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Abstract 

Short-term electricity load forecasting is essential for Building Energy Management System (BEMS) in 

various aspects, e.g. peak-shaving application, planning for self-consumption with renewable energy, net-zero 

energy building.  This paper presents the forecast models for load demand in buildings by using the time-series 

approach. The load-forecast models are created from the step-by-step procedure of Box-Jenkins Methodology 

and the Seasonal Autoregressive Integrated Moving Average (SARIMA) models are obtained. The resultant 

models are evaluated with the actual load of Electrical Engineering Building at Chulalongkorn University. The 

proposed models can fairly forecast the load pattern for the workdays with roughly 20% Mean Absolute 

Percentage Error (MAPE). In addition, the models are moderately successful to predict the peak-load instant. 
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1. Introduction 

In Thailand, commercial building sector governs 

high electricity consumption. [1] Therefore, a lot of 

Building Energy Management Systems (BEMS) are 

conducted in order to not only reduce the electricity 

bills, but also to help defer the construction of new 

power plants. Electricity bills of commercial 

buildings, including energy charges and demand 

charges. To reduce the demand charges, Battery 

Energy Storage System (BESS) is usually employed 

as shown in Fig. 1. The load profiles of building are 

needed to achieve the peak-shaving application. 

Electricity load forecast is an essential component 

to generate the command signal for BESS to 

successfully reduce the peak demand. Short-term 

electricity load forecast predicts the future value from 

hours to weeks for energy management. Various 

models are employed in the literature which can be 

classified into two main types; the linear models and 

the non-linear models, L. Hernandez et al. [2]. The 

linear models are typically based on the time series 

approach. L. Jong Hun et al. [3] propose an 

exponential smoothing linear model to forecast the 

daily load along with temperature in building. J. 

Massana et al. [4] mention the Multiple Linear 

Regression (MLR) linear model and Y. Penya et al. 

[5] draw a comparison between the Autoregressive 

(AR) linear model and other non-linear models and 

point out that the AR model can provides a better 

performance. On the other hand, the non-linear 

models are usually based on the Artificial Intelligent 

approach. Y. Tae Chae et al. [6] present the using of 

an Artificial Neural Network (ANN) model to 

forecast the 15-minute electricity load in a building 

by which the moderate prediction results can be 

obtained in both daily load profile and daily peak 

load. J. Massana et al. [4] also introduce a model 

based on the multi-layer perceptron (MLP) for the 

hourly load forecast. 

Regarding the practical point of view, the time-

series approach is preferred due to its systematic 

methodology with rigorous analysis from the basis of 

statistics and probability theory. In order to employ 

the suitable linear model for forecasting task, the 

property of load profile of building should be 

considered. The explicit properties of the time series 

of load profile are 1) correlated observation; their 

values are statistically dependent upon each other, 2) 

non-stationary; no fixed mean, and 3) daily seasonal. 

In this paper, the seasonal autoregressive 

integrated moving average (SARIMA) model is used 

to forecast the future load profile. A forecast model is 

developed by using the Box-Jenkins methodology. 

The advantages of this approach for load forecast are 

as follows: 

1) Box-Jenkins methodology has procedures to 

deal with the correlated time series, therefore it is 

rather more suitable than the regression and 

exponential smoothing approaches. 
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Fig. 1 Demand Forecast for Chulalongkorn University 

Building Energy Management System (CUBEMS). 

2) Non-stationary model for no-fixed mean can 

be conducted by Autoregressive Integrated Moving 

Average (ARIMA) process. 

3) Box-Jenkins methodology provides the 

models that are useful in forecasting time series 

having seasonal variation. 
 

2. Electricity Load Profile 

The electricity usage of electrical engineering 

building at Chulalongkorn University is considered 

as a study case. The patterns of electricity 

consumption of university buildings are dependent on 

the working days, holidays, seasons and activities. 

Because load profile has a daily pattern, we need to 

use historical load data for forecasting. The historical 

demand is measured during 9 months (1 April 2015 – 

31 December 2015) and stored in the data storage of 

the CUBEMS (Chulalongkorn University Building 

Energy Management System) as shown in Fig. 1. The 

raw data is sampled every one minute and the 15-

minute averaged power demand is calculated as 

shown in Fig. 2 and Fig. 3 respectively. It can be seen 

in Fig. 2 that the peak demand mostly concentrates in 

April, which is correspond to the country’s peak 

demand in the summer season, and gradually 

decreases from May to July. The electricity 

consumption increases again in August due to the 

university’s classes starting in the first semester. 

Fig. 3 shows the 15-minute averaged power 

demand during one week. The electricity 

consumption is rather high in workdays (Monday-

Friday) while the averaged electricity load is less 

than 10 kW at weekends. In addition, the electricity 

load on each workday starts to increase at 7:00 AM 

and dies down at 8:00 PM. The peak load occurs 

between 10:00 AM and 4:00 PM. 

In this case study, the 5-week of workday’s load 

data in Fig. 4 (between Aug. 3rd, 2015 and Sep. 4th, 

2015) is used as the historical data for load 

forecasting. And the future one-week load data of 5 

workdays (from Mon. Sep. 7th, 2015 to Fri. Sep. 11th, 

2015) is then estimated. 
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Fig. 2 Power demand on workdays of Electrical 

Engineering Building at Chulalongkorn University during 

9 months (April-December 2015). 
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Fig. 3 Averaged daily electricity load in one week of 

Electrical Engineering Building at Chulalongkorn 

University. 
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Fig. 4 Averaged daily electricity load for workdays of 

Electrical Engineering Building at Chulalongkorn 

University. 
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Fig. 5 Flow chart of basic steps of Box-Jenkins 

Methodology. 
 

3. Forecasting Model by Box-Jenkins 

Methodology 

The load data is denoted by a time series at 

equally spaced time , 1, 2, ...t t t   by 
1 2, , , ...t t ty y y 

 . 

Since the time series of load 
ty  is a correlated time 

series, the forecasting model can be assumed by the 

ARMA (Autoregressive and Moving Average) 

models as follow: 

1 1 1 1

( ) ( )

  ...   ...t t p t p t t q t q

Autoregressive AR Model Moving Average MA Model

y y y                   (1) 

where   is constant mean, 
t  is white noise error 

term, p  is the order of autoregressive model and q  

is the order of moving-average model.  

The general transformation that produces 

stationary time series values can be written as 

            (1 ) (1 )D d L D d

t L t t

seasonal non seasonalseasonal non seasonal
difference differencedifference difference
operator operatoroperator operator

z y B B y



       (2) 

where B  is backward shift operator,   is the non-

seasonal difference operator, d  is the order of non-

seasonal differencing, L  is seasonal difference 

operator, D  is the order of seasonal differencing and 

L  is the seasonal period. And the general Seasonal 

Autoregressive Integrated Moving Average 

(SARIMA) model can be given in (3). 

  ( ) ( )  ( ) ( )L L

p P t q Q t

SeasonalGeneralized Non seasonal Seasonal
AR opeatorNon Seasonal MA operator MA operator

AR opeator

B B z B B  



    (3) 

 2

1 2( ) 1 ... p

p pB B B B         (4) 

 2

1 2( ) 1 ... q

q qB B B B         (5) 

 2

1 2( ) 1 ...L L L PL

P L L PLB B B B       (6) 

 2

1 2( ) 1 ...L L L QL

Q L L QLB B B B       (7) 

The order of this general multiplicative seasonal 

model is ARIMA ( , , ) ( , , )Lp d q P D Q . Box-Jenkins 

methodology [7-9] provide the systematic procedure 

to estimate the unknown parameters in the model, it 

consists of four basic steps including identification, 

estimation, diagnostic checking and forecasting as 

shown in Fig. 5. 
 

4. Representation of the Load Data by 

Multiplicative Seasonal Models 

In this paper, the historical load data is collected 

during Aug. 3
rd

, 2015 to Sep. 4
th

, 2015. The load data 

on weekends is excluded. The validity of resultant 

models is verified by the load prediction for the next 

5 workdays (Mon-Fri) between Sep. 7
th

 and Sep 11
th

, 

2015. There are two case studies that are conducted 

in order to represent the model of the load data. The 

difference between these two case studies is due to 

the usage of historical load data. The first case study 

uses all historical data together to represent a single 

model that is used to predict the daily load profile for 

5 workdays. On the other hand, the second case study 

separates the historical data into five sets according 

to each workday (Mon-Fri), and five models are then 

obtained. These five models are employed to forecast 

the load of 5 workdays between Sep. 7
th

 and Sep 11
th

, 

2015. 

Following the basic steps of Box-Jenkins 

methodology in Fig. 5, the details of model creation 

for the first case study are proceeded. 
 

4.1 1
st
 step: Identification 

The Autocorrelation Function (ACF) and Partial 

Autocorrelation Function (PACF) are used to 

investigate whether the time series data is stationary 

or non-stationary. The ACF and the PACF are 

calculated from original historical load data and are 

plotted in Fig. 6.  It unfortunately reveals that the 

original load data ty  is non-stationary time series, 

Original 

Load 
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since the ACF dies down slowly with oscillation as 

shown in Fig. 6. 

One route cause of this non-stationary behavior is 

the daily seasonal property of the load data. In order 

to transform non-stationary time series (
ty ) to 

stationary time series (
tz ), the first seasonal 

differences ( 1D  ) are taken with the daily period 

96L   (there are 96 averaged-load values per day, 

since the load demand is averaged for every 15 

minutes). It is observed that, with the first seasonal 

differences, the transformed values of ACF die down 

quickly without spike at seasonal lags 2 , 3 ,4 ,...L L L . 

However, the transformed values die down slowly 

between lag 0 and seasonal lag 1L . This implies that 

the transformed values are still non-stationary. The 

first non-seasonal differences ( 1d  ) are additionally 

taken as written in (8). 

 1 1 96 1 1

96          (1 ) (1 )t t t

seasonal non seasonalnon seasonalseasonal
difference differencedifferencedifference
operator operatoroperatoroperator

z y B B y



       (8) 

Fig. 7 well confirms that the transformation in (8) 

can produce stationary time series
tz , this is because 

the transformed values of ACF die down quickly 

even between lag 0 and seasonal lag 1L . To identify 

the orders of SARIMA model, Box-Jenkins 

methodology provides guidelines by examining the 

ACF and PACF values in Fig. 7. The sample ACF 

cuts off after lag 2; a spike appears at lag 2, and the 

sample PACF dies down quickly after lag 2. This 

behavior reflects the characteristic of non-seasonal 

MA model with the order of 2 ( 2)q  . The order of 

seasonal model can be examined from the significant 

spikes at lag 96 (1 )L  of sample ACF and at lags 

96 (1 )L , 192 (2 )L , 288 (3 )L , 384 (4 )L  and 480 (5 )L of 

the sample PACF. The sample ACF cuts off after lag 

1L  and the sample PACF dies down after lags 1L  in 

a damped exponential fashion with oscillation at lags 

2L , 3L , 4L  and 5L . This reflects the seasonal MA 

model with the order of 1 ( 1)Q  . It can be concluded 

that the identification process is completed with the 

selection of ARIMA 
96(0,1, 2) (0,1,1)  as shown in 

(9). 

 1 1 96

96 2 1( ) ( )t ty B B      (9) 

 

Table 1 Estimated Parameters for ARIMA
96(0,1, 2) (0,1,1)  

Parameter Value 

1  -0.230492 

2  -0.444753 

1  -0.7912 
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Fig. 6 ACF and PACF for the original load data. 
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Fig. 7 ACF and PACF for of the 1st-differenced and 96th-

differenced transformed values. 
 

4.2 2
nd

 step: Estimation 

The SARIMA model in (9) can be rewritten in 

(10) and (11). 

 96 2 96

1 2 1(1 )(1 ) (1 )(1 )t tB B y B B B         (10) 

 

1 96 97

1 1 2 2 1 96 1 1 97 2 1 98

t t t t

AR Model

t t t t t t

MA Model

y y y y

         

  

    

   

      
(11) 

There are three parameters that should be 

estimated 
1 , 

2  and 
1 . These estimates are 

obtained by using a least square criterion. The Matlab 

program is applied for the iterative search procedure 

in order to find the least square estimates. Finally, the 

model parameters are carried out in Table 1. 
 

4.3 3
rd

 step: Diagnostic Checking 

The adequacy of tentative model in (11) is tested 

prior to using it to forecast. The diagnostic checking 

is performed by the calculation of the ACF of 

residual as shown in (12). 
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where e  is the differences between the original load 

data and the predictions from tentative model in (11). 

In the sake of simplicity, if the values of ACF of 

residuals, at all lags, are nearly zero, it implies that 

the average of residuals is zero and white noise and 

the model can be considered to be adequate. The 

ACF of residuals is depicted in Fig. 8, it can be 

observed that the values of ACF at some lower lags 2 

and 3 are larger than the threshold, and the residuals 

of this model are non-white noise and therefore, the 

ARIMA
96(0,1, 2) (0,1,1)  is deemed inadequate. 

Nevertheless, the Box-Jenkins methodology 

provides the procedure to make the improvement of 

the model. The model is modified to be 

ARIMA
96(1,1, 2) (0,1,1) . The order of non-seasonal 

AR model is increased to be equal to one, this is to 

arrange more influence from the non-seasonal AR 

model. The modified ARIMA
96(1,1, 2) (0,1,1)  can be 

written in (13)-(15). 

 1 1 96

1 96 2 1( ) ( ) ( )t tB y B B       (13) 

 96 2 96

1 1 2 1(1 )(1 )(1 )   (1 )(1 )t tB B B y B B B          (14) 

 

1 1 1 1 2 96 97 1 97 1 98

1 1 2 2 1 96 1 1 97 2 1 98

t t t t t t t t

Modified ARModel

t t t t t t

MA Model

y y y y y y y y   

         

      

    

       

      
 (15) 

The procedures of parameter estimation and 

diagnostic checking are repeated over again. The 

modified SARIMA model contains four parameters 

1 , 
1 , 

2  and 
1  and the Table 2 indicates the 

estimated parameters and Fig. 9 illustrates the ACF 

of residuals of the modified model, it can be seen that 

all samples of ACF residuals are less than the 

threshold and nearly equal to zero. This means that 

the modified ARIMA
96(1,1, 2) (0,1,1)  in (15) is 

adequate and appropriate model and can be adopted 

for the forecasting process. 
 

4.4 4
th

 step: Forecasting 

The model in (15) with the parameters in Table 2 

is used to forecast future load values. Fig. 10 depicts 

the comparison between the actual load data and the 

forecasted load for 5 workdays. The resultant model 

in (15) can fairly predict the loads. To evaluate the 

accuracy of the forecast model, the Mean Absolute 

Percentage Error (MAPE) is used to calculate the 

forecast error as follow: 

 
1

ˆ1
100

n
t t

t t

y y
MAPE

n y


   (15) 

where ty  is actual load at time t, ˆ
ty  is forecast load 

at time t and n  is the number of forecast load. 
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Fig. 8 Standardized residuals and ACF for the residuals of 

the tentative SARIMA model 
96(0,1, 2) (0,1,1) . 
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Fig. 9 Standardized residuals and ACF for the residuals of 

the tentative SARIMA model 
96(1,1, 2) (0,1,1) . 

Table 2 Estimated Parameters for ARIMA
96(1,1, 2) (0,1,1)  

Parameter Value 

1  0.405931 

1  -0.58512 

2  -0.30291 

1  -0.797306 

 

5. Evaluation of Forecast Models 

In this first case study of load forecast, the MAPE 

is 19.27%. Although the MAPE is rather large, the 

prediction for the peak-load instant is fairly accurate 

as shown in Table 4. The ARIMA 

96(1,1, 2) (0,1,1) (first case study) can successfully 

predicts the peak-load instants for all 5 workdays. 

And this can be useful for the peak-shaving 

application. 

For the second case study, the prediction models 

can be obtained by using the same procedure of Box-

Jenkins methodology. Five SARIMA models for 

each workday are given in Table 3. Fig. 11 shows the 

comparison between the actual load data and 

forecasted load data. The MAPE values are 

calculated and also listed in Table 3, the average of 

MAPE in this second case study is 18.82%. The 

MAPE of second case study is better than the first 

  ACF values exceed the acceptable threshold 
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case study, this reveals that the each workday has the 

salient behavior of energy usage. However, the 

prediction of peak-load instant of this second case 

study is less accurate in comparison to the first case, 

this is probably due to the amount of history data is 

five-time less than that of the first case study. 

By comparison with other linear models 

introduced in the literature, the research works in [3-

5] present the hourly load forecasting and the values 

of MAPE are less than 10%. These hourly load 

models are seemingly suitable for some applications, 

nevertheless, these models should be reexamined for 

the shorter-term forecasting, e.g. peak-shaving 

application which requires the 15-minute forecast 

model. 
 

6. Conclusion 

This paper presents a short-term electricity load 

forecasting in building by using the SARIMA model. 

The SARIMA models are obtained by the Box-

Jenkins methodology. With regarding to the 

systematic approach of Box-Jenkins methodology, 

the model can be constructed by considering the 

characteristics of historical load data. The validity of 

SARIMA models are evaluated with the actual load 

data and the accuracy of the models are acceptable 

for load forecasting in the buildings, especially the 

prediction of the peak-load instant. It can be expected 

that the proposed SARIMA models can be used to 

further development of various applications in BEMS, 

e.g. peak shaving, self-consumption and net-zero 

building. 

Table 3 Forecast Models for Second Case Study. 

Case Model MAPE (%) 

Monday ARIMA
96(2,1,1) (0,1,1)  17.71 

Tuesday ARIMA
96(2,1,1) (0,1,1)  16.81 

Wednesday ARIMA
96(2,1, 2) (0,1,1)  19.17 

Thursday ARIMA
96(2,1,1) (0,1,1)  17.33 

Friday ARIMA
96(2,1, 2) (0,1,1)  23.09 

Average 18.82 

 

Table 4 Prediction of Peak-load Instant. 

Day Actual First Case Second Case 

Monday 14.15 14.30 14.30 

Tuesday 14.45 14.30 14.45 

Wednesday 14.30 14.45 15.00 

Thursday 14.45 14.30 14.30 

Friday 15.00 14.30 14.00 
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Fig. 10 Load forecasts given by ARIMA

96(1,1, 2) (0,1,1)  for 

5 workdays. 
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Fig. 11 Load forecasts given by SARIMA models in 

Table 3 for 5 workdays. 
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