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Abstract

Flood forecasting is one of the most essential preventative measures for decreasing the damage caused by floods to
human life and property. Developing advanced models in conjunction with a significant amount of available data will
improve the accuracy of forecasts. This study proposes the concept of discharge forecasting utilizing a neural network
model and the application of time response parameters in the watershed. To forecast the hourly discharge in the Upper
Nan and Loei watersheds of 12 hours in advance. In this study, we investigated the model in the setting of two case
studies: case 1, the application of statistical correlation (Case—Correl) and case 2, the application of the time response
parameter (Case—T ). From the study results, it showed that the outcomes of 12-hour advance discharge forecasting at
runoff Station N.1 in Upper Nan Basin and runoff station Kh.58A in Loei Basin were as follows: Case 2 (Case-T,) was
more accurate than Case 1 (Case—Correl) in predicting flow rates in both watersheds. In addition, it was determined that
the model accurately predicted the flow rate during the period of peak flow, with a deviation from the observed discharge
approximately 3—8% and 8—11% for Case-T . and Case—Correl examples, respectively. The results indicate that the neural
network model applying with time response parameters has a high forecasting capability of flow rate. And the findings of

the forecast can be used to monitor the water situation and prepare for flood warning in the target area.

Keywords: Discharge Prediction, Response Time Parameter, Artificial Neural Networks
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