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Abstract

Short-term electricity load forecasting is essential for Building Energy Management System (BEMS) in
various aspects, e.g. peak-shaving application, planning for self-consumption with renewable energy, net-zero
energy building. This paper presents the forecast models for load demand in buildings by using the time-series
approach. The load-forecast models are created from the step-by-step procedure of Box-Jenkins Methodology
and the Seasonal Autoregressive Integrated Moving Average (SARIMA) models are obtained. The resultant
models are evaluated with the actual load of Electrical Engineering Building at Chulalongkorn University. The
proposed models can fairly forecast the load pattern for the workdays with roughly 20% Mean Absolute
Percentage Error (MAPE). In addition, the models are moderately successful to predict the peak-load instant.

Keywords: Short-term Electricity Load Forecasting; Box-Jenkins Methodology; Seasonal Autoregressive

Integrated Moving Average Model; Building Energy Management System.

1. Introduction

In Thailand, commercial building sector governs
high electricity consumption. [1] Therefore, a lot of
Building Energy Management Systems (BEMS) are
conducted in order to not only reduce the electricity
bills, but also to help defer the construction of new
power plants. Electricity bills of commercial
buildings, including energy charges and demand
charges. To reduce the demand charges, Battery
Energy Storage System (BESS) is usually employed
as shown in Fig. 1. The load profiles of building are
needed to achieve the peak-shaving application.

Electricity load forecast is an essential component
to generate the command signal for BESS to
successfully reduce the peak demand. Short-term
electricity load forecast predicts the future value from
hours to weeks for energy management. Various
models are employed in the literature which can be
classified into two main types; the linear models and
the non-linear models, L. Hernandez et al. [2]. The
linear models are typically based on the time series
approach. L. Jong Hun et al. [3] propose an
exponential smoothing linear model to forecast the
daily load along with temperature in building. J.
Massana et al. [4] mention the Multiple Linear
Regression (MLR) linear model and Y. Penya et al.
[5] draw a comparison between the Autoregressive
(AR) linear model and other non-linear models and
point out that the AR model can provides a better
performance. On the other hand, the non-linear

models are usually based on the Artificial Intelligent
approach. Y. Tae Chae et al. [6] present the using of
an Atrtificial Neural Network (ANN) model to
forecast the 15-minute electricity load in a building
by which the moderate prediction results can be
obtained in both daily load profile and daily peak
load. J. Massana et al. [4] also introduce a model
based on the multi-layer perceptron (MLP) for the
hourly load forecast.

Regarding the practical point of view, the time-
series approach is preferred due to its systematic
methodology with rigorous analysis from the basis of
statistics and probability theory. In order to employ
the suitable linear model for forecasting task, the
property of load profile of building should be
considered. The explicit properties of the time series
of load profile are 1) correlated observation; their
values are statistically dependent upon each other, 2)
non-stationary; no fixed mean, and 3) daily seasonal.

In this paper, the seasonal autoregressive
integrated moving average (SARIMA) model is used
to forecast the future load profile. A forecast model is
developed by using the Box-Jenkins methodology.
The advantages of this approach for load forecast are
as follows:

1) Box-Jenkins methodology has procedures to
deal with the correlated time series, therefore it is
rather more suitable than the regression and
exponential smoothing approaches.
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Fig. 1 Demand Forecast for Chulalongkorn University
Building Energy Management System (CUBEMS).

2) Non-stationary model for no-fixed mean can
be conducted by Autoregressive Integrated Moving
Average (ARIMA) process.

3) Box-Jenkins methodology provides the
models that are useful in forecasting time series
having seasonal variation.

2. Electricity Load Profile

The electricity usage of electrical engineering
building at Chulalongkorn University is considered
as a study case. The patterns of electricity
consumption of university buildings are dependent on
the working days, holidays, seasons and activities.
Because load profile has a daily pattern, we need to
use historical load data for forecasting. The historical
demand is measured during 9 months (1 April 2015 —
31 December 2015) and stored in the data storage of
the CUBEMS (Chulalongkorn University Building
Energy Management System) as shown in Fig. 1. The
raw data is sampled every one minute and the 15-
minute averaged power demand is calculated as
shown in Fig. 2 and Fig. 3 respectively. It can be seen
in Fig. 2 that the peak demand mostly concentrates in
April, which is correspond to the country’s peak
demand in the summer season, and gradually
decreases from May to July. The electricity
consumption increases again in August due to the
university’s classes starting in the first semester.

Fig. 3 shows the 15-minute averaged power
demand during one week. The electricity
consumption is rather high in workdays (Monday-
Friday) while the averaged electricity load is less
than 10 kW at weekends. In addition, the electricity
load on each workday starts to increase at 7:00 AM
and dies down at 8:00 PM. The peak load occurs
between 10:00 AM and 4:00 PM.

In this case study, the 5-week of workday’s load
data in Fig. 4 (between Aug. 3rd, 2015 and Sep. 4th,
2015) is used as the historical data for load
forecasting. And the future one-week load data of 5
workdays (from Mon. Sep. 7th, 2015 to Fri. Sep. 11th,
2015) is then estimated.
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Fig. 2 Power demand on workdays of Electrical
Engineering Building at Chulalongkorn University during
9 months (April-December 2015).
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Fig. 3 Averaged daily electricity load in one week of
Electrical Engineering Building at Chulalongkorn
University.

Power (kW)

Wed Thu Fri
Day

Fig. 4 Averaged daily electricity load for workdays of
Electrical Engineering Building at Chulalongkorn
University.
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3. Forecasting Model by Box-Jenkins
Methodology

The load data is denoted by a time series at
equally spaced time t,t-1t—2,... bY Y, Vi1 Yoo e -
Since the time series of load vy, is a correlated time
series, the forecasting model can be assumed by the

ARMA (Autoregressive and Moving Average)
models as follow:

Yo = #+¢1y1—1+"'+¢py17p + gt_ﬂgtfl_"'_gqgl—q (1)

Moving Average (MA) Model

Autoregressive (AR) Model

where u is constant mean, & is white noise error
term, p is the order of autoregressive model and g
is the order of moving-average model.

The general transformation that produces
stationary time series values can be written as

D d L\D d
= VL \% Yo = (l_ B ) (1_ B) Y (2)
——— N — -~
seasonal non—seasonal seasonal non-seasonal
difference  difference difference difference
operator operator operator operator

where B is backward shift operator, V is the non-
seasonal difference operator, d is the order of non-
seasonal differencing, Vv, is seasonal difference

operator, D is the order of seasonal differencing and
L is the seasonal period. And the general Seasonal
Autoregressive  Integrated  Moving  Average
(SARIMA) model can be given in (3).
$,(B) ®:(B)z, = 6,(B) ©,(B")¢ @)
— ——

- —
Generalized ~ Seasonal Non—seasonal ~ Seasonal
Non Seasonal AR opeator MA operator  MA operator
AR opeator

4,(B) = 1-4B-4B°—..—4,B° )
0,(8) = 1—918—9282—...—9qu (5)
(DP(BL) = 1_CD1LBL_(DZLBZL_-'-_(DPLBPL (6)

0,(B") = 1-©,B"-0,B" -..—-0,B%  (7)

The order of this general multiplicative seasonal
model is ARIMA (p,d,q)x(P, D,Q), . Box-Jenkins

methodology [7-9] provide the systematic procedure
to estimate the unknown parameters in the model, it
consists of four basic steps including identification,
estimation, diagnostic checking and forecasting as
shown in Fig. 5.

4. Representation of the Load Data by

Multiplicative Seasonal Models

In this paper, the historical load data is collected
during Aug. 3", 2015 to Sep. 4™, 2015. The load data
on weekends is excluded. The validity of resultant
models is verified by the load prediction for the next
5 workdays (Mon-Fri) between Sep. 7" and Sep 11",
2015. There are two case studies that are conducted
in order to represent the model of the load data. The
difference between these two case studies is due to
the usage of historical load data. The first case study
uses all historical data together to represent a single
model that is used to predict the daily load profile for
5 workdays. On the other hand, the second case study
separates the historical data into five sets according
to each workday (Mon-Fri), and five models are then
obtained. These five models are employed to forecast
the load of 5 workdays between Sep. 7" and Sep 11",
2015.

Following the basic steps of Box-Jenkins
methodology in Fig. 5, the details of model creation
for the first case study are proceeded.

4.1 1* step: Identification

The Autocorrelation Function (ACF) and Partial
Autocorrelation Function (PACF) are used to
investigate whether the time series data is stationary
or non-stationary. The ACF and the PACF are
calculated from original historical load data and are
plotted in Fig. 6. It unfortunately reveals that the
original load data y, is non-stationary time series,
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since the ACF dies down slowly with oscillation as
shown in Fig. 6.

One route cause of this non-stationary behavior is
the daily seasonal property of the load data. In order
to transform non-stationary time series (y, ) to

stationary time series ( z, ), the first seasonal

differences (D=1) are taken with the daily period
L=96 (there are 96 averaged-load values per day,
since the load demand is averaged for every 15
minutes). It is observed that, with the first seasonal
differences, the transformed values of ACF die down
quickly without spike at seasonal lags 2L, 3L,4L,....

However, the transformed values die down slowly
between lag 0 and seasonal lag 1L . This implies that
the transformed values are still non-stationary. The
first non-seasonal differences (d =1) are additionally
taken as written in (8).

1 1 96\1 1
Z = Vge v Yo = (1_ B ) (1_ B) Y (8)
N _
seasonal non—seasonal seasonal non—seasonal
difference  difference difference difference
operator operator operator operator

Fig. 7 well confirms that the transformation in (8)
can produce stationary time series z,, this is because

the transformed values of ACF die down quickly
even between lag 0 and seasonal lag 1L . To identify
the orders of SARIMA model, Box-Jenkins
methodology provides guidelines by examining the
ACF and PACF values in Fig. 7. The sample ACF
cuts off after lag 2; a spike appears at lag 2, and the
sample PACF dies down quickly after lag 2. This
behavior reflects the characteristic of non-seasonal
MA model with the order of 2 (q=2). The order of
seasonal model can be examined from the significant
spikes at lag 96 (1L) of sample ACF and at lags
96 (1L), 192 (2L), 288 (3L), 384 (4L) and 480 (5L) of
the sample PACF. The sample ACF cuts off after lag
1L and the sample PACF dies down after lags 1L in
a damped exponential fashion with oscillation at lags
2L, 3L, 4L and 5L . This reflects the seasonal MA
model with the order of 1 (Q =1) . It can be concluded
that the identification process is completed with the
selection of ARIMA (0,1, 2)x(0,1,1), as shown in
(9).

Ve V'Y, = 6,(B)6,(BY)s )

Table 1 Estimated Parameters for ARIMA (0,1, 2) x (0,1, 1)

Parameter Value
6 -0.230492
o, -0.444753
0, -0.7912
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Fig. 6 ACF and PACF for the original load data.
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Fig. 7 ACF and PACF for of the 1%-differenced and 96"-
differenced transformed values.

4.2 2" step: Estimation
The SARIMA model in (9) can be rewritten in
(10) and (11).
(1-B*)1-B)y, = (1-6B-6,B%)(1-6,B®)s (10)

Ve =Yt Yiees — Yo
AR Model

(11)
& =0, — 0,6, -0, o + 00,8 g +0,0,6 g
MA Model

There are three parameters that should be
estimated 4, , 6, and ®, . These estimates are

obtained by using a least square criterion. The Matlab
program is applied for the iterative search procedure
in order to find the least square estimates. Finally, the
model parameters are carried out in Table 1.

4.3 3" step: Diagnostic Checking

The adequacy of tentative model in (11) is tested
prior to using it to forecast. The diagnostic checking
is performed by the calculation of the ACF of

residual as shown in (12).
n-k

Z(et —&)(erk —€)

f = =8 (12)
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where e is the differences between the original load
data and the predictions from tentative model in (11).
In the sake of simplicity, if the values of ACF of
residuals, at all lags, are nearly zero, it implies that
the average of residuals is zero and white noise and
the model can be considered to be adequate. The
ACF of residuals is depicted in Fig. 8, it can be
observed that the values of ACF at some lower lags 2
and 3 are larger than the threshold, and the residuals
of this model are non-white noise and therefore, the
ARIMA (0,1, 2)x(0,1,1),, is deemed inadequate.

Nevertheless, the Box-Jenkins methodology
provides the procedure to make the improvement of
the model. The model is modified to be
ARIMA (1,1, 2)x(0,1,1),, . The order of non-seasonal

AR model is increased to be equal to one, this is to
arrange more influence from the non-seasonal AR
model. The modified ARIMA (1,1, 2)x (0,1, 1), can be

written in (13)-(15).
#(B) VeeV'y, = 6,(B)6,(B®) ¢, (13)
(1-¢4B)1-B*)1-B)y, = (1-6B-6,B*)(1-0,B%)¢, (14)
Ve =Yea Y =Yoo+ Yeos — Vior —#Yeor ¥ Yo +

Modified AR Model
& =081 =086, =016 o5 + 00,8 5 + 0,015
MA Model
The procedures of parameter estimation and
diagnostic checking are repeated over again. The
modified SARIMA model contains four parameters
4, 6,, 6, and ©, and the Table 2 indicates the

(15)

estimated parameters and Fig. 9 illustrates the ACF
of residuals of the modified model, it can be seen that
all samples of ACF residuals are less than the
threshold and nearly equal to zero. This means that
the modified ARIMA (1,1,2)x(0,11), in (15) is
adequate and appropriate model and can be adopted
for the forecasting process.

4.4 4" step: Forecasting

The model in (15) with the parameters in Table 2
is used to forecast future load values. Fig. 10 depicts
the comparison between the actual load data and the
forecasted load for 5 workdays. The resultant model
in (15) can fairly predict the loads. To evaluate the
accuracy of the forecast model, the Mean Absolute
Percentage Error (MAPE) is used to calculate the
forecast error as follow:

MAPE %ZM 100 (15)

t=1 y(
where v, is actual load at time t, y, is forecast load
attime tand n is the number of forecast load.
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Fig. 8 Standardized residuals and ACF for the residuals of
the tentative SARIMA model (0,1, 2)x(0,1,1),; -
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Fig. 9 Standardized residuals and ACF for the residuals of
the tentative SARIMA model (1,1,2)x(0,1,1),, -

Table 2 Estimated Parameters for ARIMA (1,1, 2) x (0,1, 1),

Parameter Value
") 0.405931
o, -0.58512
o, -0.30291
0, -0.797306

5. Evaluation of Forecast Models

In this first case study of load forecast, the MAPE
is 19.27%. Although the MAPE is rather large, the
prediction for the peak-load instant is fairly accurate
as shown in Table 4. The ARIMA
(L,1,2)x(0,1, 1), (first case study) can successfully

predicts the peak-load instants for all 5 workdays.
And this can be useful for the peak-shaving
application.

For the second case study, the prediction models
can be obtained by using the same procedure of Box-
Jenkins methodology. Five SARIMA models for
each workday are given in Table 3. Fig. 11 shows the
comparison between the actual load data and
forecasted load data. The MAPE values are
calculated and also listed in Table 3, the average of
MAPE in this second case study is 18.82%. The
MAPE of second case study is better than the first
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case study, this reveals that the each workday has the
salient behavior of energy usage. However, the
prediction of peak-load instant of this second case
study is less accurate in comparison to the first case,
this is probably due to the amount of history data is
five-time less than that of the first case study.

By comparison with other linear models
introduced in the literature, the research works in [3-
5] present the hourly load forecasting and the values
of MAPE are less than 10%. These hourly load
models are seemingly suitable for some applications,
nevertheless, these models should be reexamined for
the shorter-term forecasting, e.g. peak-shaving
application which requires the 15-minute forecast
model.

6. Conclusion

This paper presents a short-term electricity load
forecasting in building by using the SARIMA model.
The SARIMA models are obtained by the Box-
Jenkins methodology. With regarding to the
systematic approach of Box-Jenkins methodology,
the model can be constructed by considering the
characteristics of historical load data. The validity of
SARIMA models are evaluated with the actual load
data and the accuracy of the models are acceptable
for load forecasting in the buildings, especially the
prediction of the peak-load instant. It can be expected
that the proposed SARIMA models can be used to
further development of various applications in BEMS,
e.g. peak shaving, self-consumption and net-zero
building.

Table 3 Forecast Models for Second Case Study.

Case Model MAPE (%)
Monday ARIMA (2,1,1) x(0,1, 1)y 17.71
Tuesday ARIMA (2,1,1)x(0,1, 1)y 16.81
Wednesday | ARIMA (2,1,2)x(0,1 1), 19.17
Thursday ARIMA (2,1,2)x (0,1, 1), 17.33
Friday ARIMA (2,1, 2)x(0,1,1),, 23.09

Average 18.82

Table 4 Prediction of Peak-load Instant.

Day Actual First Case | Second Case
Monday 14.15 14.30 14.30
Tuesday 14.45 14.30 14.45
Wednesday 14.30 14.45 15.00
Thursday 14.45 14.30 14.30
Friday 15.00 14.30 14.00
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Fig. 10 Load forecasts given by ARIMA (1,1, 2)x(0,1,1),, for
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Fig. 11 Load forecasts given by SARIMA models in
Table 3 for 5 workdays.
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