty term that
penalizes the sum of the absolute values of the
coefficients, encouraging some coefficients to be
exactly zero. The objective function for LASSO is
expressed as:

ming (T 2 B2 + AT B;))  (23)

where g is the vector of coefficients, and ; represents
the j -th coefficient, which quantifies the contribution
of the j -th predictor to the response variable. Here, y;
is the observed value, x; is the predictor vector, N is
the number of observations, and p is the number of
predictors. The regularization parameter A >0
controls the sparsity level, with larger values of A
shrinking moref; values to zero. The optimal value of
A is determined through a grid search combined with
k-fold cross-validation on the training dataset.

iii. Ridge

Ridge regression - also known as L2 regularization
- is a method that reduces errors caused by overfitting
training data. It does this by introducing a penalty term
which reduces the coefficient estimates. The objective
function for Ridge regression is given by,

ming(TIL, (v — I B + AT, BF) (24

where, A > 0 is the regularization parameter and p is
the number of predictors.

The penalty term A3, B} constrains the
coefficients f8; to be smaller, thereby reducing overfitting
by discouraging large coefficients. This becomes
especially useful when the predictors are highly correlated,
as it stabilizes the estimation process [29].
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3.4 Performance Assessment

The performance of the proposed DMD-based
forecasting model is evaluated using three error
metrics described with Eq. (25)—(27), selected for their
ability to capture distinct aspects of forecast accuracy:

i. Mean Absolute Error (MAE)

This Measures the average magnitude of errors
without considering their direction. This metric
provides an overall measure of model accuracy and is
simple to interpret, making it useful for general
performance comparison.

MAE = =31, |Y, - 9| (25)

ii. Mean Bias Error (MBE)

This Captures the bias in the model's predictions,
indicating whether forecasts are systematically
overestimated (positive MBE) or underestimated
(negative MBE). This metric is essential for
identifying and correcting directional errors in solar
irradiance forecasts.

MBE = —¥7, (Y - ¥;) (26)

iii. Root Mean Square Error (RMSE)

This Highlights the magnitude of larger errors by
squaring the residuals, thus penalizing significant
deviations more heavily. This makes RMSE
particularly useful for applications where large errors
have a critical impact.

RMSE = =31, (v~ 7,)° @7

In all the cases described above, Y; is the actual
value (original data), Y, is the forecasted value while n
is the total number of observations.

These  metrics  collectively  provide a
comprehensive evaluation of model performance,
addressing overall accuracy (MAE), bias (MBE), and
error magnitude (RMSE), ensuring a robust
assessment of the forecasting model.

4. Results and Discussions
4.1 Folsom Dataset

To demonstrate the effectiveness of the proposed
DMD-based solar irradiance forecasting model, the
Folsom dataset as described in section 3.2 was
utilized. Rather than train with all the data available
from 2014 to 2015 as done by Pedro et al. [26], data
from within a limited timeframe was selected to serve
as training data, depicted by Figure 5. This is because
the selected data describes the system’s dynamics,
emphasizes the main trends and periodicities, and
sufficiently represents the complexity of the system
being studied without introducing unnecessary noise
or being too computationally intensive, making it easy
for the DMD model to decompose more accurately,
especially for the intra-hour and intra-day data.
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Figure 5. Illustrations of selected solar irradiance
data from the Folsom dataset used to train the model.
(a) Intra-hour (b) Intra-day (c)Day-ahead

The results obtained for short-term intra-hour solar
irradiance forecasting (5-30 minutes) and intra-day
forecasting (30 minutes—3 hours) for January 1, 2016, are
shown in Figure 6(a)—(b) while the results for day-ahead
forecasting (1-6 days) are presented in Figure 6(c). The
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results obtained are compared with that of linear regression
models utilized by Pedro et al. [18] for benchmarking such
as OLS, LASSO, and Ridge [18]. The proposed approach
outperformed the other models in predicting future solar
irradiance as reflected by the significantly lower errors.

As shown in Table 1, the DMD model achieved
exceptional accuracy, recording a MAE of 12.68 + 2.6
W/mz2, which was significantly lower than all the
benchmark models. This result highlights the model’s
consistent ability to provide precise predictions. The
MBE of 12.68 = 2.6 W/m2 further confirms its
minimal forecasting bias, while the RMSE of 12.95 +
8.4 W/mz2 underscores its robustness in handling short-
term solar irradiance variability effectively.

For intra-day forecasts, the DMD model exhibited a
remarkable performance. With MAE and MBE values of
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546 + 2.3 W/mZ it achieved an approximate 90%
improvement in accuracy compared to benchmark models.
The significantly lower RMSE further emphasizes the
model’s reliability in managing intra-day solar irradiance
predictions under varying conditions

Day-ahead results also showed the DMD model to
be better than the benchmark models. DMD model
recorded MAE and RMSE values being approximately
0.1% those of the benchmark models. While OLS
model exhibits a slightly lower MBE of 0.7W/m?
implying that it slightly overpredicted when compared
to -0.90 of the DMD model which slightly
underpredicts the GHI. However, the DMD model is
still better because it exhibits a lower level of
variability with a standard deviation of just 0.3 W/m?
compared to 7.9 W/m? of OLS.
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Figure 6. Illustration of the proposed DMD approach forecasting results using data from the Folsom dataset for
(a) Intra-hour data for 01-Jan-2016 (b) Intra-day data for 01-Jan-2016 (c) Day-ahead data for July 2016
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Table 1 GHI forecast results for the Folsom dataset by horizon and model. For each error metric, the mean + the

standard deviation over all horizons is reported. Adapted from Pedro et al. [26] with modifications

Time Horizon Model MAE (W/m2) MBE (W/m?) RMSE (W/m2)
Intra-hour DMD 12.68+ 2.6 1268+ 26 1295+84
Pers. 323+7.1 0905 73.2+11.9
OLS 33.0+6.9 -1.9+2.6 67.5+9.8
Ridge 33.0+6.9 -1.9+2.6 67.5+9.8
Lasso 33.0+6.9 -1.9+2.6 67.5+9.8
Intra-day DMD 5.46 £ 2.3 546 +2.3 592+55
Pers. 499+ 137 8.0+6.0 89.6 +20.3
OLS 50.1+11.1 -16.8+14.4 89.2+20.6
Ridge 50.1+11.1 -16.8+14.4 89.2+20.6
Lasso 50.1+11.1 -16.9+14.4 89.2+20.6
Day-ahead DMD 1.49+0.18 -1.49+0.18 1.50+0.72
NAM 85.1+21.6 -20.5+£62.3 110.0 £29.3
OLS 72.0+42.2 0779 101.0 £56.7
Ridge 70.4 £ 40.9 0982 98.5+54.6
Lasso 709+ 414 25+9.3 96.9+53.2

4.2 Osoghbo Dataset

To further evaluate the effectiveness of the DMD
model, data from Osogbo (7.78°N, 4.55°E), Nigeria,
obtained through the NASA POWER Project, was
utilized. The dataset comprises hourly and daily
measurements of clear-sky surface shortwave
downward irradiance for this location.

To train the model for intra-day irradiance
prediction, data spanning from 2022-01-01 06:00:00
to 2022-10-17 06:00:00 was utilized while the model
was trained using data collected between 2014-01-02
and 2015-12-22 for day-ahead solar irradiance
forecasting. The benchmark the models - OLS,
LASSO, and Ridge, were trained on a larger dataset
for better performance. The benchmark models were
trained with data from 2014-01-01 06:00:00 to 2022-
10-17 13:00:00 for intra-day forecasting, while for
day-ahead irradiance forecasting, the training period
spanned from 2020-07-01 to 2022-10-01.

The comparative results obtained for intra-day and
day-ahead irradiance forecasting for the Osogbo
dataset were presented visually in Figure 7. As
observed by Pedro et al. [26] in their analysis of the
Folsom, dataset, the OLS, Ridge, and LASSO models
produced similar results. This is most likely due to the
high correlation between the features used to train the
model. Though Ridge and Lasso are expected to deal
with the multicollinearity and the shrinkage penalty of
models, A even after cross-validation was likely very
low or equal to zero, resulting in similar predictions
across all three models.

It can be observed that for the intraday Folsom
forecast, the DMD model also performed well,
yielding near-perfect predictions. The other models,
however, fall short of the mark more significantly.

The extremity of the variance between the proposed
DMD model and the other models could be observed
in Table 1, which for MAE, the DMD model performs
significantly better with values less than 10% of those
of the other models. MAE is about 25% of the values
obtained from the benchmark models as shown in
Table 2, which can generally be described as similar
to the results obtained when comparing the error
metrics of the models provided by Pedro et al. [26]
with those of the DMD model. The results further
validated the model's superiority.

The forecasts of all the benchmark models for the
day-ahead irradiance showed more visual discrepancy
from the actual data, particularly after the third day as
illustrated in Figure 7(b). However, The DMD model
outperforms the benchmark models across the time
horizons and datasets, signifying its competence in
short duration solar irradiance predictions.
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Figure 7. Illustration of forecasting results using the
proposed DMD approach compared with other
models on NASA POWER Project data for (a) hourly
irradiance data for 17-October 2022 and (b) daily
irradiance data for 17-22 October 2022.

Figure 8. present a comparison of the error
metrics—MAE, MBE, and RMSE across the DMD,
OLS, Ridge, and LASSO models for different
forecasting horizons. Figure 8(a). illustrates the
results for intra-day solar irradiance forecasting,

while Figure 8(b). focuses on day-ahead forecasts. The
DMD model demonstrated superior performance,
achieving significantly lower error values across all
metrics when compared to the benchmark models. These
results highlight the robustness and reliability of the DMD
model in handling diverse solar irradiance forecasting
scenarios.

(@)

Tl

(b)

Figure 8 A bar chart illustrating error metrics (MAE,
MBE, and RMSE) for the forecasting models: (a) intra-
day solar irradiance forecasting and (b) day-ahead solar

irradiance forecasting. The DMD model demonstrates
superior performance across both horizons compared to

the benchmark models

501

OMD oLs

Table 2 GHI forecast results by horizon and model. For each error metric, we report the mean + the standard
deviation over all horizons for the NASA POWER Project

Time Horizon Model MAE (W/m?) MBE (W/m?) RMSE (W/m?)
Intra-day DMD 18.18+5.9 18.18+5.9 19.10+ 145
OLS 73.80£70.1 -72.24+71.7 101.79 £ 113
Ridge 73.80£70.1 -72.24+71.7 101.79 £ 113
Lasso 73.91+70.1 -72.10+71.9 101.85+ 113
Day-ahead DMD 18.75+ 2.8 333128 22.08+7.28
oLsS 21.25+4.9 18.33 +6.45 23.75 £ 8.69
Ridge 21.25+4.9 18.33 +6.45 23.75 £ 8.69
Lasso 21.25+49 18.33+£6.45 23.75 £ 8.69

5. Conclusion

A data-driven approach for short-term solar
irradiance prediction using DMD has been presented.
The intrinsic capability of the DMD-based algorithm to
extract the underlying dynamics of the time-reliant solar
irradiance data was utilized for precise future solar
irradiance forecasting. To validate the efficiency of the
presented framework, an extensive comparison with
other benchmarking models, including OLS, LASSO,
and Ridge model was conducted using data from two
public data sources. The precision and efficiency of the
proposed model when compared to the benchmark
models are satisfactory. The model’s implementation is
straight forward. The conspicuously lower values of the
employed error metrics (MAE. MBE and RMSE) points

to DMD’s robustness and efficiency, thereby validating
the forecasting performance of the presented model.
Therefore, the presented DMD-based framework is
demonstrated to be suitable for short term solar irradiance
forecasting, even when utilizing relatively limited
training data.

However, DMD has some practical limitations that
should be considered. First, it is highly dependent on
data quality; missing values or noise in the dataset can
significantly affect its accuracy, therefore, proper data
preprocessing is often required to address this issue.
Second, the model requires careful tuning of
parameters, such as the embedding window length and
the number of dynamic modes retained, which can be
computationally intensive. Additionally, DMD is most
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effective for short- to medium-term forecasting, as its
reliance on linear dynamics can limit its ability to
capture complex, nonlinear behaviors in very long-
term  predictions. Finally, while DMD is
computationally efficient for small- to moderate-sized
datasets, scaling to high-dimensional or extremely
large datasets can lead to significant computational
demands during singular value decomposition.
Addressing these limitations in future research, such
as through hybrid approaches that combine DMD with
machine learning techniques, may further enhance its
applicability to diverse forecasting scenarios.
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