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Abstract 

In supply chain management, inventory plays a key role to deal with demand and supply uncertainty aiming to 

guarantee a smooth flow of materials and products along the chain. This paper focuses on determining the suitable 

values of Q and r in the (Q,r) inventory control policy model when it was applied to the situation of nonstationary but 

known to be empirically discretely distributed of product demands and lead times. The total cost (TC) and service level 

(SL) were used to measure the policy performance using an Excel-based Monte Carlo Simulation (MCS) approach 

with a set of actual historical demand data from an automotive tire service store. Results from the MCS indicated that 

the (Q,r) model could lead to 12.36% lower TC with 2.31% higher SL, on average, when the Q and r values were 

determined based on empirical discrete distribution compared to that of normal distribution. Therefore, the empirical 

discrete distribution of demand and lead time should be utilized in a situation where the assumption of normal and 

other traditional distributions is invalid. 

Keywords: Inventory Control Policy, Empirical Discrete Demand Distribution, Excel based Monte Carlo Simulation, 

Automotive Tires 

1. Introduction 

As a member of the supply chain, a retailer buys 

products from upstream members and sells them to its 

customers at a certain retail price. The difference between 

the retail price and cost that includes unit operations cost 

marks the profit per unit. To increase the profit and to 

maintain, perhaps to gain, competitive advantage, the 

retailer must try to reduce the cost of its operations 

related to holding of such products while maintaining 

customer service [1 – 2 ] .  Thus, adopting an appropriate 

inventory control policy to match the variation of 

customer demands, then, has become vital and challenged 

for the retailer [2–4]. This decision is, commonly, a part 

of inventory management strategy. 

Numerous evidences from both practices and 

researches [5] have indicated that difficulty in selecting 

the suitable inventory control policy directly relates to 

variation, especially for the circumstance with unknown 

and nonstationary demand [6–9]. This is true for the 

situation of the automotive tire service store who orders 

tires from manufacturers or wholesalers in advance, 

stores them at a warehouse until they are sold to 

customers. It is clear that the exact customer demands are 

not foreknown and normally are not constant over time 

[10]. 

Most continuous review of inventory control policies, 

decisions on the order quantity (Q) and the reorder point 

(r) are needed for each product to meet customer 
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requirements with reasonable cost. The customer service 

level (SL) is usually set as the target to achieve with 

minimum (or at reasonable) total cost (TC) [2 ] ,[8 – 1 2 ] . 

Thus, SL and TC are generally used as the main indexes 

to evaluate the performance of an inventory policy and 

are significantly affected by the parameters Q and r. The 

appropriate values of Q and r closely relate to the 

behavior of demands and lead times. Therefore, it is 

important to statistically understand the demand and lead 

time behaviors which can be pointed out when sufficient 

historical data is available.  Much of the research about 

inventory control policies have assumed that demands are 

normally distributed with a known mean (µ) and standard 

deviation (σ) [8 ] ,[1 3 – 1 4 ] .  Some recently applied 

researchers have extended their analysis to Poisson [9 ] 

and Exponential of demand distribution [1 5 ]  with 

constant lead time. However, some historical demand 

patterns do not statistically match any of the traditional 

distributions while the ordering lead times are not always 

constant [1 0 ] .  Therefore, the empirical distribution 

should be assumed in the evaluation of an inventory 

control policy. 

This paper considers the situation of nonstationary 

but known to be empirically discretely distributed of 

product demands and lead times, focusing on determining 

the suitable values of Q and r for the (Q, r) model. The 

TC and SL of the model are determined using the Excel-

based Monte Carlo Simulation (MCS) approach with a 

set of actual historical demand data from an automotive 

tire service. 

 

2. Backgrounds  

This section is separated into 2 subtopics. The main 

performance indexes of inventory control policy are 

discussed in Section 2.1. A brief literature review related 

to the problem scenario is discussed in Section 2.2.  

To discuss mathematical models related to inventory 

control concepts throughout this paper, the following 

notations are defined.  

t Subperiod in a planning time 

T Planning horizon 

Co Ordering cost (baht/unit) 

Cc Carrying cost (baht/unit/period) 

Cs Shortage cost (baht/unit) 

CEX Expediting cost in (baht/time) 

Dt Product demand for t 

𝑑̅𝑑 Average demand  

Lt Ordering lead time t 

𝐿𝐿�  Average ordering lead time 

Q Order quantity 

Q* Optimal order quantity 

r Reorder point 

At Available inventory for t 

SS Safety Stock 

SL Customer service level 

SLtg Target customer service level 

TC Total cost 

SDt Satisfied product demand for t 

Zt 1 if an order is placed at the end of t or 0 otherwise 

Iavg,t Average inventory for t  

Iint,t Inventory at the beginning of t  

Iend,t Inventory at the end of t  

Is,t Shortage units for t  

𝐼𝐼𝑡𝑡∗ Dummy inventory at the end of t   

CCt Carrying cost incurred for t  

OCt Ordering cost incurred for t 

SCt Shortage cost incurred for t 

f(Dt,i) Probability mass function of Dt   

Ft(At) Cumulative distribution function of At 

E(Dt) Expected value of Dt 

ORt Order received at the beginning of t 

AVt Order arrival time for order placed at the end of t 
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The dummy inventory at the end of period t, (𝐼𝐼𝑡𝑡∗),   

is determined using Iend,t +Q.Zt  to prevent reordering if 

the preceding order has not arrived. 

 

2.1 Performance Indexes  

The main reason to employ an inventory strategy is to 

meet customer demand, especially in a retail operation [1–

2],[16]. However, the demand is usually not known for 

certainty. Thus, it is not always possible to hold exactly the 

amount of product demanded. In practice, with selected 

inventory control policy the additional amount of 

inventory, called safety stocks (SS), is kept on hand to 

increase the ability to meet the product demand in a timely, 

efficient manner. The higher expected SL requires a higher 

inventory level and, thus, higher inventory costs.  

The actual SL of any product, as shown in Equation (1), 

is the ratio between the total satisfying demand and the 

total demand for the entire controlling period (denotes by 

T) [2],[9]. 

 

𝑆𝑆𝑆𝑆 =
∑ 𝑆𝑆𝑆𝑆𝑇𝑇
𝑡𝑡=1 𝑡𝑡
∑ 𝐷𝐷𝑇𝑇
𝑡𝑡=1 𝑡𝑡

  (1) 

 

The target (or planned) customer service level (SLtg) 

may be set at the beginning of the controlling horizon. The 

demand for the product for subperiod t is a random 

variable. SLtg is simply the probability of demand for 

subperiod t (Dt) being less than or equal to the available 

inventory for the same period (At). For period t, the 

probability is given by the cumulative distribution function 

Ft(At), which can be expressed in Equation (2). 

 

𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡,𝑡𝑡 = 𝐹𝐹𝑡𝑡(𝐴𝐴𝑡𝑡) = 𝑃𝑃[𝐷𝐷𝑡𝑡 ≤ 𝐴𝐴𝑡𝑡]  (2) 

 

Where P represents the probability of the term in the 

bracket. The expected service level for the entire planning 

horizon can be expressed as ∏ 𝐹𝐹𝑇𝑇(𝐴𝐴𝑡𝑡)𝑇𝑇
𝑡𝑡=1 . Obviously, at 

is a function of the order quantity Q and reorder point r. In 

practice, shortage cost may occur when the condition in 

Equation (2) is violated for some t’s which would pull the 

overall SL down and damage the image of a company (or a 

retailer).  Numerically, the shortage cost is added to the 

total inventory management cost to better enumerate the 

situation and it is given in Equation (3). 

 

𝑇𝑇𝑇𝑇 = ∑ �𝑍𝑍𝑡𝑡𝐶𝐶𝑜𝑜 + 𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎,𝑡𝑡 .𝐶𝐶𝑐𝑐 + 𝐶𝐶𝑠𝑠�𝑇𝑇
𝑡𝑡=1     (3) 

 

Iavg,t can be calculated from (Iint,t + Iend,t) / 2. The value 

of Cs may vary depending on how the shortage situation is 

handled. Assuming that there is no other constraints, the 

inventory control policy should be selected and 

implemented in order to maximize the SL with the 

minimum TC or to minimize the TC with acceptable target 

SL, regardless of demand distribution. 

 

2.2 Literature Review 

Some books [1–2],[16], and many research papers 

described the importance and details of inventory 

management. The recent versions tended to emphasize more 

on the supply chain [1],[3],[10]. Bedworth and Bailey [16] 

explained the principle of EOQ and how it can be 

implemented with a variety of inventory control policies 

under deterministic assumptions. They also have suggested 

how to use safety stock in dealing with stochastic conditions 

with an underlying normal probability of demand and lead 

time. Applications can be found in [17–19]. Similar 

background can be found in Russell and Taylor III [1] with 

more emphasis on supply chain management. Lila [2] 

provided detail regarding how to set up Excel spreadsheet for 

inventory control using the Monte Carlo Simulation 

approach. Implementation and adaptation of such technique 

can be seen in numbers of application researches, [8–

10],[12],[14],[20], for example. All of them tried to 

determine the appropriate inventory control policies with 

uncertain demands. Silsat and Lila [8] applied to the case of 
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consumable items that their demands did not dependent on 

finished products and are highly fluctuated. Mahitpan, Lila, 

and Kunadilok [9] and Pengsawat [12] applied to spare parts 

for maintenance of critical equipment. Smmutranukul and 

Phanvijitsiri [10] compared performance between the (Q, r) 

and (T, S, s) models for a tire service store while Leepaitoon, 

and Bunterngchit [20] studied similar cases but demands 

were generated based on the maximum, minimum and 

average of historical data. Ruanghiranwanich and Lila [14] 

used the MCS to find a suitable order quantity of parts for 

electronic products. Some other researches about inventory 

management have utilized high-level simulation programs to 

study the performance of inventory policies with uncertain 

demands [6–7],[11],[19]. Abuizam [6] studied the periodic 

inventory model using Parasade@RISK simulation. 

Cholodowicz and Orlowski [7] considered inventory policy 

for perishable products that have Weibull demand 

distribution using System Dynamics. Limbuan and Lila [11] 

used ARENA to simulate the (Q, r) and the (T, S, s) models 

for uncertain but low demands for spare parts. These 

researches resulted in a saving of 7–25% of inventory 

management cost compared to the before-studied policies 

through numerical cases.  

Based on the reviews, it is obvious that the simulation 

technique is an appropriate tool for use in studying inventory 

control policies with stochastic conditions. To overcome the 

burden of buying specific simulation programs (normally 

with high cost) and learning how to use them, Excel is a 

convenient choice since it is most certainly available with any 

computer. 

 

3. Inventory Control Concepts 

Inventory refers to items or products that are kept to satisfy 

the future demands that are random variables [2]. Holding 

insufficient inventory may lower the SL while having too large 

inventory incurs costs. An appropriate inventory control policy 

can help to minimize the costs while meeting acceptable SL. 

The basic parameters needed are order size, reorder point and 

safety stock. 

With known and constant demand, no shortage and 

instantaneous assumptions, the optimal order quantity is 

determined using Equation (4). 

 

𝑄𝑄∗ = �2.∑𝐷𝐷𝑡𝑡.𝐶𝐶𝑜𝑜
𝐶𝐶𝑐𝑐

  (4) 

 

The quantity Q* is enough to fulfill the constant demand 

for 𝑄𝑄∗/𝑑̅𝑑  Periods and minimizes the total cost. In this case TC 

in Equation (3) can simply be written as shown in Equation (5).  

 

𝑇𝑇𝑇𝑇 = 𝐶𝐶𝑜𝑜.∑𝐷𝐷𝑡𝑡
𝑄𝑄∗

+ 𝐶𝐶𝑐𝑐. 𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎   (5) 

 

The amount Q* is reordered when the inventory level is less 

than or equal to the reorder point r, that can be set using 

Equation (6). 

 

𝑟𝑟 = 𝑑̅𝑑. 𝐿𝐿  (6) 

 

If the lead time is also constant, the time between each 

order is placed, remains the same. 

In reality, the deterministic condition about demand and 

lead time are usually not true. Thus, SS is enacted to deal with 

the stochastics conditions. This requires an analysis of 

statistical behaviors for both demands and lead times through 

historical data. In the case that demand and lead time are 

normally distributed, SS could be calculated using several 

equations explained in [1],[2],[5],[16]. However, the focus of 

this paper is on the case of an empirical discrete demand. In any 

period, Dt can take any value in position ith in a discrete random 

variable having ft(Dt,i) as its probability mass function (PMF) 

as depicted in Table 1. Dtm,i represents the mid-point of each 

class i. For subperiod t, Dt can be classified into classes, i starts 

from 1 and increases upward. Each class i has probability of 

occurrence of f(Dt,i). The actual demand value (Dt,i) is assumed 
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to be discretely uniformly distributed between the lower (LDt,i) 

and upper (UDt,i) bounds of each class i. 

 

Table 1 Probability mass function of Dt 

Classi Dtm,i LDt,i UDt,i f(Dt,i) 

1 Dtm1 LDt,1 UDt,1 f(Dt,1) 

2 Dtm2 LDt,2 UDt,2 f(Dt,2) 

… … … … … 

u Dtm3 LDt,u UDt,u f(Dt,u) 

u+1 Dtm,u+1 LDt,u+1 UDt,u+1 f(Dt,u+1) 

…  … … … 

 

Thus, in any subperiod, holding inventory greater than 

or equal to E(Dtm), statistically, corresponding to ≥0.5 or 

50% SL. The variable At in Equation (2) also represents the 

reorder point r to reach the SLtg. Based on this relationship, 

the r is then derived and can be expressed in Equation (7). 

 

𝑟𝑟 = 𝐸𝐸(𝐷𝐷𝑡𝑡) + ∑ 𝑓𝑓𝑡𝑡(𝐷𝐷𝑡𝑡𝑡𝑡)𝑢𝑢
𝑖𝑖=1   (7) 

 

The term ∑ 𝑓𝑓𝑡𝑡�𝐷𝐷𝑡𝑡,𝑖𝑖�𝑢𝑢
𝑖𝑖=1  is the cumulative probability 

function of Dt with values ranging from class i = 1 to class 

i = u that enable r satisfies the SLtg. Thus, it also represents 

the SS.  

The lead time is often easier to manage as it does not 

vary in a wide range [9],[10]. The probability mass 

function Lt can be defined using discrete probability as 

shown in Table 2. 

 

Table 2 Probability mass function of Lt 

Lt f(Lt) 

1 f(L1) 

2 f(L2) 

… … 

L f(LL) 

In this paper, performance indexes (SL and TC) of 

the (Q, r) model was investigated if it was implemented 

as the control policy at a retailer for an automotive tire 

service where demand and lead time are empirically 

discrete random variables. The concept of the (Q,r) 

model is the quantity Q is ordered and is reordered once 

the inventory depletes to the level of r or lower. The 

process repeats for the entire planning horizon.  

The investigation was performed through the Monte 

Carlo Simulation on Microsoft Excel. The development 

of such simulation model is explained in Section 4. 

 

4. Excel Based Monte Carlo Simulation 

Monte Carlo (MC) is a technique to generate random 

variables of interest from a known behavior [2]. 

Subsequently, such variables can be used in the logic of 

a simulation model or a system to evaluate its 

performance. This type of model is often referred to as 

the Monte Carlo Simulation (MCS) [2]. This paper built 

the MCS on Microsoft Excel Spreadsheet to simulate the 

performance of the (Q,r) model. The MCS for T periods 

was constructed for individual tire model having TC and 

SL as performance indexes, the logical concepts and their 

corresponding Excel formula are explained in section 4.3.  

 

4.1 Input Parameters 

In Fig. 1, the main inputs for the MCS model consist 

of the following. 

1) All cost parameters including Co, Cc, and Cs,  

beginning inventory, CEX and SLtg. These 

parameters were placed on the top left, above the Logic 

model. 

2) The starting values of Q and r which were 

determined using Equations (4) and (7), respectively. 

3) Distributions of demand and lead time in the form 

of empirical discrete probability tables. 
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4.2 Generation of Random Variables 

The demand (Dt) and the lead time (Lt) are the main 

random variables. With the discrete form for Dt as shown in 

Table 1, the value was generated using a nested VLOOKUP() 

function that performs the following 2 steps; 

1) Select the class i based on the given discrete 

probability function. 

2) The value of Dt, was generated based on a discrete 

uniform distribution between the LDt,i  and the  UDt,i 

. The generated values must be rounded to the 

nearest whole number if the demand are integers.  

Similarly, but easier, the Lt was generated using a 

VLOOKUP() function based on its probability mass function 

when the order was placed.  

4.3 Logic of the Model 

Logics of the MCS can be described as follow;  

1) Generated the pseudorandom numbers (rnt) for all 

t’s using a rand() function.  

2) Generate Dt using the nested VLOOKUP() function 

from its PMF, for all t’s.  

3) For t=1,  

a. Set Iint,1 = beginning inventory (Iint,0), and Iint,t  

= Iend,t-1 for the remaining periods. 

b. Set OR1 = 0, indicating a starting period.  

4) Set At = Iint,t + ORt for all t’s 

5) Set SDt = Min(Dt, At) for all t’s 

6) Set Iend,t = At - SDt for all t’s 

7) Set Zt = 1, if Iend,t + Q.Zt ≤ r or 0 otherwise. 

8) If Zt = 1, generate Lt using VLOOKUP function 

from its PMF, or 0 otherwise, for all t’s 

9) Set AVt = t + 1 + Lt, if Lt, ≠ 0 or 0 otherwise. 

10) For t > 1 to T,  

a. Set ORt = countif(range from 1 to t, t)*Q 

b. Set 𝐼𝐼𝑡𝑡∗  = 𝐼𝐼𝑡𝑡−1∗  - SDt  + Q, if Zt-1 = 1 or 𝐼𝐼𝑡𝑡∗  = 

𝐼𝐼𝑡𝑡−1∗  SDt otherwise. 

11) Costs calculation,  

a. CCt = Cc. Iavg,t  

b. OCt = Co. Zt  

c. SCt = CEX + Cs.(Dt - At), 

if Dt - At > 0 or 0 otherwise. 

The concept used in calculating shortage cost was based on 

actual practice that the owner would always seek available 

products from a nearby store when he/she did not have what the 

customer wanted. Therefore, the expediting cost (CEX) would 

occur along with loss of some profit which refers to as Cs. 

4.4 Output Analysis  

The TC and SL could be determined based on the 

relationship in Equations (3) and (1), respectively. In the MCS, 

TC is simply the summation of CCt, OCt and SCt for all periods 

t = 1 to T.  Similarly, the SL is the ratio between the summations 

of SDt and Dt for all periods t = 1 to T. 

The MCS was verified by comparing its TC and SL with 

manual calculation when the known and constant demands and 

lead times were entered. The result indicated that the MCS 

model worked properly and can be used for further analysis. 

Equations (5) and (7) were utilized to determine the values 

of Q and r, respectively. The fact that the aspect of stochastic 

lead time was not considered in Equations (7), the values of Q 

and r were only set as the starting values in the MCS. The TC 

with values of Q and r varied from -50% to +100%, with 10% 

step, from their starting values were run to find the minimum 

TC with acceptable SL (SL ≥ SLt,g). For each combination of Q 

and r values, the number of simulation runs was determined 

according to the criteria that the error (half-width, HW) of 95% 

confidence interval (CI) of the TC must be less than 10% of its 

mean.  After the Q and r values were set to use in the MCS 

model to investigate the performance of the (Q, r) control 

policy in the interested case. 

 

5. Numerical Case 

In this paper, the real historical weekly units sold of the 

highest demand tire model at an automotive tires retail 
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service located in Chonburi province was collected 

between 2019 to 2020, along with its order lead times.  

Statistically, based on the sum of the square of error, at 

0.05 significant level, the demand and lead time behaviors 

did not match with any traditional probability distribution. 

Therefore, empirically discrete distributions seem to be the 

best functions and are in Tables 3 and 4 for demand and 

lead time, respectively. 

From Table 3, the average (𝐸𝐸(𝐷𝐷𝑡𝑡)) is 82.85 units and 

standard deviation (SD) of Dt is 47.85 units. Similarly, 

from Table 4, the average (𝐸𝐸(𝐿𝐿𝑡𝑡) ) is 1.1 weeks and 

standard deviation (SD) of Lt is 0.3 weeks. Other relevant 

information of this tire model was collected and is 

provided in Table 5. 

 

Table 3 Distribution of Dt (units/week) 

Classi Dtm,i LDt,i UDt,i f(Dt,i) 

1 15.150 0.000 30.300 0.08 

2 45.451 30.301 60.601 0.27 

3 75.752 60.602 90.902 0.37 

4 106.053 90.903 121.203 0.13 

5 136.354 121.204 151.504 0.02 

6 166.655 151.505 181.805 0.06 

7 196.956 181.806 212.106 0.08 

 

Table 4 Distribution of Lt (weeks) 

Lt f(Lt) 

1 0.90 

2 0.10 

 

Table 5 Relevant information 

Item value unit 

Unit cost 2850 Baht/unit 

Cc 2.39 Baht/unit/week 

Co 2000 Baht/order 

Cs 82 Baht/unit 

Table 5 Relevant information (cont.) 

Item value unit 

CEX 1000 Baht/time 

Annual Demand 3779 units 

Beginning Inventory 322 units 

SLtg 0.85  

 

According to reasonable management of the store 

manager, TC for the 2019–2020 years were evaluated to be 

93,877 baht/year with 1.00 of SL. These numbers would be 

used as a baseline for comparison with the indexes getting 

from the MCS. 

The starting values of Q and r were calculated to be 

297.31 units and 173.85 units, respectively (E(Dt) = 82.85, 

from class i = 1 to u = 3, SS = 91 units). The SLtg was set 

to 0.85 (with r = 173.85 units, according to Table 3, this 

value falls into class 6, thus the SLtg of 0.87 could be 

expected). The values of Q and r were rounded to 300 units 

and 170 units, respectively, and were used to run the 

experiments by varying Q from 150 to 600 and varying r 

from 85 to 340, with 10 runs for each combination which 

was enough since the half-widths were between 3.78–

7.65% for TCs, and were between 1.55– 2.29% for SLs, for 

all combinations. The outcomes showed that the minimum 

TC occurred at the combination of Q = 330 and r = 204 and 

221, with SL at least 0.945. To confirm the outcome, r = 

210 was chosen at set to run the MCS to find the optimal 

Q. Results are shown in Fig. 1. 

 

 
Figure 1 TC from r = 210 units 
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From Figure 1, the minimum TC could be found with 

Q between 300 to 400 units. The value of Q = 350 units 

and r = 210 units were set to run the MCS again for 30 

runs. Statistical results of TC and SL are given in Table 6. 

Half-widths of both TC and SL deviate from their 

means of only 4.68% and 1.03%, respectively. Therefore, 

results from 30 runs of the MCS were statistically accurate. 

 

Table 6 TC and SL from the MCS 

Statistics TC SL 

Mean  77682 0.968 

SD  7599 0.022 

HW  3638 0.01 

 

The analysis also indicated that if the (Q,r) model was 

implemented, about 17.25% (93,877 - 77,682 = 16,195 

baht/year) of the total inventory management cost could be 

reduced with expected SL dropped from 1.00 to 0.968, or 

around 3.2% decrement.  

Performances of the (Q,r) model were also compared 

based on normal and discrete distributions of demand and 

lead time.  Input parameters that were used in 30 runs of 

the MCS for the two underlying distributions are provided 

in Table 7. 

 

Table 7 Input parameters for normal and discrete distribution 

Parameters Normal Discrete 

µ (unit/week) 71.69 82.74 

σ (unit/week) 46.27 47.77 

Q (unit) 300 350 

r (unit) 176 210 

 

For normal distribution, the value Q from historical 

demand was 297.32 (rounded to 300) while the value r was 

calculated from 𝐷𝐷�𝑡𝑡 . 𝐿𝐿𝑡𝑡� + 𝑧𝑧0.85. 𝑆𝑆𝑆𝑆.�𝐿𝐿�𝑡𝑡 . On the other 

hand, for discrete distribution, the values Q and r were the 

result of the experiments discussed previously. The 

statistical results are given in Table 8. 

 

Table 8 TC and SL from the MCS between normal and 

discrete distribution 

Statistics 
Normal Discrete 

TC SL TC SL 

Mean 88640 0.946 77682 0.968 

SD 13504 0.027 7599 0.022 

HW 5043 0.01 3638 0.01 

 

Half-widths for all values of TC and SL for both 

distributions were within 6% of their respective means 

indicating that 30 runs were reasonable accurate. 

The means of TC and SL getting from the use of normal 

and discrete Q,r parameters were compared using 2 unequal 

variance t-tests. Results, as shown in Table 9, strongly 

indicated that there were differences in both means at 0.05 

significant level. The Q,r parameters from the discrete 

distribution return, 10,958 baht/year or 12.36% lower TC and 

0.022 or 2.31% higher SL than that of the  normal distribution. 

 

Table 9 Result of t-test of TC and SL from MCS between 

normal and discrete distributions 

Items 
TC SL 

Normal Discrete Normal Discrete 

Mean 88640 77682 0.946 0.968 

SD 13504 7599 0.027 0.022 

Observations 30 30 30 30 

Hypothesized  Mean Diff. = 0 Mean Diff. =0 

p value 0.0003 0.0011 

 

6. Results and Conclusions 

This paper aimed to determine the suitable values of Q 

and r in the (Q,r) inventory control policy model when it 

was applied to the situation of nonstationary but known to 

be empirically discretely distributed of product demands 
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and lead times. The product demand for each period (Dt) is 

defined in the form of an empirically discrete classes while 

the discrete uniform distribution is assumed to represent 

the random distribution of demand within a class. The 

Excel-based Monte Carlo simulation (MCS) approach was 

described in detail and utilized to evaluate the performance 

of the model in terms of TC and SL.  Application to the 

numerical case of a high-demand tire model of an 

automotive tire service store demonstrated that the MCS 

can be used to estimate the outcome of the (Q,r) model 

efficiently. Based on the set of historical data used in this 

case study, result from the MCS also showed that setting 

of the inventory control parameters with the discrete 

distribution of demands and lead times of products led to 

significantly better performance in terms of TC and SL than 

that of the normal distribution. Thus, the method proposed 

should be utilized in a situation that demand and lead time 

do not seem to be normally distributed or match with other 

traditional probability distributions. The MCS can also be 

modified to fit the concept of other similar control policies. 

However, this paper did not perform the sensitivity 

analysis of the Co, Cc, CEX, and Cs parameters as they may 

influence the performance of such control policies, since 

they are generally fixed for a specific situation.  
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