
Eng. & Technol. Horiz., vol. 40, no. 3, 2023, Art. no. 400312 Research article

DOI: 10.55003/ETH.400312 ISSN: 2985-1688 (Online)

การออกแบบระบบจัดเกบ็ข้อมูลและควิรีข้อมูลรีซอร์สดิสคริปชันเฟรมเวร์ิค
ขนาดใหญ่โดยใช้หน่วยประมวลผลกราฟิก

The Design of Triple Store and Query Processing on GPU for

Large Scale Resource Description Framework Data

พิสิษฐ์ มรรคไพสิฐ1,* และ จนัทนา จนัทราพรชยั1

1ภาควิชาวิศวกรรมคอมพิวเตอร์, คณะวิศวกรรมศาสตร์, มหาวิทยาลยัเกษตรศาสตร์

ลาดยาว จตุจกัร กรุงเทพมหานคร 10900

Pisit Makpaisit and Chantana Chantrapornchai
1Department of Computer Engineering, Faculty of Engineering,

Kasetsart University, Lay Yao, Chatuchak, Bangkok, 10900, Thailand

*Corresponding Author E-mail: pisit.mak@ku.th

Received: Mar 20, 2023; Revised: Aug 08, 2023; Accepted: Aug 23, 2023

บทคัดย่อ

ขอ้มูล Resource Description Framework (RDF) เป็นมาตรฐานของการแลกเปล่ียนขอ้มูลระหว่างเวบ็ มีแนวโน้มท่ีจะ

ขยายขนาดขึ้นอยา่งรวดเร็วในอตัราเร่งท่ีสูงขึ้น เพ่ือพฒันาระบบการคิวรีขอ้มูล RDF ท่ีสามารถคน้คืนขอ้มูลไดอ้ยา่งรวดเร็ว

บนขอ้มูลขนาดใหญ่ งานวิจยัน้ีไดน้าํเสนอระบบตน้แบบในการจดัเก็บและคน้คืนขอ้มูล RDF ดว้ยการใช้ประโยชน์จาก

หน่วยประมวลผลกราฟิก (GPU) โดยนาํเสนอรูปแบบการจดัเก็บขอ้มูลท่ีเหมาะสมกบัขอ้มูลชนิด RDF และประมวลผลบน

GPU การออกแบบดรรชนี การสร้างระบบสําหรับคิวรีขอ้มูลบน GPU รวมไปถึงเทคนิคการเพ่ิมประสิทธิภาพ ไดแ้ก่ การ

กรองขอ้มูล และการกาํหนดค่า ID ดว้ยเทคนิคการหาความใกลเ้คียงของขอ้มูล โดยการแปลงจากขอ้ความเป็นเวกเตอร์และ

ใชเ้ทคนิคการลดมิติขอ้มูลเพ่ือทาํให้สามารถแปลงขอ้มูลกลบัมาเป็นตวัเลข ผลการทดลองแสดงให้เห็นว่าระบบท่ีออกแบบ

และพฒันาขึ้น ใชพ้ื้นท่ีเก็บขอ้มูลเพียงประมาณ 1 ใน 6 ของขอ้มูลดิบ และสามารถช่วยลดเวลาการคิวรีขอ้มูลได ้โดยมีสปีด

อพัจากเวลาท่ีใชค้ิวรีแบบดั้งเดิมสูงสุดท่ี 29.57 เม่ือเทียบกบั RDF-3X และค่าสปีดอพัสูงสุด 45.23 เม่ือเทียบกบัวิธีการจดัเก็บ

แบบกราฟ gStore

คําสําคัญ: อาร์ดีเอฟ, การประมวลคิวรี, สปาร์เคิล, หน่วยประมวลผลกราฟิก

Abstract

The Resource Description Framework (RDF) is commonly used as a standard for data interchange on the web. Due

to the current big data era, its size is prone to increase drastically. In order to speed up the large RDF data query, we propose

a novel RDF data representation along with the RDF query algorithm utilizing GPU processing. We also present the

representation that is suitable for RDF data and GPU processing, the indexing approach, the querying process in the GPU

and other techniques that increase the efficiency such as pre-upload filtering, ID assignment by using the term similarity of

term vector, and dimensional reduction to transform back to term ID. The experiments show that the developed framework

2 of 11 Eng. & Technol. Horiz., vol. 40, no. 3, 2023, Art. no. 400312

utilizes the storage only 1/6 of the original one and can reduce the querying time. The speedup obtained can be up to 29.57

when compared with the RDF-3X system and 45.23 when compared to using gStore, a graph data store.

Keywords: RDF, Query Processing, SPARQL, GPU

1. บทนํา

Resource Description Framework หรือRDF เป็นมาตรฐาน

การแลกเปล่ียนขอ้มูลบนเว็บเชิงความหมาย (Semantic Web)

ท่ีถูกเสนอขึ้นโดยองคก์ร W3C เพ่ือให้เป็นมาตรฐานกลางใน

การจัดเก็บข้อมูลแบบมีโครงสร้าง และสามารถสืบค้นเชิง

ความหมายไดผ้่านทางมนุษยห์รือระบบอตัโนมติั RDF ถูกใช้

อยู่ในหลากหลายงาน เช่น ในการอธิบายอนุกรมวิธาน

(Taxonomy) ของสัตว ์สารานุกรมของสภาพแวดลอ้มโลก การ

แสดงข้อมูลสิทธิบัตรของสหรัฐอเมริกา หรือออนโทโลยี

(Ontology) เป็นต้น การจัดเก็บข้อมูล RDF มีหลากหลาย

รูปแบบ รูปแบบท่ีเป็นท่ีนิยมในปัจจุบนัคือรูปแบบท่ีเรียกว่า

N-Triples ซ่ึงจะเรียกข้อมูลแต่ละข้อมูลว่าทริปเปิล (Triple)

และมีรูปแบบการแสดงคือ subject predicate object . ในหน่ึง

ไฟล์ข้อมูลจะประกอบด้วยทริปเปิลจํานวนหลายทริปเปิล

โดยสามารถคน้หาขอ้มูลท่ีตอ้งการไดด้ว้ยภาษาสืบคน้ขอ้มูล

RDF ท่ี เรียกว่า SPARQL ซ่ึงย่อมาจาก Simple Protocol and

RDF Query Language รูปท่ี 1 เป็นรูปตวัอย่างขอ้มูล RDF ท่ีมี

จาํนวน 3 ทริปเปิล โดยอธิบายถึงข้อมูลของเอนทิตี (Entity)

หน่ึงซ่ึงเป็นบุคคล และมีช่ือจริงว่า Natee และเกิดเม่ือปี 1997

ในส่วนรูปท่ี 2 จะเป็นตวัอย่างคิวรี SPARQL ท่ีคน้หารายการ

ข้อมูลบุคคล โดยผลลัพธ์ท่ีได้จะเป็นรายการของช่ือและ

โฮมเพจ

<http://example.com/simple#person1>

 <http://example.com/simple#first-name> "Natee" .

<http://example.com/simple#person1>

 <http://example.com/simple#birth-year> "1997" .

<http://example.com/simple#person1>

 <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

 <http://example.com/simple#person> .

รูปท่ี 1 ตวัอยา่งขอ้มูล RDF ในรูปแบบ N-Triples

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?name ?homepage

WHERE {

 ?person foaf:name ?name .

 ?person foaf:homepage ?homepage .

}

รูปท่ี 2 ตวัอยา่งคิวรี SPARQL

มาตรฐานการสืบคน้ขอ้มูล SPARQL ในปัจจุบนัไดม้า

ถึงเวอร์ชัน 1.2 ซ่ึงรวมไปถึงฟังก์ชันการทํางานขั้นสูง

หลายฟังก์ชัน เช่น การอัปเดตข้อมูล ฟังก์ชันการรวม

(Aggregate Function) การคน้หาแบบมีเง่ือนไข การจดัการ

ขอ้ความ ฯลฯ เพ่ือเป็นการทดสอบประสิทธิภาพการทาํงาน

ดว้ย GPU เบ้ืองตน้ งานวิจยัน้ีจะจาํกดัฟังก์ชันการทาํงาน

เฉพาะคาํส่ัง SELECT และ WHERE ในรูปแบบเบ้ืองตน้

เท่านั้น ในคาํส่ัง WHERE จะประกอบดว้ย คาํค้นหาย่อย

เรียกว่าทริปเปิลแพตเทิร์น (Triple Pattern) ซ่ึงมีรูปแบบ

คลา้ยกบัทริปเปิล แต่สามารถใชต้วัแปร (Variable) ระบุได ้

เพ่ือเป็นการบอกให้คน้หาขอ้มูลท่ีตรงกบัรูปแบบดงักล่าว

แต่ในส่วนของตวัแปรจะเป็นขอ้มูลอะไรก็ได ้ตวัแปรจะ

ขึ้นตน้ดว้ย ? เสมอ กลุ่มของทริปเปิลแพตเทิร์นทั้งหมดจะ

เ รี ย ก ว่ า Basic Graph Pattern (BGP) ซ่ึ ง เ ร า ส า ม า ร ถ

เปรียบเทียบการค้นหาข้อมูล RDF ได้เหมือนกับการหา

กราฟยอ่ย (Subgraph) ท่ีตรงกบั BGP ท่ีกาํหนดให ้

ข้อมูล RDF มีขนาดใหญ่ขึ้ นเร่ือย ๆ เป็นผลมาจาก

เทคโนโลยีการจดัเก็บขอ้มูลท่ีมีศกัยภาพสูงขึ้น การเติบโต

ของอินเทอร์เน็ต และความต้องการใช้งานข้อมูลเชิง

ความหมาย อนัส่งผลต่อเน่ืองมายงัขนาดของไฟล ์RDF ท่ี

ใหญ่ขึ้นอย่างมหาศาลและใช้เวลาในการคิวรีท่ีนานขึ้น มี

งานวิจัยจํานวนมากท่ีพยายามเข้ามาแก้ปัญหาของคิวรี

ข้อมูล RDF ซ่ึงมีทั้งรูปแบบของ การออกแบบวิธีจัดเก็บ

ขอ้มูลและการสืบคน้ให้มีประสิทธิภาพมากขึ้น [1–3] การ

Eng. & Technol. Horiz., vol. 40, no. 3, 2023, Art. no. 400312 3 of 11

แบ่งข้อมูล RDF เป็นกลุ่มและทาํการประมวลผลข้อมูล

แบบขนาน [4],[5] การใช้คุณสมบติัหรือรูปร่างของขอ้มูล

ช่วยในการค้นคืนขอ้มูล [6],[7] การออกแบบและพฒันา

ระบบโดยใช้ตวัเร่งฮาร์ดแวร์ (Hardware Accelerator) ใน

ก า ร ล ด เ วล าคิ ว รี [8],[9] ห รื อ สถ าปั ต ย ก ร ร ม ท่ี มี ตัว

ประมวลผลหลายชนิด (Heterogenous Architecture) [10]

และงานวิจยัท่ีใชเ้ฟรมเวิร์คสําหรับระบบขอ้มูลขนาดใหญ่

(Big Data) เป็นพ้ืนฐานของการสร้างระบบจดัเก็บและคิวรี

ขอ้มูล [11],[12]

ในงานวิจัย ท่ีผ่ านมา ท่ี มี ก ารใ ช้ GPU ในการ เ ร่ ง

ประสิทธิภาพของการทาํงานไดผ้ลลพัธ์ท่ีดีในดา้นของการ

ลดเวลาการคิวรี แต่มักประสบปัญหาของเวลาในการ

ทํ า ง า น ท่ี เ พ่ิ ม ขึ้ น ใ น ส่ ว น ข อ ง ก า ร ส่ ง ข้ อ มู ล จ า ก

หน่วยความจาํหลกัไปยงัหน่วยความจาํบน GPU [8], [9],

[11] ซ่ึงหากสามารถลดเวลาการทาํงานในส่วนน้ีได้ก็จะ

ส่งผลให้การใช้งาน GPU เ พ่ือการค้นคืนข้อมูลทําได้

รวดเร็วย่ิงขึ้น งานวิจัยน้ีจึงมีเป้าหมายท่ีจะทดลองพฒันา

ระบบจดัเก็บขอ้มูล RDF ท่ีสามารถสืบคน้ไดอ้ย่างรวดเร็ว

ผ่าน GPU ท่ีมีความสามารถในการประมวลผลข้อมูลได้

จาํนวนมากผ่านคอร์ประมวลผลจาํนวนหลายพนัคอร์ เพ่ือ

ออกแบบการเก็บขอ้มูลและเทคนิคการคน้หาขอ้มูล RDF

บน GPU และการลดเวลาในการส่งข้อ มูลระหว่า ง

หน่วยความจาํหลกัและ GPU ท่ีจะช่วยให้สามารถลดเวลา

การคน้คืนขอ้มูลดว้ย SPARQL

2. วัสดุ อุปกรณ์และวิธีการวิจัย

2.1 รูปแบบการจัดเก็บข้อมูล (Data Representation)

รูปแบบการจดัเก็บขอ้มูลเป็นส่วนเร่ิมตน้ท่ีสําคญัท่ีสุด

ในการจัดเก็บข้อมูล RDF และการสืบค้นข้อมูล รูปแบบ

การจดัเก็บท่ีดีนอกจากจะช่วยประหยดัพ้ืนท่ีในการจดัเก็บ

แลว้ ยงัสามารถช่วยให้สืบคน้ขอ้มูลไดเ้ร็วขึ้น โดยเฉพาะ

อย่างย่ิงบน GPU ท่ีมีขนาดของหน่วยความจาํจาํกดั ขนาด

ของการจัดเก็บข้อมูล และข้อมูลท่ีจะต้องถูกยา้ยไปมา

ระหว่างหน่วยความจาํหลกัและหน่วยความจาํบน GPU จะ

ย่ิงมีผลต่อประสิทธิภาพมากขึ้นไปอีก

งานวิจัยท่ีเก่ียวข้องกับรูปแบบการจัดเก็บข้อมูลของ

RDF มีหลากหลายรูปแบบ ซ่ึงเหมาะสมกบัสถาปัตยกรรม

และการใชง้านท่ีต่างกนัออกไป เช่น การจดัเก็บในรูปแบบ

ของกราฟ (ตัวอย่าง เ ช่น ระบบ gStore [13],[14] และ

AMBER [15]) การจัดเก็บในรูปแบบเมทริกซ์หรือเทน

เซอร์ (ตวัอย่างเช่น Triple-ID Q [8] และ MAGiQ [9]) การ

จัด เ ก็ บ ใ น รู ป ก าร แ บ่ ง แ น วตั้ ง (Vertical Partitioning)

(ตัวอย่าง เ ช่น Hexastore[16] และ S2RDF[17]) หรือใน

รูปแบบการจดัเก็บแบบเป็นรายการของทริปเปิล

งานวิจยัน้ีจะใช้การเก็บขอ้มูลของทริปเปิลในรูปแบบ

ของตวัเลข ID แทนการจดัเก็บแบบเป็นขอ้ความ (เรียกว่า

Triple-ID [8]) โดยจะทาํการสร้างฟังก์ชันสําหรับแปลง

ขอ้ความเป็น ID ท่ีตอ้งการ ดงันั้นทริปเปิล 1 ทริปเปิลจะถูก

เปล่ียนเป็นตัวเลขหรือ ID 3 ตัว โครงสร้างการจัดเก็บ

ข้อมูลทริปเปิลทั้ งหมดจะเป็นรูปแบบการจัดเก็บแบบ

คอลัมน์ท่ีมีดรรชนี (Indexed Column-based) กล่าวคือจะ

ไม่ไดเ้ก็บขอ้มูลทริปเปิลเดียวกนัติดกนับนหน่วยความจาํ

แบบอา้งอิงทีละทริปเปิล แต่จะเก็บเป็นอาร์เรยข์องแต่ละ

คอลมัน์ของขอ้มูลทั้งหมด โดยจะมีการเรียงลาํดบัขอ้มูล

ตามลาํดบัคอลมัน์ท่ีเก็บ และในส่วนของคอลมัน์แรกท่ีเป็น

predicate จะเ ก็บอยู่ ในรูปแบบของ CSR (Compressed

Sparse Row) เน่ืองจากขอ้มูล predicate มีจาํนวนท่ีแตกต่าง

กันไม่มาก ถึงแม้จะเป็นข้อมูล RDF ขนาดใหญ่ก็จะยงัมี

ขอ้มูล predicate ท่ีน้อย ซ่ึงการใช้รูปแบบ CSR เขา้มาเก็บ

จะช่วยลดจาํนวนขอ้มูลซํ้าซอ้นท่ีตอ้งเก็บลงไปไดม้าก

ดรรชนีมีประโยชน์ในการช่วยให้ เข้าถึงเข้ามูลท่ี

ต้องการได้รวดเร็วมากขึ้น ตัวอย่างเช่น สําหรับทริปเปิล

แพตเทิร์น ?v0 14 18 ถ้าข้อมูลเก็บอยู่ในรูปแบบดรรชนี

ของ Predicate Object Subject (POS) จะสามารถสแกน

ดรรชนีและได้ชุดข้อมูลท่ี เ ป็นคําตอบของทริปเ ปิล

แพตเทิร์นน้ีทันที การมีดรรชนีหลายรูปแบบจะช่วยให้

สามารถไดข้อ้มูลท่ีตอ้งการไดเ้ร็วขึ้น ไม่ว่าจะเป็นทริปเปิล

แพตเทิร์นแบบใด งานวิจยัน้ีออกแบบระบบท่ีสามารถเลือก

การสร้างดรรชนีได ้2 รูปแบบคือ Full Permutation Index

และ Predicate Index ซ่ึงสาํหรับ Full permutation Index จะ

ประกอบด้วยดรรชนีทุกรูปแบบได้แก่ POS, PSO, OPS,

4 of 11 Eng. & Technol. Horiz., vol. 40, no. 3, 2023, Art. no. 400312

OSP, SPO และ SOP ส่วน Predicate Index จะมีเฉพาะ POS

และ PSO ซ่ึงมีข้อดีในแง่ของการใช้พ้ืนท่ีการจัดเก็บท่ี

นอ้ยลง แต่ยงัสามารถนาํมาใชง้านไดจ้ริงกบัขอ้มูลหลายชุด

เน่ืองจากโดยปกติแลว้จะไม่ใช ้predicate เป็นตวัแปรในคิว

รี SPARQL

รูปท่ี 3 ในดา้นซา้ยจะเป็นขอ้มูล RDF ท่ีถูกแปลงให้อยู่

ในรูปของ ID แลว้ โดยแสดงให้เห็นในรูปแบบท่ีมีการเรียง

ขอ้มูลจาก P, S และ O ตามลาํดบั ดา้นขวามือจะเป็นขอ้มูล

ท่ีถูกเก็บในระบบจริงแบบท่ีใชด้รรชนี PSO ขอ้มูลของ P ท่ี

เป็นดรรชนีจะเก็บในรูปแบบ CSR ท่ีบนัทึกเฉพาะขอ้มูลท่ี

ไม่ซํ้ ากนั และใช้ Offset เป็นตวัระบุว่าขอ้มูลในชั้นถดัไป

เร่ิมต้นท่ีจุดใดของอาร์เรย ์ข้อมูลในชั้นถดัไปจะมีข้อมูล

ของ S และ O แยกกนั

P S O
3 7 20
3 9 12
3 12 18
4 3 2
4 10 8
5 5 1
5 6 4

ขอ้มูลในรูปแบบ

Triple-ID

P Offset
3 0
4 3
5 5

S O
 7 20
9 12

12 18
3 2

10 8
5 1
6 4

ขอ้มูลในรูปแบบท่ีเก็บดว้ย CSR ผา่น

ดรรชนี PSO

รูปท่ี 3 ตวัอยา่งการจดัเก็บขอ้มูลดว้ยดรรชนี PSO

กําหนดให้ข้อมูล RDF T มีจํานวนทริปเปิลเท่ากับ |T|

และแต่ละทริปเปิลประกอบขึ้นจาก ID ทั้งหมด 3 ตวั (ไดแ้ก่

Subject Predicate และ Object) ให้ I เป็นเซ็ตของ Subject และ

Object รวมกนัและให้ P เป็นเซ็ตของ Predicate ดงันั้นขอ้มูล

ท่ีทาํการเก็บจากดรรชนี POS และ PSO แต่ละชุดจะใชข้อ้มูล

เท่ากบั 2|P| + 2|T| จาํนวน ในการพฒันาระบบจะเก็บแต่ละ

จาํนวนดว้ย Unsigned Integer ขนาด 4 ไบต ์

2.2 สถาปัตยกรรมของระบบ

การทาํงานของระบบจะแบ่งออกเป็น 3 ส่วน ได้แก่

ส่วนของการโหลดขอ้มูล (Data Loader) ส่วนของการเก็บ

ข้อมูล (Data Storage) และส่วนของการประมวลผลคิวรี

(Query Processor) ดงัรูปท่ี 4

รูปท่ี 4 สถาปัตยกรรมของระบบ

การโหลดข้อมูลจะเป็นการอ่านไฟล์ N-Triple และ

นาํเขา้ระบบซ่ึงจะมีขั้นตอนของการแปลงขอ้ความเป็น ID

และการเรียงขอ้มูลเพ่ือสร้างดรรชนี ส่วนของการจดัเก็บ

ขอ้มูลจะทาํการเก็บขอ้มูลทั้งหมดบนหน่วยความจําหลกั

หรือรูปแบบ In-memory ซ่ึงจะลดเวลาในการส่งขอ้มูลใน

การประมวลจากฮาร์ดดิสก์ (แต่จะถูกจาํกดัปริมาณขอ้มูล

สูงสุดท่ีเก็บได้) นอกจากน้ียงัจัดเก็บข้อมูลพจนานุกรม

สําหรับแปลงขอ้ความเป็น ID และในการแปลงกลบั ส่วน

ของการประมวลผลคิวรีเป็นส่วนท่ีรับคิวรีจากผูใ้ชง้านและ

ส่งผลลพัธ์กลบัไปยงัผูใ้ช ้ในส่วนน้ีจะเร่ิมตน้ดว้ยการแจง

ส่วน (Parsing) คิ ว รี แ ล ะ นําคิ ว รี ย่อ ย ทั้ ง ห ม ด ไ ปจัด

เรียงลาํดบัการทาํงาน ดว้ย Query Execution Planner ซ่ึงใน

ท่ีน้ีจะใชเ้พียงแพลนเนอร์อย่างง่ายโดยการพยายามทาํงาน

กบัทริปเปิลแพทเทิร์นท่ีมีจาํนวนขอ้มูลน้อยการเป็นลาํดบั

ต้นๆ เ ม่ือได้แพลนการทํางานทั้ งหมดแล้วระบบก็จะ

ประมวลผลคิวรีดว้ย GPU เพ่ือให้ไดค้าํตอบกลบัมา และ

แปลงคาํตอบท่ีเป็น ID กลบัเป็นขอ้ความก่อนส่งให้ผูใ้ช ้

2.3 การประมวลผลคิวรี

ในขั้นตอนการแจงส่วน จะใช้โอเพ่นซอร์ส Redland

Rasqal เพ่ือให้ไดค้าํคน้ในรูปแบบท่ีมีโครงสร้าง และแบ่ง

ข้อมูลในส่วนของตัวแปรท่ีต้องการให้เป็นผลลัพธ์ (ใน

SELECT) และทริปเปิลแพตเทิร์นทั้งหมดท่ีตอ้งนาํไปใช้

คน้หา หลงัจากนั้นจึงใชฟั้งก์ชนัท่ีสร้างขึ้นในช่วงของการ

สร้างขอ้มูลแปลงทริปเปิลแพตเทิร์นทั้งหมดเป็น ID

งานวิจยัน้ีไดส้ร้างตวัดาํเนินการ (Operator) ทั้งหมด 3

รูปแบบสําหรับการนาํ BGP ไปคิวรีขอ้มูล ตัวดาํเนินการ

ทั้งหมดจะถูกจัดเรียงโดยโปรแกรมเพ่ือสร้างลาํดับการ

ทาํงานท่ีถูกตอ้งเพ่ือให้ไดผ้ลลพัธ์ท่ีตอ้งการ ขั้นตอนการ

ทาํงานของตวัดาํเนินการทั้งหมดมีรายละเอียดดงัน้ี

Eng. & Technol. Horiz., vol. 40, no. 3, 2023, Art. no. 400312 5 of 11

2.3.1 การอัปโหลดข้อมูล

ขั้นตอนในการยา้ยขอ้มูลท่ีอยูใ่นหน่วยความจาํหลกัขึ้น

ไปยงัหน่วยความจาํบน GPU ขั้นตอนน้ีจะตอ้งเลือกดรรชนี

ท่ีถูกตอ้งก่อน ใช้การสแกนขอ้มูลผ่านดรรชนีเพ่ือกาํหนด

ช่วงของขอ้มูลท่ีตอ้งอปัโหลด ดว้ยการสแกนคน้หาขอ้มูล

แ บ บ ท วิภาค (Binary Search) เ ช่น สํ าห รั บ ท ริ ป เ ปิ ล

แพตเทิร์น ?v0 8 ?v1 สามารถใชด้รรชนี POS หรือ PSO ใน

การอปัโหลด (ขึ้นกบัการจดัลาํดบัตวัดาํเนินงาน) ระบบจะ

ทําการค้นหาหมายเลข 8 ท่ีคอลัมน์แรกด้วยการใช้การ

คน้หาขอ้มูลแบบทวิภาค และหาช่วงของขอ้มูลดงักล่าวเพ่ือ

ทาํการอปัโหลด

2.3.2 การเช่ือมข้อมูล

ขอ้มูลแบบคอลมันจ์ะถูกนาํมาเช่ือมขอ้มูล สาํหรับทริป

เปิลแพตเทิร์นท่ีมีความเก่ียวขอ้งกนั (มีตวัแปรเดียวกนัอยู่

ในทริปเปิลแพตเทิร์น) ซ่ึงเป็นตวัดาํเนินการแบบเดียวกบั

Full Join ในระบบฐานข้อมูลเ ชิงสัมพัน ธ์ (Relational

Database) สําหรับการเช่ือมขอ้มูลท่ีจะใชก้ารประมวลผล

บน GPU จะใช้อัลกอริทึม Sort-merge Join ในการเช่ือม

ขอ้มูล เน่ืองจากเป็นอลักอริทึมสําหรับการเช่ือมขอ้มูลท่ีมี

ประสิทธิภาพมากท่ีสุดบน GPU จากการทดลองในระบบท่ี

ใชใ้นการศึกษา

ผลลพัธ์ท่ีไดจ้ากการทาํงานในส่วนของการอปัโหลด

ขอ้มูลจะมีจาํนวน 1 หรือ 2 คอลมัน์ซ่ึงจะเท่ากบัจาํนวนตวั

แปรในทริปเปิลแพตเทิร์นนั้น สมมติให้ทาํการเช่ือมขอ้มูล

Ri และ Rj ท่ีมีข้อมูล c1 และ c2 คอลมัน์ตามลาํดับ จาํนวน

คอลมัน์ของผลลพัธ์ท่ีไดจ้ะเท่ากบั c1 + c2 – จาํนวนตัวแปร

ท่ีซํ้ากันของ Ri และ Rj

2.3.3 การสลับคอลัมน์

การเช่ือมขอ้มูลดว้ย Sort-merge Join มีขอ้จาํกดัในดา้น

ของการท่ีขอ้มูลบนคอลมัน์หลกัท่ีจะใชใ้นการเช่ือมขอ้มูล

นั้นจะต้องมีการเรียงลาํดับทั้งคู่จึงจะสามารถทาํงานได้

อยา่งถูกตอ้ง แตเ่น่ืองจากคอลมันข์องชุดขอ้มูลท่ีเรียงกนัอยู่

ในแต่ละช่วงเวลาจะมีเพียงคอลัมน์เดียวเท่านั้ น หาก

ต้องการเช่ือมข้อมูล 2 ชุดโดยท่ีคอลมัน์ท่ีใช้เช่ือมข้อมูล

ไม่ไดเ้รียงทั้งคู่ จะตอ้งทาํการเรียงขอ้มูลก่อน ซ่ึงในท่ีน้ีจะ

ให้มีความหมายเหมือนกับสลับคอลัมน์ท่ีต้องการเช่ือม

ขอ้มูลมายงัคอลมัน์แรก และทาํการเรียงขอ้มูล

ก า ร สลับ ค อ ลัม น์ จ ะ เ กิ ด ขึ้ น กับ ข้อ มู ล ท่ี เ กิ ด ก าร

ประมวลผลแลว้และอยู่บนหน่วยความจาํ GPU ดงันั้นจึง

สามารถดาํเนินการเรียงแบบขนานผ่าน GPU ไดท้นัที โดย

ความซับซ้อนของเวลาในการทาํงานเป็น O(Nlog(N)/p)

เม่ือ N เป็นจํานวนของข้อมูล และ p เป็นจํานวนหน่วย

ประมวลผลท่ีสามารถทาํงานพร้อมกันได้แบบขนาน ใน

ขั้นตอนการเรียงน้ีจะใชฟั้งกช์นั sort ของไลบรารี Thrust

ตัวดาํเนินการน้ีส่งผลต่อเวลาการทาํงานในส่วนของ

เวลาท่ีเพ่ิมขึ้น หากมีการสลบัคอลมัน์หลายคร้ัง และขอ้มูล

ท่ีต้องสลบัมีขนาดใหญ่ อย่างไรก็ตามสามารถหลีกเล่ียง

การสลบัคอลมัน์จาํนวนมากได้ด้วยการจัดลาํดับงานท่ีดี

โดยทัว่ไปแลว้คิวรีขอ้มูล RDF มกัมีรูปแบบของคิวรีกราฟ

(Query Graph) เป็นแบบ Star ซ่ึงทาํให้สามารถเช่ือมขอ้มูล

ได้ทันทีโดยไม่ตอ้งทาํการสลบัคอลมัน์ก่อน แต่เม่ือใดท่ี

เกิดเส้นทาง (Path) บนคิวรีกราฟท่ีมีความยาวมากกว่า 2 ก็

จะเกิดการสลบัคอลมัน์ขึ้นอยา่งนอ้ย 1 คร้ัง

2.4 การกรองก่อนอัปโหลด (Pre-upload Filtering)

เ พ่ือ เ ป็นการลดขนาดข้อ มูล ท่ีจะอัปโหลดไปยัง

หน่วยความจาํ GPU เทคนิคท่ีใชใ้นขั้นตอนน้ีคือการกรอง

ข้อมูลท่ีเกินช่วงท่ีจะสามารถเช่ือมข้อมูลกันได้ออกไป

ก่อนท่ีจะทาํการอปัโหลด ตวัอยา่งเช่น หากขอ้มูล Ri และ Rj

ท่ีจะทาํการเช่ือมขอ้มูลดว้ยตวัแปร ?v โดยท่ีค่าของขอ้มูล

ในคอลัมน์ ?v ของ Ri อยู่ในช่วง [1150, 90,000] และค่า

ของของข้อมูลในคอลมัน์ ?v ของ Rj อยู่ในช่วง [4,400,

111,555] ข้อมูลท่ี เป็นไปได้ท่ีจะถูกเ ช่ือมข้อมูลจะอยู่

ในช่วง [4,400, 90,000] เท่านั้น ค่าท่ีเกินจากช่วงน้ีจะไม่ถูก

ทําการเช่ือมข้อมูลอย่างแน่นอน จึงสามารถเลือกท่ีจะ

อปัโหลดเฉพาะส่วนดงักล่าวขึ้นไปยงัหน่วยความจาํ GPU

และทาํการเช่ือมขอ้มูลเฉพาะในส่วนท่ีอปัโหลดขึ้นไป ซ่ึง

ต่อไปจะเรียกเทคนิคน้ีว่าการกรองก่อนอปัโหลด

ในการทาํงานของการกรองก่อนอปัโหลดจะทาํการสร้าง

ฟิลเตอร์ของแต่ละตวัแปรท่ีมีการเช่ือมขอ้มูล ตวัแปรท่ีถูกใช้

แต่ไม่มีการเช่ือมขอ้มูล จะไม่สร้างฟิลเตอร์ ฟิลเตอร์ของตวั

แปรแต่ละตัวจะถูกกําหนดค่าเร่ิมต้นให้อยู่ในช่วง [0, ∞)

6 of 11 Eng. & Technol. Horiz., vol. 40, no. 3, 2023, Art. no. 400312

จากนั้นทาํการปรับค่าของช่วงดงักล่าวดว้ยวิธีการเปรียบเทียบ

กบัค่าของช่วงใหม่และกาํหนดค่าดว้ยวิธีการดงัน้ี

ให้ช่วงท่ีเป็นไปไดข้องตวัแปร ?v เป็น Bv = [l1, u1] เม่ือ

ระบบทาํการตรวจสอบช่วงของขอ้มูลของตวัแปร ?v ใน

ขอ้มูลใหม่ท่ีพบและไดช่้วงเป็น [l2, u2] จะทาํการอปัเดตค่า

ของ Bv ใหม่เป็น [max(l1, l2), min(u1, u2)]

การอปัเดตฟิลเตอร์จะเกิดขึ้นในช่วงก่อนเร่ิมการคิวรี

ข้อมูล ด้วยการสแกนผ่านดรรชนี ไปยงัข้อมูลท่ีตรงกับ

ทริปเปิลแพตเทิร์นแต่ละตวัก่อน เพ่ือให้ไดค้่าเร่ิมตน้ของ

ฟิลเตอร์ของแต่ละตวัแปร จากนั้นทุก ๆ การเช่ือมขอ้มูลท่ี

เกิดขึ้ นผ่านตัวแปร ?v ใด ๆ จะนําช่วงของข้อมูลของ

ผลลพัธ์ท่ีไดม้าอปัเดตตวักรองของตวัแปร ?v อีกคร้ัง เพ่ือ

ลดการอปัโหลดขอ้มูลในคร้ังถดั ๆ ไปท่ีจะเกิดขึ้น

2.5 การแปลง ID

การแปลงขอ้มูลจากขอ้ความเป็น ID สามารถทาํไดง้่าย

โดยการไล่ลาํดบัการปรากฎของขอ้ความนั้น เช่น เม่ือนาํ

ไฟล์ RDF มาแปลงเป็น ID ขอ้ความแรกท่ีเจอก็จะให้เป็น

ค่า 1 ข้อความท่ีเจอในคร้ังถัด ๆ ไปก็จะเป็น 2, 3, 4, …

ตามลาํดบั หากว่าเจอขอ้ความนั้นซํ้ าอีกคร้ังก็จะทราบได้

จากการเทียบกบัขอ้มูลท่ีเก็บไวอ้ยู่แลว้และไม่ตอ้งแทนค่า

ใหม่เน่ืองจากมี ID ท่ีจบัคู่กบัขอ้ความน้ีอยูแ่ลว้

งานวิจัยน้ีค้นพบว่าการแปลง ID เป็นอีกหน่ึงส่วน

สําคญัในการเพ่ิมประสิทธิภาพใหก้บัการคน้คืนขอ้มูลดว้ย

GPU เน่ืองจากเทคนิคการกรองก่อนอปัโหลดอาศยัการตดั

ข้อมูลในตอนต้นและตอนปลายของขอ้มูลแต่ละชุดออก

ดังนั้ นหากสามารถทําให้ข้อ มูลท่ี เ ก่ียวข้องกันมี ID

ใกลเ้คียงกนั ก็จะทาํให้สามารถกรองขอ้มูลออกไปก่อนได้

มากขึ้ น เทคนิคท่ีจะนํามาใช้ในการกําหนดค่า ID ของ

ขอ้มูลท่ีใกลก้นัคือเทคนิคของการแปลงขอ้ความแต่ละตวั

เป็นเวกเตอร์เพ่ือหาความใกล้เคียงของแต่ละค่า และใช้

เทคนิคของการลดมิติข้อมูล (Dimension Reduction) เพ่ือ

แปลงเวกเตอร์แต่ละตวัเป็นค่า ID ท่ีเป็นเลขตวัเดียว หรือ

ข้อมูล 1 มิติ โดยการแปลงข้อความ t ให้อยู่ในรูปของ

เวกเตอร์ w ขนาด |P| ทาํไดด้งัสมการท่ี (1)

𝑤𝑤𝑖𝑖 = �1, (𝑡𝑡,𝑃𝑃𝑖𝑖 , _) ∈ 𝑇𝑇 𝑜𝑜𝑜𝑜 (_,𝑃𝑃𝑖𝑖 , 𝑡𝑡) ∈ 𝑇𝑇
0, 𝑂𝑂𝑂𝑂ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (1)

เ ม่ือทําการแปลงข้อความทั้ งหมดให้อยู่ในรูปของ

เวกเตอร์ขนาด |P| แล้ว จะใช้เทคนิค PCA (Principal

Component Analysis) หรือการวิเคราะห์องคป์ระกอบหลกั

เพ่ือแปลงขอ้มูลให้อยู่ในรูปของเลขตวัเดียว จากนั้นจึงทาํ

การกาํหนด ID ให้กบัขอ้ความทั้งหมดอีกคร้ัง โดยค่าท่ีนอ้ย

ท่ีสุดท่ีไดจ้าก PCA จะให้เป็นค่า 1 และค่าท่ีน้อยสุดเป็นค่า

ถัด ๆ ไปจะเป็น 2, 3, 4, … งานวิจัยน้ีจะใช้ ID ท่ีได้จาก

ขั้นตอนน้ีเพ่ือไปเปรียบเทียบกับการทาํงานโดยใช้การ

กาํหนด ID แบบสุ่ม เพ่ือวดัประสิทธิภาพของเทคนิคการ

แปลง ID ท่ีไดค้ิดขึ้น

3. วิธีการวิจัย

สาํหรับขอ้มูลตวัอย่างท่ีจะนาํมาใชใ้นงานวิจยัน้ี จะใช้

ขอ้มูลท่ีสังเคราะห์ขึ้นจากชุดทดสอบ WatDiv [18] ท่ีมีขอ้ดี

คือการกาํหนดขนาดของขอ้มูลท่ีตอ้งการไดเ้อง และมีคิวรี

ในหลากหลายรูปแบบสําหรับใชท้ดสอบ WatDiv มีคาํคน้

ทั้งหมด 4 ประเภทหรือ 4 คลาส โดยแต่ละประเภทจะมี

รูปร่างของ BGP ดงัน้ี ประเภท S เป็นรูปแบบ Star, ประเภท

L เป็นรูปแบบ Linear, ประเภท F เป็นรูปแบบ Snowflake-

Shaped และประเภท C เป็นรูปแบบ Complex

ในการสร้างชุดขอ้มูลทดสอบดว้ย WatDiv จะใช้ Scale-

factor ท่ี 2,000 หรือขนาด 2,000 เท่าจาก ประมาณ 100K ทริป

เปิล ซ่ึงจะได้ข้อมูลทริปเปิลทั้งหมด 219,838,295 ทริปเปิล

โดยต่อจากน้ีจะเรียกชุดขอ้มูลน้ีว่า WatDiv 200M การทดลอง

เพ่ือเปรียบเทียบกบัระบบท่ีมีอยู่เดิมจะใช ้gStore และ RDF-

3X ซ่ึงเป็นงานวิจัยท่ีเป็นโอเพ่นซอร์สท่ีสามารถนํามา

ทดลองเปรียบเทียบได ้เพ่ือแสดงให้เห็นว่าการใช้ GPU ใน

การคิวรีแทน CPU สามารถเพ่ิมประสิทธิภาพไดอ้ย่างไรบา้ง

เคร่ืองเซิร์ฟเวอร์ท่ีใชใ้นการพฒันาและทดสอบประสิทธิภาพ

มีรายละเอียดคือหน่วยประมวลผล Intel(R) Xeon(R) Gold

6130 CPU @ 2.10GHz หน่วยความจําขนาด 256 GB และ

GPU Nvidia Tesla V100 ขนาด 32GB

การทดลองจะแบ่งออกเป็น 3 ส่วน ไดแ้ก่ การวดัขนาด

พ้ืนท่ีจดัเก็บของแต่ละระบบ การวดัเวลาการประมวลผล

ของคิวรี และการเปรียบเทียบการแปลง ID ท่ี มีผลต่อ

ประสิทธิภาพของการคิวรีขอ้มูล

Eng. & Technol. Horiz., vol. 40, no. 3, 2023, Art. no. 400312 7 of 11

4. ผลการวิจัย

เพ่ือให้ง่ายต่อการอา้งอิง ระบบท่ีพฒันาขึ้นในงานวิจยั

น้ีจะใช้ช่ือในการเรียกว่า VEDAS และใช้ช่ือดังกล่าวใน

การแสดงผลการทดลอง

4.1 ขนาดการจัดเก็บข้อมูล

ทดสอบโดยการวัดขนาดพ้ืนท่ีการจัดเ ก็บข้อมูล

WatDiv 200M บนระบบต่าง ๆ และแบบท่ีเป็นไฟลข์อ้มูล

ดิบในรูปแบบ N-Triple โดยมีหน่วยของการวดัเป็น GB

ผลลพัธ์ท่ีไดเ้ป็นไปดงัตารางท่ี 1

ตารางท่ี 1 ตวัอยา่งแสดงรูปแบบของตาราง

การจัดเก็บ/ระบบ ขนาดข้อมูล

N-Triple (ไฟล ์.nt) 30 GB

gStore 17 GB

RDF-3X 12 GB

VEDAS (Full Permutation Index) 12.5 GB

VEDAS (Predicate Index) 5.3 GB

4.2 เวลาท่ีใช้ในการคิวรีข้อมูล

ในส่วนน้ีจะเป็นการทดสอบเวลาท่ีใชใ้นการคิวรีขอ้มูล

ของแต่ละคิว รีใน WatDiv โดยการวัด เวลาของการ

ประมวลผลคิวรีของ RDF-3X, gStore และ VEDAS ทั้ ง

แบบท่ีกาํหนดค่า ID แบบสุ่ม (Random Assignment) และ

กํา ห น ด ค่ า ID โ ด ย ใ ช้ค วาม ใก ล้ เคี ยง ขอ งข้อความ

(Similarity) ซ่ึงผลลพัธ์ของเวลาการทาํงาน จาํนวนขอ้มูลท่ี

เป็นผลลพัธ์แสดงไวด้งัตารางท่ี 2

4.3 การเปรียบเทียบการแปลง ID

การทดลองน้ีจะเป็นการวดัขนาดของขอ้มูลในแต่ละตวั

ดํ า เ นิ น ก า ร ดัง ต า ร า ง ท่ี 3 เ พ่ื อ เ ป็ น ก า ร ต ร ว จ ส อ บ

ประสิทธิภาพของเทคนิคการกําหนดค่า ID ท่ีคิดค้นขึ้น

โดยจํานวนข้อมูลการอัปโหลดจะหมายถึงจํานวนแถว

(Row) ของขอ้มูลท่ีอปัโหลดจากหน่วยความจาํหลกัไปยงั

หน่วยความจาํ GPU (หน่วยเป็นแถว) ซ่ึงสามารถมีไดต้ั้งแต ่

1-2 คอลัมน์ จํานวนข้อมูลของการเช่ือมข้อมูลจะเป็น

จาํนวนแถวของอินพุตทั้งสองตวัของการเช่ือมขอ้มูล โดย

ไม่ได้ผ่านการคูณจาํนวนคอลมัน์ และจาํนวนข้อมูลของ

การสลับคอลัมน์จะเป็นจํานวนแถวของข้อมูลอินพุต

เช่นกนั

5. อภิปรายผลและสรุป

งานวิจยัน้ีไดอ้อกแบบและพฒันาระบบสําหรับจดัเก็บ

และคิวรีขอ้มูล RDF โดยใช้ประโยชน์จากสถาปัตยกรรม

ของ GPU ท่ีสามารถประมวลผลแบบขนานไดอ้ยา่งรวดเร็ว

จากหน่วยประมวลผลจาํนวนมหาศาลในฮาร์ดแวร์ ผลการ

ทดลองพฒันาและทาํการวดัขนาดพ้ืนท่ีการจดัเก็บข้อมูล

พบว่า รูปแบบการเก็บขอ้มูลท่ีเสนอใช้พ้ืนท่ีเพียง 1 ใน 3

ของข้อมูลดิบในการเก็บข้อมูลทั้งหมด และสามารถลด

ขนาดการใช้พ้ืนท่ีเหลือเพียงประมาณ 18% ของขอ้มูลดิบ

เม่ือทําการใช้เฉพาะดรรชนีท่ีเป็นแบบ Predicate Index

และยงัมีขนาดท่ีน้อยกว่าการเก็บขอ้มูลบนระบบ RDF-3X

และ gStore

การทดลองในส่วนของเวลาคิวรีขอ้มูล ผลลพัธ์ท่ีไดค้ือ

VEDAS สามารถคิวรีข้อมูลโดยใช้เวลาน้อยกว่าระบบ

RDF-3X และ gStore ในหลายคิวรี ซ่ึงประสิทธิภาพท่ีสูง

ขึ้นมาจากพลงัในการประมวลผลของ GPU ท่ีช่วยลดเวลา

การทาํงานลงไปในขั้นตอนของการเช่ือมขอ้มูล แต่จะยงัมี

บางคิวรีท่ี VEDAS ประมวลผลไดช้า้กว่า เช่น คิวรี S1, S3,

S4, L1 และ L3 ซ่ึงจากการตรวจสอบเวลาการทาํงานในแต่

ละขั้นตอนก็พบว่าคิวรี S1, L1 และ L3 มีจาํนวนข้อมูลท่ี

ตอ้งอปัโหลดจาํนวนมาก และมีการเช่ือมขอ้มูลน้อย (เม่ือ

เทียบกบัการอปัโหลด) ทาํให้ใช้เวลาไปกบัการอปัโหลด

มาก ส่วนคิวรี S3 และ S4 เวลาการทาํงานของ VEDAS ยงั

ถือว่ามีความรวดเร็ว แต่ระบบ RDF-3X ทาํงานไดร้วดเร็ว

กว่า ซ่ึงน่าจะมาจากคิวรีแพลน (Query Plan) สามารถคาด

เดาผลลพัธ์ไดว่้าจะให้จาํนวนแถวท่ีเป็น 0 และทาํการออพ

ติไมซ์ขั้นตอนการทาํงาน

8 of 11 Eng. & Technol. Horiz., vol. 40, no. 3, 2023, Art. no. 400312

ตารางท่ี 2 เวลาการคิวรีขอ้มูลและสปีดอพัแต่ละคาํคน้ของแต่ละระบบบนขอ้มูล WatDiv 200M

ประเภท

คิวรี

คิวรี เวลาการคิวรี (ms.) สปีดอพั จํานวน

ผลลัพธ์
RDF-3X gStore VEDAS

(Random

Assignment)

VEDAS

(Similarity)

RDF-3X /

VEDAS

(Similarity)

gStore /

VEDAS

(Similarity)

C

C1 64 699 17 16 4 43.69 0

C2 1508 1301 55 51 29.57 25.51 39

C3 97 3935 87 87 1.11 45.23 15941

F

F1 10 13 9 9 1.11 1.44 0

F2 42 18 15 13 3.23 1.38 23

F3 107 40 21 25 4.28 1.6 80

F4 71 20 18 18 3.94 1.11 170

F5 87 57 31 22 3.95 2.59 61

S

S1 21 6 26 17 1.24 0.35 3

S2 41 160 12 12 3.42 13.33 5409

S3 4 49 7 7 0.57 7 0

S4 5 45 7 7 0.71 6.43 0

S5 5 7 4 4 1.25 1.75 0

S6 5 10 10 3 1.67 3.33 20

S7 3 6 2 2 1.5 3 1

L

L1 50 2 6 6 8.33 0.33 1

L2 22 6 4 4 5.5 1.5 525

L3 4 4 6 6 0.67 0.67 6

L4 11 22 1 1 11 22 655

L5 18 64 5 3 6 21.33 764

Eng. & Technol. Horiz., vol. 40, no. 3, 2023, Art. no. 400312 9 of 11

ตารางท่ี 3 จาํนวนขอ้มูลของแต่ละตวัดาํเนินการในรูปแบบ

การกาํหนดค่า ID ท่ีแตกต่างกนั

ประเภท

คิวรี

ตวั

ดําเนินการ

จํานวนข้อมูล (แถว)

Random

Assignment

Similarity

C การอัปโหลด 114,367,374 89,442,022

การเช่ือม

ข้อมูล

24,786,664 23,244,069

การสลับ

คอลัมน์

552,421 552,385

F การอัปโหลด 25,151,603 19,434,112

การเช่ือม

ข้อมูล

25,543,095 19,434,112

การสลับ

คอลัมน์

4,577 4,577

S การอัปโหลด 14,500,616 8,946,191

การเช่ือม

ข้อมูล

14,500,616 8,946,191

การสลับ

คอลัมน์

0 0

L การอัปโหลด 5,080,210 4,316,248

การเช่ือม

ข้อมูล

5,115,114 4,351,152

การสลับ

คอลัมน์

435,086 435,086

คิวรีท่ีมีทริปเปิลแพตเทิร์นจาํนวนมากโดยส่วนใหญ่จะ

ให้ประสิทธิภาพท่ีดีบน VEDAS เน่ืองจากหลังเกิดการ

อัปโหลดไปแล้วข้อมูลท่ีอยู่บนหน่วยความจําจะถูก

นาํมาใช้ซํ้ าโดยไม่ตอ้งอปัโหลดใหม่ และแต่ละคร้ังท่ีเกิด

การเช่ือมขอ้มูลขึ้นก็จะช่วยลดช่วงของขอ้มูลท่ีเป็นไปได้

ผ่านการกรองก่อนอัปโหลด ทําให้ข้อมูลสําหรับการ

อปัโหลดท่ีจะเกิดขึ้นหลงัจากนั้นมีขนาดเลก็ลง

การกาํหนดค่า ID แบบใช้ความใกลเ้คียงของขอ้ความ

ให้ผลลพัธ์ท่ีดีในระดบัหน่ึง จากตารางท่ี 2 คิวรีส่วนหน่ึง

ใช้เวลาท่ีน้อยลงหรือเท่าเดิมเม่ือใช้การการกาํหนดค่า ID

แบบใช้ความใกล้เคียงของข้อความ (ยกเวน้คิวรี F3, S1

และ S3) ถึงแมจ้ะยงัมีคิวรีจาํนวนมากท่ีเวลาไม่แตกต่างกบั

การกาํหนด ID แบบสุ่ม และมีคิวรีท่ีชา้กว่า (คิวรี F3) โดย

เวลาท่ีลดลงไปน้ีเม่ือแจกแจงออกมาในรูปของจํานวน

อินพุตของตวัดาํเนินการดังตารางท่ี 3 ก็จะพบว่าเกิดจาก

จํานวนข้อมูลท่ีอปัโหลดลดลงไปจริง ซ่ึงเป็นผลมาจาก

วิธีการกาํหนด ID ท่ีนาํเสนอ ขอ้มูลจาํนวนของการเช่ือม

ขอ้มูลและการสลบัคอลมัน์ท่ีลดลงเป็นผลท่ีตามมาจากการ

อปัโหลดข้อมูลท่ีน้อยลงเช่นกัน ดังนั้นการลดขนาดของ

ข้อมูลท่ีมีการอัปโหลดจึงเป็นหัวใจสําคัญของการคิวรี

ขอ้มูลบน GPU เพราะนอกจากจะลดเวลาในส่วนของการ

ทาํงานส่วนน้ี ยงัส่งผลให้การทาํงานส่วนอ่ืนลดลงไปดว้ย

งานวิจยัน้ีสามารถขยายผลไปยงัฟังก์ชนัการทาํงานอ่ืน

ๆ ของ SPARQL รวมไปถึงมาตรฐาน SPARQL ในเวอร์ชนั

ใหม่ ซ่ึงจะช่วยให้เกิดความสมบูรณ์แบบของระบบมาก

ย่ิงขึ้น นอกจากน้ีการพฒันา Query Execution Planner ให้มี

ความเหมาะสมกบัสถาปัตยกรรม และสามารถสร้างแพลน

การทาํงานท่ีดีก็เป็นอีกหน่ึงในหวัขอ้ท่ีสําคญัในการพฒันา

ต่อ รวมไปถึงการวิเคราะห์ผลกระทบของรูปแบบวิธีท่ีใช้

ในการกาํหนดค่า ID ซ่ึงอาจใช้วิธีการทางสถิติเขา้มาช่วย

เพ่ือให้เกิดความเข้าใจในแง่ของผลกระทบท่ีเกิดขึ้นจาก

การกําหนด ID รวมไปถึงวิธีในการกําหนด ID ท่ีดีท่ีสุด

(ซ่ึงอาจขึ้นกบัคิวรีโดยเฉล่ียท่ีเกิดขึ้น)

6. กติติกรรมประกาศ

งานวิจยัน้ีไดรั้บการสนบัสนุนทุนวิจยัภายใตโ้ครงการ

ปริญญาเอกกาญจนาภิเศก (คปก.) สํานักงานกองทุน

สนบัสนุนการวิจยั ในโครงการเลขท่ี PHD/0171/2560

เอกสารอ้างองิ

[1] M. Atre, J. Srinivasan and J. A. Hendler, “BitMat: A

main memory RDF triple store,”. Tetherless World

Constellation, Rensselar Plytehcnic Institute, Troy

NY, USA, Technical Rep., 2009.

[2] M. Galkin, K. M. Endris, M. Acosta, D. Collarana, M.

E. Vidal and S. Auer, “SMJoin: A Multi-way Join

10 of 11 Eng. & Technol. Horiz., vol. 40, no. 3, 2023, Art. no. 400312

Operator for SPARQL Queries,” in Proc. 13th

International Conference on Semantic Systems,

Amsterdam, Netherlands, Sep. 11–14, 2017, pp. 104–

111.

[3] T. Neumann and G. Weikum, “The RDF-3X engine

for scalable management of RDF data,” The VLDB

Journal, vol. 19, pp. 91–113, 2010, doi:

10.1007/s00778-009-0165-y.

[4] P. Peng, L. Zou, M. T. Özsu, L. Chen and D. Zhao,

“Processing SPARQL queries over distributed RDF

graphs,” The VLDB Journal, vol. 2 5 , pp. 2 43-268 ,

2016, doi: 10.1007/s00778-015-0415-0.

[5] S. Gurajada, S. Seufert, I. Miliaraki and M. Theobald,

“TriAD: a distributed shared-nothing RDF engine

based on asynchronous message passing,” in Proc.

2 0 1 4 ACM SIGMOD international conference on

Management of data, Snowbird, UT, USA, Jun. 22–

27, 2014, pp. 289–300.

[6] A. Bonifati, W. Martens and T. Timm, “SHARQL:

Shape analysis of recursive SPARQL queries,” in

Proc. 2020 ACM SIGMOD International Conference

on Management of Data, Portland, OR, USA, Jun.

14–19, 2020, pp. 2701–2704.

[7] K. Rabbani, M. Lissandrini and K. Hose, “Optimizing

SPARQL queries using shape statistics,” in Proc. 24th

International Conference on Extending Database

Technology, Nicosia, Cyprus, Mar. 23–26, 2021, pp.

505–510.

[8] C. Chantrapornchai and C. Choksuchat, “TripleID-Q:

RDF query processing framework using GPU,” IEEE

Transactions on Parallel and Distributed Systems,

vol. 2 9 , no. 9 , pp. 2 1 2 1 –2 1 3 5 , 2018, doi:

10.1109/TPDS.2018.2814567.

[9] F. T. Jamour, I. Abdelaziz and P. Kalnis, “A

demonstration of MAGiQ: matrix algebra approach

for solving RDF graph queries,” Proceedings of the

VLDB Endowment, vol 11, no. 12, pp. 1978–1981,

2018, doi: 10.14778/3229863.3236239.

[10] Z. Yao, R. Chen, B. Zang and H. Chen, “Fast and

concurrent RDF query processing using RDMA-

assisted GPU graph exploration,” IEEE Transactions

on Parallel and Distributed Systems, vol. 33, no. 7,

pp. 1619–1635, 2022, doi: 10.1109/TPDS.2021.

3121568.

[11] S. Jiaming, X. Zhang, P. Peng, Z. Feng, and L. Zou.

"Mapsq: A plugin-based mapreduce framework for

sparql queries on gpu." in Companion Proceedings of

the The Web Conference, Geneva, Switzerland, Apr.

23–27, 2018, pp. 81–82.

[12] T. Ren, G. Rao, X. Zhang, and Z. Feng, “SRSPG: A

Plugin-based Spark Framework for Large-scale RDF

Streams Processing on GPU,” in Proc. ISWC 2019

Satellite Tracks (Posters & Demonstrations, Industry,

and Outrageous Ideas), Auckland, New Zealand, Oct.

26–30, 2019, pp. 89-92.

[13] L. Zou, J. Mo, L. Chen, M. T. Özsu and D. Zhao,

“gStore: answering SPARQL queries via subgraph

matching,” Proceedings of the VLDB Endowment,

vol. 4, no. 8, pp. 482–493, 2011, doi:

10.14778/2002974.2002976.

[14] L. Zeng and L. Zou, “ Redesign of the gStore sysem,”

Frontiers of Computer science, vol. 12, pp. 623–641,

2018, doi: 10.1007/s11704-018-7212-z.

[15] V. Ingalalli, D. Ienco, P. Poncelet and S. Villata,

“Querying RDF Data Using A Multigraph-based

Approach,” in Proc. 19th International Conference on

Extending Database Technology, Bordeaux, France,

Mar. 15–18, 2016, pp. 245–256.

[16] C. Weiss, P. Karras, and A. Bernstein, “Hexastore:

sextuple indexing for semantic web data

management,” Proceedings of the VLDB Endowment,

Eng. & Technol. Horiz., vol. 40, no. 3, 2023, Art. no. 400312 11 of 11

vol. 1, no. 1, pp. 1008–1019, 2008, doi: 10.14778/

1453856.1453965.

[17] A. Schätzle, M. Przyjaciel-Zablocki, S. Skilevic and G.

Lausen, “S2 RDF: RDF querying with SPARQL on

spark,” Proceedings of the VLDB Endowment, vol. 9, no.

10, pp. 804–815, 2016, doi: 10.14778/2977797.2977806.

[18] G. Aluç, O. Hartig, M. T. Özsu and K. Daudjee,

“Diversified stress testing of RDF data management

systems,” in 13th International Semantic Web

Conference, Riva del Garda, Italy, October 1 9–23 ,

2014, pp. 197–212.

	1. บทนำ
	2. วัสดุ อุปกรณ์และวิธีการวิจัย
	2.1 รูปแบบการจัดเก็บข้อมูล (Data Representation)
	2.2 สถาปัตยกรรมของระบบ
	2.3 การประมวลผลคิวรี
	2.3.1 การอัปโหลดข้อมูล
	2.3.2 การเชื่อมข้อมูล
	2.3.3 การสลับคอลัมน์

	2.4 การกรองก่อนอัปโหลด (Pre-upload Filtering)
	2.5 การแปลง ID

	3. วิธีการวิจัย
	4. ผลการวิจัย
	4.1 ขนาดการจัดเก็บข้อมูล
	4.2 เวลาที่ใช้ในการคิวรีข้อมูล
	4.3 การเปรียบเทียบการแปลง ID

	5. อภิปรายผลและสรุป
	6. กิตติกรรมประกาศ
	เอกสารอ้างอิง

