The Measurement Uncertainty Evaluation of Accuracy and Precision for 6-axis Robotic Arm in Accordance with ISO 9283 by Laser Tracker


  • Auttapoom Loungthongkam D.Eng student
  • ชนะ รักษ์ศิริ
  • กฤติยา พาอิ่ม


Uncertainty of robotics arm, accuracy and pose repeatability of robotics arm, ISO 9283


Industrial robots are the equipment that is widely used in the industry, medical, military because they are highly flexible, accurate, precision and reliable. It is very necessary to work for complex tasks that require more accuracy and precision of automation system. In this research present an analysis of the uncertainty of the accuracy and precision of 6-axis robotic arm by using laser tracker as comply with the requirements of ISO 9283. In this paper, the measurement is separated into 2 measuring tests, post accuracy and repeatability tests and path accuracy and repeatability tests. In the measuring test, a laser reflector is installed at the robot end effector to measure the designed position while testing and selected plane and measured plane, the measurement point, the number of repeated measurement and the measurement pose and path sequence meet the ISO 9283. The test results of the pose measuring tests were evaluated by 5 measurement points, the average pose accuracy (APP) is 0.5679 mm. The average pose repeatability (RPl) is 0.0163 mm. The measurement uncertainty is ± 0.0236 millimeters. The test results of the path measuring test were evaluated by the 11 measurement points, the average path accuracy (ATP) is 0.5818 mm. The average repeatability (RTP) is 0.0264 mm. The measurement uncertainty is ± 0.0243 millimeters. The reported expanded uncertainty of measurement is based on a standard uncertainty multiplied by a coverage factor k =2, providing a level of confidence of approximately 95%.


Mohamed Slamani (2012). Assessment of the positioning performance of an industrial robot. Industrial Robot, 39: 57-68.

Arif Şirinterlikçi, Murat Tiryakioğlu, Adam Bird, Amie Harris and Kevin Kweder (2009). Repeatability and accuracy of an industrial robot: Laboratory experience for a design of experiments course. Technology Interface, 9.

Jan Semjon, Rudolf Janos, Marek Sukop, Peter Tuleja, Mikulas Hajduk, Ondrej Jurus, Peter Marcinko, Ivan Virgala and Marek Vagas (2020). Verification of the UR5 robot’s properties after a crash caused by a fall of a transferred load from a crane. Advanced Robotic Systems.

นริสา ทองนุ่ม (2560). การประยุกต์ใช้เลเซอร์แทรกเกอร์ในการตรวจสอบค่าความถูกต้องและแม่นยำของหุ่นยนต์เคลื่อนที่อิสระ 6 แกนตามมาตรฐาน ISO 9283. ปริญญาวิศวกรรมศาสตร์มหาบัณฑิต.

Raksiri Chana, Pa-im Krittiya and Rodkwan Supasit (2020). An analysis of joint assembly geometric errors affecting end-effector for six-axis robots. Robotics, 27(9): 1-13.

Zhu Weidong, Li Guanhua, Dong Huiyue and Ke Yinglin (2019). Positioning error compensation on two-dimensional manifold for robotic machining. Robotics and Computer Integrated Manufacturing, 59: 394-405.

Yuanfan Zeng, Wei Tian and Wenhe Liao (2016). Positional error similarity analysis for error compensation of industrial robots. Robotics and Computer-Integrated Manufacturing, 42: 113-120.

Gang Xiong, Zhou-Long Li, Ye Ding and LiMin Zhu (2020). A closed-loop error compensation method for robotic flank milling. Robotics and Computer-Integrated Manufacturing, 63: 1-9.

Rui Li and Yang Zhao (2016). Dynamic error compensation for industrial robot based on thermal effect model, Measurement, 88: 113-120.

พงศกร รูปใหญ่ และ เบญจมาศ พนมรัตนรักษ์ (2561). การลดระยะผิดพลาดจากการเคลื่อนที่ของหุ่นยนต์แขนกล SEIKO D-TRAN RT3200 โดยใช้การควบคุมแบบทำซ้ำที่ปรับปรุงใหม่. วารสารวิชาการพระจอมเกล้าพระนครเหนือ, 28(2): 299-312.

Jorge Santoria and Mauel Gines (2013). Uncertainty estimation in robot kinematic calibration. Robotics and Computer-Integrated Manufacturing, 29: 370-384.

Hoai-Nhan Nguyen, Jian Zhou and Hee-Jun Kang (2013). A New Full Pose Measurement Method for Robot Calibration. Sensors, 13: 9132-9147.

Ana Cristina Majarena, Javier Conte, Jorge Santolaria and Raquel Acero (2017). A New Methodology for Kinematic Parameter Identification in Laser Trackers. Intech, 171-191.

Jindong WANG, Junjie GUO, Hao WANG and Yufen DENG (2011). The Evaluation of Measurement Uncertainty for Laser Tracker based on Monte Carlo Method. Mechatronics and Automation, 608-612.

International Organization for Standardization ISO. (1998). Manipulating Industrial Robots–Performance Criteria and Related Test Methods.

สมาคมส่งเสริมเทคโนโลยี (ไทย-ญี่ปุ่น) (2551). การสอบเทียบเครื่องมือวัด. แผนกวารสารวิชาการ ฝ่ายสำนักพิมพ์ สมาคมส่งเสริมเทคโนโลยี (ไทย-ญี่ปุ่น), 1.

United Kingdom Accreditation Service. (2019). The Expression of Uncertainty and Confidence in Measurement, M3003.






งานวิจัย (Research papers)