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Extreme Learning Machine for Pre-Hypertension Classification
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This paper proposes a method to classify the high-risk populations for Pre-
hypertension with Extreme Learning Machine [ELM). An important advantage of ELM
algorithm is fast learning, and it also provides a higher accuracy to the classification
problem. This research aims to study ELM for as a tool to analyze the medical data. We
compare the accuracy performance of the classification of Pre-Hypertension with the
traditional model such as Multilayer Perceptron-Backpropagation (MLP-BP], and
Multilayer Perceptron-Levenberg-Marquardt (MLP-LM). Data sets used in the experiments
are the screening risk groups of the population Age 15 years and over and located in
Charoensin District, Sakon Nakhon Province, fiscal year 2012 between October and
September 2011 and 2012. Those data set have 12 factors, 2,987 samples. The
experimental results showed that ELM gave the highest accuracy performance [90.95

percent as average).
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