
51 

ฉบับที่ 91 ปีที่ 28 มกราคม - มีนาคม 2558 

การพิสูจน์ตัวตนโดยจังหวะการพิมพ์ด้วยวิธี
การวัดความต่างของเส้นโคจร

Keystroke Dynamics Authentication with Trajectory Dissimilarity

เกษม หวังสุข และ ธนภัทร์ อนุศาสน์อมรกุล
ภาควิชาวิทยาการคอมพิวเตอร์และสารสนเทศ  

คณะวิทยาศาสตร์ประยุกต์  มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าพระนครเหนือ
Email: digital_hyper@hotmail.com1,tanapata@kmutnb.ac.th2

บทคัดย่อ

	 	 การพสิจูน์ตัวตนบนระบบคอมพวิเตอร์ในปัจจบุนัใช้ระบบ Username และ Password ซึง่ระบบดงั

กล่าวยังมจีดุอ่อนเนือ่งจาก Username ถกูเปิดเผยได้โดยง่าย และผู้โจมตเีพยีงคาดเดา Password เท่านัน้ งาน

วจิยันีจ้งึมแีนวคดิทีจ่ะเสรมิความแขง็แกร่งของระบบโดยการผนวกจงัหวะการพมิพ์ (Keystroke Dynamics) 

ซึง่เป็นมาตรวัดทางชวีะแบบพฤตกิรรมอย่างหนึง่เข้าไปกบั Username เนือ่งจาก Password มกีารเปลีย่นแปลง

อยูบ่่อยครัง้ตามนโยบายความปลอดภยัในขณะที ่ Username จะไม่มกีารเปลีย่นแปลง โดยได้น�ำเสนอการ

วเิคราะห์และศกึษาพฤตกิรรมจงัหวะการพมิพ์ของ Username ทีม่ขีนาดข้อมลูตวัอย่างค่อนข้างเล็กและประยุกต์

ใช้การวเิคราะห์ความแตกต่างของเส้นโคจร เพือ่ใช้เป็นอลักอรทิมึหลกัในการพสิจูน์ตวัตน รวมท้ังได้แสดงวธิี

การเลือก Feature ของจังหวะการพิมพ์ เพื่อน�ำมาประกอบเป็นเส้นโคจรที่ให้ผลการพิสูจน์ตัวตนที่มี

ประสิทธภิาพสงู โดยมคีวามถกูต้อง96% หรอืมคีวามผดิพลาด 4%

ค�ำส�ำคัญ

การพิสูจน์ตัวตน จังหวะการพิมพ์

Abstract

	 From a typical authentication scheme, a username and a password are used for user verification 

process. However, the scheme still has some weaknesses because a username is not secret and an 

imposter can guess a password to break into the system. Our research focuses on this weakness and 

tries to improve security level of this system by combining keystroke dynamics into the system. A 

username is normally unchanged but a password should be changed regularly for security purposes. 

Therefore, we propose to investigate a keystroke dynamics profile of a username with a small set of 

sample data and use trajectory dissimilarity for the main algorithm for authentication verification. We 

also propose a method for keystroke dynamics feature selection to build a trajectory profile which 

givesauthentication accuracy 96% or 4% equal error rate (ERR).
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1. ค�ำน�ำ
	 ในปัจจบุนัระบบคอมพวิเตอร์ได้เข้ามามบีทบาท

ส�ำคัญ ส่งผลให้การรักษาความปลอดภัยบนระบบ

คอมพิวเตอร์เพ่ือรักษาสิทธิและข้อมูลของผู้ใช้งาน 

มีความส�ำคัญมากขึ้นเช่นกัน การพิสูจน์ตัวตนบน

ระบบคอมพิวเตอร์ด้วย Username และ Password 

เป็นวิธีการที่ใช้อย่างแพร่หลายในระบบคอมพิวเตอร์

เกอืบทกุระบบ ซึง่ระบบการพสิจูน์ตวัตนดงักล่าวยงัมี

จุดอ่อน เนื่องจากผู้โจมตีสามารถคาดเดา Password 

ให้ถูกต้องเท่านั้น และ Username ไม่เป็นความลับ

คาดเดาได้ง่าย งานวิจัยนี้จึงได้มีแนวคิดโดยใช้ User-

name ผนวกกบัรหสัลบับางอย่างทีเ่ป็นความลบัต่อผู้

โจมตแีต่ง่าย และไม่ต้องจดจ�ำส�ำหรบัผูใ้ช้ทีเ่ป็นเจ้าของ

ตวัจริง จงึน�ำมาซ่ึงการใช้จังหวะการพมิพ์ (Keystroke 

Dynamics) ซึ่งเป็นมาตรวัดทางชีวะแบบพฤติกรรม

ซึ่งต้องการ Hardware เพียงแป้นพิมพ์ (Keyboard) 

เท่านั้น [1]

	 Keystroke Dynamics เป็นหลักการที่ตั้งอยู่ 

บนพื้นฐานของเวลาในการกดคีย ์บนแป้นพิมพ์  

(Keyboard) ซึ่งตั้งสมมติฐานว่าจังหวะการพิมพ์ของ

แต่ละคนจะมีลักษณะเฉพาะตัวและสามารถน�ำมาใช้

ในระบบการพิสูจน์ตัวตนได้ Feature พ้ืนฐานของ 

Keystroke Dynamics [1] มีดังนี้ Key Hold Time: 

เวลาที่กดคีย์ค้างไว้ โดยจับเวลาต้ังแต่เร่ิมกดคีย์จน

กระทัง่ปล่อยคย์ี Interkey Time: เวลาทีเ่ปลีย่นคย์ีใด

ไปสู่อีกคีย์หน่ึงซึ่งอาจได้เป็นตัวเลขค่าบวกหรือลบ 

กรณีที่ได้ค่าบวกคือมีการปล่อยคีย์ก่อนหน้าก่อนที่จะ

กดคีย์ถัดไป หากได้ค่าลบคือมีการกดคีย์ถัดไปก่อนที่

จะปล่อยคีย์ก่อนหน้า หรือมีการกดคีย์ซ้อนกันในช่วง

เวลาท่ีเปลีย่นคย์ี Latency: เวลาทีเ่ริม่กดคย์ีจนกระทัง่

กดคย์ีถัดไปหรอือกีนยัหนึง่คอืเวลาทีเ่ริม่จากปล่อยคย์ี

จนกระทั่งปล่อยคีย์ถัดไปซึ่งสามารถอธิบายให้เข้าใจ

ได้ง่ายขึ้นดังภาพที่ 1 จากแนวคิดและ Feature พื้น

ฐานดังกล่าวงานวิจัยนี้ได้สร้าง Feature เพิ่มเติมจาก 

Feature พืน้ฐาน เพือ่น�ำมาวเิคราะห์และหา Feature 

ที่ดีที่สุด จากนั้นจะน�ำมาประกอบกันเป็นเส้นโคจร 

และประมวลผลการระบุตวัตนด้วยวธิกีารวดัความต่าง

ของเส้นโคจร (Trajectory) ซึง่จะได้กล่าวถึงรายละเอยีด

ในล�ำดับถัดไป
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Feature พ้ืนฐานเพ่ือนํามาวิเคราะหและหา Feature ที่ดีที่สุด จากนั้นจะ

นํามาประกอบกันเปนเสนโคจร และประมวลผลการระบุตัวตนดวยวิธีการ

วัดความตางของเสนโคจร  (Trajectory) ซ่ึงจะไดกลาวถึงรายละเอียดใน

ลําดับถัดไป 

 

 

 

 

 

 

 

 
รูปที่1หลักการพ้ืนฐานและ Feature ของ Keystroke Dynamics 

หัวขอถัดไปจะกลาวถึงงานวิจัยที่เก่ียวของ หลังจากนั้นจะ

อธิบายวิธีการรวบรวมขอมูล Keystroke Dynamics และการสราง 

profile ของเสนโคจร ถัดมาจะนําเสนอวิธีการระบุตัวตนดวยเสนโคจร, 

วิธีการเลือก feature และการวิเคราะหและเปรียบเทียบผลการทดลอง 

และจะสรุปผลการทดลองในหัวขอสุดทาย 

 

2. งานวิจัยที่เกี่ยวของ 
Keystroke Dynamics Authentication (KDA) ยังมี

ขอบกพรองในดานของความแปรปรวนและความไมเสถียรของจังหวะการ

พิมพของผูใชงานจึงทําใหมีผูวิจัยหลายทานคิดคนและนําเทคนิค

หลากหลาย เขามาประยุกตกับ KDA เพ่ือทําใหเสถียรยิ่งขึ้นอยางเชน 

Haiderและ Abbas [2] ไดนําเสนอ Neural Network, Fuzzy 

Classification, Basic Statistic รวมถึงการใชเทคนิคขั้นสูงทางดาน 

Artificial Intelligenceอยางเชน Senathipathi และ Batri [3] นําเสนอ 

Genetic Algorithm และ SVM เขามาผสมผสานกัน รวมถึงยังมีแนวคิด

เพ่ือขจัดความแปรปรวนขอมูลเชน Kaneko, Kinpara และ Shinomi [4] 

นําเสนอ Hamming Distance มาเปนตัวคัดกรองขอมูลที่มีความ

แปรปรวนออกจากระบบเพ่ือทําใหการประมวลผลและการระบุตวัตน

แมนยํายิ่งขึ้น อยางไรก็ตามเทคนิคแตละแบบที่นํามาใชกับ KDA นั้นมีทั้ง

ขอดีและขอเสียอยางเชน Basic Statistic[2] มีขอดีคือมีความเรียบงายใช

เวลาในการคํานวณนอยรวมถึงใชพ้ืนที่ในการเก็บขอมูลที่ใชเปน Profile 

ของผูใชเพียงเล็กนอย แตพบขอเสียตรงที่ความแปรปรวนของขอมูลอาจทํา

ใหการพิสูจนตัวตนไมมีประสิทธิภาพตามที่ตองการ 

หากกลาวถึงดานประสิทธิภาพในการพิสูจนตัวตนของแตละ

งานวิจัยพบวามีความหลากหลายตางกันไปเชน Limpanuparb [1] ซ่ึงใช

อาสาสมัครจํานวน 17 คนและใชการผสมผสานเทคนิคทางสถิติ 

CAV,PMAS และทําการปรับปรุงประสิทธิภาพโดยเพ่ิมตัวแปรในการ

คํานวณจาก 1 ตัวแปรเปน 2 ตัวแปรซ่ึงทําใหมีประสิทธิภาพสูงคือมีความ

แมนยําถึง 94.76% หรือมีความผิดพลาด 5.24%โดยที่ ตัวแปรที่ใชในการ

คํานวณทั้งสองนั้นตองทําการคนหาคาที่เหมาะสมแบบ Exhaustive ซ่ึง

อาจทําใหใชเวลา มาก ในการคนหา แตมีขอดีตรงที่วิธีการไมซับซอน

จนเกินไปและอาจนําไปใชไดจริง Kang, Hwang, และ Cho [5] ซ่ึงใช

ขอมูลจากอาสาสมัครจํานวน 21 คนและใชเทคนิค Classification ดวย K-

Mean ผสมผสานกับการเรียนรูเมื่อเวลาผานไปดวยวิธีการ Moving 

Window และ Growing Window ทําใหมีขอดีตรงจุดที่สามารถรักษา

ประสิทธิภาพของระบบไดเมื่อเวลาผานไป จากวิธีการดังกลาวไดใหผล

ประสิทธิภาพของระบบที่มีความถูกตองถึง 96.2% หรือมีความผิดพลาดที่ 

3.8% แตดวยหลักการเรียนรูแบบ Windows ผสมผสานกับการ 

Classification นั้นนํามาซ่ึงความตองการพ้ืนที่ในการเก็บ Pattern ของ

ผูใชงานแตละคนซ่ึงเปนจุดดอยที่ตองคํานึงถึงหากนําไปใชงานกับระบบจริง

ที่มีผูใชงานจํานวนมาก ผูวิจัยจึงไดทําการศึกษาเทคนิค ดังกลาว เพ่ือนํามา

ประยุกตใชกับโครงการวิจัยไดอยางเหมาะสม 

 

3. รวบรวมขอมูล Keystroke Dynamics 
ผูวิจัยไดออกแบบและพัฒนาโปรแกรมประยุกตสําหรับเก็บ

ขอมูล Keystroke Profile ของ Username จากอาสาสมัครจํานวน 20 

คนดังแสดงในรูปที่ 2  ซ่ึงจะกําหนดใหแตละคนพิมพ Username จํานวน 

3 ชุด แตละชุดจะกําหนดใหมีเวลาหางกันอยางนอย 1 วันเพ่ือวิเคราะหถึง

ความแปรปรวนเมื่อเวลาผานไปเพ่ือใหสอดคลองกับการใชงานในระบบจริง 

ในการพิมพแตละชุดขอมูลจะกําหนดใหอาสาสมัครพิมพ Username 

จํานวน 10 คร้ัง ซ่ึงแตละคร้ังจะถูกหนวงเวลาใหหางกันอยางนอย 5 วินาที

เพ่ือลดความแปรปรวนของพฤติกรรมในขณะที่พิมพ โดยรูปแบบของ 

Username ที่กําหนดใหพิมพนั้นจะใชรูปแบบ Username กําหนดเปนชื่อ

ภาษาอังกฤษแลวตามดวยอักษรภาษาอังกฤษตัวแรก ของนามสกุล เชนชื่อ 

Kasem Wangsuk จะถูกกําหนดเปน Username “kasemw” โดยมี

สมมติฐานวาส่ิงที่ผูใชงานที่คุนเคยยอมนํามาซ่ึงความคงที่ , ความเปน

เอกลักษณและความเปนตัวตนที่ดี ซ่ึงมีขั้นตอนการเก็บขอมูลดังนี้ 

 

 

 

 

 

 

 

 

 

รูปที่2โปรแกรมประยุกตที่ใชในการเก็บขอมูล 

อาสาสมัครแตละคนพิมพขอมูลคนละ 3 ชุดแตละชุด 

ประกอบดวยขอมูล Username จํานวน 10 คร้ัง ซ่ึงทําใหแตละคนมีขอมูล 

Username จํานวน 30 คร้ังนําขอมูลชุดแรกมาสรางเปน Profileตนแบบ

ของอาสาสมัครแตละคน สวนขอมูลที่เหลืออีก 2 ชุด จะนํามาวัด

 

 

 

 

ภาพที่ 1 หลักการพื้นฐานและ Feature  

ของ Keystroke Dynamics

	 หัวข้อถัดไปจะกล่าวถึงงานวิจัยท่ีเก่ียวข้อง 

หลงัจากนัน้จะอธบิายวธิกีารรวบรวมข้อมลู Keystroke 

Dynamics และการสร้าง profile ของเส้นโคจร 

ถดัมาจะน�ำเสนอวธิกีารระบตุวัตนด้วยเส้นโคจร วธิกีาร

เลอืก feature และการวเิคราะห์และเปรยีบเทยีบผล

การทดลอง และสรปุผลการทดลองในหัวข้อสดุท้าย
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2. งานวจัิยทีเ่ก่ียวข้อง
	 Keystroke Dynamics Authentication (KDA) 

ยงัมข้ีอบกพร่องในด้านของความแปรปรวนและความ

ไม่เสถียรของจังหวะการพิมพ์ของผู้ใช้งานจึงท�ำให้มีผู้

วิจยัหลายท่านคดิค้นและน�ำเทคนคิหลากหลายเข้ามา

ประยุกต์กับ KDA เพ่ือท�ำให้เสถียรยิ่งขึ้นอย่างเช่น 

Haider และ Abbas [2] ได้น�ำเสนอ Neural Net-

work, Fuzzy Classification, Basic Statistic รวม

ถึงการใช้เทคนิคขั้นสูงทางด้าน Artificial Intelli-

gence อย่างเช่น Senathipathi และ Batri [3] น�ำ

เสนอ Genetic Algorithm และ SVM เข้ามาผสม

ผสานกัน รวมถึงยังมีแนวคิดเพื่อขจัดความแปรปรวน

ข้อมูลเช่น Kaneko, Kinpara และ Shinomi [4] น�ำ

เสนอ Hamming Distance มาเป็นตัวคัดกรองข้อมูล

ที่มีความแปรปรวนออกจากระบบ เพื่อท�ำให้การ

ประมวลผลและการระบุตัวตนแม่นย�ำยิ่งขึ้น อย่างไร

ก็ตามเทคนิคแต่ละแบบที่น�ำมาใช้กับ KDA นั้นมีท้ัง

ข้อดีและข้อเสียอย่างเช่น Basic Statistic[2] มีข้อดี

คือมีความเรียบง่าย ใช้เวลาในการค�ำนวณน้อย 

รวมถึงใช้พื้นที่ในการเก็บข้อมูลที่ใช้เป็น Profile ของ

ผูใ้ช้เพยีงเล็กน้อย แต่พบข้อเสยีตรงทีค่วามแปรปรวน

ของข้อมลูอาจท�ำให้การพสูิจน์ตัวตนไม่มีประสิทธภิาพ

ตามที่ต้องการ

	 หากกล่าวถึงด้านประสิทธิภาพในการพิสูจน์ตัว

ตนของแต่ละงานวจัิยพบว่ามคีวามหลากหลายต่างกนั

ไปเช่น Limpanuparb [1] ซึ่งใช้อาสาสมัครจ�ำนวน 

17 คน และใช้การผสมผสานเทคนิคทางสถิติ CAV, 

PMAS และปรับปรุงประสิทธิภาพโดยเพิ่มตัวแปรใน

การค�ำนวณจาก 1 ตัวแปรเป็น 2 ตัวแปรซึ่งท�ำให้มี

ประสิทธิภาพสูงคือมีความแม่นย�ำถึง 94.76% หรือมี

ความผิดพลาด 5.24% โดยที่ตัวแปรที่ใช้ในการ

ค�ำนวณทั้งสองน้ันต้องค้นหาค่าที่เหมาะสมแบบ  

Exhaustive ซ่ึงอาจท�ำให้ใช้เวลามากในการค้นหา แต่

มีข้อดีตรงท่ีวิธีการไม่ซับซ้อนจนเกินไปและอาจน�ำไป

ใช้ได้จริง Kang, Hwang, และ Cho [5] ซึ่งใช ้

ข้อมูลจากอาสาสมัครจ�ำนวน 21 คน และใช้เทคนิค 

Classification ด้วย K-Mean ผสมผสานกบัการเรยีน

รู้เมื่อเวลาผ่านไปด้วยวิธีการ Moving Window และ 

Growing Window ท�ำให้มีข้อดีตรงจุดท่ีสามารถ

รักษาประสิทธิภาพของระบบได้เมื่อเวลาผ่านไป จาก

วิธีการดังกล่าวได้ให้ผลประสิทธิภาพของระบบท่ีมี

ความถูกต้องถึง 96.2% หรือมีความผิดพลาดที่ 3.8% 

แต่ด้วยหลักการเรียนรู้แบบ Windows ผสมผสานกับ

การ Classification นั้นน�ำมาซึ่งความต้องการพื้นที่

ในการเก็บ Pattern ของผู้ใช้งานแต่ละคนซ่ึงเป็นจุด

ด้อยท่ีต้องค�ำนึงถึง หากน�ำไปใช้งานกับระบบจริงท่ีมี

ผู้ใช้งานจ�ำนวนมาก ผู้วิจัยจึงได้ศึกษาเทคนิคดังกล่าว

เพื่อน�ำมาประยุกต์ใช้กับโครงการวิจัยได้อย่างเหมาะ

สม

3. รวบรวมข้อมลู Keystroke Dynamics
	 ผูว้จิยัได้ออกแบบและพฒันาโปรแกรมประยกุต์

ส�ำหรับเก็บข้อมูล Keystroke Profile ของ User-

name จากอาสาสมัครจ�ำนวน 20 คนดังแสดงใน 

ภาพที่ 2 ซึ่งจะก�ำหนดให้แต่ละคนพิมพ์ Username 

จ�ำนวน 3 ชุด แต่ละชุดจะก�ำหนดให้มีเวลาห่างกัน

อย่างน้อย 1 วัน เพื่อวิเคราะห์ถึงความแปรปรวนเมื่อ

เวลาผ่านไป เพื่อให้สอดคล้องกับการใช้งานในระบบ

จริง ในการพิมพ์แต่ละชุดข้อมูลจะก�ำหนดให้อาสา

สมัครพิมพ์ Username จ�ำนวน 10 ครั้ง ซึ่งแต่ละครั้ง

จะถูกหน่วงเวลาให้ห่างกันอย่างน้อย 5 วินาที เพื่อลด

ความแปรปรวนของพฤตกิรรมในขณะทีพ่มิพ์ โดยรูปแบบ

ของ Username ท่ีก�ำหนดให้พิมพ์นั้นจะใช้รูปแบบ 

Username ก�ำหนดเป็นช่ือภาษาองักฤษแล้วตามด้วย



54 วิศวกรรม มก.

อักษรภาษาอังกฤษตัวแรกของนามสกุล เช่นช่ือ 

Kasem Wangsuk จะถูกก�ำหนดเป็น Username 

“kasemw” โดยมีสมมติฐานว่าสิ่งที่ผู้ใช้งานที่คุ้นเคย

ย่อมน�ำมาซึง่ความคงที ่ความเป็นเอกลักษณ์และความ

เป็นตัวตนที่ดี ซึ่งมีขั้นตอนการเก็บข้อมูลดังนี้

ท�ำให้ระบบสมจรงิจากแนวคิดทีว่่า Profile ควรจะเกบ็

ครั้งแรกที่เข้าใช้ ข้อมูลชุดแรกคือ Username ทั้ง 10 

ครั้ง จะถูกน�ำมาแปลงเป็นเส้นโคจร โดยมีการเลือก 

Feature ของข้อมูล Keystroke Dynamics ที่ได้มา

เป็นพกิดั (Coordinate) ของเส้นโคจรในแต่ละจดุตาม

แนวคิดดังภาพที่ 3 โดยการพิมพ์ Username แต่ละ

ครั้งจะได้เส้นโคจร 1 เส้น และแต่ละจุดบนเส้นคือ

แต่ละตวัอกัษรบน Username นัน้ พกิดัของแต่ละจดุ

จะถกูเลอืกและสกดัมาจาก Feature ของข้อมลู Key-

stroke ของแต่ละ Key โดยจะก�ำหนดพิกัดในระดับ 

2 มิติคือทั้งแกน X และแกน Y เพื่อความหลากหลาย

และแตกต่างจากงานวิจัยอื่น [4] ให้เสมือนเป็นเส้น

โคจรที่ใกล้เคียงความเป็นจริงที่มีระยะ X และ Y ของ

แต่ละจุดผันผวนไปไม่เท่ากัน

Feature พ้ืนฐานเพ่ือนํามาวิเคราะหและหา Feature ที่ดีที่สุด จากนั้นจะ

นํามาประกอบกันเปนเสนโคจร และประมวลผลการระบุตัวตนดวยวิธีการ

วัดความตางของเสนโคจร  (Trajectory) ซ่ึงจะไดกลาวถึงรายละเอียดใน

ลําดับถัดไป 

 

 

 

 

 

 

 

 
รูปที่1หลักการพ้ืนฐานและ Feature ของ Keystroke Dynamics 

หัวขอถัดไปจะกลาวถึงงานวิจัยที่เก่ียวของ หลังจากนั้นจะ

อธิบายวิธีการรวบรวมขอมูล Keystroke Dynamics และการสราง 

profile ของเสนโคจร ถัดมาจะนําเสนอวิธีการระบุตัวตนดวยเสนโคจร, 

วิธีการเลือก feature และการวิเคราะหและเปรียบเทียบผลการทดลอง 

และจะสรุปผลการทดลองในหัวขอสุดทาย 

 

2. งานวิจัยที่เกี่ยวของ 
Keystroke Dynamics Authentication (KDA) ยังมี

ขอบกพรองในดานของความแปรปรวนและความไมเสถียรของจังหวะการ

พิมพของผูใชงานจึงทําใหมีผูวิจัยหลายทานคิดคนและนําเทคนิค

หลากหลาย เขามาประยุกตกับ KDA เพ่ือทําใหเสถียรยิ่งขึ้นอยางเชน 

Haiderและ Abbas [2] ไดนําเสนอ Neural Network, Fuzzy 

Classification, Basic Statistic รวมถึงการใชเทคนิคขั้นสูงทางดาน 

Artificial Intelligenceอยางเชน Senathipathi และ Batri [3] นําเสนอ 

Genetic Algorithm และ SVM เขามาผสมผสานกัน รวมถึงยังมีแนวคิด

เพ่ือขจัดความแปรปรวนขอมูลเชน Kaneko, Kinpara และ Shinomi [4] 

นําเสนอ Hamming Distance มาเปนตัวคัดกรองขอมูลที่มีความ

แปรปรวนออกจากระบบเพ่ือทําใหการประมวลผลและการระบุตวัตน

แมนยํายิ่งขึ้น อยางไรก็ตามเทคนิคแตละแบบที่นํามาใชกับ KDA นั้นมีทั้ง

ขอดีและขอเสียอยางเชน Basic Statistic[2] มีขอดีคือมีความเรียบงายใช

เวลาในการคํานวณนอยรวมถึงใชพ้ืนที่ในการเก็บขอมูลที่ใชเปน Profile 

ของผูใชเพียงเล็กนอย แตพบขอเสียตรงที่ความแปรปรวนของขอมูลอาจทํา

ใหการพิสูจนตัวตนไมมีประสิทธิภาพตามที่ตองการ 

หากกลาวถึงดานประสิทธิภาพในการพิสูจนตัวตนของแตละ

งานวิจัยพบวามีความหลากหลายตางกันไปเชน Limpanuparb [1] ซ่ึงใช

อาสาสมัครจํานวน 17 คนและใชการผสมผสานเทคนิคทางสถิติ 

CAV,PMAS และทําการปรับปรุงประสิทธิภาพโดยเพ่ิมตัวแปรในการ

คํานวณจาก 1 ตัวแปรเปน 2 ตัวแปรซ่ึงทําใหมีประสิทธิภาพสูงคือมีความ

แมนยําถึง 94.76% หรือมีความผิดพลาด 5.24%โดยที่ ตัวแปรที่ใชในการ

คํานวณทั้งสองนั้นตองทําการคนหาคาที่เหมาะสมแบบ Exhaustive ซ่ึง

อาจทําใหใชเวลา มาก ในการคนหา แตมีขอดีตรงที่วิธีการไมซับซอน

จนเกินไปและอาจนําไปใชไดจริง Kang, Hwang, และ Cho [5] ซ่ึงใช

ขอมูลจากอาสาสมัครจํานวน 21 คนและใชเทคนิค Classification ดวย K-

Mean ผสมผสานกับการเรียนรูเมื่อเวลาผานไปดวยวิธีการ Moving 

Window และ Growing Window ทําใหมีขอดีตรงจุดที่สามารถรักษา

ประสิทธิภาพของระบบไดเมื่อเวลาผานไป จากวิธีการดังกลาวไดใหผล

ประสิทธิภาพของระบบที่มีความถูกตองถึง 96.2% หรือมีความผิดพลาดที่ 

3.8% แตดวยหลักการเรียนรูแบบ Windows ผสมผสานกับการ 

Classification นั้นนํามาซ่ึงความตองการพ้ืนที่ในการเก็บ Pattern ของ

ผูใชงานแตละคนซ่ึงเปนจุดดอยที่ตองคํานึงถึงหากนําไปใชงานกับระบบจริง

ที่มีผูใชงานจํานวนมาก ผูวิจัยจึงไดทําการศึกษาเทคนิค ดังกลาว เพ่ือนํามา

ประยุกตใชกับโครงการวิจัยไดอยางเหมาะสม 

 

3. รวบรวมขอมูล Keystroke Dynamics 
ผูวิจัยไดออกแบบและพัฒนาโปรแกรมประยุกตสําหรับเก็บ

ขอมูล Keystroke Profile ของ Username จากอาสาสมัครจํานวน 20 

คนดังแสดงในรูปที่ 2  ซ่ึงจะกําหนดใหแตละคนพิมพ Username จํานวน 

3 ชุด แตละชุดจะกําหนดใหมีเวลาหางกันอยางนอย 1 วันเพ่ือวิเคราะหถึง

ความแปรปรวนเมื่อเวลาผานไปเพ่ือใหสอดคลองกับการใชงานในระบบจริง 

ในการพิมพแตละชุดขอมูลจะกําหนดใหอาสาสมัครพิมพ Username 

จํานวน 10 คร้ัง ซ่ึงแตละคร้ังจะถูกหนวงเวลาใหหางกันอยางนอย 5 วินาที

เพ่ือลดความแปรปรวนของพฤติกรรมในขณะที่พิมพ โดยรูปแบบของ 

Username ที่กําหนดใหพิมพนั้นจะใชรูปแบบ Username กําหนดเปนชื่อ

ภาษาอังกฤษแลวตามดวยอักษรภาษาอังกฤษตัวแรก ของนามสกุล เชนชื่อ 

Kasem Wangsuk จะถูกกําหนดเปน Username “kasemw” โดยมี

สมมติฐานวาส่ิงที่ผูใชงานที่คุนเคยยอมนํามาซ่ึงความคงที่ , ความเปน

เอกลักษณและความเปนตัวตนที่ดี ซ่ึงมีขั้นตอนการเก็บขอมูลดังนี้ 

 

 

 

 

 

 

 

 

 

รูปที่2โปรแกรมประยุกตที่ใชในการเก็บขอมูล 

อาสาสมัครแตละคนพิมพขอมูลคนละ 3 ชุดแตละชุด 

ประกอบดวยขอมูล Username จํานวน 10 คร้ัง ซ่ึงทําใหแตละคนมีขอมูล 

Username จํานวน 30 คร้ังนําขอมูลชุดแรกมาสรางเปน Profileตนแบบ

ของอาสาสมัครแตละคน สวนขอมูลที่เหลืออีก 2 ชุด จะนํามาวัด

 

 

 

 

ภาพที่ 2 โปรแกรมประยุกต์ที่ใช้ในการเก็บข้อมูล

	 อาสาสมัครแต่ละคนพิมพ์ข้อมูลคนละ 3 ชุด

แต่ละชดุ ประกอบด้วยข้อมลู Username จ�ำนวน 10 

คร้ัง ซ่ึงท�ำให้แต่ละคนมข้ีอมลู Username จ�ำนวน 30 

คร้ัง น�ำข้อมูลชดุแรกมาสร้างเป็น Profile ต้นแบบของ

อาสาสมัครแต่ละคน ส่วนข้อมูลที่เหลืออีก 2 ชุด  

จะน�ำมาวัดประสิทธิภาพ (รายละเอียดจะกล่าวใน

หัวข้อถัดไป) ผู้วิจัยได้แต่งตั้งผู้กระท�ำการเป็นผู้โจมตี 

(Imposter) จ�ำนวน 3 คน แต่ละคนจะพมิพ์ Username 

ของอาสาสมัครทุกคนจ�ำนวนคนละ 1 ชุด ซึ่งท�ำให้

อาสาสมัครแต่ละคนมีข้อมูลการถูกปลอมแปลง

จ�ำนวน 3 ชุด หรือ 30 ครั้ง เมื่อเก็บข้อมูลจนครบจะ

มีข้อมูลของอาสาสมัครแต่ละคนจ�ำนวน 6 ชุด หรือ 

60 ครั้ง ซึ่งแบ่งเป็นข้อมูลของเจ้าของ 3 ชุด หรือ 30 

ครั้ง และข้อมูลของการถูกผู้โจมตีอีก 3 ชุด หรือ 30 

ครั้ง เมื่อเก็บข้อมูลอาสาสมัครครบทั้ง 20 คน ท�ำให้มี

ข้อมูลมากถึง 1,200 ครั้ง

4. การสร้าง Profile ของเส้นโคจร  
	 Profile ต้นแบบถูกสร้างจากข้อมูลชุดแรกเพ่ือ

ประสิทธิภาพ(รายละเอียดจะกลาวในหัวขอถัดไป)ผูวิจัยไดแตงตั้งผูกระทํา

การเปนผู โจมตี  (Imposter) จํานวน 3 คนแตละคนจะพิมพ Username 

ของอาสาสมัครทุกคนจํานวนคนละ 1 ชุด ซ่ึงทําใหอาสาสมัครแตละคนมี

ขอมูลการถูกปลอมแปลงจํานวน 3 ชุด หรือ 30 คร้ัง เมื่อเก็บขอมูลจนครบ

จะมีขอมูลของอาสาสมัครแตละคนจํานวน 6 ชุด หรือ 60 คร้ัง ซ่ึงแบงเปน

ขอมูลของเจาของ 3 ชุด หรือ 30 คร้ัง และขอมูลของการถูกผู โจมตี อีก 3 

ชุด หรือ 30 คร้ังเมื่อเก็บขอมูลครบทั้ง 20 อาสาสมัคร ทําใหมีขอมูลมากถึง 

1,200 คร้ัง 

 

4. การสราง Profile ของเสนโคจร   
Profile ตนแบบ ถูกสรางจากขอมูลชุดแรก เพ่ือทําใหระบบ

สมจริงจากแนวคิดที่วา Profile ควรจะเก็บคร้ังแรกที่เขาใช ขอมูลชุดแรก

คือ Username ทั้ง 10 คร้ังจะถูกนํามาแปลงเปนเสนโคจรโดยมีการเลือก 

Feature ของขอมูล Keystroke Dynamics ที่ไดมาเปนพิกั ด

(Coordinate) ของเสนโคจรในแตละจุดตามแนวคิดดังรูปที่ 3 โดยการ

พิมพ Username แตละคร้ังจะไดเสนโคจร 1 เสนและแตละจุดบนเสนคือ

แตละตัวอักษรบน Username นั้นพิกัดของแตละจุดจะถูกเลือกและสกัด

มาจาก Feature ของขอมูล Keystroke ของแตละ Keyโดยจะทําการ

กําหนดพิกัดในระดับ 2 มิติคือทั้งแกน X และแกน Y เพ่ือความหลากหลาย

และแตกตางจากงานวิจัยอ่ืน[ 4] ใหเสมือนเปนเสนโคจรที่ใกลเคียงความ

เปนจริงที่มีระยะ X และ Y ของแตละจุดผันผวนไปไมเทากัน 

 

 

 

 

 

 

รูปที่ 3แนวคิดการแปลงขอมูลของ Keystroke เปนเสนโคจร   

เมื่อไดขอมูลเสนโคจรทั้ง 10 เสนจากขอมูลชุดแรกจะ นํามา

สราง Profile เสนโคจรตนแบบเพียงเสนเดียวเทานั้นโดยนําเสนโคจรทั้ง 

10 เสนมาหาคาเฉล่ียดังรูปที่ 4ดังนั้นแตละอาสาสมัครจะมี Profile เสน

โคจรตนแบบคนละ 1 เสนเพ่ือใชในการพิสูจนตัวตน 

 

 

 

 

 

รูปที่4สรางเสนโคจรตนแบบจากขอมูลชุดแรก 

 

5. การระบุตัวตนดวยการวัดความแตกตางของเสนโคจร 

จากแนวความคิดในดานการวัดความคลายของเสนโ คจร[ 6] 

ผูวิจัยไดนํามาประยุกตกับงานวิจัยชิ้นนี้โดย สราง เสนโคจรตนแบบจากนั้น

จะทําการสรางขอกําหนดในการระบุตัวตนผูวิจัยไดเลือกวิธีการวัดความ

แตกตางดวยผลรวมของระยะหางของแตละจุดบนเสนโคจรที่จะทําการ

ตรวจสอบกับเสนโคจรตนแบบที่เปนเปาหมายของการพิสูจนตัวตนจากนั้น

จะพิจารณาวาผลรวมของระยะหางที่ไดเกินคาที่กําหนดหรือไมซ่ึงจะกลาว 

ถึงรายละเอียดแตละสวนดังนี้ 

5.1 การวัดความแตกตางของเสนโคจร 
วัดผลรวมของระยะทางจุดตอจุดของ Profile เสนโคจรที่

ตองการตรวจสอบการพิสูจนตัวตนกับเสนโคจรตนแบบของเปาหมายดวย

การวัดระยะทางแบบ Euclidean ซ่ึงไดแนวคิดจากงานวิจัยที่นําเสนอโดย 

Laurinen,Siirtola และ Roning [6]ตามสมการที่( 1) และรูปที่ 5เมื่อ

กําหนดใหจุดA1 ถึง An คือเสนโคจรที่ตองการทําการตรวจสอบการพิสูจน

ตัวตนและกําหนดให B1 ถึงBn คือเสนโคจรตนแบบ ( Master Trajectory 

Profile)ซ่ึงไดจากการเก็บขอมูลในชุดแรกของเจาของ Username  

 

 

 

 

 

 

 

 

 

 

 

รูปที่5วัดความแตกตางของเสนโคจรดวย Euclidean   

สมการจะทําการวัดความแตกตางของเสนโคจรดวยวิธีการ

คํานวณผลรวมของระยะหางของแตละจุดบนเสนโคจรโดยเทียบลําดับตอ

จุด ซ่ึงไดตั้งสมมติฐานไววาหากเปนเสนโคจรที่มาจากเจาของเดียวกั น

จะตองมีผลรวมของระยะทางที่ต่ํากวาเสนโคจรที่มาจากผูที่ตองการ โจมตี 

อยางไรก็ตามวิธีการขางตนเปนเพียงแคการคํานวณการวัดความแตกตาง

ของเสนโคจรเทานั้น และยังไมใชวิธีการตัดสินวาเสนโคจรที่เขาทําการ

ตรวจสอบเปนของคนเดียวกันหรือไมแตอยางใด ซ่ึงจะไดกลาวถึงวิธีการ

และรายละเอียดตรงจุดนี้ในหัวขอถัดไป 

5.2 การระบุตัวตนดวยความแตกตางของเสนโคจร 
เมื่อกําหนดวิธีการวัดและคํานวณความแตกตางของเสนโคจร

เสร็จส้ิน พบวาวิธีการดังกลาวเพียงแคใหคาระดับความแตกตางออกมา

เทานั้น แตยังไม สามารถ ระบุวาเปนเจาของที่ แทจริง หรือเปนผู โจมตีแต

อยางใด ในสวนนี้จะกลาวถึงวิธีการระบุตัวตนการเปนเจาของ Username 

ที่ชัดเจน จากหัวขอ ที่ผานมาทําให สามารถ สราง Profile ของเสนโคจร

ตนแบบและการวัดความแตกตางของเสนโคจร โดยตั้งสมมติฐาน วายิ่งคา

ระดับความแตกตางเขาใกลศูนยมากเทาใดยิ่งแสดงความเปนเจาของที่

แทจริงมากขึ้นเทานั้น แตระดับความแตกตางเทาใดจึงจะเหมาะสมในการ

 

 

 

 

 

 

ประสิทธิภาพ(รายละเอียดจะกลาวในหัวขอถัดไป)ผูวิจัยไดแตงตั้งผูกระทํา

การเปนผู โจมตี  (Imposter) จํานวน 3 คนแตละคนจะพิมพ Username 

ของอาสาสมัครทุกคนจํานวนคนละ 1 ชุด ซ่ึงทําใหอาสาสมัครแตละคนมี

ขอมูลการถูกปลอมแปลงจํานวน 3 ชุด หรือ 30 คร้ัง เมื่อเก็บขอมูลจนครบ

จะมีขอมูลของอาสาสมัครแตละคนจํานวน 6 ชุด หรือ 60 คร้ัง ซ่ึงแบงเปน

ขอมูลของเจาของ 3 ชุด หรือ 30 คร้ัง และขอมูลของการถูกผู โจมตี อีก 3 

ชุด หรือ 30 คร้ังเมื่อเก็บขอมูลครบทั้ง 20 อาสาสมัคร ทําใหมีขอมูลมากถึง 

1,200 คร้ัง 

 

4. การสราง Profile ของเสนโคจร   
Profile ตนแบบ ถูกสรางจากขอมูลชุดแรก เพ่ือทําใหระบบ

สมจริงจากแนวคิดที่วา Profile ควรจะเก็บคร้ังแรกที่เขาใช ขอมูลชุดแรก

คือ Username ทั้ง 10 คร้ังจะถูกนํามาแปลงเปนเสนโคจรโดยมีการเลือก 

Feature ของขอมูล Keystroke Dynamics ที่ไดมาเปนพิกั ด

(Coordinate) ของเสนโคจรในแตละจุดตามแนวคิดดังรูปที่ 3 โดยการ

พิมพ Username แตละคร้ังจะไดเสนโคจร 1 เสนและแตละจุดบนเสนคือ

แตละตัวอักษรบน Username นั้นพิกัดของแตละจุดจะถูกเลือกและสกัด

มาจาก Feature ของขอมูล Keystroke ของแตละ Keyโดยจะทําการ

กําหนดพิกัดในระดับ 2 มิติคือทั้งแกน X และแกน Y เพ่ือความหลากหลาย

และแตกตางจากงานวิจัยอ่ืน[ 4] ใหเสมือนเปนเสนโคจรที่ใกลเคียงความ

เปนจริงที่มีระยะ X และ Y ของแตละจุดผันผวนไปไมเทากัน 

 

 

 

 

 

 

รูปที่ 3แนวคิดการแปลงขอมูลของ Keystroke เปนเสนโคจร   

เมื่อไดขอมูลเสนโคจรทั้ง 10 เสนจากขอมูลชุดแรกจะ นํามา

สราง Profile เสนโคจรตนแบบเพียงเสนเดียวเทานั้นโดยนําเสนโคจรทั้ง 

10 เสนมาหาคาเฉล่ียดังรูปที่ 4ดังนั้นแตละอาสาสมัครจะมี Profile เสน

โคจรตนแบบคนละ 1 เสนเพ่ือใชในการพิสูจนตัวตน 

 

 

 

 

 

รูปที่4สรางเสนโคจรตนแบบจากขอมูลชุดแรก 

 

5. การระบุตัวตนดวยการวัดความแตกตางของเสนโคจร 

จากแนวความคิดในดานการวัดความคลายของเสนโ คจร[ 6] 

ผูวิจัยไดนํามาประยุกตกับงานวิจัยชิ้นนี้โดย สราง เสนโคจรตนแบบจากนั้น

จะทําการสรางขอกําหนดในการระบุตัวตนผูวิจัยไดเลือกวิธีการวัดความ

แตกตางดวยผลรวมของระยะหางของแตละจุดบนเสนโคจรที่จะทําการ

ตรวจสอบกับเสนโคจรตนแบบที่เปนเปาหมายของการพิสูจนตัวตนจากนั้น

จะพิจารณาวาผลรวมของระยะหางที่ไดเกินคาที่กําหนดหรือไมซ่ึงจะกลาว 

ถึงรายละเอียดแตละสวนดังนี้ 

5.1 การวัดความแตกตางของเสนโคจร 
วัดผลรวมของระยะทางจุดตอจุดของ Profile เสนโคจรที่

ตองการตรวจสอบการพิสูจนตัวตนกับเสนโคจรตนแบบของเปาหมายดวย

การวัดระยะทางแบบ Euclidean ซ่ึงไดแนวคิดจากงานวิจัยที่นําเสนอโดย 

Laurinen,Siirtola และ Roning [6]ตามสมการที่( 1) และรูปที่ 5เมื่อ

กําหนดใหจุดA1 ถึง An คือเสนโคจรที่ตองการทําการตรวจสอบการพิสูจน

ตัวตนและกําหนดให B1 ถึงBn คือเสนโคจรตนแบบ ( Master Trajectory 

Profile)ซ่ึงไดจากการเก็บขอมูลในชุดแรกของเจาของ Username  

 

 

 

 

 

 

 

 

 

 

 

รูปที่5วัดความแตกตางของเสนโคจรดวย Euclidean   

สมการจะทําการวัดความแตกตางของเสนโคจรดวยวิธีการ

คํานวณผลรวมของระยะหางของแตละจุดบนเสนโคจรโดยเทียบลําดับตอ

จุด ซ่ึงไดตั้งสมมติฐานไววาหากเปนเสนโคจรที่มาจากเจาของเดียวกั น

จะตองมีผลรวมของระยะทางที่ต่ํากวาเสนโคจรที่มาจากผูที่ตองการ โจมตี 

อยางไรก็ตามวิธีการขางตนเปนเพียงแคการคํานวณการวัดความแตกตาง

ของเสนโคจรเทานั้น และยังไมใชวิธีการตัดสินวาเสนโคจรที่เขาทําการ

ตรวจสอบเปนของคนเดียวกันหรือไมแตอยางใด ซ่ึงจะไดกลาวถึงวิธีการ

และรายละเอียดตรงจุดนี้ในหัวขอถัดไป 

5.2 การระบุตัวตนดวยความแตกตางของเสนโคจร 
เมื่อกําหนดวิธีการวัดและคํานวณความแตกตางของเสนโคจร

เสร็จส้ิน พบวาวิธีการดังกลาวเพียงแคใหคาระดับความแตกตางออกมา

เทานั้น แตยังไม สามารถ ระบุวาเปนเจาของที่ แทจริง หรือเปนผู โจมตีแต

อยางใด ในสวนนี้จะกลาวถึงวิธีการระบุตัวตนการเปนเจาของ Username 

ที่ชัดเจน จากหัวขอ ที่ผานมาทําให สามารถ สราง Profile ของเสนโคจร

ตนแบบและการวัดความแตกตางของเสนโคจร โดยตั้งสมมติฐาน วายิ่งคา

ระดับความแตกตางเขาใกลศูนยมากเทาใดยิ่งแสดงความเปนเจาของที่

แทจริงมากขึ้นเทานั้น แตระดับความแตกตางเทาใดจึงจะเหมาะสมในการ

 

 

 

 

 

 
ภาพที่ 3 แนวคิดการแปลงข้อมูลของ Keystroke  

เป็นเส้นโคจร  

	 เมื่อได้ข้อมูลเส้นโคจรทั้ง 10 เส้นจากข้อมูลชุด

แรกจะน�ำมาสร้าง Profile เส้นโคจรต้นแบบเพยีงเส้น

เดยีวเท่านัน้ โดยน�ำเส้นโคจรทัง้ 10 เส้นมาหาค่าเฉลีย่

ดังภาพที่ 4 ดังนั้นแต่ละอาสาสมัครจะมี Profile เส้น

โคจรต้นแบบคนละ 1 เส้นเพื่อใช้ในการพิสูจน์ตัวตน

ภาพที่ 4 สร้างเส้นโคจรต้นแบบจากข้อมูลชุดแรก



การพิสูจน์ตัวตนโดยจังหวะการพิมพ์ด้วยวิธีการวัดความต่างของเส้นโคจร 55 

ฉบับที่ 91 ปีที่ 28 มกราคม - มีนาคม 2558 

5.	 การระบุตัวตนด้วยการวัดความ 
แตกต่างของเส้นโคจร

	 จากแนวความคดิในด้านการวดัความคล้ายของ

เส้นโคจร [6] ผู้วิจัยได้น�ำมาประยุกต์กับงานวิจัยชิ้นนี้

โดยสร้างเส้นโคจรต้นแบบ จากนัน้จะสร้างข้อก�ำหนด

ในการระบตัุวตนผูว้จัิยได้เลอืกวธิกีารวดัความแตกต่าง

ด้วยผลรวมของระยะห่างของแต่ละจุดบนเส้นโคจรที่

จะตรวจสอบกบัเส้นโคจรต้นแบบทีเ่ป็นเป้าหมายของ

การพิสูจน์ตัวตน จากนั้นจะพิจารณาว่าผลรวมของ

ระยะห่างที่ได้เกินค่าท่ีก�ำหนดหรือไม่ ซึ่งจะกล่าวถึง

รายละเอียดแต่ละส่วนดังนี้

	 5.1 การวัดความแตกต่างของเส้นโคจร

	 วัดผลรวมของระยะทางจุดต่อจุดของ Profile 

เส้นโคจรทีต้่องการตรวจสอบการพสิจูน์ตวัตนกบัเส้น

โคจรต้นแบบของเป้าหมายด้วยการวัดระยะทางแบบ 

Euclidean ซึ่งได้แนวคิดจากงานวิจัยท่ีน�ำเสนอโดย 

Laurinen, Siirtola และ Roning [6] ตามสมการที่ 

(1) และภาพที่ 5 เมื่อก�ำหนดให้จุด A1 ถึง An คือเส้น

โคจรที่ต ้องการตรวจสอบการพิสูจน์ตัวตน และ

ก�ำหนดให้ B1 ถึง Bn คือเส้นโคจรต้นแบบ (Master 

Trajectory Profile) ซึง่ได้จากการเกบ็ข้อมลูในชดุแรก

ของเจ้าของ Username 

	 สมการจะวดัความแตกต่างของเส้นโคจรด้วยวธิี

การค�ำนวณผลรวมของระยะห่างของแต่ละจดุบนเส้น

โคจร โดยเทยีบล�ำดบัต่อจดุ ซึง่ได้ต้ังสมมตฐิานไว้ว่าหาก

เป็นเส้นโคจรทีม่าจากเจ้าของเดยีวกนัจะต้องมผีลรวม

ของระยะทางท่ีต�่ำกว่าเส้นโคจรท่ีมาจากผู้ท่ีต้องการ

โจมตี อย่างไรก็ตามวิธีการข้างต้นเป็นเพียงแค่การ

ค�ำนวณการวดัความแตกต่างของเส้นโคจรเท่านัน้ และ

ยงัไม่ใช่วธิกีารตดัสนิว่าเส้นโคจรท่ีเข้าตรวจสอบเป็นของ

คนเดยีวกนัหรอืไม่แต่อย่างใด ซึง่จะได้กล่าวถงึวธิกีาร

และรายละเอยีดตรงจดุนีใ้นหัวข้อถัดไป

	 5.2 การระบตุวัตนด้วยความแตกต่างของเส้น

โคจร

	 เมือ่ก�ำหนดวธิกีารวดัและค�ำนวณความแตกต่าง

ของเส้นโคจรเสร็จสิ้น พบว่าวิธีการดังกล่าวเพียงแค่

ให้ค่าระดับความแตกต่างออกมาเท่านั้น แต่ยังไม่

สามารถระบุว่าเป็นเจ้าของท่ีแท้จรงิหรอืเป็นผู้โจมตีแต่

อย่างใด ในส่วนนีจ้ะกล่าวถึงวธิกีารระบุตวัตนการเป็น

เจ้าของ Username ที่ชัดเจน จากหัวข้อที่ผ่านมา

ท�ำให้สามารถสร้าง Profile ของเส้นโคจรต้นแบบและ

การวัดความแตกต่างของเส้นโคจร โดยตั้งสมมติฐาน

ว่ายิง่ค่าระดบัความแตกต่างเข้าใกล้ศนูย์มากเท่าใดยิง่

แสดงความเป็นเจ้าของที่แท้จริงมากขึ้นเท่าน้ัน แต่

ระดับความแตกต่างเท่าใดจึงจะเหมาะสมในการ

พิสูจน์ตัวตน ผู้วิจัยจึงน�ำเอาหลักการทางสถิติ [7] มา

ประยุกต์ใช้เป็นวิธีการพิสูจน์ตัวตนตามขั้นตอนดังนี้ 

ค�ำนวณค่าระดับความแตกต่างของ Username ท้ัง 

10 ครั้งของชุดแรก โดยเทียบกับเส้นโคจรต้นแบบท่ี

ได้จาก Username ทั้ง 10 ครั้งของข้อมูลชุดเดียวกัน 

น�ำค่าระดบัความแตกต่างทีไ่ด้ของ Username ทัง้ 10 

ครั้งมาหาค่าเฉลี่ย (Average) และค่าส่วนเบ่ียงเบน

มาตรฐาน (Standard Deviation) ก�ำหนดสมการ

พิสูจน์ตัวตนดังสมการที่ (2) โดยก�ำหนดให้

ประสิทธิภาพ(รายละเอียดจะกลาวในหัวขอถัดไป)ผูวิจัยไดแตงตั้งผูกระทํา

การเปนผู โจมตี  (Imposter) จํานวน 3 คนแตละคนจะพิมพ Username 

ของอาสาสมัครทุกคนจํานวนคนละ 1 ชุด ซ่ึงทําใหอาสาสมัครแตละคนมี

ขอมูลการถูกปลอมแปลงจํานวน 3 ชุด หรือ 30 คร้ัง เมื่อเก็บขอมูลจนครบ

จะมีขอมูลของอาสาสมัครแตละคนจํานวน 6 ชุด หรือ 60 คร้ัง ซ่ึงแบงเปน

ขอมูลของเจาของ 3 ชุด หรือ 30 คร้ัง และขอมูลของการถูกผู โจมตี อีก 3 

ชุด หรือ 30 คร้ังเมื่อเก็บขอมูลครบทั้ง 20 อาสาสมัคร ทําใหมีขอมูลมากถึง 

1,200 คร้ัง 

 

4. การสราง Profile ของเสนโคจร   
Profile ตนแบบ ถูกสรางจากขอมูลชุดแรก เพ่ือทําใหระบบ

สมจริงจากแนวคิดที่วา Profile ควรจะเก็บคร้ังแรกที่เขาใช ขอมูลชุดแรก

คือ Username ทั้ง 10 คร้ังจะถูกนํามาแปลงเปนเสนโคจรโดยมีการเลือก 

Feature ของขอมูล Keystroke Dynamics ที่ไดมาเปนพิกั ด

(Coordinate) ของเสนโคจรในแตละจุดตามแนวคิดดังรูปที่ 3 โดยการ

พิมพ Username แตละคร้ังจะไดเสนโคจร 1 เสนและแตละจุดบนเสนคือ

แตละตัวอักษรบน Username นั้นพิกัดของแตละจุดจะถูกเลือกและสกัด

มาจาก Feature ของขอมูล Keystroke ของแตละ Keyโดยจะทําการ

กําหนดพิกัดในระดับ 2 มิติคือทั้งแกน X และแกน Y เพ่ือความหลากหลาย

และแตกตางจากงานวิจัยอ่ืน[ 4] ใหเสมือนเปนเสนโคจรที่ใกลเคียงความ

เปนจริงที่มีระยะ X และ Y ของแตละจุดผันผวนไปไมเทากัน 

 

 

 

 

 

 

รูปที่ 3แนวคิดการแปลงขอมูลของ Keystroke เปนเสนโคจร   

เมื่อไดขอมูลเสนโคจรทั้ง 10 เสนจากขอมูลชุดแรกจะ นํามา

สราง Profile เสนโคจรตนแบบเพียงเสนเดียวเทานั้นโดยนําเสนโคจรทั้ง 

10 เสนมาหาคาเฉล่ียดังรูปที่ 4ดังนั้นแตละอาสาสมัครจะมี Profile เสน

โคจรตนแบบคนละ 1 เสนเพ่ือใชในการพิสูจนตัวตน 

 

 

 

 

 

รูปที่4สรางเสนโคจรตนแบบจากขอมูลชุดแรก 

 

5. การระบุตัวตนดวยการวัดความแตกตางของเสนโคจร 

จากแนวความคิดในดานการวัดความคลายของเสนโ คจร[ 6] 

ผูวิจัยไดนํามาประยุกตกับงานวิจัยชิ้นนี้โดย สราง เสนโคจรตนแบบจากนั้น

จะทําการสรางขอกําหนดในการระบุตัวตนผูวิจัยไดเลือกวิธีการวัดความ

แตกตางดวยผลรวมของระยะหางของแตละจุดบนเสนโคจรที่จะทําการ

ตรวจสอบกับเสนโคจรตนแบบที่เปนเปาหมายของการพิสูจนตัวตนจากนั้น

จะพิจารณาวาผลรวมของระยะหางที่ไดเกินคาที่กําหนดหรือไมซ่ึงจะกลาว 

ถึงรายละเอียดแตละสวนดังนี้ 

5.1 การวัดความแตกตางของเสนโคจร 
วัดผลรวมของระยะทางจุดตอจุดของ Profile เสนโคจรที่

ตองการตรวจสอบการพิสูจนตัวตนกับเสนโคจรตนแบบของเปาหมายดวย

การวัดระยะทางแบบ Euclidean ซ่ึงไดแนวคิดจากงานวิจัยที่นําเสนอโดย 

Laurinen,Siirtola และ Roning [6]ตามสมการที่( 1) และรูปที่ 5เมื่อ

กําหนดใหจุดA1 ถึง An คือเสนโคจรที่ตองการทําการตรวจสอบการพิสูจน

ตัวตนและกําหนดให B1 ถึงBn คือเสนโคจรตนแบบ ( Master Trajectory 

Profile)ซ่ึงไดจากการเก็บขอมูลในชุดแรกของเจาของ Username  

 

 

 

 

 

 

 

 

 

 

 

รูปที่5วัดความแตกตางของเสนโคจรดวย Euclidean   

สมการจะทําการวัดความแตกตางของเสนโคจรดวยวิธีการ

คํานวณผลรวมของระยะหางของแตละจุดบนเสนโคจรโดยเทียบลําดับตอ

จุด ซ่ึงไดตั้งสมมติฐานไววาหากเปนเสนโคจรที่มาจากเจาของเดียวกั น

จะตองมีผลรวมของระยะทางที่ต่ํากวาเสนโคจรที่มาจากผูที่ตองการ โจมตี 

อยางไรก็ตามวิธีการขางตนเปนเพียงแคการคํานวณการวัดความแตกตาง

ของเสนโคจรเทานั้น และยังไมใชวิธีการตัดสินวาเสนโคจรที่เขาทําการ

ตรวจสอบเปนของคนเดียวกันหรือไมแตอยางใด ซ่ึงจะไดกลาวถึงวิธีการ

และรายละเอียดตรงจุดนี้ในหัวขอถัดไป 

5.2 การระบุตัวตนดวยความแตกตางของเสนโคจร 
เมื่อกําหนดวิธีการวัดและคํานวณความแตกตางของเสนโคจร

เสร็จส้ิน พบวาวิธีการดังกลาวเพียงแคใหคาระดับความแตกตางออกมา

เทานั้น แตยังไม สามารถ ระบุวาเปนเจาของที่ แทจริง หรือเปนผู โจมตีแต

อยางใด ในสวนนี้จะกลาวถึงวิธีการระบุตัวตนการเปนเจาของ Username 

ที่ชัดเจน จากหัวขอ ที่ผานมาทําให สามารถ สราง Profile ของเสนโคจร

ตนแบบและการวัดความแตกตางของเสนโคจร โดยตั้งสมมติฐาน วายิ่งคา

ระดับความแตกตางเขาใกลศูนยมากเทาใดยิ่งแสดงความเปนเจาของที่

แทจริงมากขึ้นเทานั้น แตระดับความแตกตางเทาใดจึงจะเหมาะสมในการ

 

 

 

 

 

 

ภาพท่ี 5 วดัความแตกต่างของเส้นโคจรด้วย Euclidean  
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	 Adiss คอื ค่าความต่างของเส้นโคจรทีจ่ะตรวจสอบ

การพิสูจน์ตัวตน BAvDiss คือ ค่าเฉลี่ยระดับความ

แตกต่างต่างของเส้นโคจรทั้ง 10 Username ที่ผู้เป็น

เจ้าของได้เก็บเป็น Profile ไว้ BStdDiss คือ ค่าส่วน

เบีย่งเบนมาตรฐานความแตกต่างของเส้นโคจรทัง้ 10 

Username ที่ผู้เป็นเจ้าของได้เก็บเป็น Profile ไว้ Sig  

คอืค่า Allowance Factor ซึง่เบือ้งต้นจะก�ำหนดมค่ีา 

3.00 ตามทฤษฎี Six Sigma และปรับความเหมาะสม

จากข้อมลูการทดลองของกลุม่อาสาสมคัรในล�ำดบัถดัไป 

จากสมการที่ (2) เมื่อ f(x) = 0 ระบบจะระบุว่าเป็นผู้

โจมต ีหรอืไม่ใช่เจ้าของทีแ่ท้จริงแต่หาก f(x) = 1 ระบบ

จะระบุว่าเป็นเจ้าของที่แท้จริง

6. การคัดเลือก Feature เพื่อน�ำมา
ประกอบเป็นเส้นโคจร

	 จาก Feature พืน้ฐานของ Keystroke Dynam-

ics ผู้วิจัยได้น�ำเสนอ Feature เพิ่มเติมจาก Feature 

พื้นฐานมีรายละเอียดดังนี้ H/1000 คือการน�ำข้อมูล

ดิบ Hold Time ซึ่งมีหน่วยเป็น Millisecond ท�ำการ 

Normalize ให้เหลือค่าเป็นจุดทศนิยมโดยการหาร

ด้วย 1000 เพราะข้อมูลส่วนใหญ่จะอยู่ในหลัก Milli-

seconds เท่าน้ัน การท�ำ Normalize เพือ่ต้องการให้ 

Feature ทั้งหมดมีความส�ำคัญในระดับใกล้เคียงกัน 

I/1000 คือการน�ำข้อมูลดิบ Interkey Time ซึ่งมี

หน่วยเป็น Millisecond มาท�ำการ Normalize ให้

เหลือค่าเป็นจุดทศนิยม L/1000 คือการน�ำข้อมูลดิบ 

Latency Time ซึ่งมีหน่วยเป็น Millisecond มา

ท�ำการ Normalize ให้เหลือค่าเป็นจุดทศนิยม H/

Total คือการน�ำข้อมูลดิบ Hold Time มีหน่วยเป็น 

Millisecond หารด้วยเวลาทัง้หมดทีพิ่มพ์ Username 

น้ัน ผลลัพธ์ทีไ่ด้จะเป็นเลขทศนยิมทีบ่่งบอกถงึสดัส่วน

ของ Hold Time ของ key น้ันต่อเวลาท้ังหมดท่ีท�ำการ

พิมพ์ Username นั้น I/Total คือการน�ำข้อมูลดิบ 

Interkey Time ซึ่งมีหน่วยเป็น Millisecond หาร

ด้วยเวลาทั้งหมดที่พิมพ์ Username นั้น ผลลัพธ์ที่ได้

จะเป็นเลขทศนิยม L/Total คือการน�ำข้อมูลดิบ  

Latency Time ซ่ึงมหีน่วยเป็น Millisecond หารด้วย

เวลาทั้งหมดที่พิมพ์ Username ชุดนั้น ผลลัพธ์ที่ได้

จะเป็นเลขทศนิยม H/Sum H คือการน�ำข้อมูลดิบ 

Hold Time ซึ่งมีหน่วยเป็น Millisecond หารด้วย

ผลรวมของ Hold Time ทุกคีย์ ใน Username นั้น 

ผลลพัธ์ท่ีได้จะเป็นเลขทศนยิมท่ีบ่งบอกถึงสดัส่วนของ 

Hold Time ของ key นั้นต่อ Hold Time ทั้งหมดที่

พิมพ์ Username นั้น I/Sum I คือการน�ำข้อมูลดิบ 

Interkey Time ซึ่งมีหน่วยเป็น Millisecond หาร

ด้วยผลรวมของ Interkey Time ทุกคีย์ใน Username 

นั้น ผลลัพธ์ที่ได้จะเป็นเลขทศนิยม L/Sum L คือ

การน�ำข้อมูลดิบ Latency Time ซึ่งมีหน่วยเป็น 

Millisecond หารด้วยผลรวมของ Latency Time 

ทุกคีย์ใน Username นั้น ผลลัพธ์ท่ีได้จะเป็นเลข

ทศนิยม อย่างไรก็ตามในการสร้างเส้นโคจรต้องการ

เพียงแค่ Feature 2 ตัวเท่านั้น เพื่อน�ำมาสร้างพิกัด

บนเส ้นโคจร X,Y ซึ่งผู ้วิจัยได ้คิดค ้นวิธีการวัด

ประสทิธภิาพของ Feature แต่ละตวัโดยการดดัแปลง

จากทฤษฎีการวัดประสิทธิภาพของกระบวนการทาง

สถิติ [8] ดังสมการที่ (3)

	 CpkGenuine : คือค่าความสามารถเฉลี่ยของ 

Feature แต่ละตวัของเจ้าของ Username ท่ีแท้จรงิ

โดยใช้ Username 30 ครัง้ของเจ้าของเปรยีบเทียบกบั

ค่าเฉลีย่และส่วนเบ่ียงเบนมาตรฐานของ Username 

10 ครัง้แรกท่ีจะน�ำมาเป็นต้นแบบ CpkImpost: คอืค่า

ความสามารถเฉล่ียของ Feature แต่ละตวัของผูโ้จมตี



การพิสูจน์ตัวตนโดยจังหวะการพิมพ์ด้วยวิธีการวัดความต่างของเส้นโคจร 57 
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ทัง้ 3 โดยใช้ Username 30 คร้ังจากผูโ้จมตเีปรยีบ

เทียบกับค่าเฉลี่ยและส่วนเบี่ยงเบนมาตรฐานของ  

Username 10 ครั้งแรกของเจ้าของ Username  

ทีจ่ะน�ำมาเป็นต้นแบบ สมการวดัความสามารถข้างต้น

ได้ประยุกต์มาจากสมการมาตรฐานทางสถิติ [8]  

ดงัสมการที ่4

	 Cpk : ค่าความสามารถของกระบวนการทีแ่สดง

ถึงความใกล้เคียงกับเป้าหมายและการควบคุมความ

แปรปรวนของกระบวนการ Cpk ที่มีค่าสูงแสดงถึง

ความสามารถในการควบคุมกระบวนการทีดี่ Cpu: ค่า

ความสามารถของกระบวนการทางด้านขีดจ�ำกัดบน

ของค่าเป้าหมาย โดยบ่งบอกถึงประสิทธิภาพในการ

ควบคุมความแปรปรวนและการเข้าใกล้ค่าเป้าหมาย

ของกระบวนการ Cpl: ค ่าความสามารถของ

กระบวนการทางด้านขีดจ�ำกัดล่างของค่าเป้าหมาย 

โดยบ่งบอกถึงประสิทธิภาพในการควบคุมความ

แปรปรวนและการเข ้ า ใกล ้ค ่ า เป ้ าหมายของ

กระบวนการ USL : คือค่าขีดจ�ำกัดบนของค่าเป้า

หมายซึง่ค�ำนวณจากค่าเฉลีย่ของเป้าหมายบวกด้วย 3 

เท่าของค่าเบี่ยงเบนมาตรฐานของชุดข้อมูลที่เป็นต้น

แบบ LSL : ค่าขีดจ�ำกดัล่างของค่าเป้าหมายซึง่ค�ำนวณ

จากค่าเฉลี่ยของเป้าหมายลบด้วย 3 เท่าของค่าเบี่ยง

เบนมาตรฐานของชุดข้อมูลที่เป็นต้นแบบ 

พิสูจนตัวตน ผูวิจัยจึงนําเอาหลักการทางสถิติ [7] มาประยุกตใชเปนวิธีการ

พิสูจนตัวตนตามขั้นตอน ดังนี้ คํานวณคาระดับความแตกตางของ 

Username ทั้ง 10 คร้ังของชุดแรกโดยเทียบกับเสนโคจรตนแบบที่ไดจาก 

Username ทั้ง 10 คร้ังของขอมูลชุดเดียวกันนําคาระดับความแตกตางที่

ไดของ Username ทั้ง 10 คร้ังมาหาคาเฉล่ีย ( Average) และคาสวน

เบ่ียงเบนมาตรฐาน (Standard Deviation) กําหนดสมการพิสูจนตัวตนดัง

สมการที่ (2) โดยกําหนดให 

 

 

Adissคือ คาความตางของเสนโคจรที่จะทําการตรวจสอบการพิสูจนตัวตน

BAvDissคือ คาเฉล่ียระดับความแตกตางตางของเสนโคจรทั้ง 10 Username 

ที่ผูเปนเจาของไดเก็บเปน Profile ไว BStdDissคือ คาสวนเบ่ียงเบน

มาตรฐานความแตกตางของเสนโคจรทั้ง 10 Username ที่ผูเปนเจาของได

เก็บเปน Profile ไว Sig  คือคา Allowance Factor ซ่ึงเบ้ืองตนจะกําหนด

มีคา 3.00 ตามทฤษฎี Six Sigma   และทําการปรับ ความเหมาะสมจาก

ขอมูลการทดลองของกลุมอาสาสมัครในลําดับถัดไป จากสมการที่ ( 2) เมื่อ 

f(x) = 0 ระบบจะระบุวาเปนผูโจมตีหรือไมใชเจาของที่แทจริงแตหาก f(x) 

= 1 ระบบจะระบุวาเปนเจาของที่แทจริง 

 

6. การคัดเลือก Feature เพื่อนํามาประกอบเปนเสนโคจร 

จาก Feature พ้ืนฐานของ Keystroke Dynamics ผูวิจัยได

นําเสนอ Feature เพ่ิมเติมจาก Feature พ้ืนฐานมีรายละเอียดดังนี้

H/1000 คือการนําขอมูลดิบ Hold Time ซ่ึงมีหนวยเปน Millisecond 

ทําการ Normalize ใหเหลือ คาเปนจุดทศนิยม โดยการหารด วย 1000 

เพราะขอมูลสวนใหญจะอยูในหลัก Millisecondsเทานั้น การ ทํา 

Normalize เพ่ือตองการให Feature ทั้งหมด มีความสําคัญในระดับ

ใกลเคียงกัน I/1000 คือการนําขอมูลดิบ Interkey Time ซ่ึงมีหนวยเปน 

Millisecond มาทําการNormalize ใหเหลือคาเปนจุดทศนิยมL/1000 คือ

การนําขอมูลดิบ Latency Time ซ่ึงมีหนวยเปน Millisecond มาทําการ

Normalize ใหเหลือคาเปนจุดทศนิยมH/Total คือการนําขอมูลดิบ Hold 

Time มีหนวยเปน Millisecond ทําการหารดวยเวลาทั้งหมดที่ทําการ

พิมพ Username นั้น ผลลัพธที่ไดจะเปนเลขทศนิยมที่บงบอกถึงสัดสวน

ของ Hold Time ของ key นั้นตอเวลาทั้งหมดที่ทําการพิมพ Username 

นั้น I/Total คือการนําขอมูลดิบ Interkey Time ซ่ึงมีหนวยเปน 

Millisecond ทําการหารดวยเวลาทั้งหมดที่ทําการพิมพ Username นั้น 

ผลลัพธที่ไดจะ เปน เลขทศนิยม L/Total คือการนําขอมูลดิบ Latency 

Time ซ่ึงมีหนวยเปน Millisecond ทําการหารดวยเวลาทั้งหมดที่ทําการ

พิมพ Username ชุดนั้น ผลลัพธที่ไดจะเปนเลขทศนิยมH/Sum H คือการ

นําขอมูลดิบ Hold Time ซ่ึงมีหนวยเปน Millisecond ทําการหารดวย

ผลรวมของ Hold Time ทุกคีย ใน Username นั้น ผลลัพธที่ไดจะเปน

เลขทศนิยมที่บงบอกถึงสัดสวนของ Hold Time ของ key นั้นตอ Hold 

Time ทั้งหมดที่ทําการพิมพ Username นั้นI/Sum I คือการนําขอมูลดิบ 

Interkey Time ซ่ึงมีหนวยเปน Millisecond ทําการหารดวยผลรวมของ 

Interkey Time ทุกคียใน Username นั้น ผลลัพธที่ไดจะเปนเลขทศนิยม

L/Sum L คือการนําขอมูลดิบ Latency Time ซ่ึงมีหนวยเปน 

Millisecond ทําการหารดวยผลรวมของ Latency Time ทุกคียใน 

Username นั้น ผลลัพธที่ไดจะเปนเลขทศนิยม อยางไรก็ ตามในการสราง

เสนโคจรตองการเพียงแค Feature 2 ตัวเทานั้นเพ่ือ นํามาสรางพิกัดบน

เสนโคจร X,Y ซ่ึงผูวิจัยไดคิดคนวิธีการวัดประสิทธิภาพของ Feature แต

ละตัวโดยการดัดแปลงจากทฤษฎีการวัดประสิทธิภาพของกระบวนการทาง

สถิติ[8] ดังสมการที่(3) 

 

CpkGenuine: คือคาความสามารถเฉล่ียของ Feature แตละตัว ของเจาของ 

Username ที่แทจริงโดยใช Username 30 คร้ังของเจาของเปรียบเทียบ

กับคาเฉล่ียและสวนเบ่ียงเบนมาตรฐานของ Username 10 คร้ังแรกที่จะ

นํามาเปนตนแบบ CpkImpost: คือคาความสามารถเฉล่ียของ Feature แต

ละตัวของผูโจมตีทั้ง 3 โดยใช Username 30 คร้ังจากผูโจมตีเปรียบเทียบ

กับคาเฉล่ียและสวนเบ่ียงเบนมาตรฐานของ Username 10 คร้ังแรกของ

เจาของ Username ที่จะนํามาเปนตนแบบสมการวัดความสามารถขางตน

ไดประยุกตมาจากสมการมาตรฐานทางสถิติ[8] ดังสมการที่ 4 

 

 

 

Cpk: คาความสามารถของกระบวนการที่ แสดงถึงความ ใกลเคียงกับ

เปาหมายและการควบคุมความแปรปรวนของกระบวนการ Cpk ที่มีคาสูง

แสดงถึงความสามารถในการควบคุมกระบวนการที่ดี Cpu:คา

ความสามารถของกระบวนการทางดานขีดจํากัดบนของคาเปาหมาย โดย

บงบอกถึงประสิทธิภาพในการควบคุมความแปรปรวนและการเขาใกลคา

เปาหมายของกระบวนการ  Cpl: คา ความสามารถ ของกระบวนการ

ทางดานขีดจํากัดลางของคาเปาหมาย โดยบงบอกถึงประสิทธิภาพในการ

ควบคุมความแปรปรวนและการเขาใกลคาเปาหมายของกระบวนการ USL: 

คือคาขีดจํากัดบนของคา เปาหมายซ่ึงคํานวณจากคาเฉล่ียของเปาหมาย

บวกดวย3 เทาของคาเบ่ียงเบนมาตรฐาน ของชุดขอมูลที่เปนตนแบบ LSL: 

คาขีดจํากัดลางของคา เปาหมายซ่ึงคํานวณจากคาเฉล่ียของเปาหมาย ลบ

ดวย3 เทาของคาเบ่ียงเบนมาตรฐาน ของชุดขอมูลที่เปนตนแบบ X�A,σA: 

คาเฉล่ีย และ สวนเบ่ียงเบนมาตรฐานของขอมูลที่ ตองการประเมิน

ความสามารถของกระบวนการ X�B,σB: คาเฉล่ีย และ สวนเบ่ียงเบน

มาตรฐานของขอมูลที่ ใชอางอิงและเปนเปาหมายในการประเมิน

ความสามารถของกระบวนการ ดังนั้น Feature ที่ถูกเลือกจะตองมีคา

FeatureCap สูงที่สุดสองอันดับแรกและนํามาใชสรางเสนโคจรเนื่องจาก

แสดงใหเห็นวามีคาความสามารถของเจาของดีกวาผู โจมตี มากที่สุดซ่ึง

หมายถึงการคัดแยกระหวางเจาของและผูโจมตีมีความชัดเจน ซ่ึงสงผลให

การพิสูจนตัวตนมีประสิทธิภาพสูงที่สุด ผูวิจัยไดทําการทดลองทฤษฎี

ดังกลาวกับขอมูลของอาสาสมัคร 3 คนจากผลการทดลองทําให Feature 

 

 

 

  ค่า

เฉลีย่และส่วนเบ่ียงเบนมาตรฐานของข้อมลูทีต้่องการ

ประเมินความสามารถของกระบวนการ 

พิสูจนตัวตน ผูวิจัยจึงนําเอาหลักการทางสถิติ [7] มาประยุกตใชเปนวิธีการ

พิสูจนตัวตนตามขั้นตอน ดังนี้ คํานวณคาระดับความแตกตางของ 

Username ทั้ง 10 คร้ังของชุดแรกโดยเทียบกับเสนโคจรตนแบบที่ไดจาก 

Username ทั้ง 10 คร้ังของขอมูลชุดเดียวกันนําคาระดับความแตกตางที่

ไดของ Username ทั้ง 10 คร้ังมาหาคาเฉล่ีย ( Average) และคาสวน

เบ่ียงเบนมาตรฐาน (Standard Deviation) กําหนดสมการพิสูจนตัวตนดัง

สมการที่ (2) โดยกําหนดให 

 

 

Adissคือ คาความตางของเสนโคจรที่จะทําการตรวจสอบการพิสูจนตัวตน

BAvDissคือ คาเฉล่ียระดับความแตกตางตางของเสนโคจรทั้ง 10 Username 

ที่ผูเปนเจาของไดเก็บเปน Profile ไว BStdDissคือ คาสวนเบ่ียงเบน

มาตรฐานความแตกตางของเสนโคจรทั้ง 10 Username ที่ผูเปนเจาของได

เก็บเปน Profile ไว Sig  คือคา Allowance Factor ซ่ึงเบ้ืองตนจะกําหนด

มีคา 3.00 ตามทฤษฎี Six Sigma   และทําการปรับ ความเหมาะสมจาก

ขอมูลการทดลองของกลุมอาสาสมัครในลําดับถัดไป จากสมการที่ ( 2) เมื่อ 

f(x) = 0 ระบบจะระบุวาเปนผูโจมตีหรือไมใชเจาของที่แทจริงแตหาก f(x) 

= 1 ระบบจะระบุวาเปนเจาของที่แทจริง 

 

6. การคัดเลือก Feature เพื่อนํามาประกอบเปนเสนโคจร 

จาก Feature พ้ืนฐานของ Keystroke Dynamics ผูวิจัยได

นําเสนอ Feature เพ่ิมเติมจาก Feature พ้ืนฐานมีรายละเอียดดังนี้

H/1000 คือการนําขอมูลดิบ Hold Time ซ่ึงมีหนวยเปน Millisecond 

ทําการ Normalize ใหเหลือ คาเปนจุดทศนิยม โดยการหารด วย 1000 

เพราะขอมูลสวนใหญจะอยูในหลัก Millisecondsเทานั้น การ ทํา 

Normalize เพ่ือตองการให Feature ทั้งหมด มีความสําคัญในระดับ

ใกลเคียงกัน I/1000 คือการนําขอมูลดิบ Interkey Time ซ่ึงมีหนวยเปน 

Millisecond มาทําการNormalize ใหเหลือคาเปนจุดทศนิยมL/1000 คือ

การนําขอมูลดิบ Latency Time ซ่ึงมีหนวยเปน Millisecond มาทําการ

Normalize ใหเหลือคาเปนจุดทศนิยมH/Total คือการนําขอมูลดิบ Hold 

Time มีหนวยเปน Millisecond ทําการหารดวยเวลาทั้งหมดที่ทําการ

พิมพ Username นั้น ผลลัพธที่ไดจะเปนเลขทศนิยมที่บงบอกถึงสัดสวน

ของ Hold Time ของ key นั้นตอเวลาทั้งหมดที่ทําการพิมพ Username 

นั้น I/Total คือการนําขอมูลดิบ Interkey Time ซ่ึงมีหนวยเปน 

Millisecond ทําการหารดวยเวลาทั้งหมดที่ทําการพิมพ Username นั้น 

ผลลัพธที่ไดจะ เปน เลขทศนิยม L/Total คือการนําขอมูลดิบ Latency 

Time ซ่ึงมีหนวยเปน Millisecond ทําการหารดวยเวลาทั้งหมดที่ทําการ

พิมพ Username ชุดนั้น ผลลัพธที่ไดจะเปนเลขทศนิยมH/Sum H คือการ

นําขอมูลดิบ Hold Time ซ่ึงมีหนวยเปน Millisecond ทําการหารดวย

ผลรวมของ Hold Time ทุกคีย ใน Username นั้น ผลลัพธที่ไดจะเปน

เลขทศนิยมที่บงบอกถึงสัดสวนของ Hold Time ของ key นั้นตอ Hold 

Time ทั้งหมดที่ทําการพิมพ Username นั้นI/Sum I คือการนําขอมูลดิบ 

Interkey Time ซ่ึงมีหนวยเปน Millisecond ทําการหารดวยผลรวมของ 

Interkey Time ทุกคียใน Username นั้น ผลลัพธที่ไดจะเปนเลขทศนิยม

L/Sum L คือการนําขอมูลดิบ Latency Time ซ่ึงมีหนวยเปน 

Millisecond ทําการหารดวยผลรวมของ Latency Time ทุกคียใน 

Username นั้น ผลลัพธที่ไดจะเปนเลขทศนิยม อยางไรก็ ตามในการสราง

เสนโคจรตองการเพียงแค Feature 2 ตัวเทานั้นเพ่ือ นํามาสรางพิกัดบน

เสนโคจร X,Y ซ่ึงผูวิจัยไดคิดคนวิธีการวัดประสิทธิภาพของ Feature แต

ละตัวโดยการดัดแปลงจากทฤษฎีการวัดประสิทธิภาพของกระบวนการทาง

สถิติ[8] ดังสมการที่(3) 

 

CpkGenuine: คือคาความสามารถเฉล่ียของ Feature แตละตัว ของเจาของ 

Username ที่แทจริงโดยใช Username 30 คร้ังของเจาของเปรียบเทียบ

กับคาเฉล่ียและสวนเบ่ียงเบนมาตรฐานของ Username 10 คร้ังแรกที่จะ

นํามาเปนตนแบบ CpkImpost: คือคาความสามารถเฉล่ียของ Feature แต

ละตัวของผูโจมตีทั้ง 3 โดยใช Username 30 คร้ังจากผูโจมตเีปรียบเทียบ

กับคาเฉล่ียและสวนเบ่ียงเบนมาตรฐานของ Username 10 คร้ังแรกของ

เจาของ Username ที่จะนํามาเปนตนแบบสมการวัดความสามารถขางตน

ไดประยุกตมาจากสมการมาตรฐานทางสถิติ[8] ดังสมการที่ 4 

 

 

 

Cpk: คาความสามารถของกระบวนการที่ แสดงถึงความ ใกลเคียงกับ

เปาหมายและการควบคุมความแปรปรวนของกระบวนการ Cpk ที่มีคาสูง

แสดงถึงความสามารถในการควบคุมกระบวนการที่ดี Cpu:คา

ความสามารถของกระบวนการทางดานขีดจํากัดบนของคาเปาหมาย โดย

บงบอกถึงประสิทธิภาพในการควบคุมความแปรปรวนและการเขาใกลคา

เปาหมายของกระบวนการ  Cpl: คา ความสามารถ ของกระบวนการ

ทางดานขีดจํากัดลางของคาเปาหมาย โดยบงบอกถึงประสิทธิภาพในการ

ควบคุมความแปรปรวนและการเขาใกลคาเปาหมายของกระบวนการ USL: 

คือคาขีดจํากัดบนของคา เปาหมายซ่ึงคํานวณจากคาเฉล่ียของเปาหมาย

บวกดวย3 เทาของคาเบ่ียงเบนมาตรฐาน ของชุดขอมูลที่เปนตนแบบ LSL: 

คาขีดจํากัดลางของคา เปาหมายซ่ึงคํานวณจากคาเฉล่ียของเปาหมาย ลบ

ดวย3 เทาของคาเบ่ียงเบนมาตรฐาน ของชุดขอมูลที่เปนตนแบบ X�A,σA: 

คาเฉล่ีย และ สวนเบ่ียงเบนมาตรฐานของขอมูลที่ ตองการประเมิน

ความสามารถของกระบวนการ X�B,σB: คาเฉล่ีย และ สวนเบ่ียงเบน

มาตรฐานของขอมูลที่ ใชอางอิงและเปนเปาหมายในการประเมิน

ความสามารถของกระบวนการ ดังนั้น Feature ที่ถูกเลือกจะตองมีคา

FeatureCap สูงที่สุดสองอันดับแรกและนํามาใชสรางเสนโคจรเนื่องจาก

แสดงใหเห็นวามีคาความสามารถของเจาของดีกวาผู โจมตี มากที่สุดซ่ึง

หมายถึงการคัดแยกระหวางเจาของและผูโจมตีมีความชัดเจน ซ่ึงสงผลให

การพิสูจนตัวตนมีประสิทธิภาพสูงที่สุด ผูวิจัยไดทําการทดลองทฤษฎี

ดังกลาวกับขอมูลของอาสาสมัคร 3 คนจากผลการทดลองทําให Feature 

 

 

 

 ค่า

เฉลีย่และส่วนเบ่ียงเบนมาตรฐานของข้อมูลท่ีใช้อ้างองิ

และเป็นเป้าหมายในการประเมินความสามารถของ

กระบวนการ ดังนั้น Feature ที่ถูกเลือกจะต้องมีค่า 

FeatureCap สูงท่ีสุดสองอันดับแรก และน�ำมาใช้

สร้างเส้นโคจร เนื่องจากแสดงให้เห็นว่ามีค่าความ

สามารถของเจ้าของดกีว่าผูโ้จมตมีากทีส่ดุซ่ึงหมายถงึ

การคัดแยกระหว่างเจ้าของและผู้โจมตีมีความชัดเจน 

ซึ่งส่งผลให้การพิสูจน์ตัวตนมีประสิทธิภาพสูงที่สุด  

ผู ้ วิจัยได ้ทดลองทฤษฎีดั งกล ่าวกับข ้อมูลของ 

อาสาสมัคร 3 คน จากผลการทดลองท�ำให้ Feature 

“I/1000” และ “L/1000” ถกูเลอืก เนือ่งจากให้ค่า 

FeatureCap สูงเป็นสองอันดับแรกของอาสาสมัคร 2 

ใน 3 คนให้ผลลัพธ์ดังตารางที่ 1

“I/1000”และ “L/1000”ถูกเลือกเนื่องจากใหคา FeatureCapสูงเปนสอง

อันดับแรกของอาสาสมัคร 2 ใน 3 คนใหผลลัพธดังตารางที่ 1 
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7. การทดสอบผลการพิสูจนตัวตน 
จากการคัดเลือก Feature เพ่ือนํามาประกอบเปนเสนโคจร ที่

คาดวาจะใหผลการพิสูจนตัวตนที่ดีที่สุดจาก Feature ที่มีอยูทั้งหมด ผูวิจัย

ไดสรางโปรแกรมประยุกตดวยภาษา C# ดังรูปที่ 6 เพ่ือประมวลผลขอมูล

จากอาสาสมัคร20 คนและผู โจมตี3 คนโดย ผูวิจัยกําหนดให โปรแกรมทํา

การจัด Feature สรางเสนโคจรและทําการระบุตัวตนโดยปรับคา 

Allowance Factor จนไดคา EER (Equal Error Rate) ซ่ึงคือ FRR 

(False Rejection Rate) และ FAR (False Acceptance Rate)[1][17] 

ใหมีคาเทากันหรือใกลเคียงกันมากที่สุด โ ดยจะ สรางเสนโคจรจากทุก

Feature โดยการจับคูที่เปนไปไดทุกคูจากนั้นจึงทําการดําเนินการพิสูจน

ตัวตน ซ่ึง ผล ลัพธจากวิธีการดังกลาว พบวาการเลือก Feature 

“I/1000”และ “L/1000”มาจัดเปนโครงสรางเสนโคจรและทําการพิสูจน

ตัวตนดวยวิธีการวัดความแตกตางของ เสนโคจรใหผล ลัพธ ดีที่สุดจาก 

Feature ทั้งหมดและตรงตามที่ผูวิจัยไดทําการคัดเลือกโดยใหคาผลการ

ทดลองที่ ERR= 4% (FAR=4%, FRR=4%) ที่ Allowance Factor = 

2.76 หมายความวาระบบพิสูจนตัวตนมีความแมนยําถึง 96%  

 

 

 

 

 

 

 

 

 

รูปที่ 6โปรแกรมประยุกตทดสอบการพิสูจนตัวตน 

8. เปรียบเทียบผลการทดลอง 
 จากงานวิจัยที่เก่ียวของพบวาผลการทดลองของงานวิจัยนี้

ใหผลลัพธที่ดีกวางานวิจัยหลายงาน ซ่ึงงานวิจัยที่นํามาทําการเปรียบเทียบ

ใชวิธีการวัดประสิทธิภาพดวย Equal Error Rate (ERR) เชนเดียวกับ

งานวิจัยชิ้นนี้และไดแสดงผลการเปรียบเทียบดังตารางที่ 2อยางไรก็ตาม

พบวายังมี งานวิจัย อ่ืนๆ อีก ที่ใหผลการพิสูจนตัวตนที่ดีกวาเชน 

Kang,Hwang, Cho [5], Hwang, Lee, Cho [18] และ Jiang, Shieh, 

Liu [19]  โดยใชเทคนิคขั้นสูงในการประมวลผลและใชจํานวนขอมูลที่

คอนขางมากเชน Jiang, Shieh และLiu [19] ใชเทคนิค Hidden Markov 

Models และใชจํานวนขอมูลของอาสาสมัคร 58 คนและใชจํานวน

ตัวอยางขอมูลในการทําตนแบบ 20 ตัวอยางตออาสาสมัคร 1 คนโดยใหผล 

Error Rate ที่ 2.54% ซ่ึงถาเทียบกับงานวิจัยชิ้นนี้ใชจํานวนอาสาสมัคร 20 

คนและตองการขอมูลการทําตนแบบเพียง10 ตัวอยาง อีกทั้งยัง ใชหลักการ

ไมซับซอนซ่ึงทําใหเขาใจและเห็นภาพไดงายรวมทั้งยังใหผลลัพธ Error 

Rate 4% ซ่ึงตางจากงานวิจัยที่กลาวถึงเพียง1.46% อยางไรก็ตามงานวิจัย

นี้มีจุดออนในดานที่ไมมีการเรียนรูและปรับเสนโคจรตนแบบอยางตอเนื่อง

เมื่อเวลาผานไป ดังนั้นหากผูใชงานมีพฤติกรรมการพิมพที่เปล่ียนไปจาก

เดิมอาจสงผลใหระบบการพิสูจนตัวตนมีประสิทธิภาพลดลง แตงานวิจัยนี้มี

ความนาสนใจตรงที่มีความเรียบงายไมซับซอนจนเกินไปซ่ึงเหมาะ สําหรับ

การนําไปประยุกตใชงานในระบบจริง 
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9. สรุปผลการทดลอง 
จากผลการทดลองพบวาทฤษฎีการคัดเลือก Feature ของ

ผูวิจัยและระบบการพิสูจนตัวตนที่ผูวิจัยไดคิดคนดวยวิธีการวัดความตาง

ของเสนโคจรโดยนําขอมูล Keystroke Dynamics มาจัดรูปเปนเสนโคจร 

จากนั้นวัดความแตกตางจากเสนโคจรตนแบบของเจาของที่แทจริง วิธีการ

ดังกลาวถือวาใหผลความแมนยําสูง โดยใหคาความผิดพลาด EER ที่ 4%

หรือแมนยําถึง 96% ซ่ึงงานวิจัยนี้ไดแสดงใหเห็นถึงแนวทางและประโยชน

ของการนําพฤติกรรมของมนุษยมาประยุกตใชในศาสตรทางดานความ

มั่นคงบนระบบคอมพิวเตอรซ่ึงสามารถลดจุดออนและเพ่ิมความแข็งแกรง 

ใหกับการพิสูจนตัวตนบนระบบคอมพิวเตอรไดอยางมีประสิทธิภาพ 

H/1000 I/1000 L/1000 H/Total I/Total L/Total H/Sum H I/Sum I L/Sum L
Key FeatureCap FeatureCap FeatureCap FeatureCap FeatureCap FeatureCap FeatureCapFeatureCap FeatureCap
m -0.36058 -0.304214 1.109704 0.979213 0.095894 -0.06855 -0.13229 0.242791 -0.1644468
a 1.560046 0.490939 1.369627 0.85021 -0.7401 -0.2841 1.277662 0.147029 -0.1249769
y -0.02907 0.097267 0.347532 0.901099 1.738216 2.205524 -0.08004 2.135042 2.3821954
t 0.02545 6.922116 6.631409 1.383942 3.737411 2.290478 0.953804 2.224876 2.0955769
i 0.36153 1.7857 1.439236 1.383942 0.719368 1.279254 1.349523 1.129244 1.3837314
n 0.083146 2.054448 1.808456 1.707304 0.742636 0.165086 0.681772 -0.00154 0.0728593
e 0.278113 0.98673 1.086271 1.299673 1.224506 1.150162 0.109386 1.230092 1.1701512
e 0.501015 1.862484 2.018295 0.955634 2.072566 1.552667 0.06433 1.276203 1.4368463
a 0.815929 1.33995 0.454446

Mean 0.359509 1.736934 1.976316 1.200108 1.198812 1.036315 0.519844 1.047967 1.0314921
Key FeatureCap FeatureCap FeatureCap FeatureCap FeatureCap FeatureCap FeatureCapFeatureCap FeatureCap

k 1.184261 1.226967 1.927648 1.426691 0.946234 1.114615 0.123126 -0.47602 1.3175875
a 0.582069 1.544231 1.562174 1.517218 1.223006 0.823206 0.316769 0.370572 0.8208335
s 0.665347 1.490308 1.440941 1.11209 1.355439 0.550162 0.439122 -2.33986 0.4903295
e 0.671355 1.071235 1.293856 0.49748 0.568472 0.662531 -0.16437 3.887512 0.7462871
m 0.276431 1.21036 1.659883 0.915424 0.945425 0.364468 -0.01915 -0.29485 0.2547701
w 0.963228 1.197444 0.52561

Mean 0.723782 1.30862 1.5769 1.111058 1.007715 0.702997 0.203518 0.229469 0.7259615
Key FeatureCap FeatureCap FeatureCap FeatureCap FeatureCap FeatureCap FeatureCapFeatureCap FeatureCap

k 1.535257 2.182462 1.083272 4.377939 1.871519 -0.06032 0.027115 -1.38271 0.1768394
a 0.465611 1.238641 1.581689 2.651893 1.076155 0.583617 -0.18258 0.073545 0.5621543
m 0.842666 2.88113 1.510473 3.899972 0.5431 -0.05117 0.181099 -0.81203 0.3591644
o -0.43944 1.372741 1.524724 2.358768 -1.50583 2.020001 0.512915 0.013997 2.3763859
l 1.213226 2.546579 2.112816 5.457015 3.170764 1.987929 -0.34219 -0.11399 1.9287246
r 0.716236 1.370327 1.001104 3.862401 1.413568 0.408758 -0.12738 0.232467 0.3480523
a 0.520747 2.090275 1.700646 3.598043 2.371989 0.282159 -0.19565 -0.08177 0.0922799
t 2.760891 1.985776 1.250701 10.08852 2.597761 0.609065 1.572571 0.201336 0.5966947
s -1.26444 0.366567 0.000686

Mean 0.705638 1.958492 1.470678 4.073458 1.442378 0.722505 0.160732 -0.23364 0.8050369  

Author Ref Paper Technique ERR(%)
Proposed Technique N/A Trajectory Dissimilarity 4%
M. Brown, S.J. Rogers [10] Kohanen and MLP 4.2
L.Taweetham [1] Advance Stat. 5.24
Steven M.Walker [9] N/A 5.4
R. Giot, M. EI-Abed, 
and C. Rosenberger [15] SVM 6.96

D. Tran, W. Ma, G. Chetty, 
and D. Sharma [13] Markov and Fuzzy 8.6

J.R. Montalv ao Filho, E.O. Freire [12] Hidden Markov Models 12.7
E. Maiorana, P. Campisi, 
N. Gonz´alez-Carballo, [16] KNN 14

F. Monrosec, A. Rubin [11] KNN 15.4
M. Rybnik, M. Tabedzki, 
and K. Saeed [14] Vote 24.22
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58 วิศวกรรม มก.

7. การทดสอบผลการพสูิจน์ตัวตน
	 จากการคัดเลือก Feature เพื่อน�ำมาประกอบ

เป็นเส้นโคจรที่คาดว่าจะให้ผลการพิสูจน์ตัวตนที่ดี

ที่สุดจาก Feature ที่มีอยู ่ทั้งหมด ผู้วิจัยได้สร้าง

โปรแกรมประยุกต์ด้วยภาษา C# ดังภาพที่ 6 เพ่ือ

ประมวลผลข้อมูลจากอาสาสมัคร 20 คน และผู้โจมต ี

3 คน โดยผูว้จิยัก�ำหนดให้โปรแกรมท�ำการจดั Feature 

สร้างเส้นโคจร และระบตัุวตนโดยปรบัค่า Allowance 

Factor จนได้ค่า EER (Equal Error Rate) ซึง่คือ FRR 

(False Rejection Rate) และ FAR (False Accep-

tance Rate)[1] [17] ให้มีค่าเท่ากันหรือใกล้เคียงกัน

มากที่สุด โดยจะสร้างเส้นโคจรจากทุก Feature โดย

การจับคู่ที่เป็นไปได้ทุกคู่ จากนั้นจึงด�ำเนินการพิสูจน์

ตัวตน ซึ่งผลลัพธ์จากวิธีการดังกล่าวพบว่าการเลือก 

Feature “I/1000”และ “L/1000”มาจดัเป็นโครงสร้าง

เส้นโคจร และพิสูจน์ตัวตนด้วยวิธีการวัดความ 

แตกต่างของเส้นโคจรให้ผลลัพธ์ดีทีส่ดุจาก Feature 

ทัง้หมด และตรงตามทีผู่ว้จิยัได้คดัเลอืกโดยให้ค่าผลการ

ทดลองที ่ERR= 4% (FAR=4%, FRR=4%) ที ่Allow-

ance Factor = 2.76 หมายความว่าระบบพิสจูน์ตัวตน

มคีวามแม่นย�ำถงึ 96% 

8. เปรยีบเทียบผลการทดลอง
	 จากงานวจิยัทีเ่กีย่วข้องพบว่าผลการทดลองของ

งานวจิยันีใ้ห้ผลลพัธ์ทีด่กีว่างานวจิยัหลายงาน ซ่ึงงาน

วจิยัทีน่�ำมาเปรยีบเทยีบใช้วธิกีารวดัประสทิธภิาพด้วย 

Equal Error Rate (ERR) เช่นเดียวกับงานวิจัยชิ้นนี้ 

และได้แสดงผลการเปรยีบเทยีบดงัตารางที ่2 อย่างไร

ก็ตามพบว่ายังมีงานวิจัยอื่นๆ อีก ท่ีให้ผลการพิสูจน์

ตัวตนที่ดีกว่าเช่น Kang, Hwang, Cho [5], Hwang, 

Lee, Cho [18] และ Jiang, Shieh, Liu [19]  โดยใช้

เทคนิคขั้นสูงในการประมวลผล และใช้จ�ำนวนข้อมูล

ที่ค่อนข้างมากเช่น Jiang, Shieh และ Liu [19] ใช้

เทคนิค Hidden Markov Models และใช้จ�ำนวน

ข้อมูลของอาสาสมัคร 58 คน และใช้จ�ำนวนตัวอย่าง

ข้อมลูในการท�ำต้นแบบ 20 ตวัอย่างต่ออาสาสมคัร 1 คน 

โดยให้ผล Error Rate ที่ 2.54% ซึ่งถ้าเทียบกับงาน

วิจัยชิ้นนี้ใช้จ�ำนวนอาสาสมัคร 20 คนและต้องการ

ข้อมูลการท�ำต้นแบบเพียง 10 ตัวอย่าง อีกท้ังยังใช้

หลักการไม่ซับซ้อนซ่ึงท�ำให้เข้าใจและเห็นภาพได้ง่าย

รวมทั้งยังให้ผลลัพธ์ Error Rate 4% ซึ่งต่างจากงาน

วิจัยที่กล่าวถึงเพียง 1.46% อย่างไรก็ตามงานวิจัยนี้มี

จุดอ่อนในด้านท่ีไม่มีการเรียนรู้และปรับเส้นโคจร

ต้นแบบอย่างต่อเนื่องเมื่อเวลาผ่านไป ดังนั้นหากผู้ใช้

งานมีพฤติกรรมการพิมพ์ที่เปลี่ยนไปจากเดิมอาจส่ง

ผลให้ระบบการพิสูจน์ตัวตนมีประสิทธิภาพลดลง แต่

งานวจิยันีมี้ความน่าสนใจตรงทีม่คีวามเรยีบง่ายไม่ซบั

ซ้อนจนเกินไปซึ่งเหมาะส�ำหรับการน�ำไปประยุกต์ใช้

งานในระบบจริง

“I/1000”และ “L/1000”ถูกเลือกเนื่องจากใหคา FeatureCapสูงเปนสอง

อันดับแรกของอาสาสมัคร 2 ใน 3 คนใหผลลัพธดังตารางที่ 1 
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7. การทดสอบผลการพิสูจนตัวตน 
จากการคัดเลือก Feature เพ่ือนํามาประกอบเปนเสนโคจร ที่

คาดวาจะใหผลการพิสูจนตัวตนที่ดีที่สุดจาก Feature ที่มีอยูทั้งหมด ผูวิจัย

ไดสรางโปรแกรมประยุกตดวยภาษา C# ดังรูปที่ 6 เพ่ือประมวลผลขอมูล

จากอาสาสมัคร20 คนและผู โจมตี3 คนโดย ผูวิจัยกําหนดให โปรแกรมทํา

การจัด Feature สรางเสนโคจรและทําการระบุตัวตนโดยปรับคา 

Allowance Factor จนไดคา EER (Equal Error Rate) ซ่ึงคือ FRR 

(False Rejection Rate) และ FAR (False Acceptance Rate)[1][17] 

ใหมีคาเทากันหรือใกลเคียงกันมากที่สุด โ ดยจะ สรางเสนโคจรจากทุก

Feature โดยการจับคูที่เปนไปไดทุกคูจากนั้นจึงทําการดําเนินการพิสูจน

ตัวตน ซ่ึง ผล ลัพธจากวิธีการดังกลาว พบวาการเลือก Feature 

“I/1000”และ “L/1000”มาจัดเปนโครงสรางเสนโคจรและทําการพิสูจน

ตัวตนดวยวิธีการวัดความแตกตางของ เสนโคจรใหผล ลัพธ ดีที่สุดจาก 

Feature ทั้งหมดและตรงตามที่ผูวิจัยไดทําการคัดเลือกโดยใหคาผลการ

ทดลองที่ ERR= 4% (FAR=4%, FRR=4%) ที่ Allowance Factor = 

2.76 หมายความวาระบบพิสูจนตัวตนมีความแมนยําถึง 96%  

 

 

 

 

 

 

 

 

 

รูปที่ 6โปรแกรมประยุกตทดสอบการพิสูจนตัวตน 

8. เปรียบเทียบผลการทดลอง 
 จากงานวิจัยที่เก่ียวของพบวาผลการทดลองของงานวิจัยนี้

ใหผลลัพธที่ดีกวางานวิจัยหลายงาน ซ่ึงงานวิจัยที่นํามาทําการเปรียบเทียบ

ใชวิธีการวัดประสิทธิภาพดวย Equal Error Rate (ERR) เชนเดียวกับ

งานวิจัยชิ้นนี้และไดแสดงผลการเปรียบเทียบดังตารางที่ 2อยางไรก็ตาม

พบวายังมี งานวิจัย อ่ืนๆ อีก ที่ใหผลการพิสูจนตัวตนที่ดีกวาเชน 

Kang,Hwang, Cho [5], Hwang, Lee, Cho [18] และ Jiang, Shieh, 

Liu [19]  โดยใชเทคนิคขั้นสูงในการประมวลผลและใชจํานวนขอมูลที่

คอนขางมากเชน Jiang, Shieh และLiu [19] ใชเทคนิค Hidden Markov 

Models และใชจํานวนขอมูลของอาสาสมัคร 58 คนและใชจํานวน

ตัวอยางขอมูลในการทําตนแบบ 20 ตัวอยางตออาสาสมัคร 1 คนโดยใหผล 

Error Rate ที่ 2.54% ซ่ึงถาเทียบกับงานวิจัยชิ้นนี้ใชจํานวนอาสาสมัคร 20 

คนและตองการขอมูลการทําตนแบบเพียง10 ตัวอยาง อีกทั้งยัง ใชหลักการ

ไมซับซอนซ่ึงทําใหเขาใจและเห็นภาพไดงายรวมทั้งยังใหผลลัพธ Error 

Rate 4% ซ่ึงตางจากงานวิจัยที่กลาวถึงเพียง1.46% อยางไรก็ตามงานวิจัย

นี้มีจุดออนในดานที่ไมมีการเรียนรูและปรับเสนโคจรตนแบบอยางตอเนื่อง

เมื่อเวลาผานไป ดังนั้นหากผูใชงานมีพฤติกรรมการพิมพที่เปล่ียนไปจาก

เดิมอาจสงผลใหระบบการพิสูจนตัวตนมีประสิทธิภาพลดลง แตงานวิจัยนี้มี

ความนาสนใจตรงที่มีความเรียบงายไมซับซอนจนเกินไปซ่ึงเหมาะ สําหรับ

การนําไปประยุกตใชงานในระบบจริง 

 

 

 

 

 

 

 

 

 
 

ตารางที่2เปรียบเทียบประสิทธิภาพกับงานวิจัยที่เก่ียวของ 

 

9. สรุปผลการทดลอง 
จากผลการทดลองพบวาทฤษฎีการคัดเลือก Feature ของ

ผูวิจัยและระบบการพิสูจนตัวตนที่ผูวิจัยไดคิดคนดวยวิธีการวัดความตาง

ของเสนโคจรโดยนําขอมูล Keystroke Dynamics มาจัดรูปเปนเสนโคจร 

จากนั้นวัดความแตกตางจากเสนโคจรตนแบบของเจาของที่แทจริง วิธีการ

ดังกลาวถือวาใหผลความแมนยําสูง โดยใหคาความผิดพลาด EER ที่ 4%

หรือแมนยําถึง 96% ซ่ึงงานวิจัยนี้ไดแสดงใหเห็นถึงแนวทางและประโยชน

ของการนําพฤติกรรมของมนุษยมาประยุกตใชในศาสตรทางดานความ

มั่นคงบนระบบคอมพิวเตอรซ่ึงสามารถลดจุดออนและเพ่ิมความแข็งแกรง 

ใหกับการพิสูจนตัวตนบนระบบคอมพิวเตอรไดอยางมีประสิทธิภาพ 

H/1000 I/1000 L/1000 H/Total I/Total L/Total H/Sum H I/Sum I L/Sum L
Key FeatureCap FeatureCap FeatureCap FeatureCap FeatureCap FeatureCap FeatureCapFeatureCap FeatureCap
m -0.36058 -0.304214 1.109704 0.979213 0.095894 -0.06855 -0.13229 0.242791 -0.1644468
a 1.560046 0.490939 1.369627 0.85021 -0.7401 -0.2841 1.277662 0.147029 -0.1249769
y -0.02907 0.097267 0.347532 0.901099 1.738216 2.205524 -0.08004 2.135042 2.3821954
t 0.02545 6.922116 6.631409 1.383942 3.737411 2.290478 0.953804 2.224876 2.0955769
i 0.36153 1.7857 1.439236 1.383942 0.719368 1.279254 1.349523 1.129244 1.3837314
n 0.083146 2.054448 1.808456 1.707304 0.742636 0.165086 0.681772 -0.00154 0.0728593
e 0.278113 0.98673 1.086271 1.299673 1.224506 1.150162 0.109386 1.230092 1.1701512
e 0.501015 1.862484 2.018295 0.955634 2.072566 1.552667 0.06433 1.276203 1.4368463
a 0.815929 1.33995 0.454446

Mean 0.359509 1.736934 1.976316 1.200108 1.198812 1.036315 0.519844 1.047967 1.0314921
Key FeatureCap FeatureCap FeatureCap FeatureCap FeatureCap FeatureCap FeatureCapFeatureCap FeatureCap

k 1.184261 1.226967 1.927648 1.426691 0.946234 1.114615 0.123126 -0.47602 1.3175875
a 0.582069 1.544231 1.562174 1.517218 1.223006 0.823206 0.316769 0.370572 0.8208335
s 0.665347 1.490308 1.440941 1.11209 1.355439 0.550162 0.439122 -2.33986 0.4903295
e 0.671355 1.071235 1.293856 0.49748 0.568472 0.662531 -0.16437 3.887512 0.7462871
m 0.276431 1.21036 1.659883 0.915424 0.945425 0.364468 -0.01915 -0.29485 0.2547701
w 0.963228 1.197444 0.52561

Mean 0.723782 1.30862 1.5769 1.111058 1.007715 0.702997 0.203518 0.229469 0.7259615
Key FeatureCap FeatureCap FeatureCap FeatureCap FeatureCap FeatureCap FeatureCapFeatureCap FeatureCap

k 1.535257 2.182462 1.083272 4.377939 1.871519 -0.06032 0.027115 -1.38271 0.1768394
a 0.465611 1.238641 1.581689 2.651893 1.076155 0.583617 -0.18258 0.073545 0.5621543
m 0.842666 2.88113 1.510473 3.899972 0.5431 -0.05117 0.181099 -0.81203 0.3591644
o -0.43944 1.372741 1.524724 2.358768 -1.50583 2.020001 0.512915 0.013997 2.3763859
l 1.213226 2.546579 2.112816 5.457015 3.170764 1.987929 -0.34219 -0.11399 1.9287246
r 0.716236 1.370327 1.001104 3.862401 1.413568 0.408758 -0.12738 0.232467 0.3480523
a 0.520747 2.090275 1.700646 3.598043 2.371989 0.282159 -0.19565 -0.08177 0.0922799
t 2.760891 1.985776 1.250701 10.08852 2.597761 0.609065 1.572571 0.201336 0.5966947
s -1.26444 0.366567 0.000686

Mean 0.705638 1.958492 1.470678 4.073458 1.442378 0.722505 0.160732 -0.23364 0.8050369  

Author Ref Paper Technique ERR(%)
Proposed Technique N/A Trajectory Dissimilarity 4%
M. Brown, S.J. Rogers [10] Kohanen and MLP 4.2
L.Taweetham [1] Advance Stat. 5.24
Steven M.Walker [9] N/A 5.4
R. Giot, M. EI-Abed, 
and C. Rosenberger [15] SVM 6.96

D. Tran, W. Ma, G. Chetty, 
and D. Sharma [13] Markov and Fuzzy 8.6

J.R. Montalv ao Filho, E.O. Freire [12] Hidden Markov Models 12.7
E. Maiorana, P. Campisi, 
N. Gonz´alez-Carballo, [16] KNN 14

F. Monrosec, A. Rubin [11] KNN 15.4
M. Rybnik, M. Tabedzki, 
and K. Saeed [14] Vote 24.22

 

 

ภาพที่ 6 โปรแกรมประยุกต์ทดสอบการพิสูจน์ตัวตน



การพิสูจน์ตัวตนโดยจังหวะการพิมพ์ด้วยวิธีการวัดความต่างของเส้นโคจร 59 

ฉบับที่ 91 ปีที่ 28 มกราคม - มีนาคม 2558 

“I/1000”และ “L/1000”ถูกเลือกเนื่องจากใหคา FeatureCapสูงเปนสอง

อันดับแรกของอาสาสมัคร 2 ใน 3 คนใหผลลัพธดังตารางที่ 1 

 

 

 

 

 

 

 

 

 

 

 

 

ตารางที1่ผลลัพธจากการวัดความสามารถ Feature 

 

7. การทดสอบผลการพิสูจนตัวตน 
จากการคัดเลือก Feature เพ่ือนํามาประกอบเปนเสนโคจร ที่

คาดวาจะใหผลการพิสูจนตัวตนที่ดีที่สุดจาก Feature ที่มีอยูทั้งหมด ผูวิจัย

ไดสรางโปรแกรมประยุกตดวยภาษา C# ดังรูปที่ 6 เพ่ือประมวลผลขอมูล

จากอาสาสมัคร20 คนและผู โจมตี3 คนโดย ผูวิจัยกําหนดให โปรแกรมทํา

การจัด Feature สรางเสนโคจรและทําการระบุตัวตนโดยปรับคา 

Allowance Factor จนไดคา EER (Equal Error Rate) ซ่ึงคือ FRR 

(False Rejection Rate) และ FAR (False Acceptance Rate)[1][17] 

ใหมีคาเทากันหรือใกลเคียงกันมากที่สุด โ ดยจะ สรางเสนโคจรจากทุก

Feature โดยการจับคูที่เปนไปไดทุกคูจากนั้นจึงทําการดําเนินการพิสูจน

ตัวตน ซ่ึง ผล ลัพธจากวิธีการดังกลาว พบวาการเลือก Feature 

“I/1000”และ “L/1000”มาจัดเปนโครงสรางเสนโคจรและทําการพิสูจน

ตัวตนดวยวิธีการวัดความแตกตางของ เสนโคจรใหผล ลัพธ ดีที่สุดจาก 

Feature ทั้งหมดและตรงตามที่ผูวิจัยไดทําการคัดเลือกโดยใหคาผลการ

ทดลองที่ ERR= 4% (FAR=4%, FRR=4%) ที่ Allowance Factor = 

2.76 หมายความวาระบบพิสูจนตัวตนมีความแมนยําถึง 96%  

 

 

 

 

 

 

 

 

 

รูปที่ 6โปรแกรมประยุกตทดสอบการพิสูจนตัวตน 

8. เปรียบเทียบผลการทดลอง 
 จากงานวิจัยที่เก่ียวของพบวาผลการทดลองของงานวิจัยนี้

ใหผลลัพธที่ดีกวางานวิจัยหลายงาน ซ่ึงงานวิจัยที่นํามาทําการเปรียบเทียบ

ใชวิธีการวัดประสิทธิภาพดวย Equal Error Rate (ERR) เชนเดียวกับ

งานวิจัยชิ้นนี้และไดแสดงผลการเปรียบเทียบดังตารางที่ 2อยางไรก็ตาม

พบวายังมี งานวิจัย อ่ืนๆ อีก ที่ใหผลการพิสูจนตัวตนที่ดีกวาเชน 

Kang,Hwang, Cho [5], Hwang, Lee, Cho [18] และ Jiang, Shieh, 

Liu [19]  โดยใชเทคนิคขั้นสูงในการประมวลผลและใชจํานวนขอมูลที่

คอนขางมากเชน Jiang, Shieh และLiu [19] ใชเทคนิค Hidden Markov 

Models และใชจํานวนขอมูลของอาสาสมัคร 58 คนและใชจํานวน

ตัวอยางขอมูลในการทําตนแบบ 20 ตัวอยางตออาสาสมัคร 1 คนโดยใหผล 

Error Rate ที่ 2.54% ซ่ึงถาเทียบกับงานวิจัยชิ้นนี้ใชจํานวนอาสาสมัคร 20 

คนและตองการขอมูลการทําตนแบบเพียง10 ตัวอยาง อีกทั้งยัง ใชหลักการ

ไมซับซอนซ่ึงทําใหเขาใจและเห็นภาพไดงายรวมทั้งยังใหผลลัพธ Error 

Rate 4% ซ่ึงตางจากงานวิจัยที่กลาวถึงเพียง1.46% อยางไรก็ตามงานวิจัย

นี้มีจุดออนในดานที่ไมมีการเรียนรูและปรับเสนโคจรตนแบบอยางตอเนื่อง

เมื่อเวลาผานไป ดังนั้นหากผูใชงานมีพฤติกรรมการพิมพที่เปล่ียนไปจาก

เดิมอาจสงผลใหระบบการพิสูจนตัวตนมีประสิทธิภาพลดลง แตงานวิจัยนี้มี

ความนาสนใจตรงที่มีความเรียบงายไมซับซอนจนเกินไปซ่ึงเหมาะ สําหรับ

การนําไปประยุกตใชงานในระบบจริง 

 

 

 

 

 

 

 

 

 
 

ตารางที2่เปรียบเทียบประสิทธิภาพกับงานวิจัยที่เก่ียวของ 

 

9. สรุปผลการทดลอง 
จากผลการทดลองพบวาทฤษฎีการคัดเลือก Feature ของ

ผูวิจัยและระบบการพิสูจนตัวตนที่ผูวิจัยไดคิดคนดวยวิธีการวัดความตาง

ของเสนโคจรโดยนําขอมูล Keystroke Dynamics มาจัดรูปเปนเสนโคจร 

จากนั้นวัดความแตกตางจากเสนโคจรตนแบบของเจาของที่แทจริง วิธีการ

ดังกลาวถือวาใหผลความแมนยําสูง โดยใหคาความผิดพลาด EER ที่ 4%

หรือแมนยําถึง 96% ซ่ึงงานวิจัยนี้ไดแสดงใหเห็นถึงแนวทางและประโยชน

ของการนําพฤติกรรมของมนุษยมาประยุกตใชในศาสตรทางดานความ

มั่นคงบนระบบคอมพิวเตอรซ่ึงสามารถลดจุดออนและเพ่ิมความแข็งแกรง 

ใหกับการพิสูจนตัวตนบนระบบคอมพิวเตอรไดอยางมีประสิทธิภาพ 

H/1000 I/1000 L/1000 H/Total I/Total L/Total H/Sum H I/Sum I L/Sum L
Key FeatureCap FeatureCap FeatureCap FeatureCap FeatureCap FeatureCap FeatureCapFeatureCap FeatureCap
m -0.36058 -0.304214 1.109704 0.979213 0.095894 -0.06855 -0.13229 0.242791 -0.1644468
a 1.560046 0.490939 1.369627 0.85021 -0.7401 -0.2841 1.277662 0.147029 -0.1249769
y -0.02907 0.097267 0.347532 0.901099 1.738216 2.205524 -0.08004 2.135042 2.3821954
t 0.02545 6.922116 6.631409 1.383942 3.737411 2.290478 0.953804 2.224876 2.0955769
i 0.36153 1.7857 1.439236 1.383942 0.719368 1.279254 1.349523 1.129244 1.3837314
n 0.083146 2.054448 1.808456 1.707304 0.742636 0.165086 0.681772 -0.00154 0.0728593
e 0.278113 0.98673 1.086271 1.299673 1.224506 1.150162 0.109386 1.230092 1.1701512
e 0.501015 1.862484 2.018295 0.955634 2.072566 1.552667 0.06433 1.276203 1.4368463
a 0.815929 1.33995 0.454446

Mean 0.359509 1.736934 1.976316 1.200108 1.198812 1.036315 0.519844 1.047967 1.0314921
Key FeatureCap FeatureCap FeatureCap FeatureCap FeatureCap FeatureCap FeatureCapFeatureCap FeatureCap

k 1.184261 1.226967 1.927648 1.426691 0.946234 1.114615 0.123126 -0.47602 1.3175875
a 0.582069 1.544231 1.562174 1.517218 1.223006 0.823206 0.316769 0.370572 0.8208335
s 0.665347 1.490308 1.440941 1.11209 1.355439 0.550162 0.439122 -2.33986 0.4903295
e 0.671355 1.071235 1.293856 0.49748 0.568472 0.662531 -0.16437 3.887512 0.7462871
m 0.276431 1.21036 1.659883 0.915424 0.945425 0.364468 -0.01915 -0.29485 0.2547701
w 0.963228 1.197444 0.52561

Mean 0.723782 1.30862 1.5769 1.111058 1.007715 0.702997 0.203518 0.229469 0.7259615
Key FeatureCap FeatureCap FeatureCap FeatureCap FeatureCap FeatureCap FeatureCapFeatureCap FeatureCap

k 1.535257 2.182462 1.083272 4.377939 1.871519 -0.06032 0.027115 -1.38271 0.1768394
a 0.465611 1.238641 1.581689 2.651893 1.076155 0.583617 -0.18258 0.073545 0.5621543
m 0.842666 2.88113 1.510473 3.899972 0.5431 -0.05117 0.181099 -0.81203 0.3591644
o -0.43944 1.372741 1.524724 2.358768 -1.50583 2.020001 0.512915 0.013997 2.3763859
l 1.213226 2.546579 2.112816 5.457015 3.170764 1.987929 -0.34219 -0.11399 1.9287246
r 0.716236 1.370327 1.001104 3.862401 1.413568 0.408758 -0.12738 0.232467 0.3480523
a 0.520747 2.090275 1.700646 3.598043 2.371989 0.282159 -0.19565 -0.08177 0.0922799
t 2.760891 1.985776 1.250701 10.08852 2.597761 0.609065 1.572571 0.201336 0.5966947
s -1.26444 0.366567 0.000686

Mean 0.705638 1.958492 1.470678 4.073458 1.442378 0.722505 0.160732 -0.23364 0.8050369  

Author Ref Paper Technique ERR(%)
Proposed Technique N/A Trajectory Dissimilarity 4%
M. Brown, S.J. Rogers [10] Kohanen and MLP 4.2
L.Taweetham [1] Advance Stat. 5.24
Steven M.Walker [9] N/A 5.4
R. Giot, M. EI-Abed, 
and C. Rosenberger [15] SVM 6.96

D. Tran, W. Ma, G. Chetty, 
and D. Sharma [13] Markov and Fuzzy 8.6

J.R. Montalv ao Filho, E.O. Freire [12] Hidden Markov Models 12.7
E. Maiorana, P. Campisi, 
N. Gonz´alez-Carballo, [16] KNN 14

F. Monrosec, A. Rubin [11] KNN 15.4
M. Rybnik, M. Tabedzki, 
and K. Saeed [14] Vote 24.22

 

 

ความแข็งแกร่งให้กับการพิสูจน์ตัวตนบนระบบ

คอมพิวเตอร์ได้อย่างมีประสิทธิภาพ

10. งานวจิยัในอนาคต
	 จากจดุอ่อนของงานวจิยันีท่ี้ได้กล่าวข้างต้นท�ำให้

ผูว้จิยัมคีวามสนใจทีจ่ะวจิยัถงึการรกัษาประสทิธภิาพ

ของระบบเมือ่เวลาผ่านไป โดยการเพิม่ระบบการเรยีน

รู้และปรับปรุงเส้นโคจรต้นแบบ หากผู้ใช้มีพฤติกรรม

การพมิพ์ท่ีเปลีย่นไป  ซึง่ท�ำให้มคีวามน่าสนใจและเป็น

ไปได้ท่ีจะสามารถน�ำการพสิจูน์ตวัตนด้วย Keystroke 

Dynamics ไปใช้งานได้ในระบบจริง ถึงแม้ว่ายังมีค่า

ความผิดพลาดอยู่บ้าง แต่ถือว่าน้อยมาก เช่นการน�ำ

ไปใช้บนโทรศัพท์มือถือหรือคอมพิวเตอร์แบบพกพา

ซึ่งเป็นที่นิยมในปัจจุบัน เพราะจะน�ำไปช่วยเสริม

ระบบความปลอดภัยบนอุปกรณ์พกพาเหล่านั้น 

11. กติตกิรรมประกาศ
	 ขอขอบคุณ อาสาสมัครจ�ำนวน 23 ท่านที่สละ

เวลาให้ความช่วยเหลือในการเก็บข้อมูล ขอขอบคุณ

นักวิจัยMr.Romain Giot และ Mr.Daniele Gunet-

ti ซึง่เชีย่วชาญทางด้านนีไ้ด้เสยีสละเวลาให้ค�ำแนะน�ำ

รวมถึงมอบตัวอย่างข้อมูลให้ผู้วิจัยได้ท�ำการศึกษาซึ่ง

เป็นประโยชน์อย่างยิ่ง

ตารางที่ 2 เปรียบเทียบประสิทธิภาพกับ 

งานวิจัยที่กี่ยวข้อง

9. สรปุผลการทดลอง
	 จากผลการทดลองพบว่าทฤษฎีการคัดเลือก 

Feature ของผูว้จัิยและระบบการพสิจูน์ตัวตนท่ีผูว้จิยั

ได้คดิค้นด้วยวธิกีารวดัความต่างของเส้นโคจร โดยน�ำ

ข้อมูล Keystroke Dynamics มาจัดรูปเป็นเส้นโคจร 

จากน้ันวัดความแตกต่างจากเส้นโคจรต้นแบบของ

เจ้าของที่แท้จริง วิธีการดังกล่าวถือว่าให้ผลความ

แม่นย�ำสูง โดยให้ค่าความผิดพลาด EER ที่ 4% หรือ

แม่นย�ำถึง 96% ซึ่งงานวิจัยนี้ได้แสดงให้เห็นถึง

แนวทางและประโยชน์ของการน�ำพฤติกรรมของ

มนุษย์มาประยกุต์ใช้ในศาสตร์ทางด้านความมัน่คงบน

ระบบคอมพิวเตอร์ซึ่งสามารถลดจุดอ่อน และเพิ่ม
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