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Facility Energy Usage Modeling and Medium Term Load Forecasting With
Avrtificial Neural Networks And Adaptive Neuro-Fuzzy Inference Systems
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s:0:0UNANZOVOIMSAISIAQUIT IToUSUUSIUS:ANENWMSTaWAWILTUOINISTIA WS
Us:Hgawauwnu aaridny niazunlovavioadou funudseticlsinsvenaus:aninoy  (Artificial
Neural Network, ANN ) lia:s:uuouuulzdinsvengusudold (ANFIS) 1us:uusaoviia:nungns
TBWAWUZOVAVSIDUAI WA:QINTUOMSAISIAAUITT MSMLNYBUOEAUUS:aMSIAWAWIU
JOVOINS NISASOUNSOVOIMSTOVANAT Fuwamsrunglasvehous:anineuliwanisiunena
nohs:uvUUTEINSVUUSUAIA laswamsnaaavinsveheUs:aNIRgutnA WEOWAI0IAY
Auysni (Mean Absolute Percentage Error : MAPE) GRAQINAU 1.2674 % Tudduzovs:uuouuiu

WodlnsveheUsucoidn1 MAPE GRAQINAU 3.5157 %

AAAY

lasstnauszanmiien ssuvauuuiledlasaneUTudila wuudnaeanislingany
Indheesdsdnnemuazan Maviuneivanszezuiunans

This paper presents facility energy usage modeling and medium term load forecasting for Qhouse
Lumpini Building. Improving the energy efficiency of building can save energy, reduce cost, and protect
the environment. In this research, Artificial Neural Network and Adaptive Neuro-Fuzzy Inference
Systems are used to model and predict the facility power usage of Qhouse Lumpini building.
The prediction is based on the building power usage history and occupancy rate . The results indicate
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that ANN yields better performance than ANFIS. Artificial Neural Network has the best mean
absolute percentage error of 1.2674 % whereas Adaptive Neuro-Fuzzy Inference Systems have the

best mean absolute percentage error of 3.5157 % .

Keywords

Artificial Neural Networks, Adaptive Neuro-Fuzzy Inference Systems,

Facility Energy Usage Modeling, Medium Term Load Forecasting
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M13199 4 UanensilSeuiieudeyauazAnianaInsening ANN wag ANFIS
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Back-Propagation

Sugeno

1st Layer Tan-Sigmoid

Input 1 Number of MFs 3, gaussmf

2nd Layer Tan-Sigmoid

Input 2 Number of MFs 3, gaussmf

Output Layer Tan-Sigmoid

Input 3 Number of MFs 3, gaussmf

Transfer Function, MF

Input 4 Number of MFs 3, gaussmf

Input 5 Number of MFs 3, gaussmf

Input 6 Number of MFs 3, gaussmf

Output MF, constant

Training (sets) 53 53
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Training Method Levenberg-Marquardt Hybrid (Gradient Descent, LSE)
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Test MAPE (%) 1.2674E+00 3.5157E+00
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