Eng. & Technol. Horiz., vol. 41, no. 4, 2024, Art. no. 410404 Research article

Bidirectional Transfer Learning of Multi-Objective Reinforcement
Learning for Efficient Online VNF Profiling

Pratchaya Jaisudthi *
Computer Engineering Program, Faculty of Computer Science and Information
Technology, Rambhai Barni Rajabhat University,
Tachang, Muang, Chanthaburi, 22000, Thailand
*Corresponding Author E-mail: pratchaya.j@rbru.ac.th
Received: Jul 08, 2024; Revised: Sep 12, 2024; Accepted: Sep 28, 2024

Abstract

This research investigates the effectiveness of transfer learning combined with multi-objective reinforcement learning
(RL) for profiling diverse VNFs, including Snort (in both Passive and Inline modes) and virtual firewalls. We compare the
resource allocation predictions of an RL model with those of a standard machine learning approach, such as a multilayer
perceptron (MLP). While MLPs can outperform RL models in certain scenarios, they lack adaptability. Unlike RL, MLPs
require retraining when conditions change. To address this limitation, we propose adaptable RL profilers that dynamically
allocate resources (CPU, memory, and link capacity) based on the performance needs of the VNFs. The experiments were
conducted in four scenarios: two cases of transferring from Snort (Passive Mode and Inline Mode) to a virtual firewall
(VFW) and two cases of transferring from vFW to Snort. Our results reveal a trade-off between computational resource
utilization (CPU and memory) and link capacity. In the transfer learning scenario from Snort's Inline Mode VNF to vEW,
the Q-Learning model with transfer learning (TL) achieved approximately a 20% reduction in vCPU usage compared to
the MLP approach. However, it did not perform as effectively as the MLP in reducing link capacity utilization. Conversely,
in the transfer learning scenario from vFW to Snort Inline Mode VNF, the Q-Learning with TL model reduced link capacity

usage by 20% compared to other models, although it was less efficient in reducing CPU usage.

Keywords: Transfer Learning, Multi-Objective Reinforcement Learning, Online VNF Profiling,

1. Introduction

Driven by the need for cost reduction and greater
agility, telecom providers are increasingly adopting
Network Function Virtualization (NFV). This
technology paves the way for Zero-Touch Service
Management (ZSM), a concept gaining significant
traction (as evidenced by the ZSM white paper [1]). In
essence, ZSM aims to fully automate network
infrastructure management, minimizing human
involvement across all stages - from initial setup and
maintenance to troubleshooting and optimization.
This white paper details how self-configuring, self-
healing, self-monitoring, and self-optimizing
networks achieve this automation, enabling efficient
and flexible resource allocation. However, despite
these advancements, human expertise remains
essential for the effective functioning of these systems.

Current network management for virtualized services
relies heavily on manual programming to manage resource
allocation, which lacks true autonomy. Existing solutions
like ONAP [2] and OSM [3] primarily offer pre-defined
functions via APIs, still requiring human intervention for
basic tasks like placement or scaling.

To achieve true automation, next-generation
systems must possess a deeper understanding of
network demands and automatically adapt to changing
conditions. This shift aligns with the trend in cloud
computing towards using general-purpose resources
for VNFs, simplifying service management. Telecom
providers deliver these services based on Service

Level Agreements (SLAs), which outline performance
benchmarks [4].

This method proposes an online learning model as
an alternative to static VNF profiling. It aims to
dynamically adjust network resources, including CPU
utilization, memory utilization and bandwidth, for
optimal allocation. This allocation ensures service
providers meet their pre-defined performance targets
for network services running on their software-defined
networks (SDNs) [5],[6].

While traditional VNF profiling using profilers is
essential for NFV MANO systems in optimizing resources
and deploying services efficiently [7], further research is
required, particularly in online VNF profiling, which
demands fast and accurate processing. Key areas for
exploration include:

1) Identifying the most suitable machine
learning model for VNF profiling to ensure
accurate information gathering.

2) Reducing the amount of training data needed
for unseen VNF instances to speed up system
convergence.

Additionally, Machine Learning-based profiling can
leverage Transfer Learning (TL) to tackle new VNF types
or instances in unfamiliar network conditions—a key
challenge in machine learning (ML) networks where data
and time for training and inference are scarce. Data
limitations refer to the quality of the available data (e.g.,
monitoring granularity over time and space), while time
constraints refer to the need to quickly profile new VNFs,
even in real-time or during deployment.

DOI: 10.55003/ETH.410404

ISSN: 2985-1688 (Online)

2of 11

Eng. & Technol. Horiz., vol. 41, no. 4, 2024, Art. no. 410404

This research makes several key contributions to
the field of transfer learning using Multi-Objective
Reinforcement Learning (MORL) for VNF profiling:

1) Bidirectional Transfer Learning: This
research makes a significant contribution by
demonstrating bidirectional transfer learning in
the context of MORL for online VNF profiling,
comparing the transfer of knowledge from Snort
to Virtual Firewall and vice versa.

2) Dynamic Resource Allocation with RL: A
major contribution is demonstrating that RL-
based models can dynamically adjust resources
such as CPU, memory, and link capacity based
on real-time performance demands of different
VNFs. This flexibility sets RL apart from
traditional MLP models, which require
retraining to adapt to new conditions.

These contributions collectively advance the
understanding of how MORL can be used for efficient
online VNF profiling, especially in dynamic and
resource-constrained environments.

This research investigates the applicability of
MORL for VNF resource allocation across diverse
VNF types. We propose an RL-based approach that
automatically configures vCPU cores, memory, and
link capacity for VNFs. This approach ensures optimal
resource allocation while guaranteeing that VNFs
meet predefined performance objectives or key
performance indicators (KPIs). Our contributions pave
the way for more efficient and responsive profiling in
NFV environments, further advancing the potential of
transfer learning for real-time VNF management.

2. Literature Review

Researchers are exploring ways to measure the
performance of NFV components, namely VNFs,
under various resource limitations. This analysis,
called NFV profiling, typically involves linking KPIs
to specific resource allocations. One approach [8]
involves incorporating an offline profiling system into
the NFV design. This system can assess how limited
resources, such as memory, CPU, and storage access,
affect performance metrics like the number of packets
processed per second. The study shows that this
method is effective for analyzing both individual
VNFs and Service Function Chains (SFCs).

While evaluating every resource configuration
within an NFV architecture is undeniably thorough, it
can be incredibly slow and impractical. To overcome
this hurdle, a time-constrained profiling model was
introduced by researchers [9]. This approach leverages
two key elements: a selector that strategically picks a
limited set of configurations for testing, and a
predictor that estimates performance for
configurations that haven't been directly evaluated.

A recent system, called Novel Autonomous
Profiling (NAP) [10], automates resource allocation
for VNFs using ML. NAP first narrows down potential
configurations by considering the number of vCPU
cores. Then, it refines the allocation process with a

machine learning predictor. This predictor analyzes a
broader range of data, including network bandwidth,
memory, and vCPU cores. By considering this richer
data set, NAP improves its predictions and selects the
most suitable resource configuration for the workload
and performance requirements. In simpler terms, NAP
acts like a smart assistant that automatically assigns
the optimal number of vCPUs, memory, and network
bandwidth to a VNF, while also determining its ideal
workload capacity.

ML offers exciting possibilities to bridge the
knowledge gaps in VNF profiling, particularly for
complex scenarios with multiple objectives. Unlike
traditional methods, ML can adapt to dynamic
environments and uncertainty by simultaneously
optimizing various resources or achieving desired
outcomes. While some existing research explores ML
techniques like linear regression and curve fitting for
profiling, limitations have emerged. For example,
regression models struggle to predict saturation points
in resource allocation [11]. Additionally, supervised
learning models (like ANN and kNN) and
interpolation methods might not effectively capture
continuously increasing or decreasing trends seen in
real-world network behavior. On the other hand, curve
fitting demonstrates promise in accurately predicting
VNF performance, but it falls short in optimizing for
multiple resource objectives concurrently. In
summary, supervised learning might be suitable for
static resource allocation scenarios, but it struggles to
adapt to the dynamic nature of real-world networks.

This research expands on iOn-Profiler introduced in
[12]. While most existing ML-based profilers focus on
optimizing a single goal, iOn-Profiler breaks new ground
by utilizing RL to adapt to real-world network situations in
real-time. This approach tackles multi-objective
optimization, dynamically adjusting to changing network
conditions. Building o-n work in [11], which employed
static, supervised learning models, iOn-Profiler [12] and i-
Profiler [13] delves deeper into RL-based adaptive VNF
profiling. It uses meticulously designed reward functions
to optimize resource allocation (CPU, memory,
bandwidth) for VNFs. This optimization targets desired
performance metrics like CPU/memory utilization,
latency, and their balanced trade-off. To achieve this, the
study explores a wide range of weightings for each
objective, ultimately identifying the Pareto front — the set
of optimal resource allocation and VNF performance
combinations.

Current VNF profiling techniques often overlook
the Pareto front. Even when considered, existing
methods typically rely on static models designed for
specific network conditions and VNF traffic patterns,
as seen in work [14]. This limitation in current
profiling methods motivates our research using iOn-
Profiler, which leverages RL for dynamic adaptation
and automatic resource management.

Self-governing networks utilize machine learning
for automated resource management, reducing human
involvement. A technique called transfer learning

Eng. & Technol. Horiz., vol. 41, no. 4, 2024, Art. no. 410404

3ofl1

(TL) boosts network autonomy by leveraging pre-
existing models. Similar to research [15], TL allows
networks to adapt to novel situations quicker by
drawing on established knowledge. This is particularly
beneficial in scenarios with limited resources,
ultimately enhancing the effectiveness, efficiency, and
reliability of autonomous networks.

In the realm of 6G networks, a novel technique
called Intelligent VNF profiling employs machine
learning to identify optimal configurations for VNFs.
These configurations define the ideal number of
resources needed for network services. This ensures
service providers meet agreed-upon KPIs outlined in
SLAs, all while adhering to pre-defined performance
constraints. Unlike traditional methods, Intelligent
VNF profiling leverages machine learning to navigate
dynamic and unpredictable network environments.

Reusing knowledge from similar tasks can
significantly boost machine learning model performance,
and TL is a powerful technique that achieves this [15]. In
the realm of NFV, TL allows us to transfer knowledge
across different network functions, applications, or tasks.
This leads to more efficient, effective, and high-
performing NFV systems.

For instance, the Q-TRANSFER framework utilizes
Q-learning to maximize positive knowledge transfer in
deep learning for network applications [16]. This
framework employs a control system based on Markov
Decision Processes to identify the optimal strategy for
transferring knowledge. This strategy finds valuable
knowledge from the source domain that benefits tasks
in the target domain. Through TL, Q-TRANSFER
efficiently acquires this knowledge, giving models in
the target domain a strong starting point.

Another study showcases the use of Artificial
Neural Network (ANN)-based TL for accurate Quality
of Transmission (QoT) prediction across various
networks [17]. This approach eliminates the need to
train ANN models from scratch and achieves reliable
Q-factor predictions for different optical systems
(target domains) with less additional training data. By
leveraging TL, researchers can not only evaluate
system upgrade potential but also significantly reduce
data collection time and effort, preventing potential
disruptions or delays in system deployment.

Bi-directional Online Transfer Learning (BOTL)
[18] enables the exchange of knowledge between
different VNFs by transferring stable models between
domains. BOTL detects concept drifts using local
models and transfers only stable models, which have
been used across enough instances without detecting
drifts, to other VNFs to improve their predictive
performance. This peer-to-peer model transfer allows
knowledge to flow both ways, from one VNF to
another and vice versa.

3. Methods

To optimize resource allocation for a specific
VNF, we employ a multi-objective reinforcement
learning approach. This method leverages a Markov

decision process, essentially a map of the system's
possible states, available actions in each state, and the
corresponding rewards for those actions.

Imagine the system as a network of interconnected
states. Each state represents a unique resource
configuration, defined by factors such as CPU cores,
available memory, and network bandwidth.
Additionally, each state captures performance metrics
like CPU utilization, memory usage, latency, and the
desired output rate.

Within this system, various actions can be taken to
modify resource allocation. These actions involve
increasing, decreasing, or maintaining the current
allocation level. Each action triggers a transition to a
new resource allocation state. Notably, adjustments
occur in specific increments, such as 0.2 cores for
processors, 100 MB for memory, and 50 Mbps for
network bandwidth. To determine the most suitable
action, a specialized strategy called a Scalarized
e-greedy policy is employed. This policy aims to
maximize a combined reward function that considers
all resource types.

The system incentivizes efficient resource
allocation for VNFs through a reward mechanism.
Similar to a points system, a function called the
“zedoid” (like an inverse sigmoid function) calculates
rewards based on resource usage as Eq. (1). Using
more resources leads to lower rewards, encouraging
efficient setups. This formula is adjusted to ensure that
rewards smoothly decrease as the resource usage ()
increases beyond a certain point (6 = 0.5). This
encourages more efficient resource use, penalizing
higher resource consumption.

1
= T o605 (1

Within this function, “i” represents a specific
resource type, “6” indicates the amount allocated (e.g.,
how many CPU cores are allocated), and the Greek
letter beta () is a steepness coefficient which acts like
a dial controlling the sensitivity of rewards to resource
changes. B essentially determines how sharply rewards
decrease with increased resource usage.

In multi-objective Q-learning, the algorithm adapts
a scalarisation function to handle multiple objectives
(details in Algorithm 1). During action selection,
Q-values for all goals are stored together as a vector.

Algorithm 1 Scalarized Greedy for Q-Learning

Input: w, <« The weight of each objective.
SOlist— {}
for each action a € A do
Vo< Q(S‘,a) = [Ql(s,a),Qz(s,a),...,Qi(s,a)}
80 1000 f(v,W)
Append S0, . (s,a) to SQlist
end
return argmax SQlist
a

4 of 11

Eng. & Technol. Horiz., vol. 41, no. 4, 2024, Art. no. 410404

Eq. (2) defines a scalarisation function (f) that
calculates an SQ value using a vector of rewards as
Eq. (1) (11, 12, 13 for vCPU, memory, and link capacity)
and a weight vector (w). The weights (w1, w2, W3)
prioritize these rewards and always sum to 1. The
algorithm then stores the calculated SQ values in a list
and returns the next action (a') with the highest SQ value.

gQlincar(s’a):Zg:l[VVO'Qo (s,a)])
where Yo_; w, =1

Figure 1 represents the steps of a Q-learning
algorithm applied to online VNF profiling. The
algorithm begins by initializing key Q-learning
parameters learning rate (o) to determines how much
new information overrides old information. Here,
a = 0.1, meaning the model gives more weight to new
experiences. Discount factor (y) represents how much
future rewards are considered compared to immediate
rewards. v = 0.99 means the algorithm highly values
future rewards. Best reward function parameter (f3) is
chosen for each reward function to balance the
objective of the task.

Next, creating a Q-table for each resource, which
the Q-table represents the Q-values for each state-
action pair for different resources, denoted as Qj(s,a)
where s is the current state, a is the action (e.g.
increase/decrease each resource), and i is the resource
being managed (e.g., CPU, memory, link capacity).

Then the agent uses an e-greedy policy to balance
exploration (trying new actions) and exploitation
(using known actions that yield high rewards). A
random number between 0 and 1 is generated. If this
random number is less than e-greedy, the agent
chooses a random action (exploration). Otherwise, it
chooses the action a that gives the maximum
Q-value.

At this point, this algorithm will take action and
observe new state. Once an action a is taken, the
algorithm observes the next state s’ and reward r; for
resource i, which is calculated using a predefined
reward equation. Based on s, the algorithm also
determines the next action a', which comes from
Algorithm 1 (likely a related decision-making step).

Subsequently, updating Q-value (Q-learning
update rule), the Q-value is updated using the Q-
learning formula. The equation adjusts the Q-value
based on the reward received, the discounted future
reward, and the difference from the current Q-value.
After updating the Q-value, the system scales the VNF
based on the new state s". This could involve adjusting
resource allocations (CPU, memory, link capacity) to
ensure optimal performance based on the demand.

Finally, the algorithm checks if the VNF is using
the minimum required resources. If this condition is
met, it moves to the next episode, implying the
completion of a training iteration. If not, the process
repeats, continuing to refine the resource scaling.

learning (a) = 0.1
discount factor (y) = 0.99
best 3 for each reward function

Create Q-table (Q;(s,a)) for each resource 7

Find action
random new a give
action maximum
Qi(s,a)

Take action a and then observe next state s’ J
Find r; from Eq.1
Determine a’ and s’ from Algorithm 1

Qi(s.a) = Qi(s,a) + a[ri+yQi(s’,a")-Qi(s,a)] for each resource i

v

Scale VNF base on s
Move to state s

minimum resources?

Yes

next episode
Figure 1 Process of ultiple-objective Q-Learning

4. Experiment Setup

In the experiment depicted in the Figure 2, the
setup consists of three key components: a VNF under
test (Snort VNF instance), a traffic generator (iPerf
Client), and a traffic sink (iPerf Server), equipped with
2 vCPUs, 2 GB of memory, and 10 GB of storage. All
VNFs are orchestrated using OSM MANO (Open
Source MANO), which manages the resources and
deployment.

The iPerf Client and Snort VNF instance are
interconnected via a Linux bridge, with the same
configuration between the Snort VNF and the iPerf
Server. The iPerf Client generates traffic directed
towards the iPerf Server, routing it through the Snort
VNF for analysis and performance evaluation. The
iPerf Client produced traffic patterns tailored to the
iPerf Server by routing this traffic through the Snort
VNF. During the training phase, resource allocation
was optimized for the Snort VNF to handle iPerf
traffic while maintaining optimal performance.

OSM MANO [Network Monitor |
1 Private Network

‘ iPerf I I SNORT VNF I I iPerf ‘ e —

_ Client | ___ instance | |_‘ Server ‘ Profiler
Linux Linux A :
Bridge Bridge

\i Resource Monitor (Prometheus and Node Exporter) I—

Figure 2 Experiment setup

Eng. & Technol. Horiz., vol. 41, no. 4, 2024, Art. no. 410404

5o0f11

The experiment is supported by two monitoring
systems: the Network Monitor and the Resource Monitor.
The Resource Monitor utilizes Prometheus and Node
Exporter to track metrics such as CPU and memory usage.
Simultaneously, the Network Monitor tracks traffic rates
and latency over the private network. Specific
performance thresholds as in Table 1 were established,
including CPU utilization between 90-100%, memory
usage below 98%, and latency within 2—3 milliseconds.
The offline profiling for each model lasted 48 hours,
ensuring comprehensive performance insights.

Table 1 KPI Metrics

KPI Parameters Values
vCPU utilization 95+5%
memory utilization <98
Latency 2.5+0.5ms

Our experiment implements dynamic resource
adjustment (e.g., scaling vCPU, adjusting memory
allocation, and link capacity) whenever the system
nears its upper utilization limits (95% for vCPU, 98%
for memory). This prevents over-utilization while
maintaining optimal performance. Our system
monitoring latency to ensure that any actions that
cause spikes in vCPU or memory usage (such as traffic
spikes) do not cause the latency to exceed 3
milliseconds. If latency approaches the 2.5
milliseconds upper threshold, the system should
prioritize actions to reduce load, such as traffic
shaping or throttling. These adjustments should ensure
that the KPI thresholds for vCPU, memory, and
latency are met while the online profiling continues to
deliver real-time performance

We investigated the adaptability of profiler models
across diverse VNFs with varying resource needs.
Profilers designed for memory-intensive tasks, like packet
copying, might adapt better to memory fluctuations
compared to those designed for traffic interception.

To illustrate this concept, we explored two
contrasting Snort use cases: Inline Mode and Passive
Mode. Inline Snort acts as a network gatekeeper,
inspecting all traffic before forwarding, which can
potentially impact flow rates. Passive Snort, on the
other hand, operates outside the main flow by copying
data packets for threat detection, requiring distinct
resources compared to Inline Snort.

Finally, we assessed a vVFW, a VNF that controls
traffic flow by restricting access to specific ports. In
contrast, this research also examined the case where
the vFW is used as a gateway, while Snort is the
component that restricts access to network services.

This research examines how effectively models
trained on one VNF can be applied to different VNFs,
even without a direct connection between them. We
explore this transferability with prioritizing all
objectives equally in four scenarios: 1) transfer
learning from Snort in Inline Mode to vVFW, 2) from
Snort in Passive Mode to vFW, 3) from vFW to Snort
in Inline Mode and 4) from vFW to Snort in Passive

Mode. To assess this, we compare online learning with
Reinforcement Learning (RL) using a specifically
configured Multi-Layer Perceptron (MLP) model
(details in separate tables).

Although Random Forests (RF) have demonstrated
strong performance in classification and regression tasks,
they were not chosen for comparison in this work due to
their inherent limitations when applied to dynamic and
real-time environments like online VNF profiling. RF is a
static, batch learning algorithm, which means that once
trained, it does not adapt to changing conditions without
complete retraining. This characteristic makes it less
suitable for scenarios where the resource demands of
VNFs evolve over time, as is the case in the continuous
profiling and optimization of vCPU, memory, and link
capacity in virtualized environments. MLP, on the other
hand, is chosen over RF because it aligns more closely
with the real-time, adaptive, and multi-objective nature of
VNP Profiling. It also supports TL and integration with
RL, which are central themes of this study.

5. Results

The dataset is divided into two parts: 90% is
allocated for training, while the remaining 10% is
reserved for testing. Prior to starting the training
phase, it is worth noting that the data was normalized
using Min-Max scaling. The model utilizes four KPIs
as inputs and three resource-related variables as
outputs. The input variables include memory usage,
CPU usage, and latency, while the output variables
consist of memory, link capacity, vCPU cores, and
output rate. To ensure reliability, all results are reported
with 95% confidence intervals based on 30 repetitions of
each experiment.

Figures 3—6 depict the findings from experiments
conducted under four scenarios. Each figure is further
divided into subplots (a), (b), (c), and (d). The y-axis in
subplots (a), (b), and (c) represents the predicted
percentage of virtual CPU cores, memory allocation, and
link capacity, respectively. Subplot (d) focuses on the
Output Rate over link capacity, expressed as a
percentage. The x-axis tracks the number of episodes
completed during execution. Notably, all subplots
compare the performance of MLP and RL (Q-learning)
methods, with and without transfer learning applied.

Subfigures (a)(c) in Figures 3—4 predict resource
usage for a vVFW, while those in Figures 56 predict
resource usage for Snort in Inline Mode and Passive Mode,
respectively. These predictions come from three models: a
baseline using multi-layer perceptron (MLP), a
reinforcement learning model, and both models applied
after being trained on Snort data (Inline or Passive mode)
and then adapted (via TL) to predict vFW resources. The
x-axis (“training episode 0”) indicates the starting point for
transfer learning. This “new” episode 0 aligns with episode
200 for the original vVFW model (green and blue curves,
without TL), where predictions become stable at specific
resource allocations. Finally, subfigures (d) in all of the
following figures enable us to evaluate link utilization
based on the achieved optimal output rate (OR).

60f11

Eng. & Technol. Horiz., vol. 41, no. 4, 2024, Art. no. 410404

All experiments (scenarios) use hyperparameters for
MLP as specified in Table 2, while parameters for
Q-learning are shown in Table 3, with resource weights
notably set equally at 1/3. We selected the optimal 3
values for the reward function of each resource (CPU,
MEM, LC) for each scenario. These values were
determined by running the algorithm described in the
Methods section. The selected P values are used
consistently across all experiments.

Table 2 MLP Hyperparameters settings

Hyperparameters Values
Activation Function in hidden layers Selu
Activation Function in the output layer | Sigmoid
Epoch 300
Batch size 16
Optimizer Adam
Learning rate le-4

Table 3 Q-Learning Parameters settings

Resources Parameters
Steepness coefficient (f§)
Snort (Inline Mode)
CPU 8
MEM 7
LC 7
Snort (Passive Mode)
CPU 8
MEM 7
LC 8
vFW
CPU 7
MEM 7
LC 9

5.1 Transfer learning from Snort Inline Mode to vVEW
For this experiment, the hyperparameters of the
MLP models were configured as specified in Table 4.
Figure 2 illustrates the transferability of the Snort
VNF from Inline Mode to the vVFW VNF. The Q-
Learning with Transfer Learning graphs in Figures
3(a)«(b) demonstrate the system's ability to adapt to
reduced resource utilization, namely vCPU and
memory, respectively. However, Figures 3(c)—(d)
indicate that this transfer learning scenario is
unsuitable for attempts to reduce link capacity.

Table 4 Parameters settings for MLP models with
transfer learning from Snort (Inline Mode)

Parameters Values
Number of neurons in Input Layer 4
Number of neurons in output Layer 3
Ist Hidden Layer 128
2nd Hidden Layer 128
3rd Hidden Layer 128

100
=
o]
=
o
=
]
2
=
2
[
204
—-—- (Q-Learning (without TL) —-—- MLP (without TL)
—— Q-Learning (with TL) —— MLP (with TL)
0+ T T T T T
0 50 100 150 200 250 300
Episode
(a)
100
80 &g
g EE SR S O S
---------- v BT
g o0 ¥
5
=
T
3 7
=
2
-9
204
--—- Q-Learning (without TL) --—- MLP (without TL)
—— Q-Learning (with TL) —— MLP (with TL)
0+ : T T T ,
0 50 100 150 200 250 300
Episode
(b)
100
g
@]
—
=
w
k51
= 407
2
~
204
—--—- (-Leaming (without TL) --—- MLP (without TL)
—+— (Q-Learning (with TL) —— MLP (with TL)
0+

0 50 100 150 200 250 300
Episode

(¢)

Predicted LC utilisation (OR/LC)

—--- MLP (without TL)
—— MLP (with TL)

—-- Q-Learning (without TL)

—— (Q-Learning (with TL)
0+
0

50 100 150 200 250 300
Episode
(d)

Figure 3 Percentage of vEW Predicted Resource by RL
and MLP models with/without transfer learning from
Snort (Inline Mode) (a) Predicted CPU (b) Predited
Memory (c¢) Predicted LC (d) Predicted LC utilisation

Eng. & Technol. Horiz., vol. 41, no. 4, 2024, Art. no. 410404

Figure 3(a) demonstrates that the system was able to
reduce CPU utilization to approximately 40% in the cases
of Q-Learning with TL and MLP without TL. However,
the Q-Learning with TL case reached convergence the
fastest, around episode 25. This indicates that transfer
learning from the Snort Inline mode to the vEW accelerates
convergence significantly.

Figure 3(b) further illustrates that Q-Learning with TL
led to the most substantial reduction in resource utilization,
dropping to approximately 64%. This demonstrates that, in
addition to faster convergence, transfer learning
contributes significantly to resource efficiency.

In Figure 3(c), Q-Learning without TL and MLP
without TL stabilized at around 54% and 57%,
respectively. Meanwhile, the Output Rate relative to link
capacity in both cases was higher than in the transfer
learning scenario, as depicted in Figure 3(d). This suggests
that transfer learning from Snort Inline mode to vFW has
minimal impact on reducing link capacity utilization.

5.2 Transfer learning from Snort Passive Mode to
vFW
The MLP models were constructed using the
hyperparameter settings specified in Table S.

Table 5 Parameters settings for MLP models with
transfer learning from Snort (Passive Mode)

Parameters Values
Number of neurons in Input Layer 4
Number of neurons in output Layer 3
Ist Hidden Layer 128
2nd Hidden Layer 128
3rd Hidden Layer 128

As observed in the previous cases, the vCPU
utilization converges to a minimal constant value,
approximately 39%. For Q-Learning with TL, this
convergence occurs more rapidly than in other
approaches, achieving stability around episode 25, as
depicted in Figure 4(a). In contrast, as illustrated in
Figure 4(b), the impact of TL on memory reduction is
relatively minor. Additionally, LC and OR/LC do not
demonstrate significant improvements, even when TL
is applied, as seen in Figures 4(c) and 4(d).

100

80

Predicted CPU (%)

-=~—- Q-Learning (without TL)
—— Q-Learning (with TL)

0+ T T ; T T
0 50 100 150 200 250 300

Episode

(a)

--—- MLP (without TL)
—— MLP (with TL)

7of 11
100
80 1
S S S
£ w0
5
=
T
g 4
2
2
-9
204
—-—- Q-Learning (without TL) --—- MLP (without TL)
—— Q-Learning (with TL) —— MLP (with TL)
0+ ’ T T T T
0 50 100 150 200 250 300
Episode
(b)
100
g
@]
—
k=]
2
5]
= 40
=1
~
204
—=—- Q-Learning (without TL) --—- MLP (without TL)
—— Q-Learning (with TL) —— MLP (with TL)
0

|
0 50 100 150 200 250 300

Episode
(¢)
100 —— -
%rif B D e e
g ol LT DT DD T
2
e
EN
]
z
S %
=
2
2
T 20-
= --—- Q-Learning (without TL) ———- MLP (without TL)
—— (Q-Learning (with TL) —— MLP (with TL)
0+ T , ; ; T
0 50 100 150 200 250 300
Episode
(d)

Figure 4 Percentage of vVEW Predicted Resource by

RL and MLP models with/without transfer learning from
Snort (Passive Mode) (a) Predicted CPU (b) Predited
Memory (c) Predicted LC (d) Predicted LC utilisation

5.3 Transfer learning from vFW to Snort Inline Mode
Hyperparameter values for the MLP models were
determined according to the specifications in Table 6.

Table 6 Parameters settings for MLP models with
transfer learning from vFW to Inline Mode

Parameters Values
Number of neurons in Input Layer 4
Number of neurons in output Layer 3
1st Hidden Layer 128
2nd Hidden Layer 256
3rd Hidden Layer 128

8ofll

Eng. & Technol. Horiz., vol. 41, no. 4, 2024, Art. no. 410404

Upon examining the graphs of QL with Transfer
Learning, it was observed that the system was unable
to adapt to reduce vCPU and memory, as shown in
Figures 5(a)—(b), respectively. However, it is
noteworthy in Figures S5(c)—(d) that this scenario
prompts the system to adapt to lower link capacity
while achieving higher OR/LC values compared to
other lines, reaching approximately 52% and 96%,
respectively.

100

Predicted LC utilisation (OR/LC)

-——- QL (without TL)
—— QL (with TL)
0 T

-—=- MLP (without TL)
—— MLP (with TL)

0 50 100 150 200 250 300
Episode

()

Figure 5 Percentage of Predicted Resource of Snort
(Inline Mode) by RL and MLP models with/without
transfer learning from vFW (a) Predicted CPU (b)
Predited Memory (c¢) Predicted LC (d) Predicted LC
utilisation

5.4 Transfer learning from vFW to Snort Passive Mode

Table 7 provides the hyperparameter configurations
used for the MLP models in this experiment. Similar to the
previous scenario, transferring learning from vEW to Snort
Passive mode in Figure 6 demonstrates the system's
attempt to minimize link capacity utilization to
approximately 56% while maintaining OR/LC values at a
relatively high level of around 90%.

Table 7 Parameters settings for MLP models with
transfer learning from vFW to Passive Mode

100
804
9
o 60
(=%}
o
15} 4 A)
2 0 k) -
& o o confenfanfe-tJanbenten}-opfenfenpere oo e et cafunfenf e enfunde-
201
—--—- QL (without TL) —--—- MLP (without TL)
—— QL (with TL) —— MLP (with TL)
0 T T T T T
0 50 100 150 200 250 300
Episode
(a)
100
g
[
]
5
=
B
g 409
k=]
2
~
20 1
—--—- QL (without TL) —--—- MLP (without TL)
—— QL (with TL) —— MLP (with TL)
0 T T T T T
0 50 100 150 200 250 300
Episode
(b)
100
S
&}
i
b=
5
3]
= 404
o
~
204
—--—- QL (without TL) —--—- MLP (without TL)
—— QL (with TL) —— MLP (with TL)
0 T T T T T
0 50 100 150 200 250 300

Episode

(0)

Parameters Values
Number of neurons in Input Layer 4
Number of neurons in output Layer 3
1st Hidden Layer 128
2nd Hidden Layer 128
3rd Hidden Layer 128
100
80 1
g
o
By
@
3
3
=
)
~
201
—=—- QL (without TL) —-—- MLP (without TL)
—— QL (with TL) —— MLP (with TL)
0 : : : ; :
0 50 100 150 200 250 300
Episode
(a)

Eng. & Technol. Horiz., vol. 41, no. 4, 2024, Art. no. 410404

9of11

100
80 1
g R N S DU -
: F—F 33— 3 —F
E‘ 601 e e s i et SRR
g
=
B
g 407
=)
2
=
20
-=—- QL (without TL) -——- MLP (without TL)
—— QL (with TL) —— MLP (with TL)
0 T T T T T
0 50 100 150 200 250 300
Episode
(b)
100
A—-F---t---+---3---F---t---F---1---1
8047

= w0
@] T 1 T 1 N — —
s 1 I 1 1 © 1 I
o
2
=3
5 40
2
~
20
-~—- QL (without TL) —--—- MLP (without TL)
—— QL (with TL) —— MLP (with TL)
0 T T T T T
0 50 100 150 200 250 300
Episode
()
100

A
404 R SRS SRS SRS S-S S

204

Predicted LC utilisation (OR/LC)
k|

--—- QL (without TL)
—— QL (with TL)

-—=—- MLP (without TL)
—— MLP (with TL)

0 50 100 150 200 250 300
Episode
(d)

Figure 6 Percentage of Predicted Resource of Snort

(Passive Mode) by RL and MLP models with/without
transfer learning from vFW (a) Predicted CPU (b)

Predited Memory (c) Predicted LC (d) Predicted LC

utilisation

6. Discussion

Leveraging transferring RL models can offer
significant advantages. RL shines in adapting to new
environments compared to traditional models like MLP
when transferred during deployment. This allows
transferred RL models to quickly adjust and improve
performance and resource efficiency. Additionally, RL
with transfer learning converges to the minimum
resource usage value faster than the case without transfer
learning.

In terms of resource utilization reduction, VFW
models trained with transfer learning from Snort, both in
Passive Mode and Inline Mode, effectively reduced
vCPU and memory usage. However, link capacity usage
remained unchanged. Snort models with transfer learning
from vFW, on the other hand, reduced link capacity
usage but did not affect vCPU and memory consumption.

Analyzing relevant graphs, we see a trade-off
between high utilization (CPU and memory) and link
capacity, with higher utilization often leading to better
performance. Interestingly, the original model (without
TL) achieves the best results in both Snort scenarios.

Considering transferability of RL and MLP, the
findings in all scenarios, where equal weight
scalarization was used, suggest that RL approaches are
generally preferable to MLPs when considering
transferability. While MLP achieved better convergence
for LC in the specific case of transfer learning from Snort
(Inline), it suffered a significant performance penalty in
terms of virtual CPU (vCPU) usage compared to the
original model. Additionally, MLPs, like other
supervised learning (SL) models, are inherently limited
for real-world deployment. Unlike online learning
models that can be trained and adapt during deployment,
MLPs require offline training in a separate environment.
This necessitates replacing a temporary model after
offline training, which is cumbersome. Moreover,
deploying a pre-trained SL model in real-time might
result in limited or even no performance improvement.

Applying this approach in real-time is possible but
comes with certain challenges and considerations:

1) Speed of Transfer Learning: Transfer learning
reduces the amount of data and time required
to train models, which is beneficial for real-
time applications. Instead of starting from
scratch, the model can apply previously
learned knowledge from a similar VNF and
adapt more quickly.

2) Online Learning Capabilities: If the transfer
learning is implemented as an online learning
mechanism, where the system continuously
adapts in real-time as new data arrives, it is
well-suited for real-time VNF profiling.

3) Multi-Objective Optimization: The MORL
framework allows simultaneous optimization
of multiple objectives (e.g., minimizing
resource usage while maximizing security),
which is critical in real-time VNF profiling
scenarios, where trade-offs need to be
balanced instantly.

4) Profile Complexity of VNFs: VNFs like Snort
and virtual firewalls share similar objectives
and environments, making transfer learning
effective in speeding up profiling and
learning.

Based on the analysis of the behaviour of Snort in
inline mode and the Virtual Firewall VNF under a
Transfer Learning scenario using a Q-learning model to
enhance resource utilization, the unique characteristics of
each VNF are observed as follows:

10 of 11

Eng. & Technol. Horiz., vol. 41, no. 4, 2024, Art. no. 410404

1) Snort Inline Mode VNF to Virtual Firewall
VNF (Figure 3): Snort in inline mode
functions by detecting and preventing
intrusions in real-time, requiring intensive
CPU processing due to the need for deep
packet inspection (DPI). DPI involves
analysing packet contents thoroughly to
identify potential threats. Implementing a Q-
learning model to transfer knowledge to the
Virtual Firewall helps reduce the CPU load of
the firewall, possibly by optimizing its
operations and processes. However, since the
firewall is responsible for managing access
control and enforcing policies for network
traffic, the link capacity may not decrease
significantly. This is because the firewall still
requires substantial bandwidth to handle the
large volume of data traffic.

2) Virtual Firewall VNF to Snort Inline Mode
VNF (Figure 5): The Virtual Firewall focuses
on regulating the flow of network traffic,
acting as a filter that manages and enforces
data transmission policies. While it may not
demand as much CPU processing as Snort, it
places more emphasis on efficiently managing
link capacity. When knowledge is transferred
via a Q-learning model to Snort in inline
mode, the result is improved bandwidth or link
capacity management. However, due to
Snort's requirement for heavy CPU usage in
detecting and preventing threats, it cannot
achieve the same level of CPU efficiency as
the Virtual Firewall.

The distinct characteristics of Snort in inline mode
and the Virtual Firewall highlight their differences in
resource management. Snort demands significant CPU
resources for deep packet analysis, while the Virtual
Firewall primarily consumes high link capacity to control
data flow in the network. Transfer Learning enhances the
capabilities of each VNF but does not fully address the
specific resource constraints that each VNF is most
dependent on.

7. Conclusion

This study investigates the application of
Reinforcement Learning (RL) models in profiling and
optimizing resource allocation for various Virtual
Network Functions (VNFs), including Snort (in both
passive and inline modes) and virtual firewall (VFW).
Our work compares the adaptability of RL-based
profilers against traditional machine learning models,
particularly Multi-Layer Perceptrons (MLPs). While
MLPs may offer better performance in specific
scenarios, they lack the flexibility of RL models,
which can dynamically adjust to changing conditions
without the need for retraining.

We introduced a novel approach to VNF resource
allocation using transfer learning in a bi-directional
manner—between Snort and vFW-—demonstrating
that RL models can efficiently transfer knowledge

across different VNF types. Our experiments revealed
significant resource optimization, with RL models
reducing vCPU usage by up to 20% in some scenarios.
However, trade-offs were observed, such as lower
efficiency in reducing link capacity compared to
MLPs, underscoring the complexity of multi-objective
optimization. Our research further highlights the
flexibility of RL-based profilers in dynamically
adjusting CPU, memory, and link capacity allocations
based on real-time VNF performance demands. The
integration of transfer learning eliminates the need for
offline profiling, enabling more efficient deployment
of VNFs in dynamic network environments.

Looking ahead, future work will focus on scaling
this approach through federated transfer learning,
addressing challenges related to scalability and data
privacy, particularly in 6G networks. Additionally, we
aim to explore more advanced multi-objective
optimization techniques, including weighted
optimization, to refine resource allocation strategies
for diverse VNFs.

8. References

[1] Network transformation: (orchestration, network
and service management framework), ETSI, Oct.
2019. [Online]. Available: https://www.etsi.org/
images/files/ETSIWhitePapers/ETSI White Pap
er Network Transformation 2019 N32.pdf.

[2] X. Zhu and Y. Liu, “Research on the Intelligent
Orchestration System of Cloud Network Based on
ONAP,” in 2023 2nd International Conference on
Big Data, Information and Computer Network
(BDICN), Xishuangbanna, China, 2023, pp. 280-
283, doi: 10.1109/BDICN58493.2023.00065.

[3] G.M. Yilma, Z. F. Yousaf, V. Sciancalepore and
X. Costa-Perez, “Benchmarking open source
NFV MANO systems: OSM and ONAP,”
Computer communications, vol. 161, pp. 86-98,
2020, doi: 10.1016/j.comcom.2020.07.013.

[4] B. Varghese and R. Buyya, “Next generation
cloud computing: New trends and research
directions,” Future Generation —Computer
Systems, vol. 79, pp. 849-861, 2018, doi:
10.1016/j.future.2017.09.020.

[5] A. Mohamed, M. Hamdan, S. Khan, A.
Abdelaziz, S. F. Babiker, M. Imran and M. N.
Marsono, “Software-defined networks for
resource allocation in cloud computing: A
survey,” Computer Networks, vol. 195,2021, Art.
no. 108151, doi: 10.1016/j.comnet.2021.108151.

[6] A.T.Kyaw, H. T. Zaw, T. Aung, A. H. Maw and M.
T. Mon, ‘“Performance evaluation of resource
allocation in software defined network,” in 2023
IEEE Conference on Computer Applications (ICCA),
Yangon, Myanmar, Feb. 27-28, 2023, pp. 153-157,
doi: 10.1109/ICCA51723.2023.10181691.

[7] N. Ferdosian, S. Moazzeni, P. Jaisudthi, Y. Ren,
H. Agrawal, D. Simeonidou and R. Nejabati,
“Profile-based Data-driven Approach to Analyse
Virtualised Network Functions Performance,” in

Eng. & Technol. Horiz., vol. 41, no. 4, 2024, Art. no. 410404

11of11

2023 22nd International Symposium on
Communications and Information Technologies
(ISCIT), Sydney, Australia, 2023, pp. 306311,
doi: 10.1109/ISCIT57293.2023.10376096.

[8] M. Peuster and H. Karl, “Profile your chains, not
functions: Automated network service profiling in
devops environments,” in 2017 IEEE Conference
on Network Function Virtualization and Software
Defined Networks (NFV-SDN), Berlin, Germany,
Nov. 6-8, 2017, pp. 1-6, doi: 10.1109/NFV-
SDN.2017.8169826.

[91 M. Peuster and H. Karl, “Understand your chains
and keep your deadlines: Introducing time-
constrained profiling for nfv,” in 2018 [4th
International Conference on Network and Service
Management (CNSM), Rome, Italy, Nov. 5-9,
2018, pp. 240-246.

[10]S. Moazzeni, P. Jaisudthi, A. Bravalheri, N.
Uniyal, X. Vasilakos, R. Nejabati and D.
Simeonidou, “A novel autonomous profiling
method for the next-generation nfv
orchestrators,” IEEE Transactions on Network
and Service Management, vol. 18, no. 1, pp. 642—
655, 2021, doi: 10.1109/TNSM.2020.3044707.

[11]S. V. Rossem, W. Tavernier, D. Colle, M.
Pickavet and P. Demeester, “Profile-based
resource allocation for virtualized network
functions,” IEEE Transactions on Network and
Service Management, vol. 16, no 4, pp. 1374—
1388, 2019, doi: 10.1109/TNSM.2019.2943779.

[12] X. Vasilakos, S. Moazzeni, A. Bravalheri, P.
Jaisudthi, R. Nejabati and D. Simeonidou, “iON-
profiler: Intelligent online multi-objective vnf
profiling with reinforcement learning,” IEEE
Transactions on Network and Service
Management, vol. 21, no. 2, pp. 2339-2352,
2024, doi: 10.1109/TNSM.2024.3352821.

[13]P. Jaisudthi, S. Moazzeni, X. Vasilakos, R.
Nejabati and D. Simeonidou, “i-profiler: Towards
multi-objective autonomous vnf profiling with
reinforcement learning,” in [EEE INFOCOM 2023
- IEEFE Conference on Computer Communications
Workshops (INFOCOM WKSHPS), Hoboken, NJ,
USA, May 20, 2023, pp. 1-6, doi: 10.1109/
INFOCOMWKSHPS57453.2023.10225777.

[14]H. Phan, O. Y. Chén, P. Koch, Z. Lu, L
McLoughlin, A. Mertins and M. De Vos,
“Towards more accurate automatic sleep staging
via deep transfer learning,” IEEE Transactions on
Biomedical Engineering, vol. 68, no. 6, 2020, pp.
1787-1798, doi: 10.1109/TBME.2020.3020381.

[15] F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H.
Xiong and Q. He, “A comprehensive survey on
transfer learning,” Proceedings of the IEEE, vol. 109,
no. 1, pp. 43-76, 2021, doi: 10.1109/JPROC.2020.
3004555.

[16]T. V. Phan, S. Sultana, T. G. Nguyen and T.
Bauschert, “Q - TRANSFER: A novel framework for
efficient deep transfer learning in networking,” in
2020 International Conference on Artificial
Intelligence in Information and Communication,
ICAIIC 2020, Fukuoka, Japan, Feb. 19-21, 2020, pp.
146-151, doi: 10.1109/ICAIIC48513.2020.9065240.

[171W. Mo, Y. -K Huang, S. Zhang, E. Ip, D. C.
Kilper, Y. Aono and T. Tajima, “ANN-Based
Transfer Learning for QoT Prediction in Real-
Time Mixed Line-Rate Systems,” in Optical
Fiber Communications Conference and
Exposition 2018, San Diego, CA, USA, Mar. 11—
15,2018, pp. 1-3.

[18] H. McKay, N. Griffiths, P. Taylor, T. Damoulas and Z.
Xu, “Bi-directional online transfer learning: a
framework,” Annals of Telecommunications, vol. 75,
pp- 523-547,2020, doi: 10.1007/s12243-020-00776-1.

	1. Introduction
	2. Literature Review
	3. Methods
	4. Experiment Setup
	5. Results
	5.1 Transfer learning from Snort Inline Mode to vFW
	5.2 Transfer learning from Snort Passive Mode to vFW
	5.3 Transfer learning from vFW to Snort Inline Mode
	5.4 Transfer learning from vFW to Snort Passive Mode

	6. Discussion
	7. Conclusion
	8. References

