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Abstract 

		  To elucidate the propagation of error or bias from the measurement of a process, the data 

requires reconciliation. In this article, a genetic simulated annealing algorithm (GSA) based program 

is proposed for solving data reconciliation (DR) problems. The proposed GSA utilizes simultaneous 

simulated annealing and modified cross-generational probabilistic survival selection (CPSS) in a 

genetic algorithm. Validation is performed with linear and nonlinear DR problems. The test starts 

with the study of appropriate GSA parameters of constraint problems. The performance of GSA 

with the appropriate parameters is then compared to the genetic algorithm (GA) method, the 

specific method, and the commercial software DATACON. The proposed GSA, with its ability 

to give more accurate reconciled data, is a promising choice as an optimization tool for data 

reconciliation problems.
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1. 	Introduction

	 Data on the real state of physical variables and 

processes can be obtained from measurements; 

these, however, are only estimates.  Process 

data measurements are generally corrupted with 

two types of errors–random and gross–causing 

violation of process constraints defined by the 

mass and energy balances [1]. Therefore, the 

elimination of such errors would improve the 

accuracy of measured data.  Data reconciliation 

adjusts process measurements with random 

errors by supplying satisfactory material and 

energy balance constraints. Elimination of the 
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less frequent gross errors, which can severely 

bias the estimates and the reconciled data, is 

achieved by gross error detection.

	 Therefore, simultaneous data reconciliation 

and gross error detection have emerged [2].  In 

chemical engineering, Kuehn and Davidson [3] 

proposed the first solution to the steady-state 

data reconciliation problem. Later, Crowe et 

al. [4] investigated measured and unmeasured 

variable linear systems using matrix projection. 	

A solution of the nonlinear data reconciliation 

problem via successive linearization is described 

by Knepper and Gorman [5]. Tjoa and Biegler [6] 

proposed an efficient hybrid successive quadratic 

programming algorithm to solve the bi-variable 

objective function of DR problems.  Sánchez 

and Romagnoli [7] applied Q-R factorization to 

analyze, decompose and solve linear and bilinear 

reconciliation problems. To avoid complex 

calculations resulting in a complicated process, 

Zhao and Jiang [8] proposed a stochastic search 

method for solving the linear steady-state DR 

problem. The significant advantage of this 

method is that it does not depend on any 

particular model structure and only requires 

simple algebraic calculation. 

	 A popular stochastic search, genetic algorithm 

(GA), is widely used to solve optimization 

problems. Wongrat [9] developed GA for the DR 

problem defined by a redescending estimator and 

weighted least squares. This GA can solve the 

DR problem without the complex calculations 

required by conventional optimization methods, 

but the calculation time is longer and the data 

result is not satisfactory for complex systems. GA 

provides a solution to the complicated problem 

of discontinuous and non-convex objective 

functions determined without using derivatives. 

A notable characteristic of GA is that it can find 

the region of optimal values rapidly; however, 

the ability to accurately search in this region 

is not satisfactory for complex systems [10].  

	 For this reason, many researchers have tried 

to design new hybrid algorithms by combining 

GA with other optimization algorithms.  Simulated 

annealing (SA) is an approach for simulating 

the thermodynamic process of annealing 

(cooling of a solid). It has been observed that 

this method could also be used to search for 

feasible solutions of optimization problems 

with the objective of converging to an optimal 

solution.  SA can search accurately in certain 

regions; however, it is difficult to explore the 

entire search space.  Therefore, the difficulty of 

solving complex problems can be overcome by 

improving GA by combining it effectively with 

an SA algorithm to avoid the common defect of 

early convergence. This is known as a genetic 

simulated annealing algorithm (GSA).

	 GSA will be proposed in this article as the 

best method for handling the discontinuous 

and non-convex properties of objective function 
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in steady-state DR problems. In the following 

section we describe the general formulation and 

objective function for DR. In Sections 3 and 4, 

the basic theory and procedure of using GSA for 

DR will be discussed. In section 5. DR problems 

are solved with GSA and also compared with 

other methods.

2. 	General formulation of the data reconciliation 

problem

	 The estimation of unmeasured variables, 

and model parameters, are obtained as part 

of the reconciliation problem.  The estimation 

of unmeasured values based on the reconciled 

measured values is also known as data coaptation.  

In general form of data reconciliation problems.

where: ρ is an objective function depending on 

the difference between the measurement of a 

variable and its value for any measured variables;  

EMBED Equation.3  is the set of measurement 

data of the corresponding variable x; u is the 

set of unmeasured variables; h is the set of 

equality constraints; g is the set of inequalities; 

and superscripts L and U are the lower and 

upper bounds of the variables.

	 The objective function usually uses a weighted 

least squares objective function. However if 

there are gross errors in the data, the objective 

function is biased, leading to incorrect data 

reconciliation.  The common procedure is to 

identify and eliminate gross errors. Thus data 

reconciliation and gross error detection are 

applied together to improve the accuracy of 

measured data. This paper uses weighted least 

squares and a redescending estimator as objective 

functions – the weighted least squares method 

is used for data reconciliation problems, and a 

redescending estimator [11] for data reconciliation 

of measured data containing gross errors.

Objective Function for data reconciliation

	 We discuss the form of M-estimators for the 

objective function  EMBED Equation.3 in Eq. (1).  

The M-estimators are defined as:

Least squares estimator				 
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where   a2bc +≥   

The consequence of this tuning requirement 
is that in data reconciliation and gross error detection, 
the performance of two different ρ functions can be 
compared properly only for (nearly) equal efficiency 
cases. This means that, for instance, Fair function 
Eq.(2) with 95% efficiency can be compared with 
95% efficient Hampel’s redescending M-estimator in 
Eq.(3) and the value of  and c are 1.35, 2.7 and 
5.4. 

3. Genetic Simulated Annealing (GSA) 
Algorithm 

optimization problems with the objective of 
converging to an optimal solution.  SA can search 
accurately in certain regions; however, it is difficult 
to explore the entire search space.  Therefore, the 
difficulty of solving complex problems can be 
overcome by improving GA by combining it 
effectively with an SA algorithm to avoid the 
common defect of early convergence. This is known 
as a genetic simulated annealing algorithm (GSA). 

GSA will be proposed in this article as the 
best method for handling the discontinuous and non-
convex properties of objective function in steady-
state DR problems. In the following section we 
describe the general formulation and objective 
function for DR. In Sections 3 and 4, the basic theory 
and procedure of using GSA for DR will be 
discussed. In section 5. DR problems are solved with 
GSA and also compared with other methods. 

2. General formulation of the data 
reconciliation problem 

 The estimation of unmeasured variables, and 
model parameters, are obtained as part of the 
reconciliation problem.  The estimation of 
unmeasured values based on the reconciled measured 
values is also known as data coaptation.  In general 
form of data reconciliation problems. 

     
 ( )x,xmin M

u,x
ρ  

 

UL

UL

uuu

xxx

0)u,x(g
0)u,x(h

≤≤

≤≤

≤
=

   (1) 

where: ρ  is an objective function depending on the 
difference between the measurement of a variable 
and its value for any measured variables; Mx  is the 
set of measurement data of the corresponding 
variable x; u is the set of unmeasured variables; h is 
the set of equality constraints; g is the set of 
inequalities; and superscripts L and U are the lower 
and upper bounds of the variables. 

The objective function usually uses a 
weighted least squares objective function. However if 
there are gross errors in the data, the objective 
function is biased, leading to incorrect data 
reconciliation.  The common procedure is to identify 

and eliminate gross errors. Thus data reconciliation 
and gross error detection are applied together to 
improve the accuracy of measured data. This paper 
uses weighted least squares and a redescending 
estimator as objective functions – the weighted least 
squares method is used for data reconciliation 
problems, and a redescending estimator [11] for data 
reconciliation of measured data containing gross 
errors. 

Objective Function for data reconciliation 

 We discuss the form of M-estimators for the 
objective function ρ  in Eq. (1).  The M-estimators 
are defined as: 

Least squares estimator  
   

              (2) 

where   = 1.3998 

Hampel’s redescending M-estimator  

   
 

( )

( ) cabcaab

cb
bc

cabcaab

baaa

a

i

i
i

ii

ii

>−+−

≤<
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−

−
−−+−

≤<−

≤≤

ε

ε
ε

εε

εε

,
22

,1
22

,
2
1

0,
2
1

2

222

2

2

     

(3) 

where   a2bc +≥   

The consequence of this tuning requirement 
is that in data reconciliation and gross error detection, 
the performance of two different ρ functions can be 
compared properly only for (nearly) equal efficiency 
cases. This means that, for instance, Fair function 
Eq.(2) with 95% efficiency can be compared with 
95% efficient Hampel’s redescending M-estimator in 
Eq.(3) and the value of  and c are 1.35, 2.7 and 
5.4. 

3. Genetic Simulated Annealing (GSA) 
Algorithm 

optimization problems with the objective of 
converging to an optimal solution.  SA can search 
accurately in certain regions; however, it is difficult 
to explore the entire search space.  Therefore, the 
difficulty of solving complex problems can be 
overcome by improving GA by combining it 
effectively with an SA algorithm to avoid the 
common defect of early convergence. This is known 
as a genetic simulated annealing algorithm (GSA). 

GSA will be proposed in this article as the 
best method for handling the discontinuous and non-
convex properties of objective function in steady-
state DR problems. In the following section we 
describe the general formulation and objective 
function for DR. In Sections 3 and 4, the basic theory 
and procedure of using GSA for DR will be 
discussed. In section 5. DR problems are solved with 
GSA and also compared with other methods. 

2. General formulation of the data 
reconciliation problem 

 The estimation of unmeasured variables, and 
model parameters, are obtained as part of the 
reconciliation problem.  The estimation of 
unmeasured values based on the reconciled measured 
values is also known as data coaptation.  In general 
form of data reconciliation problems. 

     
 ( )x,xmin M

u,x
ρ  

 

UL

UL

uuu

xxx

0)u,x(g
0)u,x(h

≤≤

≤≤

≤
=

   (1) 

where: ρ  is an objective function depending on the 
difference between the measurement of a variable 
and its value for any measured variables; Mx  is the 
set of measurement data of the corresponding 
variable x; u is the set of unmeasured variables; h is 
the set of equality constraints; g is the set of 
inequalities; and superscripts L and U are the lower 
and upper bounds of the variables. 

The objective function usually uses a 
weighted least squares objective function. However if 
there are gross errors in the data, the objective 
function is biased, leading to incorrect data 
reconciliation.  The common procedure is to identify 

and eliminate gross errors. Thus data reconciliation 
and gross error detection are applied together to 
improve the accuracy of measured data. This paper 
uses weighted least squares and a redescending 
estimator as objective functions – the weighted least 
squares method is used for data reconciliation 
problems, and a redescending estimator [11] for data 
reconciliation of measured data containing gross 
errors. 

Objective Function for data reconciliation 

 We discuss the form of M-estimators for the 
objective function ρ  in Eq. (1).  The M-estimators 
are defined as: 

Least squares estimator  
   

              (2) 

where   = 1.3998 

Hampel’s redescending M-estimator  

   
 

( )

( ) cabcaab

cb
bc

cabcaab

baaa

a

i

i
i

ii

ii

>−+−

≤<
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−

−
−−+−

≤<−

≤≤

ε

ε
ε

εε

εε

,
22

,1
22

,
2
1

0,
2
1

2

222

2

2

     

(3) 

where   a2bc +≥   

The consequence of this tuning requirement 
is that in data reconciliation and gross error detection, 
the performance of two different ρ functions can be 
compared properly only for (nearly) equal efficiency 
cases. This means that, for instance, Fair function 
Eq.(2) with 95% efficiency can be compared with 
95% efficient Hampel’s redescending M-estimator in 
Eq.(3) and the value of  and c are 1.35, 2.7 and 
5.4. 

3. Genetic Simulated Annealing (GSA) 
Algorithm 



66

วิศวกรรมสาร มก.

	 The consequence of this tuning requirement 

is that in data reconciliation and gross error 

detection, the performance of two different  

EMBED Equation.3  functions can be compared 

properly only for (nearly) equal efficiency cases. 

This means that, for instance, Fair function Eq.(2) 

with 95% efficiency can be compared with 95% 

efficient Hampel’s redescending M-estimator 

in Eq.(3) and the value of  QUOTE   and c are 

1.35, 2.7 and 5.4.

3. Genetic Simulated Annealing (GSA) 

Algorithm

	 In normal GA, only simple crossover, mutation 

and selection are used as the genetic operators; 

normal GA cannot embody a complicated 

evolutionary process.  Because of the limitation 

of population size and number of generations, 

the algorithm can easily produce truncation 

error, which will lead to precocity.  For this 

reason, many researchers have attempted to 

design new hybrid algorithms by combining 

GA with other optimization algorithms.  All of 

these hybrid algorithms are able to improve the 

efficiency of GA to a certain degree.

	 SA is a powerful optimization technique 

which can theoretically converge asymptotically 

to the global optimum solution with probability 

‘1’ when the initial temperature is high enough 

and the temperature decrease is infinitely slow.  

The process of this evolutionary operation adopts 

the new values based on the Boltzmann rule. 

This rule is expressed in the following form:

Here,  EMBED Equation.3  is the difference of 

fitness value between the child generation and 

the parent generation, and T is the annealing 

temperature.  The main drawback of SA in 

practice is that the parameters in SA are hard to 

control.  Firstly, there is a contradiction between 

optimization efficiency and computation time 

in the selection of the annealing rate. If the 

cooling rate is excessively fast, the evolutionary 

operation may miss the extremity.  However, the 

convergence rate of this algorithm will be very 

slow.  Secondly, for every temperature, SA by 

itself cannot easily determine if it has reached 

the balanced state. This means the length of 

the Markov chain cannot be controlled easily. 

Moreover, when it is reflected to the algorithm, 

the timing of the Metropolis process is difficult 

to control.  Selection of the initial temperature is 

another difficulty in the application of SA [10].

	 A simple integration method for GSA algorithms 

is to generate new individuals with GA; then 

these individuals are processed with SA, and 

the results are used as the initial individuals of 

the next generation.  

 In normal GA, only simple crossover, 
mutation and selection are used as the genetic 
operators; normal GA cannot embody a complicated 
evolutionary process.  Because of the limitation of 
population size and number of generations, the 
algorithm can easily produce truncation error, which 
will lead to precocity.  For this reason, many 
researchers have attempted to design new hybrid 
algorithms by combining GA with other optimization 
algorithms.  All of these hybrid algorithms are able to 
improve the efficiency of GA to a certain degree. 

 SA is a powerful optimization technique 
which can theoretically converge asymptotically to 
the global optimum solution with probability ‘1’ 
when the initial temperature is high enough and the 
temperature decrease is infinitely slow.  The process 
of this evolutionary operation adopts the new values 
based on the Boltzmann rule. This rule is expressed 
in the following form: 

( )1,0random
kT

Eexp ≥⎟
⎠
⎞

⎜
⎝
⎛ Δ−

           (4) 

Here, EΔ  is the difference of fitness value between 
the child generation and the parent generation, and T 
is the annealing temperature.  The main drawback of 
SA in practice is that the parameters in SA are hard to 
control.  Firstly, there is a contradiction between 
optimization efficiency and computation time in the 
selection of the annealing rate. If the cooling rate is 
excessively fast, the evolutionary operation may miss 
the extremity.  However, the convergence rate of this 
algorithm will be very slow.  Secondly, for every 
temperature, SA by itself cannot easily determine if it 
has reached the balanced state. This means the length 
of the Markov chain cannot be controlled easily. 
Moreover, when it is reflected to the algorithm, the 
timing of the Metropolis process is difficult to 
control.  Selection of the initial temperature is 
another difficulty in the application of SA [10]. 

A simple integration method for GSA 
algorithms is to generate new individuals with GA; 
then these individuals are processed with SA, and the 
results are used as the initial individuals of the next 
generation.   

4. Methodology  

Procedure of Genetic Simulated Annealing Algorithm 
for data reconciliation 

Selected data reconciliation problems have 
two kinds of variables: measured and unmeasured.  
But data reconciliation problems are only concerned 
with measured variables.  Thus we need to eliminate 
unmeasured variables from the constraint equations.  
Since the unmeasured variables are present in the 
equations, the simplest strategy for solving the 
problem is to eliminate them from the constraints.  
This will not affect the objective function since it 
does not involve unmeasured variables.  After that 
the reconciled values of unmeasured variables can be 
calculated using the original constraints.  Thus, GSA 
will act as a tool for searching the solution space for 
only measured variables.  Usually GSA can randomly 
produce solutions that satisfy equality constraints.  
GSA has also been used to solve constrained 
optimization problems.  Although different methods 
for handling constraints have been suggested, penalty 
function methods have been most widely used. The 
GSA procedure for data reconciliation used in this 
work follows the steps below and show in the Fig. 1: 

Step 1 Choose real coding to represent problem 
parameters and roulette wheel selection methods, 
intermediate recombination, and real value mutation. 
Typically a binary representation is used in GA, but 
this has disadvantages when applied to 
multidimensional high-precision numerical problems. 
In these cases, the binary GA becomes inefficient and 
solutions require a large number of computational 
operations. Real number representation can deal with 
this problem and is more understandable than binary 
representation. 
 

Step 2 Assign appropriate GSA parameters consisting 
of: 

- Mutation probability, Pm.  Mutation operates on 
an individual (chromosome), producing offspring 
very different from the parent. Certain genes in the 
offspring chromosome are randomly altered with a 
mutation rate, Pm. Pm controls the rate at which new 
genes are introduced into the population. A low rate 
will prevent the introduction of potential genes, while 
a high rate will allow too much random perturbation. 
Mutations encourage a population that is converging 
onto some optimum to jump into a different part of 
the solution space, thus increasing the probability of 
detecting a different point leading to the global 
optimum solution. In this paper, multi-position 
mutation is used for the mutation operator. 

-    Crossover probability, Pc.  Crossover is used to 
create two new chromosomes from two existing 
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4. Methodology 

Procedure of Genetic Simulated Annealing 

Algorithm for data reconciliation

	 Selected data reconciliation problems have two 

kinds of variables: measured and unmeasured.  

But data reconciliation problems are only 

concerned with measured variables.  Thus we 

need to eliminate unmeasured variables from 

the constraint equations.  Since the unmeasured 

variables are present in the equations, the simplest 

strategy for solving the problem is to eliminate 

them from the constraints.  This will not affect 

the objective function since it does not involve 

unmeasured variables.  After that the reconciled 

values of unmeasured variables can be calculated 

using the original constraints.  Thus, GSA will 

act as a tool for searching the solution space 

for only measured variables.  Usually GSA can 

randomly produce solutions that satisfy equality 

constraints.  GSA has also been used to solve 

constrained optimization problems.  Although 

different methods for handling constraints have 

been suggested, penalty function methods have 

been most widely used. The GSA procedure for 

data reconciliation used in this work follows the 

steps below and show in the Fig. 1:

Step 1 Choose real coding to represent problem 

parameters and roulette wheel selection methods, 

intermediate recombination, and real value 

mutation. Typically a binary representation is 

used in GA, but this has disadvantages when 

applied to multidimensional high-precision 

numerical problems. In these cases, the binary 

GA becomes inefficient and solutions require 

a large number of computational operations. 

Real number representation can deal with this 

problem and is more understandable than binary 

representation.

Step 2 Assign appropriate GSA parameters 

consisting of:

	 - Mutation probability, Pm.  Mutation operates 

on an individual (chromosome), producing 

offspring very different from the parent. 

Certain genes in the offspring chromosome 

are randomly altered with a mutation rate, Pm. 

Pm controls the rate at which new genes are 

introduced into the population. A low rate will 

prevent the introduction of potential genes, 

while a high rate will allow too much random 

perturbation. Mutations encourage a population 

that is converging onto some optimum to jump 

into a different part of the solution space, thus 

increasing the probability of detecting a different 

point leading to the global optimum solution. 

In this paper, multi-position mutation is used 

for the mutation operator.

	 - Crossover probability, Pc.  Crossover is 

used to create two new chromosomes from two 

existing chromosomes selected from the current 

population using a crossover rate (PC). The 

crossover rate is defined as the ratio of the number 

of offspring produced in each population size. 
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This ratio controls the expected number of 

chromosomes which undergo the crossover 

operation. A higher crossover rate allows more 

exploration of the solution space and reduces 

the probability of a local optimum. However if 

this rate is too high, unnecessary computational 

time will be consumed in exploring unpromising 

regions of the solution space. For real number 

representation, crossover is determined by using 

a linear combination of two vectors, termed 

arithmetic crossover.

-	 Population size, N

-	 Generation number, g

-	 Decrease in temperature, a 

-	 Initial temperature, T0

-	 Final temperature, Tf

-	 Annealing function

	 One way to decrement the temperature 

is a simple linear method. An alternative is a 

geometric decrement where , where t = ta , 

where a < 1.

	 From other research has shown that a should 

be between 0.8 and 0.99, with better results 

being found in the higher end of the range. Of 

course, the higher the value of a, the longer it 

will take to decrement the temperature to the 

stopping criterion.

	 And the annealing function is the function to 

generate new points for the next iteration. The 

choices are “annealingfast” and “annealingboltz”

	 •	 annealingfast : The step has length 

temperature, with direction uniformly at random. 

This is the default.

	 •	 annealingboltz : The step has length square 

root of temperature, with direction uniformly at 

random.

Step 3 Set generation number g=0, temperature 

T=T0.

Step 4 Find initial solution P(g) to population 

size N.

Step 5 If g > gmax, terminate.

Step 6 Evaluate each chromosome of P(g) from 

the  objective function and evaluate the fitness 

function, which is normally used to transform 

the objective function value into a measure of 

relative fitness, while the selection algorithm 

selects populations for reproduction on the 

basis of their relative fitness. The selection 

process is used to choose chromosomes from 

the parent and the offspring to make up a 

new population with the same number as the 

existing population. Wasanapradit [13] adopted 

CPSS (cross-generational probabilistic survival 

selection) as the selection method.

Step 7  Perform reproduction on the population, 

crossover on random pairs of strings, and 

mutation on every string.
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Step 8 Calculate energy (E) using the equation:

where : E(x
(g+1)

) =  objective function value of new 

						     string

			   E(x
(g)
)	  = 	objective function value of old 

						     string

	 If E is negative, then the new string is better 

than the old one, and is accepted for the next 

generation, if not recalculate in Step 1.

Step 9  Calculate the acceptance probability 

using the acceptance algorithm:

a.	 Generate a random number (r) between (0, 1).

b.	 If r < Pr
E
, accept new (child) chromosome in 

a new generation; if not, use the old (parent) 

chromosome.

Step 10  Evaluate strings in the new population. 

Set g = g+1, then lower T according to the 

schedule and go to Step 6.

5. 	Results and Discussion

	 5.1  Case study

			   In this paper, weighted least squares 

and a redescending estimator are used as 

the objective functions for data reconciliation 

problems. Both objective functions and constraint 

equations require very complex calculations for 

data reconciliation  EMBED Visio.Drawing.11 

Fig. 1. Genetic simulated annealing algorithm 

(GSA).
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chromosomes selected from the current population 
using a crossover rate (PC). The crossover rate is 
defined as the ratio of the number of offspring 
produced in each population size. This ratio controls 
the expected number of chromosomes which undergo 
the crossover operation. A higher crossover rate 
allows more exploration of the solution space and 
reduces the probability of a local optimum. However 
if this rate is too high, unnecessary computational 
time will be consumed in exploring unpromising 
regions of the solution space. For real number 
representation, crossover is determined by using a 
linear combination of two vectors, termed arithmetic 
crossover. 

- Population size, N 
- Generation number, g 
- Decrease in temperature, α  
- Initial temperature, T0 
- Final temperature, Tf 
- Annealing function 

 One way to decrement the temperature is a simple 
linear method. An alternative is a geometric 
decrement where t = tα  , where α  < 1. 

 From other research has shown that α should be 
between 0.8 and 0.99, with better results being found 
in the higher end of the range. Of course, the higher 
the value of α, the longer it will take to decrement the 
temperature to the stopping criterion. 

 And the annealing function is the function to 
generate new points for the next iteration. The 
choices are “annealingfast” and “annealingboltz” 

• annealingfast : The step has length 
temperature, with direction uniformly at 
random. This is the default. 

• annealingboltz : The step has length 
square root of temperature, with 
direction uniformly at random. 
 

Step 3 Set generation number g=0, temperature T=T0. 

Step 4 Find initial solution P(g) to population size N. 

Step 5 If g > gmax, terminate. 

Step 6 Evaluate each chromosome of P(g) from the    
objective function and evaluate the fitness function, 
which is normally used to transform the objective 

function value into a measure of relative fitness, 
while the selection algorithm selects populations for 
reproduction on the basis of their relative fitness. The 
selection process is used to choose chromosomes 
from the parent and the offspring to make up a new 
population with the same number as the existing 
population. Wasanapradit [13] adopted CPSS (cross-
generational probabilistic survival selection) as the 
selection method. 

Step 7  Perform reproduction on the population, 
crossover on random pairs of strings, and mutation on 
every string. 

Step 8 Calculate energy (E) using the equation: 
 

                       
( )( ) ( )( )g1g xExEE −= +          (5) 

where : ( ) )x(E 1g+  = objective function value of new  
                              string 
             ( ) )x(E g    = objective function value of old  
                              string 

If E is negative, then the new string is better 
than the old one, and is accepted for the next 
generation, if not recalculate in Step 1. 

Step 9  Calculate the acceptance probability using the 
acceptance algorithm: 

                                   
( )( )gTEexpPrE −= .            (6) 

a. Generate a random number (r) between (0, 1). 
b. If r ≤  PrE, accept new (child) chromosome in 

a new generation; if not, use the old (parent) 
chromosome. 

Step 10  Evaluate strings in the new population. Set g 
= g+1, then lower T according to the schedule and go 
to Step 6. 

5. Results and Discussion 

5.1  Case study 

In this paper, weighted least squares and a 
redescending estimator are used as the objective 
functions for data reconciliation problems. Both 
objective functions and constraint equations require 
very complex calculations for data reconciliation 



70

วิศวกรรมสาร มก.

problems where the measured data contain only 

random errors. (The objective function for data 

reconciliation problems in which the measured 

data contain random errors and gross errors is 

important because it can eliminate combinatorial 

procedure for gross error detection and use 

straightforward methods to identify them.)  

Moreover, gross error detection using statistical 

tests based on linear or linearized models is not 

suitable for nonlinear data reconciliation problems.  

The proposed code for data reconciliation 

problems is developed using MATLABTM. All 

examples have been solved using a computer 

with an AMD Athlon
TM

 XP 2000+ 1.67 GHz 

microprocessor and 256 MB of RAM.

	 5.2  Appropriate GSA parameters

			   This section will investigate and select 

the appropriate parameters for GA and SA, 

which are considered in two cases as linear and 

nonlinear constraint problems (Tables 1).  These 

parameters will be employed in the following 

case studies

		  As one can see in Fig.2 (a) and 2(c), we 

select the value of Pc that has a least scatter of 

Pm for linear constraint and nonlinear constraint 

(0.2 and 0.9). In the same way, in Fig. 2(b) and 

2(d) the Pm at 0.9 and 0.3 is selected. We also 

find that the calculation time has no significant. 

The objective function value is 1.3619 and 0.06646.

Fig. 2.  The objective function value of problems: (a) linear constraint problem at fixed Pc and 

variances Pm (b) linear constraint problem at fixed Pm and variances Pc (c) nonlinear constraint 

problem at fixed Pc  and variances Pm (d) nonlinear constraint problem at fixed Pm and variances Pc.

Table 1. GSA parameters for problems
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a genetic simulated annealing algorithm (GSA) is 
proposed as an optimization tool for data 
reconciliation problems in this work. We perform the 
GSA based on a typical weighted least squares 
objective function for simple data reconciliation  
 

problems where the measured data contain only 
random errors. (The objective function for data 
reconciliation problems in which the measured data 
contain random errors and gross errors is important 
because it can eliminate combinatorial procedure for 
gross error detection and use straightforward methods 
to identify them.)  Moreover, gross error detection 
using statistical tests based on linear or linearized 
models is not suitable for nonlinear data 
reconciliation problems.  The proposed code for data 
reconciliation problems is developed using 
MATLABTM. All examples have been solved using a 
computer with an AMD Athlon™ XP 2000+ 1.67 
GHz microprocessor and 256 MB of RAM. 

 
5.2  Appropriate GSA parameters 

 This section will investigate and select the 
appropriate parameters for GA and SA, which are 
considered in two cases as linear and nonlinear 
constraint problems (Tables 1).  These parameters 
will be employed in the following case studies 

As one can see in Fig.2 (a) and 2(c), we 
select the value of Pc that has a least scatter of Pm for 
linear constraint and nonlinear constraint (0.2 and 
0.9). In the same way, in Fig. 2(b) and 2(d) the Pm at 
0.9 and 0.3 is selected. We also find that the 
calculation time has no significant. The objective 
function value is 1.3619 and 0.06646. 

Table 1. GSA parameters for problems 

 

Parameter 
Linear 

constraint 
Nonlinear 
constraint 

Value Value 

Mutation probability, Pm 0.9 0.3 

Crossover probability, Pc 0.2 0.9 

Population size, N 40 40 

Generation number, g 5000 5000 

Decrease in temperature, 
α  

0.99 0.99 

Initial temperature, T0 10000 10000 

Final temperature, Tf 1.00E-02 1.00E-02 

 

α
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	 5.3 Simple linear data reconciliation

			   This problem is used to illustrate a number 

of basic features of data reconciliation.  Fig. 3 

shows four units with eight stream processes 

designed to perform a reconciliation of the mass 

flows.

Fig. 3.  Mass balance problem.

	 Let us assume that streams 7 and 8 are 

unmeasured, streams 1 and 3 are measured with 

a standard error of 1%, streams 2, 5 and 6 are 

measured with an error of 2%, and stream 4 is 

only approximately measured with a 5% error 

(Table 2).

	 The appropriate GSA parameters used in this 

case were formulated with linear constraints, 

and with weighted least squares as the objective 

function. A comparison of the performance of 

GA, DATACON and GSA is shown in Table 2. 

	 The proposed GSA technique gives the 

best objective function value (1.3619), which is 

very close to the DATACON result.  Therefore, 

the SA can support the GA and provide a 

significant search advantage.  In addition, all 

three approaches have reconciled the data and 

calculated the values of streams 7 and 8.	

Table 2. Comparison of simple linear data reconciliation methods 

Table 2. Comparison of simple linear data reconciliation methods  

Stream Standard deviation Measured value Calculation value   
DATACON GA GSA 

1 
2 
3 
4 
5 
6 
7 
8 

1.001 
0.822 
0.790 
1.530 
2.166 
0.396 
- 
- 

100.1 
41.1 
79.0 
30.6 
108.3 
19.8 
- 
- 

99.287 
41.1 
79.359 
30.048 
109.407 
19.927 
58.187 
38.259 

99.400 
41.1 
79.321 
29.938 
109.271 
20.083 
58.3 
38.217 

99.288 
41.1 
79.361 
30.042 
109.403 
19.927 
58.188 
38.261 

Objective function value 1.362 1.5548 1.3619 
=−− 721 FFF  0 0 0 

=−− 867 FFF  0.001 0 0 

=−+ 382 FFF  0 0.004 0 

=−+ 543 FFF  0 -0.012 0 
 

Table 3. Redescending estimator tuning constant values for simple linear data reconciliation with error 

 M1 M2 M3 M4 M5 M6 M7 M8 
Best 
solution 

C 40 20 16 8 4 2 0.8 0.4 1.65 
nout 0 0 0 0 0 0 2 2 1 
OP 0 0 0 0 0 0 1 1 1 
AVTI 0 0 0 0 0 0 1 1 0 
AIC 4.648E+05 4.648E+05 4.648E+05 4.648E+05 4.648E+05 4.648E+05 38.899 55.285 38.087 
F1 107.942 107.942 107.942 107.942 107.942 107.942 98.849 97.508 99.139 
F2 41.100 41.100 41.100 41.100 41.100 41.100 41.100 41.100 41.100 
F3 80.548 80.548 80.548 80.548 80.548 80.548 78.970 77.700 79.179 
F4 29.184 29.177 29.180 29.183 28.770 31.997 29.376 30.600 30.876 
F5 109.732 109.725 109.730 109.731 109.318 112.545 108.346 108.30 110.054 
F6 20.576 20.576 20.576 20.576 20.576 20.576 19.879 19.808 19.960 
F7 66.842 66.842 66.842 66.842 66.842 66.842 57.749 56.408 58.039 
F8 46.266 46.266 46.266 46.266 46.266 46.266 37.870 36.600 38.079 

Let us assume another set of data from this 
same system with an error induced in the 
measurement of stream 1, with a value of 110.1 
recorded instead of the previous value of 100.1.  In 
general, the engineer would not know that such an 
error existed in the raw data.  In this case, a 
redescending estimator is used as the objective 
function in the comparison of GSA, simple GA and 
DATACON, as summarized in Table 3. 

Table 3 shows that the M1 to M6 cannot 
detect the outliers (nout = 0).  At M7 the outlier starts 
to be detected, which can be seen from a sharp 
decrease in the AIC value.  M7 and M8 detect 100% 
of the measurements as being corrupted.  This is due 

to the increase in type 1 errors with increasing 
robustness of the estimator.  The AIC also increases 
from M6 to M8.  A plot of the AIC with the values of 
C shows a minimum at M7, indicating that the best 
estimator lies close to it.  With this knowledge the 
estimator is tuned to C = 0.81. A comparison with the 
other methods is shown in Table 4. 

 There is no significantly different result in 
steam 1 with the introduced gross error. Here, the 
proposed technique gives the objective function value 
(2.437), which is not close to the DATACON result 
(0.221) because of the influence of the redescending 
estimator objective function. However, simultaneous 
gross error detection and reconciliation of data are 
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Table 3. Redescending estimator tuning constant values for simple linear data reconciliation 

with error
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measurement of stream 1, with a value of 110.1 
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			   There is no significantly different result 

in steam 1 with the introduced gross error. Here, 

the proposed technique gives the objective 

function value (2.437), which is not close to the 

DATACON result (0.221) because of the influence 

of the redescending estimator objective function. 

However, simultaneous gross error detection 

and reconciliation of data are performed well 

with the redescending estimator.  In addition, 

DATACON normally performs data reconciliation 

using a global test and a measurement test to 

detect gross errors before continuing with data 

reconciliation.

	 5.4 	Binary distillation column

			   This problem is a simple example of 

reconciled flows and compositions of a binary 

distillation column with no gross error in 

measured data (Narasimhan & Jordache, [1]).  
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solution 
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Let us assume another set of data from this 
same system with an error induced in the 
measurement of stream 1, with a value of 110.1 
recorded instead of the previous value of 100.1.  In 
general, the engineer would not know that such an 
error existed in the raw data.  In this case, a 
redescending estimator is used as the objective 
function in the comparison of GSA, simple GA and 
DATACON, as summarized in Table 3. 

Table 3 shows that the M1 to M6 cannot 
detect the outliers (nout = 0).  At M7 the outlier starts 
to be detected, which can be seen from a sharp 
decrease in the AIC value.  M7 and M8 detect 100% 
of the measurements as being corrupted.  This is due 

to the increase in type 1 errors with increasing 
robustness of the estimator.  The AIC also increases 
from M6 to M8.  A plot of the AIC with the values of 
C shows a minimum at M7, indicating that the best 
estimator lies close to it.  With this knowledge the 
estimator is tuned to C = 0.81. A comparison with the 
other methods is shown in Table 4. 

 There is no significantly different result in 
steam 1 with the introduced gross error. Here, the 
proposed technique gives the objective function value 
(2.437), which is not close to the DATACON result 
(0.221) because of the influence of the redescending 
estimator objective function. However, simultaneous 
gross error detection and reconciliation of data are 
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The flows and component mole fractions of 

feed (F), distillate (D), and bottom streams (B) 

are measured. The measured flow rates under 

noise are based on data from 100 measurements, 

with 5% standard deviation.  

		  The measured mole fractions are found in 

the same way, with 1% standard deviation from 

true values. A set of the true values, measured 

values, and standard deviations is presented in 

Table 5.

		  If we represent the value of the flow 

of feed, distillate and bottom streams by the 

variables  EMBED Equation.3  and the measured 

compositions by the variables EMBED Equation.3 

, we will get one overall flow balance and two 

component balances, as follows:

			   In this case, Wongrat [9] used a nonlinear 

constraint parameter with weighted least squares 

as the objective function in the comparison of 

GSA and GA.  The result is shown in Table 5.

			   It can be seen that the GSA produces a 

better solution than the GA in Wongrat’s study, 

in which the selection process was modified 

with CPSS.  In principle, both techniques aim 

to improve the stage of selection of general GA, 

but the approach of simulated annealing in GA 

(GSA) seems to work more efficiently.

Table 4. Comparison of simple linear data reconciliation with error

performed well with the redescending estimator.  In 
addition, DATACON normally performs data 
reconciliation using a global test and a measurement 
test to detect gross errors before continuing with data 
reconciliation. 

5.4 Binary distillation column 

This problem is a simple example of 
reconciled flows and compositions of a binary 
distillation column with no gross error in measured 
data (Narasimhan & Jordache, [1]).  The flows and 
component mole fractions of feed (F), distillate (D), 
and bottom streams (B) are measured. The measured 
flow rates under noise are based on data from 100 
measurements, with 5% standard deviation.   

The measured mole fractions are found in 
the same way, with 1% standard deviation from true 
values. A set of the true values, measured values, and 
standard deviations is presented in Table 5. 

If we represent the value of the flow of feed, 
distillate and bottom streams by the variables x  and 
the measured compositions by the variables y , we 
will get one overall flow balance and two component 
balances, as follows: 

0xxx DBF =−−    
(8a) 0yxyxyx 1DD1BB1FF =−−   
(8b) 0yxyxyx 2DD2BB2FF =−−   
(8c) 1yy 2F1F =+      
(8d) 1yy 2B1B =+       
(8e) 1yy 2D1D =+      
(8f) 

In this case, Wongrat [9] used a nonlinear 
constraint parameter with weighted least squares as 
the objective function in the comparison of GSA and 
GA.  The result is shown in Table 5. 

 It can be seen that the GSA produces a 
better solution than the GA in Wongrat’s study, in 
which the selection process was modified with CPSS.  
In principle, both techniques aim to improve the stage 
of selection of general GA, but the approach of 
simulated annealing in GA (GSA) seems to work 
more efficiently. 

 

 

Table 4. Comparison of simple linear data reconciliation with error 

I Standard deviation Measured value Calculation value 
DATACON GA GSA 

1 
2 
3 
4 
5 
6 
7 
8 

1.101 
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0.790 
1.530 
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- 
- 

110.1 
41.1 
79.0 
30.6 
108.3 
19.8 
- 
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98.694* 
41.1 
78.894 
30.203 
109.097 
19.800 
57.594 
37.794 

98.609* 
41.1 
79.046 
30.004 
109.063 
19.571 
57.509 
37.938 

99.139* 
41.1 
79.179 
30.876 
110.055 
19.960 
58.039 
38.079 

Objective function value 0.221 4.786 2.437 

=−− 721 FFF  0.000 0.000 0.000 

=−− 867 FFF  0.000 0.000 0.000 

=−+ 382 FFF  0.000 -0.008 0.000 

=−+ 543 FFF  0.000 -0.013 0.000 
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Table 5. Comparison of GA and GSA results for a binary distillation column 

Stream Variables STD Measured 
value 

Calculation value 
GA by Wongrat GSA 
WLS WLS 

Feed 
 
 
Distillate 
 
 
Bottom 

Flow 
Component 1 (%) 
Component 2 (%) 
Flow 
Component 1 (%) 
Component 2 (%) 
Flow 
Component 1 (%) 
Component 2 (%) 

50.000 
0.480 
0.520 
24.731 
0.950 
0.050 
25.269 
0.020 
0.980 

1006.3 
48.060 
52.065 
497.72 
95.119 
4.998 
504.470 
1.999 
97.965 

1003.62 
48.047 
52.028 
496.261 
95.145 
4.998 
507.359 
1.980 
98.029 

1003.530 
47.991 
52.009 
496.262 
95.003 
4.997 
507.268 
1.999 
98.001 

Objective function value - 0.93273 0.06773 

0xxx DBF =−−  4.038 0.000 0.000 

0yxyxyx 1DD1BB1FF =−−  0.117 -0.004 0.001 

0yxyxyx 2DD2BB2FF =−−  4.850 0.001 -0.001 

1yy 2F1F =+  100.125% 100.075% 100% 

1yy 2B1B =+  
100.117% 100.143% 100% 

1yy 2D1D =+  99.964% 100.009% 100% 

 

Table 6. Refinery problem results – mass and energy balance 
 
i Variable Standard 

deviation 
Measured 
value 

Calculation value 
DATACON GSA 

1 
 
2 
 
3 
 
4 
 
5 
 
6 
 
7 
 
7A 
8 
9 
 
10 
 
11 
 
12 
 
13 
 
14 
 

Rate, ton(s)/h 
Temp, oC 
Rate, ton(s)/h 
Temp, oC 
Rate, ton(s)/h 
Temp, oC 
Rate, ton(s)/h 
Temp, oC 
Rate, ton(s)/h 
Temp, oC 
Rate, ton(s)/h  
Temp, oC 
Rate, ton(s)/h  
Temp, oC 
Rate, ton(s)/h  
Rate, ton(s)/h  
Rate, ton(s)/h  
Temp, oC 
Rate, ton(s)/h  
Temp, oC 
Rate, ton(s)/h  
Temp, oC 
Rate, ton(s)/h  
Temp, oC 
Rate, ton(s)/h  
Temp, oC 
Rate, ton(s)/h  
Temp, oC 

6.600 
1.00 
- 
- 
- 
- 
2.640 
1.00 
3.840 
1.00 
- 
- 
- 
1.00 
- 
1.360 
1.320 
1.00 
1.300 
1.00 
2.420 
1.00 
- 
1.00 
- 
1.00 
- 
1.00 

330.000 
154.00 
- 
- 
- 
- 
132.000 
170.00 
192.000 
185.00 
- 
- 
- 
221.00 
- 
68.000 
66.000 
200.00 
65.000 
285.00 
121.000 
370.00 
- 
275.00 
- 
200.00 
- 
169 

322.970 
154.662 
131.696 
154.662 
191.274 
154.662 
131.696 
170.492 
191.274 
185.339 
322.970 
179.339 
322.970 
219.346 
322.970 
67.914 
65.969 
200.061 
65.365 
285.213 
123.722 
370.693 
123.722 
274.378 
65.365 
199.810 
65.969 
168.941 

322.951 
154.723 
131.537 
154.723 
191.414 
154.723 
131.537 
170.531 
191.414 
185.376 
322.951 
179.388 
322.951 
219.464 
322.951 
67.855 
65.899 
200.040 
65.352 
285.205 
123.845 
370.700 
123.845 
274.325 
65.352 
199.800 
65.899 
168.969 

Objective function value 7.01896 7.0022 
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Table 5. Comparison of GA and GSA results for a binary distillation column 

Stream Variables STD Measured 
value 

Calculation value 
GA by Wongrat GSA 
WLS WLS 

Feed 
 
 
Distillate 
 
 
Bottom 

Flow 
Component 1 (%) 
Component 2 (%) 
Flow 
Component 1 (%) 
Component 2 (%) 
Flow 
Component 1 (%) 
Component 2 (%) 

50.000 
0.480 
0.520 
24.731 
0.950 
0.050 
25.269 
0.020 
0.980 

1006.3 
48.060 
52.065 
497.72 
95.119 
4.998 
504.470 
1.999 
97.965 

1003.62 
48.047 
52.028 
496.261 
95.145 
4.998 
507.359 
1.980 
98.029 

1003.530 
47.991 
52.009 
496.262 
95.003 
4.997 
507.268 
1.999 
98.001 

Objective function value - 0.93273 0.06773 

0xxx DBF =−−  4.038 0.000 0.000 

0yxyxyx 1DD1BB1FF =−−  0.117 -0.004 0.001 

0yxyxyx 2DD2BB2FF =−−  4.850 0.001 -0.001 

1yy 2F1F =+  100.125% 100.075% 100% 

1yy 2B1B =+  
100.117% 100.143% 100% 

1yy 2D1D =+  99.964% 100.009% 100% 

 

Table 6. Refinery problem results – mass and energy balance 
 
i Variable Standard 

deviation 
Measured 
value 

Calculation value 
DATACON GSA 

1 
 
2 
 
3 
 
4 
 
5 
 
6 
 
7 
 
7A 
8 
9 
 
10 
 
11 
 
12 
 
13 
 
14 
 

Rate, ton(s)/h 
Temp, oC 
Rate, ton(s)/h 
Temp, oC 
Rate, ton(s)/h 
Temp, oC 
Rate, ton(s)/h 
Temp, oC 
Rate, ton(s)/h 
Temp, oC 
Rate, ton(s)/h  
Temp, oC 
Rate, ton(s)/h  
Temp, oC 
Rate, ton(s)/h  
Rate, ton(s)/h  
Rate, ton(s)/h  
Temp, oC 
Rate, ton(s)/h  
Temp, oC 
Rate, ton(s)/h  
Temp, oC 
Rate, ton(s)/h  
Temp, oC 
Rate, ton(s)/h  
Temp, oC 
Rate, ton(s)/h  
Temp, oC 

6.600 
1.00 
- 
- 
- 
- 
2.640 
1.00 
3.840 
1.00 
- 
- 
- 
1.00 
- 
1.360 
1.320 
1.00 
1.300 
1.00 
2.420 
1.00 
- 
1.00 
- 
1.00 
- 
1.00 

330.000 
154.00 
- 
- 
- 
- 
132.000 
170.00 
192.000 
185.00 
- 
- 
- 
221.00 
- 
68.000 
66.000 
200.00 
65.000 
285.00 
121.000 
370.00 
- 
275.00 
- 
200.00 
- 
169 

322.970 
154.662 
131.696 
154.662 
191.274 
154.662 
131.696 
170.492 
191.274 
185.339 
322.970 
179.339 
322.970 
219.346 
322.970 
67.914 
65.969 
200.061 
65.365 
285.213 
123.722 
370.693 
123.722 
274.378 
65.365 
199.810 
65.969 
168.941 

322.951 
154.723 
131.537 
154.723 
191.414 
154.723 
131.537 
170.531 
191.414 
185.376 
322.951 
179.388 
322.951 
219.464 
322.951 
67.855 
65.899 
200.040 
65.352 
285.205 
123.845 
370.700 
123.845 
274.325 
65.352 
199.800 
65.899 
168.969 

Objective function value 7.01896 7.0022 
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Application of a genetic simulated annealing algorithm for  data reconciliation

			   The measured values for the case in 

Fig. 4 are shown in Table 6 with a 2% standard 

deviation of measurement.  The product streams 

consist of one component per stream, except 

for the overhead Naphtha product which 

contains five pure components and one heavy 

pseudo-component.  This complex case study 

has bilinear constraints.  The weighted least 

squares method is used as the objective function 

in the comparison of GSA and DATACON.  It 

can be seen that the simultaneous mass and 

energy constraint produces better results for 

complex DR from GSA (7.0022) than from 

DATACON(7.01896). 

6. 	Conclusion

	 An optimization tool using GSA for DR problems 

has been presented. The GSA based program is 

the optimization tool for data reconciliation using 

two kinds of objective function. The weighted 

least square objective function is used for data 

reconciliation and the redescending estimators 

and the modified AIC objective function are 

used for data reconciliation of measured data 

contained gross error by developing code program 

	 5.5 	Simple refinery

 

Fig. 4.  Simple refinery.

in MATLABTM for the difficulty of complex 

problems. GSA has a better searching ability 

for the global optimal solution. GSA generates a 

new individual with GA; then these individuals 

are processed with SA, and the results are used 

as the initial individuals of the next generation. 

The systematic approach of GSA to the DR 

problem was proposed and implemented. This 

method started with appropriate GSA parameter 

formulation and then used these parameters 

to solve the DR problem. The steady-state DR 

problem was tested with this proposed program. 

The results showed that the GSA method could 

be a promising choice as an optimization tool 

for the DR problem, with the ability to give 

more accurate reconciled data.
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NOMENCLATURE

AIC			   :	 Akaike information criterion

AVTI			   :	 Average number of type 1 errors

a, b, c		 :	 Tuning constants for the redescending 

				    estimator

DR			  :	 Data reconciliation

∆E 		  :	 Difference of fitness values between 

the child generation and the parent generation

F			   :	 Feed flow rate

GA 		  :	 Genetic algorithm

GSA		  :	 Genetic simulated annealing algorithm

g			   :	 The set of inequalities constraints

h			   :	 The set of equality constraints

N			   :	 Number of variables

n			   :	 Total number of measured variables

nout		  :	 Total number of detected gross error

P			   :	 Probability

OP			  :	 Optimization of Probability

SA			  : 	 Simulated annealing

u			   :	 The set of unmeasured variables

WLS		  :	 Weighted least squares

x
M
			  :	 The set of measured variables

x			   :	 The set of reconciled values

M			   :	 Measured value

ε 			  :	 The magnitude of random error

ρ 			  :	 Some objective function dependent 

				    upon the difference between the 

				    measurement of a variable and its 

				    value for any measured variables

Superscripts

L			   :	 Lower bound of variable

U			   : 	 Upper bound of variable

Subscripts

i			   :	 Variable index


