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Abstract 

This research investigates the effectiveness of transfer learning combined with multi-objective reinforcement learning 
(RL) for profiling diverse VNFs, including Snort (in both Passive and Inline modes) and virtual firewalls. We compare the 
resource allocation predictions of an RL model with those of a standard machine learning approach, such as a multilayer 
perceptron (MLP). While MLPs can outperform RL models in certain scenarios, they lack adaptability. Unlike RL, MLPs 
require retraining when conditions change. To address this limitation, we propose adaptable RL profilers that dynamically 
allocate resources (CPU, memory, and link capacity) based on the performance needs of the VNFs. The experiments were 
conducted in four scenarios: two cases of transferring from Snort (Passive Mode and Inline Mode) to a virtual firewall 
(vFW) and two cases of transferring from vFW to Snort. Our results reveal a trade-off between computational resource 
utilization (CPU and memory) and link capacity. In the transfer learning scenario from Snort's Inline Mode VNF to vFW, 
the Q-Learning model with transfer learning (TL) achieved approximately a 20% reduction in vCPU usage compared to 
the MLP approach. However, it did not perform as effectively as the MLP in reducing link capacity utilization. Conversely, 
in the transfer learning scenario from vFW to Snort Inline Mode VNF, the Q-Learning with TL model reduced link capacity 
usage by 20% compared to other models, although it was less efficient in reducing CPU usage.  

Keywords: Transfer Learning, Multi-Objective Reinforcement Learning, Online VNF Profiling,

1. Introduction 
Driven by the need for cost reduction and greater 

agility, telecom providers are increasingly adopting 
Network Function Virtualization (NFV). This 
technology paves the way for Zero-Touch Service 
Management (ZSM), a concept gaining significant 
traction (as evidenced by the ZSM white paper [1]). In 
essence, ZSM aims to fully automate network 
infrastructure management, minimizing human 
involvement across all stages - from initial setup and 
maintenance to troubleshooting and optimization. 
This white paper details how self-configuring, self-
healing, self-monitoring, and self-optimizing 
networks achieve this automation, enabling efficient 
and flexible resource allocation. However, despite 
these advancements, human expertise remains 
essential for the effective functioning of these systems. 

Current network management for virtualized services 
relies heavily on manual programming to manage resource 
allocation, which lacks true autonomy. Existing solutions 
like ONAP [2] and OSM [3] primarily offer pre-defined 
functions via APIs, still requiring human intervention for 
basic tasks like placement or scaling. 

To achieve true automation, next-generation 
systems must possess a deeper understanding of 
network demands and automatically adapt to changing 
conditions. This shift aligns with the trend in cloud 
computing towards using general-purpose resources 
for VNFs, simplifying service management. Telecom 
providers deliver these services based on Service 

Level Agreements (SLAs), which outline performance 
benchmarks [4]. 

This method proposes an online learning model as 
an alternative to static VNF profiling. It aims to 
dynamically adjust network resources, including CPU 
utilization, memory utilization and bandwidth, for 
optimal allocation. This allocation ensures service 
providers meet their pre-defined performance targets 
for network services running on their software-defined 
networks (SDNs) [5],[6]. 

While traditional VNF profiling using profilers is 
essential for NFV MANO systems in optimizing resources 
and deploying services efficiently [7], further research is 
required, particularly in online VNF profiling, which 
demands fast and accurate processing. Key areas for 
exploration include: 

1) Identifying the most suitable machine 
learning model for VNF profiling to ensure 
accurate information gathering. 

2) Reducing the amount of training data needed 
for unseen VNF instances to speed up system 
convergence. 

Additionally, Machine Learning-based profiling can 
leverage Transfer Learning (TL) to tackle new VNF types 
or instances in unfamiliar network conditions—a key 
challenge in machine learning (ML) networks where data 
and time for training and inference are scarce. Data 
limitations refer to the quality of the available data (e.g., 
monitoring granularity over time and space), while time 
constraints refer to the need to quickly profile new VNFs, 
even in real-time or during deployment. 
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This research makes several key contributions to 
the field of transfer learning using Multi-Objective 
Reinforcement Learning (MORL) for VNF profiling: 

1) Bidirectional Transfer Learning: This 
research makes a significant contribution by 
demonstrating bidirectional transfer learning in 
the context of MORL for online VNF profiling, 
comparing the transfer of knowledge from Snort 
to Virtual Firewall and vice versa. 

2) Dynamic Resource Allocation with RL: A 
major contribution is demonstrating that RL-
based models can dynamically adjust resources 
such as CPU, memory, and link capacity based 
on real-time performance demands of different 
VNFs. This flexibility sets RL apart from 
traditional MLP models, which require 
retraining to adapt to new conditions. 

These contributions collectively advance the 
understanding of how MORL can be used for efficient 
online VNF profiling, especially in dynamic and 
resource-constrained environments. 

This research investigates the applicability of 
MORL for VNF resource allocation across diverse 
VNF types. We propose an RL-based approach that 
automatically configures vCPU cores, memory, and 
link capacity for VNFs. This approach ensures optimal 
resource allocation while guaranteeing that VNFs 
meet predefined performance objectives or key 
performance indicators (KPIs). Our contributions pave 
the way for more efficient and responsive profiling in 
NFV environments, further advancing the potential of 
transfer learning for real-time VNF management. 
 
2. Literature Review 

Researchers are exploring ways to measure the 
performance of NFV components, namely VNFs, 
under various resource limitations. This analysis, 
called NFV profiling, typically involves linking KPIs 
to specific resource allocations. One approach [8] 
involves incorporating an offline profiling system into 
the NFV design. This system can assess how limited 
resources, such as memory, CPU, and storage access, 
affect performance metrics like the number of packets 
processed per second. The study shows that this 
method is effective for analyzing both individual 
VNFs and Service Function Chains (SFCs). 

While evaluating every resource configuration 
within an NFV architecture is undeniably thorough, it 
can be incredibly slow and impractical. To overcome 
this hurdle, a time-constrained profiling model was 
introduced by researchers [9]. This approach leverages 
two key elements: a selector that strategically picks a 
limited set of configurations for testing, and a 
predictor that estimates performance for 
configurations that haven't been directly evaluated. 

A recent system, called Novel Autonomous 
Profiling (NAP) [10], automates resource allocation 
for VNFs using ML. NAP first narrows down potential 
configurations by considering the number of vCPU 
cores. Then, it refines the allocation process with a 

machine learning predictor. This predictor analyzes a 
broader range of data, including network bandwidth, 
memory, and vCPU cores. By considering this richer 
data set, NAP improves its predictions and selects the 
most suitable resource configuration for the workload 
and performance requirements. In simpler terms, NAP 
acts like a smart assistant that automatically assigns 
the optimal number of vCPUs, memory, and network 
bandwidth to a VNF, while also determining its ideal 
workload capacity. 

ML offers exciting possibilities to bridge the 
knowledge gaps in VNF profiling, particularly for 
complex scenarios with multiple objectives. Unlike 
traditional methods, ML can adapt to dynamic 
environments and uncertainty by simultaneously 
optimizing various resources or achieving desired 
outcomes. While some existing research explores ML 
techniques like linear regression and curve fitting for 
profiling, limitations have emerged. For example, 
regression models struggle to predict saturation points 
in resource allocation [11]. Additionally, supervised 
learning models (like ANN and kNN) and 
interpolation methods might not effectively capture 
continuously increasing or decreasing trends seen in 
real-world network behavior. On the other hand, curve 
fitting demonstrates promise in accurately predicting 
VNF performance, but it falls short in optimizing for 
multiple resource objectives concurrently. In 
summary, supervised learning might be suitable for 
static resource allocation scenarios, but it struggles to 
adapt to the dynamic nature of real-world networks. 

This research expands on iOn-Profiler introduced in 
[12]. While most existing ML-based profilers focus on 
optimizing a single goal, iOn-Profiler breaks new ground 
by utilizing RL to adapt to real-world network situations in 
real-time. This approach tackles multi-objective 
optimization, dynamically adjusting to changing network 
conditions. Building o-n work in [11], which employed 
static, supervised learning models, iOn-Profiler [12] and i-
Profiler [13] delves deeper into RL-based adaptive VNF 
profiling. It uses meticulously designed reward functions 
to optimize resource allocation (CPU, memory, 
bandwidth) for VNFs. This optimization targets desired 
performance metrics like CPU/memory utilization, 
latency, and their balanced trade-off. To achieve this, the 
study explores a wide range of weightings for each 
objective, ultimately identifying the Pareto front – the set 
of optimal resource allocation and VNF performance 
combinations. 

Current VNF profiling techniques often overlook 
the Pareto front. Even when considered, existing 
methods typically rely on static models designed for 
specific network conditions and VNF traffic patterns, 
as seen in work [14]. This limitation in current 
profiling methods motivates our research using iOn-
Profiler, which leverages RL for dynamic adaptation 
and automatic resource management. 

Self-governing networks utilize machine learning 
for automated resource management, reducing human 
involvement. A technique called transfer learning 
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(TL) boosts network autonomy by leveraging pre-
existing models. Similar to research [15], TL allows 
networks to adapt to novel situations quicker by 
drawing on established knowledge. This is particularly 
beneficial in scenarios with limited resources, 
ultimately enhancing the effectiveness, efficiency, and 
reliability of autonomous networks. 

In the realm of 6G networks, a novel technique 
called Intelligent VNF profiling employs machine 
learning to identify optimal configurations for VNFs. 
These configurations define the ideal number of 
resources needed for network services. This ensures 
service providers meet agreed-upon KPIs outlined in 
SLAs, all while adhering to pre-defined performance 
constraints. Unlike traditional methods, Intelligent 
VNF profiling leverages machine learning to navigate 
dynamic and unpredictable network environments. 

Reusing knowledge from similar tasks can 
significantly boost machine learning model performance, 
and TL is a powerful technique that achieves this [15]. In 
the realm of NFV, TL allows us to transfer knowledge 
across different network functions, applications, or tasks. 
This leads to more efficient, effective, and high-
performing NFV systems. 

For instance, the Q-TRANSFER framework utilizes 
Q-learning to maximize positive knowledge transfer in 
deep learning for network applications [16]. This 
framework employs a control system based on Markov 
Decision Processes to identify the optimal strategy for 
transferring knowledge. This strategy finds valuable 
knowledge from the source domain that benefits tasks 
in the target domain. Through TL, Q-TRANSFER 
efficiently acquires this knowledge, giving models in 
the target domain a strong starting point. 

Another study showcases the use of Artificial 
Neural Network (ANN)-based TL for accurate Quality 
of Transmission (QoT) prediction across various 
networks [17]. This approach eliminates the need to 
train ANN models from scratch and achieves reliable 
Q-factor predictions for different optical systems 
(target domains) with less additional training data. By 
leveraging TL, researchers can not only evaluate 
system upgrade potential but also significantly reduce 
data collection time and effort, preventing potential 
disruptions or delays in system deployment. 

Bi-directional Online Transfer Learning (BOTL) 
[18] enables the exchange of knowledge between 
different VNFs by transferring stable models between 
domains. BOTL detects concept drifts using local 
models and transfers only stable models, which have 
been used across enough instances without detecting 
drifts, to other VNFs to improve their predictive 
performance. This peer-to-peer model transfer allows 
knowledge to flow both ways, from one VNF to 
another and vice versa.  

 
3. Methods 

To optimize resource allocation for a specific 
VNF, we employ a multi-objective reinforcement 
learning approach. This method leverages a Markov 

decision process, essentially a map of the system's 
possible states, available actions in each state, and the 
corresponding rewards for those actions. 

Imagine the system as a network of interconnected 
states. Each state represents a unique resource 
configuration, defined by factors such as CPU cores, 
available memory, and network bandwidth. 
Additionally, each state captures performance metrics 
like CPU utilization, memory usage, latency, and the 
desired output rate. 

Within this system, various actions can be taken to 
modify resource allocation. These actions involve 
increasing, decreasing, or maintaining the current 
allocation level. Each action triggers a transition to a 
new resource allocation state. Notably, adjustments 
occur in specific increments, such as 0.2 cores for 
processors, 100 MB for memory, and 50 Mbps for 
network bandwidth. To determine the most suitable 
action, a specialized strategy called a Scalarized  
ϵ-greedy policy is employed. This policy aims to 
maximize a combined reward function that considers 
all resource types. 

The system incentivizes efficient resource 
allocation for VNFs through a reward mechanism. 
Similar to a points system, a function called the 
“zedoid” (like an inverse sigmoid function) calculates 
rewards based on resource usage as Eq. (1). Using 
more resources leads to lower rewards, encouraging 
efficient setups. This formula is adjusted to ensure that 
rewards smoothly decrease as the resource usage (o�) 
increases beyond a certain point (o� = 0.5). This 
encourages more efficient resource use, penalizing 
higher resource consumption.  
 

ri=
1

1+eβ(o�-0.5)  (1) 
 
Within this function, “i” represents a specific 

resource type, “o�” indicates the amount allocated (e.g., 
how many CPU cores are allocated), and the Greek 
letter beta (β) is a steepness coefficient which acts like 
a dial controlling the sensitivity of rewards to resource 
changes. β essentially determines how sharply rewards 
decrease with increased resource usage. 

In multi-objective Q-learning, the algorithm adapts 
a scalarisation function to handle multiple objectives 
(details in Algorithm 1). During action selection,  
Q-values for all goals are stored together as a vector.  

 
Algorithm 1 Scalarized Greedy for Q-Learning 
Input: wo   ← The weight of each objective. 
SQlist← { } 
  for each action 𝒂𝒂 ∈ 𝑨𝑨 do 

v   ←  Q�(s,a)  = �Q1(s,a),Q2(s,a),…,Qi(s,a)� 
      SQ� linear(s,a)← f(v,w) 
      Append SQ� linear(s,a) to SQlist 
   end 
return argmax

a'
SQlist 
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Eq. (2) defines a scalarisation function (f) that 
calculates an SQ value using a vector of rewards as  
Eq. (1) (r1, r2, r3 for vCPU, memory, and link capacity) 
and a weight vector (w). The weights (w1, w2, w3) 
prioritize these rewards and always sum to 1. The 
algorithm then stores the calculated SQ values in a list 
and returns the next action (a') with the highest SQ value. 

 
SQ� linear(s,a)=∑ �wo⋅Qo(s,a)�n

o=1   
where∑ wo

n
o=1 =1  

(2) 

 
Figure 1 represents the steps of a Q-learning 

algorithm applied to online VNF profiling. The 
algorithm begins by initializing key Q-learning 
parameters learning rate (α) to determines how much 
new information overrides old information. Here,  
α = 0.1, meaning the model gives more weight to new 
experiences. Discount factor (γ) represents how much 
future rewards are considered compared to immediate 
rewards. γ = 0.99 means the algorithm highly values 
future rewards. Best reward function parameter (β) is 
chosen for each reward function to balance the 
objective of the task.  

Next, creating a Q-table for each resource, which 
the Q-table represents the Q-values for each state-
action pair for different resources, denoted as Qi(s,a) 
where s is the current state, a is the action (e.g. 
increase/decrease each resource), and i is the resource 
being managed (e.g., CPU, memory, link capacity). 

Then the agent uses an ε-greedy policy to balance 
exploration (trying new actions) and exploitation 
(using known actions that yield high rewards). A 
random number between 0 and 1 is generated. If this 
random number is less than ε-greedy, the agent 
chooses a random action (exploration). Otherwise, it 
chooses the action a that gives the maximum  
Q-value. 

At this point, this algorithm will take action and 
observe new state. Once an action a is taken, the 
algorithm observes the next state s' and reward ri for 
resource i, which is calculated using a predefined 
reward equation. Based on s' , the algorithm also 
determines the next action a' , which comes from 
Algorithm 1 (likely a related decision-making step). 

Subsequently, updating Q-value (Q-learning 
update rule), the Q-value is updated using the Q-
learning formula. The equation adjusts the Q-value 
based on the reward received, the discounted future 
reward, and the difference from the current Q-value.  
After updating the Q-value, the system scales the VNF 
based on the new state s'. This could involve adjusting 
resource allocations (CPU, memory, link capacity) to 
ensure optimal performance based on the demand. 

Finally, the algorithm checks if the VNF is using 
the minimum required resources. If this condition is 
met, it moves to the next episode, implying the 
completion of a training iteration. If not, the process 
repeats, continuing to refine the resource scaling. 

 
Figure 1 Process of ultiple-objective Q-Learning 
 

4. Experiment Setup 
In the experiment depicted in the Figure 2, the 

setup consists of three key components: a VNF under 
test (Snort VNF instance), a traffic generator (iPerf 
Client), and a traffic sink (iPerf Server), equipped with 
2 vCPUs, 2 GB of memory, and 10 GB of storage. All 
VNFs are orchestrated using OSM MANO (Open 
Source MANO), which manages the resources and 
deployment. 

The iPerf Client and Snort VNF instance are 
interconnected via a Linux bridge, with the same 
configuration between the Snort VNF and the iPerf 
Server. The iPerf Client generates traffic directed 
towards the iPerf Server, routing it through the Snort 
VNF for analysis and performance evaluation. The 
iPerf Client produced traffic patterns tailored to the 
iPerf Server by routing this traffic through the Snort 
VNF. During the training phase, resource allocation 
was optimized for the Snort VNF to handle iPerf 
traffic while maintaining optimal performance.  

 

 
Figure 2 Experiment setup 
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The experiment is supported by two monitoring 
systems: the Network Monitor and the Resource Monitor. 
The Resource Monitor utilizes Prometheus and Node 
Exporter to track metrics such as CPU and memory usage. 
Simultaneously, the Network Monitor tracks traffic rates 
and latency over the private network. Specific 
performance thresholds as in Table 1 were established, 
including CPU utilization between 90–100%, memory 
usage below 98%, and latency within 2–3 milliseconds. 
The offline profiling for each model lasted 48 hours, 
ensuring comprehensive performance insights. 

 
Table 1 KPI Metrics 

KPI Parameters Values 
vCPU utilization 95 ± 5 % 
memory utilization ≤ 98 
Latency 2.5 ± 0.5 ms 

 
Our experiment implements dynamic resource 

adjustment (e.g., scaling vCPU, adjusting memory 
allocation, and link capacity) whenever the system 
nears its upper utilization limits (95% for vCPU, 98% 
for memory). This prevents over-utilization while 
maintaining optimal performance. Our system 
monitoring latency to ensure that any actions that 
cause spikes in vCPU or memory usage (such as traffic 
spikes) do not cause the latency to exceed 3 
milliseconds. If latency approaches the 2.5 
milliseconds upper threshold, the system should 
prioritize actions to reduce load, such as traffic 
shaping or throttling. These adjustments should ensure 
that the KPI thresholds for vCPU, memory, and 
latency are met while the online profiling continues to 
deliver real-time performance 

We investigated the adaptability of profiler models 
across diverse VNFs with varying resource needs. 
Profilers designed for memory-intensive tasks, like packet 
copying, might adapt better to memory fluctuations 
compared to those designed for traffic interception. 

To illustrate this concept, we explored two 
contrasting Snort use cases: Inline Mode and Passive 
Mode. Inline Snort acts as a network gatekeeper, 
inspecting all traffic before forwarding, which can 
potentially impact flow rates. Passive Snort, on the 
other hand, operates outside the main flow by copying 
data packets for threat detection, requiring distinct 
resources compared to Inline Snort. 

Finally, we assessed a vFW, a VNF that controls 
traffic flow by restricting access to specific ports. In 
contrast, this research also examined the case where 
the vFW is used as a gateway, while Snort is the 
component that restricts access to network services. 

This research examines how effectively models 
trained on one VNF can be applied to different VNFs, 
even without a direct connection between them. We 
explore this transferability with prioritizing all 
objectives equally in four scenarios: 1) transfer 
learning from Snort in Inline Mode to vFW, 2) from 
Snort in Passive Mode to vFW, 3) from vFW to Snort 
in Inline Mode and 4) from vFW to Snort in Passive 

Mode. To assess this, we compare online learning with 
Reinforcement Learning (RL) using a specifically 
configured Multi-Layer Perceptron (MLP) model 
(details in separate tables). 

Although Random Forests (RF) have demonstrated 
strong performance in classification and regression tasks, 
they were not chosen for comparison in this work due to 
their inherent limitations when applied to dynamic and 
real-time environments like online VNF profiling. RF is a 
static, batch learning algorithm, which means that once 
trained, it does not adapt to changing conditions without 
complete retraining. This characteristic makes it less 
suitable for scenarios where the resource demands of 
VNFs evolve over time, as is the case in the continuous 
profiling and optimization of vCPU, memory, and link 
capacity in virtualized environments. MLP, on the other 
hand, is chosen over RF because it aligns more closely 
with the real-time, adaptive, and multi-objective nature of 
VNP Profiling. It also supports TL and integration with 
RL, which are central themes of this study. 

 
5. Results 

The dataset is divided into two parts: 90% is 
allocated for training, while the remaining 10% is 
reserved for testing. Prior to starting the training 
phase, it is worth noting that the data was normalized 
using Min-Max scaling. The model utilizes four KPIs 
as inputs and three resource-related variables as 
outputs. The input variables include memory usage, 
CPU usage, and latency, while the output variables 
consist of memory, link capacity, vCPU cores, and 
output rate. To ensure reliability, all results are reported 
with 95% confidence intervals based on 30 repetitions of 
each experiment. 

Figures 3–6 depict the findings from experiments 
conducted under four scenarios. Each figure is further 
divided into subplots (a), (b), (c), and (d). The y-axis in 
subplots (a), (b), and (c) represents the predicted 
percentage of virtual CPU cores, memory allocation, and 
link capacity, respectively. Subplot (d) focuses on the 
Output Rate over link capacity, expressed as a 
percentage. The x-axis tracks the number of episodes 
completed during execution. Notably, all subplots 
compare the performance of MLP and RL (Q-learning) 
methods, with and without transfer learning applied. 

Subfigures (a)–(c) in Figures 3–4 predict resource 
usage for a vFW, while those in Figures 5–6 predict 
resource usage for Snort in Inline Mode and Passive Mode, 
respectively. These predictions come from three models: a 
baseline using multi-layer perceptron (MLP), a 
reinforcement learning model, and both models applied 
after being trained on Snort data (Inline or Passive mode) 
and then adapted (via TL) to predict vFW resources. The 
x-axis (“training episode 0”) indicates the starting point for 
transfer learning. This “new” episode 0 aligns with episode 
200 for the original vFW model (green and blue curves, 
without TL), where predictions become stable at specific 
resource allocations. Finally, subfigures (d) in all of the 
following figures enable us to evaluate link utilization 
based on the achieved optimal output rate (OR). 
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All experiments (scenarios) use hyperparameters for 
MLP as specified in Table 2, while parameters for  
Q-learning are shown in Table 3, with resource weights 
notably set equally at 1/3. We selected the optimal β 
values for the reward function of each resource (CPU, 
MEM, LC) for each scenario. These values were 
determined by running the algorithm described in the 
Methods section. The selected β values are used 
consistently across all experiments. 

 
Table 2 MLP Hyperparameters settings 

Hyperparameters Values 
Activation Function in hidden layers Selu 
Activation Function in the output layer Sigmoid 
Epoch 300 
Batch size 16 
Optimizer Adam 
Learning rate 1e-4 

 
Table 3 Q-Learning Parameters settings 

Resources Parameters 
Steepness coefficient (β) 

Snort (Inline Mode) 
CPU 8 
MEM 7 

LC 7 
Snort (Passive Mode) 

CPU 8 
MEM 7 

LC 8 
vFW 

CPU 7 
MEM 7 

LC 9 
 
5.1 Transfer learning from Snort Inline Mode to vFW 

For this experiment, the hyperparameters of the 
MLP models were configured as specified in Table 4. 
Figure 2 illustrates the transferability of the Snort 
VNF from Inline Mode to the vFW VNF. The Q-
Learning with Transfer Learning graphs in Figures 
3(a)–(b) demonstrate the system's ability to adapt to 
reduced resource utilization, namely vCPU and 
memory, respectively. However, Figures 3(c)–(d) 
indicate that this transfer learning scenario is 
unsuitable for attempts to reduce link capacity. 

 
Table 4 Parameters settings for MLP models with 
transfer learning from Snort (Inline Mode) 

Parameters Values 
Number of neurons in Input Layer 4 
Number of neurons in output Layer 3 
1st Hidden Layer 128 
2nd Hidden Layer 128 
3rd Hidden Layer 128 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3 Percentage of vFW Predicted Resource by RL 
and MLP models with/without transfer learning from 
Snort (Inline Mode) (a) Predicted CPU (b) Predited 

Memory (c) Predicted LC (d) Predicted LC utilisation 
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Figure 3(a) demonstrates that the system was able to 
reduce CPU utilization to approximately 40% in the cases 
of Q-Learning with TL and MLP without TL. However, 
the Q-Learning with TL case reached convergence the 
fastest, around episode 25. This indicates that transfer 
learning from the Snort Inline mode to the vFW accelerates 
convergence significantly. 

Figure 3(b) further illustrates that Q-Learning with TL 
led to the most substantial reduction in resource utilization, 
dropping to approximately 64%. This demonstrates that, in 
addition to faster convergence, transfer learning 
contributes significantly to resource efficiency. 

In Figure 3(c), Q-Learning without TL and MLP 
without TL stabilized at around 54% and 57%, 
respectively. Meanwhile, the Output Rate relative to link 
capacity in both cases was higher than in the transfer 
learning scenario, as depicted in Figure 3(d). This suggests 
that transfer learning from Snort Inline mode to vFW has 
minimal impact on reducing link capacity utilization. 

 
5.2 Transfer learning from Snort Passive Mode to 

vFW 
The MLP models were constructed using the 

hyperparameter settings specified in Table 5.  
 
Table 5 Parameters settings for MLP models with 
transfer learning from Snort (Passive Mode) 

Parameters Values 
Number of neurons in Input Layer 4 
Number of neurons in output Layer 3 
1st Hidden Layer 128 
2nd Hidden Layer 128 
3rd Hidden Layer 128 

 
As observed in the previous cases, the vCPU 

utilization converges to a minimal constant value, 
approximately 39%. For Q-Learning with TL, this 
convergence occurs more rapidly than in other 
approaches, achieving stability around episode 25, as 
depicted in Figure 4(a). In contrast, as illustrated in 
Figure 4(b), the impact of TL on memory reduction is 
relatively minor. Additionally, LC and OR/LC do not 
demonstrate significant improvements, even when TL 
is applied, as seen in Figures 4(c) and 4(d). 

 

 
(a) 

 
(b)  

 
(c) 

 
(d) 

Figure 4 Percentage of vFW Predicted Resource by 
RL and MLP models with/without transfer learning from 

Snort (Passive Mode) (a) Predicted CPU (b) Predited 
Memory (c) Predicted LC (d) Predicted LC utilisation 

 
5.3 Transfer learning from vFW to Snort Inline Mode 

Hyperparameter values for the MLP models were 
determined according to the specifications in Table 6. 

Table 6 Parameters settings for MLP models with 
transfer learning from vFW to Inline Mode 

Parameters Values 
Number of neurons in Input Layer 4 
Number of neurons in output Layer 3 
1st Hidden Layer 128 
2nd Hidden Layer 256 
3rd Hidden Layer 128 
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Upon examining the graphs of QL with Transfer 
Learning, it was observed that the system was unable 
to adapt to reduce vCPU and memory, as shown in 
Figures 5(a)–(b), respectively. However, it is 
noteworthy in Figures 5(c)–(d) that this scenario 
prompts the system to adapt to lower link capacity 
while achieving higher OR/LC values compared to 
other lines, reaching approximately 52% and 96%, 
respectively. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5 Percentage of Predicted Resource of Snort 
(Inline Mode) by RL and MLP models with/without 
transfer learning from vFW (a) Predicted CPU (b) 
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utilisation 

 
5.4 Transfer learning from vFW to Snort Passive Mode 

Table 7 provides the hyperparameter configurations 
used for the MLP models in this experiment. Similar to the 
previous scenario, transferring learning from vFW to Snort 
Passive mode in Figure 6 demonstrates the system's 
attempt to minimize link capacity utilization to 
approximately 56% while maintaining OR/LC values at a 
relatively high level of around 90%. 

 
Table 7 Parameters settings for MLP models with 
transfer learning from vFW to Passive Mode 

Parameters Values 
Number of neurons in Input Layer 4 
Number of neurons in output Layer 3 
1st Hidden Layer 128 
2nd Hidden Layer 128 
3rd Hidden Layer 128 
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(Passive Mode) by RL and MLP models with/without 

transfer learning from vFW (a) Predicted CPU (b) 
Predited Memory (c) Predicted LC (d) Predicted LC 
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6. Discussion 
Leveraging transferring RL models can offer 

significant advantages. RL shines in adapting to new 
environments compared to traditional models like MLP 
when transferred during deployment. This allows 
transferred RL models to quickly adjust and improve 
performance and resource efficiency. Additionally, RL 
with transfer learning converges to the minimum 
resource usage value faster than the case without transfer 
learning. 

In terms of resource utilization reduction, vFW 
models trained with transfer learning from Snort, both in 
Passive Mode and Inline Mode, effectively reduced 
vCPU and memory usage. However, link capacity usage 
remained unchanged. Snort models with transfer learning 
from vFW, on the other hand, reduced link capacity 
usage but did not affect vCPU and memory consumption. 

Analyzing relevant graphs, we see a trade-off 
between high utilization (CPU and memory) and link 
capacity, with higher utilization often leading to better 
performance. Interestingly, the original model (without 
TL) achieves the best results in both Snort scenarios. 

Considering transferability of RL and MLP, the 
findings in all scenarios, where equal weight 
scalarization was used, suggest that RL approaches are 
generally preferable to MLPs when considering 
transferability. While MLP achieved better convergence 
for LC in the specific case of transfer learning from Snort 
(Inline), it suffered a significant performance penalty in 
terms of virtual CPU (vCPU) usage compared to the 
original model. Additionally, MLPs, like other 
supervised learning (SL) models, are inherently limited 
for real-world deployment. Unlike online learning 
models that can be trained and adapt during deployment, 
MLPs require offline training in a separate environment. 
This necessitates replacing a temporary model after 
offline training, which is cumbersome. Moreover, 
deploying a pre-trained SL model in real-time might 
result in limited or even no performance improvement. 

Applying this approach in real-time is possible but 
comes with certain challenges and considerations: 

1) Speed of Transfer Learning: Transfer learning 
reduces the amount of data and time required 
to train models, which is beneficial for real-
time applications. Instead of starting from 
scratch, the model can apply previously 
learned knowledge from a similar VNF and 
adapt more quickly. 

2) Online Learning Capabilities: If the transfer 
learning is implemented as an online learning 
mechanism, where the system continuously 
adapts in real-time as new data arrives, it is 
well-suited for real-time VNF profiling. 

3) Multi-Objective Optimization: The MORL 
framework allows simultaneous optimization 
of multiple objectives (e.g., minimizing 
resource usage while maximizing security), 
which is critical in real-time VNF profiling 
scenarios, where trade-offs need to be 
balanced instantly. 

4) Profile Complexity of VNFs: VNFs like Snort 
and virtual firewalls share similar objectives 
and environments, making transfer learning 
effective in speeding up profiling and 
learning. 

Based on the analysis of the behaviour of Snort in 
inline mode and the Virtual Firewall VNF under a 
Transfer Learning scenario using a Q-learning model to 
enhance resource utilization, the unique characteristics of 
each VNF are observed as follows: 
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1) Snort Inline Mode VNF to Virtual Firewall 
VNF (Figure 3): Snort in inline mode 
functions by detecting and preventing 
intrusions in real-time, requiring intensive 
CPU processing due to the need for deep 
packet inspection (DPI). DPI involves 
analysing packet contents thoroughly to 
identify potential threats. Implementing a Q-
learning model to transfer knowledge to the 
Virtual Firewall helps reduce the CPU load of 
the firewall, possibly by optimizing its 
operations and processes. However, since the 
firewall is responsible for managing access 
control and enforcing policies for network 
traffic, the link capacity may not decrease 
significantly. This is because the firewall still 
requires substantial bandwidth to handle the 
large volume of data traffic. 

2) Virtual Firewall VNF to Snort Inline Mode 
VNF (Figure 5): The Virtual Firewall focuses 
on regulating the flow of network traffic, 
acting as a filter that manages and enforces 
data transmission policies. While it may not 
demand as much CPU processing as Snort, it 
places more emphasis on efficiently managing 
link capacity. When knowledge is transferred 
via a Q-learning model to Snort in inline 
mode, the result is improved bandwidth or link 
capacity management. However, due to 
Snort's requirement for heavy CPU usage in 
detecting and preventing threats, it cannot 
achieve the same level of CPU efficiency as 
the Virtual Firewall. 

The distinct characteristics of Snort in inline mode 
and the Virtual Firewall highlight their differences in 
resource management. Snort demands significant CPU 
resources for deep packet analysis, while the Virtual 
Firewall primarily consumes high link capacity to control 
data flow in the network. Transfer Learning enhances the 
capabilities of each VNF but does not fully address the 
specific resource constraints that each VNF is most 
dependent on. 

 
7. Conclusion 

This study investigates the application of 
Reinforcement Learning (RL) models in profiling and 
optimizing resource allocation for various Virtual 
Network Functions (VNFs), including Snort (in both 
passive and inline modes) and virtual firewall (vFW). 
Our work compares the adaptability of RL-based 
profilers against traditional machine learning models, 
particularly Multi-Layer Perceptrons (MLPs). While 
MLPs may offer better performance in specific 
scenarios, they lack the flexibility of RL models, 
which can dynamically adjust to changing conditions 
without the need for retraining.  

We introduced a novel approach to VNF resource 
allocation using transfer learning in a bi-directional 
manner—between Snort and vFW—demonstrating 
that RL models can efficiently transfer knowledge 

across different VNF types. Our experiments revealed 
significant resource optimization, with RL models 
reducing vCPU usage by up to 20% in some scenarios. 
However, trade-offs were observed, such as lower 
efficiency in reducing link capacity compared to 
MLPs, underscoring the complexity of multi-objective 
optimization. Our research further highlights the 
flexibility of RL-based profilers in dynamically 
adjusting CPU, memory, and link capacity allocations 
based on real-time VNF performance demands. The 
integration of transfer learning eliminates the need for 
offline profiling, enabling more efficient deployment 
of VNFs in dynamic network environments. 

Looking ahead, future work will focus on scaling 
this approach through federated transfer learning, 
addressing challenges related to scalability and data 
privacy, particularly in 6G networks. Additionally, we 
aim to explore more advanced multi-objective 
optimization techniques, including weighted 
optimization, to refine resource allocation strategies 
for diverse VNFs. 
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