User Authentication in an Internet Protocol

Parinya Thamthawornsakul

Suvepon Sittichivapak

Department of Telecommunication Engineering, King Mongkut’s Institute of Technology Ladkrabang

Abstract

This paper presents an enhancement of IP (Internet Protocol) standard to support user authentication
within the protocol itself. The options field in an IP header is used for carrying specific data to add the ability of
self-authentication. The specific data consist of a user identifier, a timestamp, and an HMAC calculated with
important data in the IP header. The major purpose is to verify a device owner or a computer user in a local
network in real time, before allowing access to restricted networks or the Internet. By this enhancement, users
can be authenticated at IP layer, without needing an additional user authentication process. The self-
authentication ability provides a prevention of sending source-spoofed IP packet and also provides a high
reliability of identifying the user. In addition, this ability does not require a creation of specific connection and

an exchange of security parameters.

Keywords: IP Options, Self-Authentication, HMAC, Source Address Spoofing, Network Access Control

1. Introduction

Nowadays, Internet almost become a basic
requirement of daily life. A lot of devices online on
the Internet. Regarding computer network security,
identifying a device owner or a computer user is an
important thing. In order to control accessing the
Internet, a NAC (Network Access Controller) is used
to meet this demand. On an IP network, the NAC
provides a function of source address filtering. IP
packets with a source address of an authorized device
are allowed to access the Internet. Therefore prior to
such authorization, the device owner or the computer
user has to pass the authentication process first,
which is done by submitting user credentials such as
a username and a password.

Although NAC is a useful tool for
identifying the user before accessing restricted
networks or the Internet, but its common function is
susceptible to a technique of sending a source-
spoofed IP packet. This technique helps an
unauthenticated user easily access restricted networks
or the Internet, without passing any user
authentication process.

The aforementioned problem encourages an
enhancement of IP standard. A self-authentication
ability is added to the protocol. It involves a use of
undefined IP options, and an application of HMAC
(Keyed-Hash Message Authentication Code) and
timestamp. The benefits of this enhancement are user
authentication can be performed at IP layer without
needing an additional user authentication process,
sending a source-spoofed IP packet can be prevented,
and reliability of identifying the user is increased.

2. Literature Review
2.1. Source Address Spoofing
In term of computer network security, the
creation of IP packet with a forged source address for

concealing the sender identity, is called source
address spoofing. Due to the IP standard has not
designed for providing data origin authentication and
data integrity verification, a source-spoofed IP packet
travelling on an IP network cannot be detected and
protected. It may cause damage to various services on
the network. Most importantly, source address
spoofing is a problem without an easy solution [1].

Traditional NAC such as Captive Portal [2]
still use the source address filtering function to
control accessing restricted networks. An access
controller monitors and filters only IP standard
packet. That means NAC will consider the source-
spoofed IP packet as a normal IP packet. Both of IP
packets are finally allowed to access the restricted
networks.

The source address spoofing issue may be
mitigated by using a communication tunnel. In this
scenario, tunnel is a transport protocol for carrying
the regular protocol. The tunnel is designed for
providing data origin authentication and data integrity
verification. These interesting functions make more
reliable communication at the IP layer.

2.2. Data Origin Authentication and Data

Integrity Verification

In term of reliable data communication,
transferring information with security awareness is
significance. Data origin authentication and data
integrity verification must be fully applied on the
tunneling protocol.

Data origin authentication is an important
property. It makes the receiving party can verify the
source of data and ensure that the IP packet originate
from an expected sender. Hence, the source-spoofed
packet can be detected and protected. Data integrity
verification is an important one that makes sure about
IP packet has not been modified during transmission.

Aevansaanseds U9 34 adun 2 figuieu 2560

It is the assurance of accuracy and the consistency of
data in the IP packet.

There are several tunneling protocols used in
computer network security. Most commonly used
tunneling protocol supporting both data origin
authentication and data integrity verification is an
IPsec (Internet Protocol Security) [3], in a
functionality of AH (Authentication Header) [4].
However, the IPsec requires an extended user
authentication process before establishing the tunnel,
there is a session that need to maintain. This can be
viewed as a complex mechanism. To suppress the
complexity, data origin authentication and data
integrity verification provided on the communication
tunnel should be performed without maintaining any
session or state.

2.3. Stateless Authentication Mechanism

In network access control system with user
session, a period of data communication depends on
such user session. If the user session expires, the
communication will stop and require re-
authentication process to continue. In the other hand,
the stateless authentication mechanism does not has a
session manipulation. An agent program installed on
a device or a computer attaches sufficient user
credentials to the IP packet, which is used to
authenticate the device owner or computer user on
the NAC. The mechanism may be called self-
authentication.

To create user credentials for stateless
authentication, HMAC [5] is commonly used to do
this. HMAC is a mechanism for message
authentication. It can be used with any iterative
cryptographic hash function, in a combination of
message (data) and secret key. The HMAC definition
is described in equation 1.

HMAC(K,m) = H((K @opad)||H((K @ipad)||m)) (1)

In the equation, H is a cryptographic hash
function, K is a secret key, m is the message to be
authenticated, || represents concatenation, @ is an
exclusive or (XOR) digital logic gate, opad is an
outer padding, and ipad is an inner padding. The
order of HMAC calculation is illustrated in figure 1.

Padding Preparation

Key XOR Key
Key @ ipad Key @ opad

HMAC Calculation

[Key @ ipad I Message] Hash
[1st Hashing Result]
[Key @ opad I 1st Hashing Result] Hash
| 2 Hashing (HMAC) |

Figure 1 HMAC calculation

The iterative hash function breaks up a
message into blocks of a fixed size and iterates over
them with a one-way compression function. The
strength of the HMAC depends on the strength of
underlying cryptographic hash functions such as a
SHA-1 (Secure Hash Algorithm) [6], the size of its
output, and the quality of the secret key.

Using the HMAC for stateless authentication
mechanism may not secure enough. The mechanism
is susceptible to a replay attack [7]. By this attack, an
attacker is able to duplicate the IP packet with user
credentials of an authenticated user, transmit the IP
packet to the same network. To reduce the possibility
of the replay attack, timestamp is required.

The sender and the receiver use HMAC with
timestamp to guarantee that the data is not corrupted
or the data has not been modified during
transmission. The timestamp is often used with some
threshold to ensure that particular IP packet cannot be
used more than once. An example case has been
described in [8]. About replay attack mitigation, if the
threshold of timestamp (acceptable time lag) is small,
the replay attack is almost impossible.

2.4. Internet Protocol Options

IP options is one of fields in the IP header
[91 which may be required for some data
communication environments. The IP options field is
variable in length. There are two option formats
defined in the IP standard; a single octet of option-
type, and multiple octets of option-type. The single
octet of option-type indicates the end of the IP
options list or it may be used between IP options, to
align the beginning of a subsequent option on a 32-bit
boundary. The multiple octets of option-type can be
divided into three parts as shown in figure 2.

BIT
©12345670123456701234567012345617

Option-Type Option-Length Option-Data (variable)

1 is Copied Flag (use 1 bit)
2 is Option Class (use 2 bits)
3 is Option Number (use 5 bits)

Figure 2 Multiple octets of option-type format

Regarding the figure 2, the option-type octet
is viewed as having three parts; 1 bit for copied flag,
2 bits for option class, and 5 bits for option number.
The copied flag indicates that this option is copied
into all fragment IP packets on fragmentation, the
option is not copied when using a value 0, and the
option is copied when using a value 1. The option
class indicates the general category into which the
option belongs, there are only four option classes;
class 0 for control, class 2 for debugging and
measurement, class 1 and class 3 are reserved for
future use. The option number specifies the kind of
option, there are both defined option numbers in the
IP standard and undefined numbers. The option-

Ladkrabang Engineering Journal, Vol. 34, No. 2, June 2017 3

length octet indicates how many octets are used in
each option. It counts the option-type octet, the
option-length octet as well as the option-data octets.
The last option-data octets contain the actual data of
its option.

3. Implementation of User Authentication in
an Internet Protocol
3.1. IP Options Design for Self-Authentication
In the design about the new IP options for
self-authentication ability, reserved option classes
and undefined option numbers are used. Three new
IP options are attached to the IP header. The first
option is a user identifier, it is used as an index for
finding the corresponding secret key. The next option
is a timestamp, it is used in replay attack mitigation.
The last option is an HMAC, it is used for data
integrity verification of the IP packet itself. The new
IP options can be illustrated in figure 3.

BIT
1234567012345670123456701234567

Version| IHL |Type of Service Total Length

Identification Flags Fragment Offset

Time to Live Protocol Header Checksum
Source Address

Destination Address

UID (@x7A) Length = 8 UID Data (octet: 1 to 2)
UID Data (octet: 3 to 6)
T5 (8x7B) Length = 18 T5 Data (octet: 1 to 2)

TS Data (octet: 3 to 6)

TS Data (Byte: 7 to B) HMAC (@x7C) Length = 22

HMAC Data (octet: 1 to 4)

HMAC Data (octet: 5 to B)

HMAC Data (octet: 9 to 12)

HMAC Data (octet: 13 to 16)

HMAC Data (octet: 17 to 20)

Figure 3 IP header with self-authentication options

In IP options format, the user identifier
option (UID) is defined as a hexadecimal number
0x7A in option-type octet, that is 01111010 in binary
number, so that this option is not copied to all
fragments on fragmentation (0 value of the first bit), a
reserved option class 3 (11) is used for this option,
and a number 26 (11010) is assigned for this option
number. The total length in octet of this option is 8,
including 1 octet of option-type, 1 octet of option-
length, and 6 octets of the user identifier data. NAC
will use this option to find the corresponding secret
key for generating the HMAC.

The timestamp option (TS) is defined as a
hexadecimal number 0x7B in option-type octet, that
is 01111011 in binary number, so that this option is
not copied to all fragments on fragmentation, it is in

the reserved option class 3, and a number 27 (11011)
is assigned for this option number. The total length of
this option is 10, including 1 octet of option-type, 1
octet of option-length, and 8 octets of the timestamp
data which is a hexadecimal number converted from
an integer number of the UNIX timestamp. The
timestamp is used to compare with the timestamp of
the NAC for replay attack mitigation purpose.

The last HMAC option is defined as a
hexadecimal number 0x7C in option-type octet. It has
the same properties as the previous two options, and a
number 28 (11100) is assigned for this option
number. The total length of this option is 22,
including 1 octet of option-type, 1 octet of option-
length, and 20 octets of HMAC data calculated with
the SHA-1 hash function (160 bits of output).

In HMAC calculation, the Identification
data, the Source Address data, the Destination
Address data in the IP header, the timestamp data in
the timestamp option, and the secret key
corresponding to the user identifier option, are
concatenated and used as an input message of the
hash function. The procedure of HMAC calculation
can be written in the following pseudo code.

def gen_icv(packet_in, ts_in, key_in):
icv = hmac.new(key_in, ’, hashlib.shal)
icv.update(str(packet_in[IP].id))
icv.update(str(packet_in[IP].src))
icv.update(str(packet_in[1P].dst))
icv.update(hex(ts_in)[2:])
return icv.digest()

The input message that is wused for
calculating the HMAC contains both of persistent
data and dynamic data. The packet_in[IP].id
represents data in the Identification field, the
packet_in[IP].src represents data in the Source
Address field, the packet_in[IP].dst represents data
in the Destination Address field, the ts_in represents
the timestamp data in form of hexadecimal number,
and the key _in represents the HMAC secret key.

In addition, the self-authentication options
might be adapted to use with IPv6 (Internet Protocol
version 6). The options format look like the format
used on IP (version 4). But there are some differences
about the option-type octet and the IPv6 header that
is used for carrying the self-authentication options.
For option-type octet, the format is changed but it
still can be defined within 1 octet of option-type, by
following the IPv6 standard [10] in part of Type-
Length-Value (TLV) encoding. About IPv6 header,
there is no IP options field in the header. Hence, self-
authentication options will be carried by one of IPv6
extension headers called Hop-by-Hop options header.
It carries optional information that must be examined
by every node along a delivery path of IPv6 packet.
The options header is identified by a Next Header
value of 0 in the IPv6 header. The design of self-
authentication options for IPv6 can be illustrated in
figure 4.

v

Aevansaanseds U9 34 adun 2 figuieu 2560

BIT
8123456709123 4567080123456701234567
Version| Traffic Class Flow Label

Payload Length Next Header Hop Limit

Source Address (octet: 1 to 4)
Source Address (octet: 5 to B)
Source Address (octet: 9 to 12)

Source Address (octet: 13 to 16)
Destination Address (octet: 1 to 4)
Destination Address (octet: 5 to B)
Destination Address (octet: 9 to 12)

Destination Address (octet: 13 to 16)

Next Header |Ext. HDR Length| UID Option Length = 8
UID Data (octet: 1 to 4)
UID Data (octet: 5 to 6) TS Option Length = 10

TS Data (octet: 1 to 4)
TS Data (octet: 5 to 8)

HMAC Option Length = 22 HMAC Data (octet: 1 to 2)

HMAC Data (octet: 3 to 6)

HMAC Data (octet: 7 to 1)

HMAC Data (octet: 11 to 14)
HMAC Data (octet: 15 to 18B)

HMAC Data (octet: 19 to 2@) Padding

Padding

Figure 4 IPv6 header with self-authentication options

3.2. Data Flow and Operations

The Linux operating system is used in this
enhancement. In order to control the flow of IP
packet and manipulate the IP header, using a netfilter
framework and a Scapy [11] program is the right
solution. The netfilter framework is used to provide
IP traffic control on the host. The POSTROUTING
chain mangle table of the framework is mainly used
to do mangling on IP packets. In the operation, the IP
packets are redirected from kernel space to user space
at this point (chain and table), by using the
NFQUEUE (the Netfilter Queue). Scapy is a
powerful interactive IP packet manipulation program
written in Python. It works on the user space, and it
can inject the IP packet back to the kernel space.

The self-authentication ability focuses on an
outgoing IP traffic, an original IP packet is
transmitted from client device in a local network
through the NAC before reaching the destination. At
the client device, the IP packet is redirected to the
user space, then the IP header is modified by the IP
header manipulation program, the modified IP packet
is injected back to the kernel space, and is sent out to
the network. The IP packet flow on the client device
is shown in figure 5.

r N & A
Local IP Header
Process Manipulation
- ‘ 7\ 1 ; - User Space
7 N N Kernel Space
mangle mangle
OUTPUT

POSTROUTING
A J

(‘ N 1)
nat filter nat
OUTPUT OUTPUT POSTROUTING
g J U 2

L 1

NIC

(Packet Out)

Figure 5 IP packet flow on the client device

At the NAC, the IP packet is received on an
incoming network interface, then will be bridged to
an outgoing network interface. The IP packet is
redirected to the IP header manipulation program on
user space for verifying the self-authentication
options in the IP header. For any valid IP packet, the
self-authentication options are deleted from the IP
header, and the modified IP packet is injected back to
the kernel space and is sent out to the network. The
IP packet flow on the NAC is shown in figure 6.

)
IP Header
Manipulation
User Space
s NG) Kernel Space
NIC mangle

(Packet In) POSTROUTING
8 DAY J

‘ N\ {7 . 1 =\
mangle filter nat
PREROUTING FORWARD POSTROUTING
- ‘ P t . ‘
7 " -
nat mangle NIC
PREROUTING FORWARD (Packet Out)

Figure 6 IP packet flow on the NAC

For the operation of IP header manipulation
on client device, the particular program running on
user space deletes all IP options (if any) in the
incoming IP packet, then adds the UID option, the TS
option, and the HMAC option respectively. After
adding self-authentication options, the IHL value in
the IP header is increased to 15 (1111 in binary), the
Header Checksum value is recalculated as well.
Finally, the modified IP packet is sent back to the
kernel space.

Ladkrabang Engineering Journal, Vol. 34, No. 2, June 2017 5

An action on IP packet on the NAC consists
of self-authentication verification and IP header
manipulation. All actions are described in figure 7.

Receive IP packet
from NFQUEUE

Extract self-authentication
options from IP header

Find the Secret Key on
database and cache it
for future use, return
empty key if not found

Find
Secret Key

Not
corresponded

Compare
Timestamp

Corresponded

Recalculate HMAC with the
Secret Key

Not
matched

Compare
HMAC

Matched

Remove all IP options and
send back to kernel space

Drop invalid
IP packet

Figure 7 Self-authentication verification

In part of self-authentication verification on
the NAC, self-authentication options are extracted
from the incoming IP header. The particular program
will find the secret key corresponding the UID option
in the cache. The timestamp is firstly checked. The
HMAC is recalculated with obtained secret key and is
compared with the HMAC option. IP packets that do
not pass timestamp checking and HMAC comparison
are dropped.

4. Experimentation and Results

There are four computers, two network
switches, and one Internet router in the experimental
environment. The computers work as a client device,
a NAC, and analyzers. The test IP packet is sent from
the client device to the Internet. IP packet passing the
network switches is copied and sent to the analyzers.
IP packets captured on the analyzers are used as an
experimental result. Figure 8 shows the experimental
topology.

Analyzerl

Analyzer2

Switch

Client Information [::]
IP: 10.100.1.3/24
GW: 10.100.1.1 > a

Internet Client Device

Figure 8 Experimental topology

In the figure, the client device has one NIC
(Network Interface Card) named ensl160, the NAC
has two NICs named ens160 (router side) and ens192
(client side). The NAC operates in bridge mode, the
two physical NICs are member of the bridge. In order
to redirect IP packet to the IP header manipulation
program, the following iptables commands are
executed on both NAC and client device.

IPTables command for Client Device.
iptables -t mangle -1 POSTROUTING \
-0 ensl160 -j NFQUEUE --queue-num O

VvV H# H#

IPTables command for NAC.
iptables -t mangle -1 POSTROUTING \
-m physdev --physdev-out ens160 \
-Jj NFQUEUE --queue-num O

vV V # H#

After sending the test ICMP packet from the
client device (10.100.1.3) to the destination (8.8.8.8),
Captured IP packet on the analyzerl and the
analyzer2 is decoded as displayed in figure 9 and 10.

Ma. Source Destination Protocol
— 110.166.1.3 8.8.8.8 ICMP
— 2 B.8.8.8 10.196.1.3 ICMP

Flags: @x82 (Don't Fragment)

Fragment offset: @

Time to live: 64

Protocol: ICMP (1)

Header checksum: @x4113 [validation disabled]
Source: 16.168.1.3

Destination: 8.8.8.8

[Source GeoIP: Unknown]

— Options: (46 bytes) __ _ _ _
B8 Bc 29 c2 83 cf @@ @c 29 3c b3 8d 63 80 4f B8
88 7c 28 de 49 80 48 81 41 13 Oz 64 081 83 B8 88

Ml T [7a @8 3@ 38 38 38 3@ 31 7b @a 35 38 62
GCELINSE 62 39 64 7c 16 88 9e 9a 49 2e 83
CEEIAR d5 3 27 d3 5 a3 al
2852 988 @1 o9d 8b b2 S8 6B @@ B8 88 34 95 B9 /0 68 a8

Figure 9 IP packet decoded on the analyzerl

a o

6 Aevansaanseds U9 34 adun 2 figuieu 2560
No. Source Destination Protocol Internet Analyzerl Analyzer2
—= 116.1608.1.3 8.8.8.8 ItMP —
S 2 8.8.8.8 18.1088.1.3 ItMP /(g g
\
1 - . S S
- Jdentification: ox28de (10462) NAC
Flags: @x@2 (Den't Fragment)
Fragment offset: 8 —— ——
Time to live: 64 == =] N 7
Protocol: ICMP (1) . ,
Header checksum: @xf654 [validaticn disabled] Switch Switch

Source: 18.168.1.3

Destination: 8.8.8.8

[Source GeoIP: Unknown]

[Destination GeoIP: Unknown]
Internet Control Message Protocol

2e18 b8 54 FLILD 40 @0 48 @1 f6 54 Ga 64 @1 A3 @8 68
08 08 83 A9 a3 al @8 11 @8 @1 9d 8b b2 58 @0 @0
60 @@ 34 05 B9 AR 68 60 O @B 18 11 12 13 14 15
16 17 18 19 1a 1b 1c 1d 1e 1f 28 21 22 23 24 25
26 27 28 29 2a 2b 2c 2d 2e 2f 38 31 32 33 34 35
36 37

Figure 10 IP packet decoded on the analyzer2

In figure 9, the self-authentication options
are attached to the test IP packet (ICMP) sent from
the client device. The identification number of the IP
header is 10462. The self-authentication options
including UID option (0x7A), TS option (0x7B), and
HMAC option (0x7C), as described in the section of
implementation, are inserted into the IP options field.
After passing the self-authentication verification, the
self-authentication options are removed and sent on a
wire as shown in figure 10. In another view on the
NAC, the IP header manipulation program running in
verbose mode also displays the same information of
the test IP packet, which is shown in figure 11.

363636 36 3656 336 3 263 4 307 3036 036 36 3636 36 36 3 3E3E 263636 3 36 3 367 HE36 336 436 216 2 MM I
IP packet from: 10.106.1.3 to: 8.8.8.8
Identification: 10462 (0x28de)

UID Value: 000001
T3 Value: 1488096157
HMAC Value: 889e9a492e03cb4f 3dd748d5f827d39d46e7ef I

Figure 11 Test IP packet displayed on the NAC

In another one experimentation, the NAC is
placed between routers. The test IP packet is sent
from client device and is routed to an Internet router
by an internal router. Network configuration and
iptables commands used on both client device and
NAC same as previous experimental topology. IP
packet passing the network switches and the NAC, is
copied and sent to the analyzers. IP packets captured
on the analyzers are used as an experimental result.
The experimental topology 2 is shown in figure 12.

Internet Router Internal Router Q;_
Network: IF1: 192.168.8.2/24
l1e.100.1.0/24 IF2: 18.100.1.1/24
Next Hop: GW: 192.168.0.1

192.168.8.2

Client Information
IP: 10.1@@.1.3/24
GW: 10.1@0.1.1

Client Device

Figure 12 Experimental topology 2

About results of sending the test IP packet
from client device, self-authentication options
inserted in the IP header are decoded and displayed
on the analyzer2, as shown in figure 13. After passing
the verification process on NAC, the self-
authentication options are removed. The same IP
packet without any IP options is decoded and
displayed on the analyzerl, as shown in figure 14. All
operations and results like the previous
experimentation. But there is one thing different, the
TTL (Time-to-Live) of the test IP packet is
decreased, from value of 64 to 63, because of the
routing process.

Ma. Source Destination Protocal
— 116.168.1.3 83.8.4.4 ICMP
«— 2 B8.8.4.4 10.106.1.3 ICMP

Identification: @x2d96 (1167@)
Flags: @x@2 (Don't Fragment)
i -
Lime to live: 63 _
Protocol: ICMP (1)
Header checksum: @x33b@ [validation disabled]
[Header checksum status: Unverified]
Source: 16.186.1.3
Destination: 3.8.4.4
[Source GeoIP: Unknown]
[Destination GeoIP: Unknown]
v Options: (48 bytes)
Unknown (@x7a) (8 bytes)
Unknown (@x7b) (1@ bytes)
Unknown (@x7c) (22 bytes)
Internet Control Message Protocol

@9 Oc 29 c2 83 cf @@ Bc 29 db 3e fe 68 @0 4T 60

Ba2e
ea3a
2a48

Figure 13 IP header with self-authentication options

Ladkrabang Engineering Journal, Vol. 34, No. 2, June 2017 7

Mo, Source Destination Pratocel
116.106.1.3 3.8.4.4 ICMP
2 3.8.4.4 16.166.1.3 ICMP
188 Version: 4

. 8181 = Header Length: 28 bytes (5)
Differentiated Services Field: @x@@ (DSCP: (5@, E(
Total Length: 84
Identification: @x2d96 (11678@)

Flags: @x82 (Don't Fragment)

Protocol: ICMP (1)
Header checksum: @xf6a@ [validation disabled]
[Header checksum status: Unverified]
Source: 18.1e8.1.3
Destination: 8.8.4.4
[Source GeoIP: Unknown]
[Destination GeoIP: Unknown]
Internet Control Message Protocol

Figure 14 IP header after passing the NAC

In case of reliability test, the IP header
manipulation program running on client device has
been modified, to simulate sending of some IP
packets through the NAC. The conditions and results
of the simulation are list in table 1.

Item Conditions Accept| Drop

Sending packet with self-authentication

! options corresponding the design

Timestamp option on client device is
2 |increased/decreased before calculating .
the HMAC

Using different secret key between
NAC and client device for IP packet

3 with same UID in self-authentication °
options

4 Input parameters for calculating the .
HMAC do not meet the specifications

5 Sending packet without attaching the .

self-authentication options in IP header

Table 1 Self-authentication verification test results

In addition, when considering about the
mentioned network access control which are Captive
Portal, IPsec AH, and self-authentication options, the
key features of each methods can be compared as
shown in table 2.

Method IP IPsec | Captive
Features options AH Portal
Control accessing networks Yes Yes Yes
Anti-spoofing Yes Yes No
Per-packet self-authentication ekt (RS- No

Any Host

Not require for authe_ntlgatlon Yes No No
before data communication
Not require for session
maintenance UE Y A

Table 2 A comparison of access control applications

5. Conclusion

User authentication in an Internet Protocol
provides a new mechanism for verifying an identity
of device owner or computer user. It is especially
suitable to wuse with network access control
application. The key feature is a design of self-
authentication options. Data communication at IP
layer can be controlled by the NAC which can be
placed everywhere on the communication path. It is
similar to IPsec AH but it also works on LAN.
Without needing additional user authentication
process and there is no session to be maintained, it
makes data communication more smooth and
seamless. For security awareness, it also provides a
mitigation of replay attack and a prevention of
sending source-spoofed IP packet, which make
identifying the user more reliability. The
enhancement makes user authentication mechanism
look different.

6. References

[1] C. Manusankar, S. Karthik, and T. Rajendran,
“Intrusion Detection System with Packet
Filtering for IP Spoofing,” International
Conference on Communication and
Computational Intelligence, India, pp. 563-567,
December, 2010.

[2] G. Appenzeller, M. Roussopoulos, and M. Baker,
“User-Friendly Access Control for Public
Network Ports,” INFOCOM IEEE, vol. 2, pp.
699-707, March, 1999.

[3] S. Kent and K. Seo, “Security Architecture for
the Internet Protocol,” RFC 4301, December,
2005.

[4] S. Kent, “IP Authentication Header,” RFC 4302,
December, 2005.

[5] H. Krawczyk, M. Bellare, and R. Canetti,
“HMAC: Keyed-Hashing for = Message
Authentication,” RFC 2104, February, 1997.

[6] D. Eastlake and P. Jones, “US Secure Hash
Algorithm 1 (SHAL),” RFC 3174, September,
2001.

[7]1 P. Syverson, “A taxonomy of replay attacks,”
IEEE Computer Society Press, pp. 187-191,
1994.

[8] D. Denning and G. Sacco, “Timestamps in Key
Distribution Protocols,” Communications of the
ACM, Vol. 24, pp. 533-536, August, 1981.

[9] J. Postel, “INTERNET PROTOCOL,” RFC 791,
September, 1981.

[10]S. Deering and R. Hinden, “Internet Protocol,
Version 6 (IPv6) Specification,” RFC 2460,
December, 1998.

[11]P. Biondi, “Packet generation and network based
attacks with Scapy,” CanSecWest/core05,
France, May, 2005.

