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To elucidate the propagation of error or bias from the measurement of a process, the data

requires reconciliation. In this article, a genetic simulated annealing algorithm (GSA) based program

is proposed for solving data reconciliation (DR) problems. The proposed GSA utilizes simultaneous

simulated annealing and modified cross-generational probabilistic survival selection (CPSS) in a

genetic algorithm. Validation is performed with linear and nonlinear DR problems. The test starts

with the study of appropriate GSA parameters of constraint problems. The performance of GSA

with the appropriate parameters is then compared to the genetic algorithm (GA) method, the

specific method, and the commercial software DATACON. The proposed GSA, with its ability

to give more accurate reconciled data, is a promising choice as an optimization tool for data

reconciliation problems.
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#» Introduction

Data on the real state of physical variables and
processes can be obtained from measurements;
these, however, are only estimates. Process
data measurements are generally corrupted with
two types of errors-random and gross—causing

violation of process constraints defined by the

mass and energy balances [1]. Therefore, the
elimination of such errors would improve the
accuracy of measured data. Data reconciliation
adjusts process measurements with random
errors by supplying satisfactory material and

energy balance constraints. Elimination of the
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less frequent gross errors, which can severely
bias the estimates and the reconciled data, is
achieved by gross error detection.

Therefore, simultaneous data reconciliation
and gross error detection have emerged [2]. In
chemical engineering, Kuehn and Davidson (3]
proposed the first solution to the steady-state
data reconciliation problem. Later, Crowe et

al. [4] investigated measured and unmeasured

variable linear systems using matrix projection.

A solution of the nonlinear data reconciliation
problem via successive linearization is described
by Knepper and Gorman [5]. Tjoa and Biegler [6]
proposed an efficient hybrid successive quadratic
programming algorithm to solve the bi-variable
objective function of DR problems. Sanchez
and Romagnoli [7] applied Q-R factorization to
analyze, decompose and solve linear and bilinear
reconciliation problems. To avoid complex
calculations resulting in a complicated process,
Zhao and Jiang [8] proposed a stochastic search
method for solving the linear steady-state DR
problem. The significant advantage of this
method is that it does not depend on any
particular model structure and only requires
simple algebraic calculation.

A popular stochastic search, genetic algorithm
(GA), is widely used to solve optimization
problems. Wongrat [9] developed GA for the DR
problem defined by a redescending estimator and

weighted least squares. This GA can solve the

DR problem without the complex calculations
required by conventional optimization methods,
but the calculation time is longer and the data
result is not satisfactory for complex systems. GA
provides a solution to the complicated problem
of discontinuous and non-convex objective
functions determined without using derivatives.
A notable characteristic of GA is that it can find
the region of optimal values rapidly; however,
the ability to accurately search in this region
is not satisfactory for complex systems [10].

For this reason, many researchers have tried
to design new hybrid algorithms by combining
GA with other optimization algorithms. Simulated
annealing (SA) is an approach for simulating
the thermodynamic process of annealing
(cooling of a solid). It has been observed that
this method could also be used to search for
feasible solutions of optimization problems
with the objective of converging to an optimal
solution. SA can search accurately in certain
regions; however, it is difficult to explore the
entire search space. Therefore, the difficulty of
solving complex problems can be overcome by
improving GA by combining it effectively with
an SA algorithm to avoid the common defect of
early convergence. This is known as a genetic
simulated annealing algorithm (GSA).

GSA will be proposed in this article as the
best method for handling the discontinuous

and non-convex properties of objective function
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in steady-state DR problems. In the following
section we describe the general formulation and
objective function for DR. In Sections 3 and 4,
the basic theory and procedure of using GSA for
DR will be discussed. In section b. DR problems
are solved with GSA and also compared with
other methods.
».Gﬂral formulation of the data reconciliation
problem

The estimation of unmeasured variables,
and model parameters, are obtained as part
of the reconciliation problem. The estimation
of unmeasured values based on the reconciled
measured values is also known as data coaptation.

In general form of data reconciliation problems.

minp(xM,x)
h(x,u)=0
g(x,u) <0
xF <x<xV

(M

L
ut <u<uV

where: p is an objective function depending on
the difference between the measurement of a
variable and its value for any measured variables;
EMBED Equation.3 is the set of measurement
data of the corresponding variable x; u is the
set of unmeasured variables; h is the set of
equality constraints; g is the set of inequalities;
and superscripts L and U are the lower and

upper bounds of the variables.

The objective function usually uses a weighted
least squares objective function. However if
there are gross errors in the data, the objective
function is biased, leading to incorrect data
reconciliation. The common procedure is to
identify and eliminate gross errors. Thus data
reconciliation and gross error detection are
applied together to improve the accuracy of
measured data. This paper uses weighted least
squares and a redescending estimator as objective
functions - the weighted least squares method
is used for data reconciliation problems, and a
redescending estimator [11] for data reconciliation

of measured data containing gross errors.
Objective Function for data reconciliation

We discuss the form of M-estimators for the
objective function EMBED Equation.3 in Eq. (1).

The M-estimators are defined as:
Least squares estimator
2[5 (1 + )]
2cg [ - In (l ':'F:J 2

where C; = 1.3998

Hampel’s redescending M-estimator
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The consequence of this tuning requirement
is that in data reconciliation and gross error
detection, the performance of two different
EMBED Equation.3 functions can be compared
properly only for (nearly) equal efficiency cases.
This means that, for instance, Fair function Eq.(2)
with 95% efficiency can be compared with 95%
efficient Hampel’s redescending M-estimator
in Eq.(3) and the value of QUOTE and c are
1.35, 2.7 and 5.4.

» Genetic Simulated Annealing (GSA)
Algorithm

In normal GA, only simple crossover, mutation
and selection are used as the genetic operators;
normal GA cannot embody a complicated
evolutionary process. Because of the limitation
of population size and number of generations,
the algorithm can easily produce truncation
error, which will lead to precocity. For this
reason, many researchers have attempted to
design new hybrid algorithms by combining
GA with other optimization algorithms. All of
these hybrid algorithms are able to improve the
efficiency of GA to a certain degree.

SA is a powerful optimization technique
which can theoretically converge asymptotically
to the global optimum solution with probability
‘1’ when the initial temperature is high enough

and the temperature decrease is infinitely slow.
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The process of this evolutionary operation adopts

the new values based on the Boltzmann rule.

—AE
exp{

This rule is expressed in the following form:

j > random(0, 1) 4

Here, EMBED Equation.3 is the difference of
fitness value between the child generation and
the parent generation, and T is the annealing
temperature. The main drawback of SA in
practice is that the parameters in SA are hard to
control. Firstly, there is a contradiction between
optimization efficiency and computation time
in the selection of the annealing rate. If the
cooling rate is excessively fast, the evolutionary
operation may miss the extremity. However, the
convergence rate of this algorithm will be very
slow. Secondly, for every temperature, SA by
itself cannot easily determine if it has reached
the balanced state. This means the length of
the Markov chain cannot be controlled easily.
Moreover, when it is reflected to the algorithm,
the timing of the Metropolis process is difficult
to control. Selection of the initial temperature is
another difficulty in the application of SA [10].

A simple integration method for GSA algorithms
is to generate new individuals with GA; then
these individuals are processed with SA, and
the results are used as the initial individuals of

the next generation.
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»». Methodology

Procedure of Genetic Simulated Annealing
Algorithm for data reconciliation

Selected data reconciliation problems have two
kinds of variables: measured and unmeasured.
But data reconciliation problems are only
concerned with measured variables. Thus we
need to eliminate unmeasured variables from
the constraint equations. Since the unmeasured
variables are present in the equations, the simplest
strategy for solving the problem is to eliminate
them from the constraints. This will not affect
the objective function since it does not involve
unmeasured variables. After that the reconciled
values of unmeasured variables can be calculated
using the original constraints. Thus, GSA will
act as a tool for searching the solution space
for only measured variables. Usually GSA can
randomly produce solutions that satisfy equality
constraints. GSA has also been used to solve
constrained optimization problems. Although
different methods for handling constraints have
been suggested, penalty function methods have
been most widely used. The GSA procedure for
data reconciliation used in this work follows the

steps below and show in the Fig. 1:

Step 1 Choose real coding to represent problem
parameters and roulette wheel selection methods,
intermediate recombination, and real value
mutation. Typically a binary representation is

used in GA, but this has disadvantages when

applied to multidimensional high-precision
numerical problems. In these cases, the binary
GA becomes inefficient and solutions require
a large number of computational operations.
Real number representation can deal with this
problem and is more understandable than binary

representation.

Step 2 Assign appropriate GSA parameters

consisting of:

- Mutation probability, Pm. Mutation operates
on an individual (chromosome), producing
offspring very different from the parent.
Certain genes in the offspring chromosome
are randomly altered with a mutation rate, Pm.
Pm controls the rate at which new genes are
introduced into the population. A low rate will
prevent the introduction of potential genes,
while a high rate will allow too much random
perturbation. Mutations encourage a population
that is converging onto some optimum to jump
into a different part of the solution space, thus
increasing the probability of detecting a different
point leading to the global optimum solution.
In this paper, multi-position mutation is used
for the mutation operator.

- Crossover probability, Pc. Crossover is
used to create two new chromosomes from two
existing chromosomes selected from the current
population using a crossover rate (PC). The

crossover rate is defined as the ratio of the number

of offspring produced in each population size.
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This ratio controls the expected number of
chromosomes which undergo the crossover
operation. A higher crossover rate allows more
exploration of the solution space and reduces
the probability of a local optimum. However if
this rate is too high, unnecessary computational
time will be consumed in exploring unpromising
regions of the solution space. For real number
representation, crossover is determined by using
a linear combination of two vectors, termed

arithmetic crossover.

Population size, N

Generation number, g

Decrease in temperature, a

Initial temperature, TO

Final temperature, Tf

Annealing function

One way to decrement the temperature
is a simple linear method. An alternative is a
geometric decrement where , where t = ta ,
where a < 1.

From other research has shown that a should
be between 0.8 and 0.99, with better results
being found in the higher end of the range. Of
course, the higher the value of a, the longer it
will take to decrement the temperature to the
stopping criterion.

And the annealing function is the function to
generate new points for the next iteration. The

choices are “annealingfast” and “annealingboltz”
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e annealingfast : The step has length
temperature, with direction uniformly at random.
This is the default.

e annealingboltz : The step has length square
root of temperature, with direction uniformly at

random.

Step 3 Set generation number g=0, temperature

T=TO.

Step 4 Find initial solution P(g) to population

size N.

Step 5 If g > gmax, terminate.

Step 6 Evaluate each chromosome of P(g) from
the objective function and evaluate the fitness
function, which is normally used to transform
the objective function value into a measure of
relative fitness, while the selection algorithm
selects populations for reproduction on the
basis of their relative fitness. The selection
process is used to choose chromosomes from
the parent and the offspring to make up a
new population with the same number as the
existing population. Wasanapradit [13] adopted
CPSS (cross-generational probabilistic survival

selection) as the selection method.

Step 7 Perform reproduction on the population,
crossover on random pairs of strings, and

mutation on every string.
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Step 8 Calculate energy (E) using the equation:

E=E(x=0)-Bx®) )
where : E(x®") = objective function value of new
string
E(x®) = objective function value of old
string
If E is negative, then the new string is better
than the old one, and is accepted for the next

generation, if not recalculate in Step 1.

Step 9 Calculate the acceptance probability

using the acceptance algorithm:

Pry =exp(~ E/T(g)). (6)

a. Generate a random number (r) between (0, 1).
b. If r < Pr;, accept new (child) chromosome in
a new generation; if not, use the old (parent)
chromosome.

Step 10 Evaluate strings in the new population.
Set g = g+1, then lower T according to the
schedule and go to Step 6.

'» Results and Discussion

5.1 Case study
In this paper, weighted least squares
and a redescending estimator are used as
the objective functions for data reconciliation
problems. Both objective functions and constraint
equations require very complex calculations for

data reconciliation EMBED Visio.Drawing.11

c Linear Assigned appropriate GSA

onstraints parameters of non-linear constrainis
Assigned appropriate GSA

parameters of linear constraints

Objective function?
ata without gross err

Redescending estimator

‘ Turning the redescending estimator(c)

Weighted least squares

Generation number g=0
Annealing temperature T=T,

Generate initial P(g) randomly

Evaluate the fitness of P(g)

Selection (Roulette Wheel Selection)

v

‘ Crossover (intermediate Recombination) ‘

+1
f(T)

Real valued mutation

‘ Calculate E = E(x®™") - Ex®) ‘

Accept new
chromosome (g+1)

Accept new chromosome (g+1) with probability of
exp(-E/T). If not then use the old chromosome (g)

Evaluate the fitness of
children

Yes

Output

Fig. 1. Genetic simulated annealing algorithm
(GSA).

using conventional optimization methods.
Therefore, a genetic simulated annealing algorithm
(GSA) is proposed as an optimization tool for
data reconciliation problems in this work. We
perform the GSA based on a typical weighted
least squares objective function for simple data

reconciliation
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problems where the measured data contain only
random errors. (The objective function for data
reconciliation problems in which the measured
data contain random errors and gross errors is
important because it can eliminate combinatorial
procedure for gross error detection and use
straightforward methods to identify them.)
Moreover, gross error detection using statistical
tests based on linear or linearized models is not
suitable for nonlinear data reconciliation problems.
The proposed code for data reconciliation
problems is developed using MATLABTM. All
examples have been solved using a computer
with an AMD Athlon™ XP 2000+ 1.67 GHz
microprocessor and 256 MB of RAM.
5.2 Appropriate GSA parameters

This section will investigate and select
the appropriate parameters for GA and SA,
which are considered in two cases as linear and

nonlinear constraint problems (Tables 1). These

parameters will be employed in the following
case studies

As one can see in Fig.2 (a) and 2(c), we
select the value of Pc that has a least scatter of
Pm for linear constraint and nonlinear constraint
(0.2 and 0.9). In the same way, in Fig. 2(b) and
2(d) the Pm at 0.9 and 0.3 is selected. We also
find that the calculation time has no significant.
The objective function value is 1.3619 and 0.06646.

Table 1. GSA parameters for problems

Linear Nonlinear
Parameter constraint  constraint

Value Value
Mutation probability, P,, 0.9 0.3
Crossover probability, P, 0.2 0.9
Population size, N 40 40
Generation number, g 5000 5000
Decrease in temperature,  0.99 0.99
lfl[itial temperature, Ty 10000 10000
Final temperature, T 1.00E-02 1.00E-02

(©)

Fig. 2. The objective function value of problems: (a) linear constraint problem at fixed Pc and

variances Pm (b) linear constraint problem at fixed Pm and variances Pc (c) nonlinear constraint

problem at fixed Pc and variances Pm (d) nonlinear constraint problem at fixed Pm and variances Pc.

70 |
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5.3 Simple linear data reconciliation
This problem is used to illustrate a number
of basic features of data reconciliation. Fig. 3
shows four units with eight stream processes

designed to perform a reconciliation of the mass

flows.
?
6(F6)
\
7(F7) 8(F8) 4(F4)
—1(F1) 2(F2) 3(F3) 5(F5)~»

Fig. 3. Mass balance problem.

Let us assume that streams 7 and 8 are

unmeasured, streams 1 and 3 are measured with

a standard error of 1%, streams 2, b and 6 are
measured with an error of 2%, and stream 4 is
only approximately measured with a 5% error
(Table 2).

The appropriate GSA parameters used in this
case were formulated with linear constraints,
and with weighted least squares as the objective
function. A comparison of the performance of
GA, DATACON and GSA is shown in Table 2.

The proposed GSA technique gives the
best objective function value (1.3619), which is
very close to the DATACON result. Therefore,
the SA can support the GA and provide a
significant search advantage. In addition, all
three approaches have reconciled the data and

calculated the values of streams 7 and 8.

Table 2. Comparison of simple linear data reconciliation methods

Stream Standard deviation Measured value Calculation value

DATACON GA GSA
1 1.001 100.1 99.287 99.400 99.288
2 0.822 41.1 41.1 41.1 41.1
3 0.790 79.0 79.359 79.321 79.361
4 1.530 30.6 30.048 29.938 30.042
5 2.166 108.3 109.407 109.271 109.403
6 0.396 19.8 19.927 20.083 19.927
7 - - 58.187 58.3 58.188
8 - - 38.259 38.217 38.261
Objective function value 1.362 1.5548 1.3619
F,—F, —F, = 0 0 0
F, -F, -F = 0.001 0 0
F, +F, -F = 0 0.004 0
F,+F, -F, = 0 -0.012 0

| J
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Table 3. Redescending estimator tuning constant values for simple linear data reconciliation

with error

M, M, M M, M M, M, Mg }sgoelf:tion
C 20 20 T3 3 2 2 08 04 165
Ny 0 0 0 0 0 0 2 2 |
oP 0 0 0 0 0 0 ! | |
AVTI 0 0 0 0 0 0 | | 0
AIC  464SE+05  4.64SE+05S  4.648E105 4.64SEH05  4.GASEF05S  4.648E105 38.899 55285 38.087
F, 107942 107942 107.942 107942 107942 107.942  98.849  97.508 99.139
F, 41.100 41.100 41.100 41.100 41.100 41.100 41100 41100 41.100
F 80.548 80.548 80.548 80.548 80.548 80.548 78970 77700 79.179
F, 29,184 29.177 29.180 29,183 28770 31.997 20376 30.600 30.876
F- 109732 109725 109730 109731 109318 112.545 108346 10830 110.054
F, 20576 20576 20576 20,576 20,576 20,576 19879 19.808  19.960
F, 66.842 66.842 66.842 66.842 66.842 66.842 57749 56408 58.039
Fy 46266 46266 46266 46266 46266 46266 37870 36600 38.079

Let us assume another set of data from
this same system with an error induced in the
measurement of stream 1, with a value of 110.1
recorded instead of the previous value of 100.1.
In general, the engineer would not know that
such an error existed in the raw data. In this
case, a redescending estimator is used as the
objective function in the comparison of GSA,
simple GA and DATACON, as summarized in
Table 3.

Table 3 shows that the M1 to M6
cannot detect the outliers (nout = 0). At M7
the outlier starts to be detected, which can be
seen from a sharp decrease in the AIC value.
M7 and M8 detect 100% of the measurements
as being corrupted. This is due to the increase
in type 1 errors with increasing robustness of
the estimator. The AIC also increases from
M6 to M8. A plot of the AIC with the values
of C shows a minimum at M7, indicating that

the best estimator lies close to it. With this

knowledge the estimator is tuned to C = 0.81.
A comparison with the other methods is shown
in Table 4.

There is no significantly different result
in steam 1 with the introduced gross error. Here,
the proposed technique gives the objective
function value (2.437), which is not close to the
DATACON result (0.221) because of the influence
of the redescending estimator objective function.
However, simultaneous gross error detection
and reconciliation of data are performed well
with the redescending estimator. In addition,
DATACON normally performs data reconciliation
using a global test and a measurement test to
detect gross errors before continuing with data
reconciliation.

5.4 Binary distillation column

This problem is a simple example of
reconciled flows and compositions of a binary
distillation column with no gross error in

measured data (Narasimhan & Jordache, [1]).
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The flows and component mole fractions of
feed (F), distillate (D), and bottom streams (B)
are measured. The measured flow rates under
noise are based on data from 100 measurements,
with 5% standard deviation.

The measured mole fractions are found in
the same way, with 1% standard deviation from
true values. A set of the true values, measured
values, and standard deviations is presented in
Table b.

If we represent the value of the flow
of feed, distillate and bottom streams by the
variables EMBED Equation.3 and the measured
compositions by the variables EMBED Equation.3
, we will get one overall flow balance and two

component balances, as follows:

Xp—Xp —Xp =0
(8a)XpYp —XpYp ~XpYp =0
(8D)Xpypy = Xp¥Yps ~XpYp2 =0
BC)Yp +Yp =1
(8d)yp +¥p, =1
(8e)yp; +¥p2 =1
(89
In this case, Wongrat [9] used a nonlinear
constraint parameter with weighted least squares
as the objective function in the comparison of
GSA and GA. The result is shown in Table 5.
It can be seen that the GSA produces a
better solution than the GA in Wongrat’s study,
in which the selection process was modified
with CPSS. In principle, both techniques aim
to improve the stage of selection of general GA,
but the approach of simulated annealing in GA

(GSA) seems to work more efficiently.

Table 4. Comparison of simple linear data reconciliation with error

1 Standard deviation =~ Measured value

Calculation value

DATACON GA GSA
1 1.101 110.1 98.694* 98.609* 99.139*
2 0.822 41.1 41.1 41.1 41.1
3 0.790 79.0 78.894 79.046 79.179
4 1.530 30.6 30.203 30.004 30.876
5 2.166 108.3 109.097 109.063 110.055
6 0396 19.8 19.800 19.571 19.960
7 - - 57.594 57.509 58.039
8 37.794 37.938 38.079
Objective function value 0.221 4.786 2.437
F -F -F, = 0.000 0.000 0.000
F, -F —-F = 0.000 0.000 0.000
F,+F -F = 0.000 -0.008 0.000
F,+F, -F = 0.000 -0.013 0.000

) |
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Table 5. Comparison of GA and GSA results for a binary distillation column

Calculation value

. Measured
Stream Variables STD value GA by Wongrat  GSA
WLS WLS
Flow 50.000 1006.3 1003.62 1003.530
Feed Component 1 (%) 0.480 48.060 48.047 47.991
Component 2 (%) 0.520 52.065 52.028 52.009
Flow 24.731 497.72 496.261 496.262
Distillate Component 1 (%) 0.950 95.119 95.145 95.003
Component 2 (%) 0.050 4.998 4.998 4.997
Flow 25.269 504.470 507.359 507.268
Bottom Component 1 (%) 0.020 1.999 1.980 1.999
Component 2 (%) 0.980 97.965 98.029 98.001
Objective function value - 0.93273 0.06773
Xp —Xg — X, =0 4.038 0.000 0.000
Xp¥Yr —XpYe —XpYp =0 0.117 -0.004 0.001
XpYe —Xp¥m —XpYp, =0 4.850 0.001 -0.001
Ve +¥p =1 100.125% 100.075% 100%
Y +¥e =1 100.117% 100.143% 100%
Yo + ¥ =1 99.964% 100.009% 100%

Table 6. Refinery problem results — mass and energy balance

i Variabl Standard Measured Calculation value
ariable deviation value DATACON __ GSA
1 Rate, ton(s)/h 6.600 330.000 322.970 322.951
Temp, °C 1.00 154.00 154.662 154.723
2 Rate, ton(s)/h - - 131.696 131.537
Temp, °C - - 154.662 154.723
3 Rate, ton(s)/h - - 191.274 191.414
Temp, °C - - 154.662 154.723
4 Rate, ton(s)/h 2.640 132.000 131.696 131.537
Temp, °C 1.00 170.00 170.492 170.531
5 Rate, ton(s)/h 3.840 192.000 191.274 191.414
Temp, °C 1.00 185.00 185.339 185.376
6 Rate, ton(s)/h - - 322.970 322.951
Temp, °C - - 179.339 179.388
7 Rate, ton(s)/h - - 322.970 322.951
Temp, °C 1.00 221.00 219.346 219.464
TA Rate, ton(s)/h - - 322.970 322951
8 Rate, ton(s)’h 1.360 68.000 67914 67.855
9 Rate, ton(s)/h 1.320 66.000 65.969 65.899
Temp, °C 1.00 200.00 200.061 200.040
10 Rate, ton(s)/h 1.300 65.000 65.365 65.352
Temp, °C 1.00 285.00 285.213 285.205
11 Rate, ton(s)/h 2.420 121.000 123.722 123.845
Temp, °C 1.00 370.00 370.693 370.700
12 Rate, ton(s)/h - - 123.722 123.845
Temp, °C 1.00 275.00 274.378 274.325
13 Rate, ton(s)/h - - 65.365 65.352
Temp, °C 1.00 200.00 199.810 199.800
14 Rate, ton(s)/h - - 65.969 65.899
Temp, °C 1.00 169 168.941 168.969
Objective function value 7.01896 7.0022

(
N
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5.5 Simple refinery

Fig. 4. Simple refinery.

The measured values for the case in
Fig. 4 are shown in Table 6 with a 2% standard
deviation of measurement. The product streams
consist of one component per stream, except
for the overhead Naphtha product which
contains five pure components and one heavy
pseudo-component. This complex case study
has bilinear constraints. The weighted least
squares method is used as the objective function
in the comparison of GSA and DATACON. It
can be seen that the simultaneous mass and
energy constraint produces better results for
complex DR from GSA (7.0022) than from

DATACON(7.01896).
v» Conclusion

An optimization tool using GSA for DR problems
has been presented. The GSA based program is
the optimization tool for data reconciliation using
two kinds of objective function. The weighted
least square objective function is used for data
reconciliation and the redescending estimators
and the modified AIC objective function are
used for data reconciliation of measured data

contained gross error by developing code program

in MATLABTM for the difficulty of complex
problems. GSA has a better searching ability
for the global optimal solution. GSA generates a
new individual with GA; then these individuals
are processed with SA, and the results are used
as the initial individuals of the next generation.
The systematic approach of GSA to the DR
problem was proposed and implemented. This
method started with appropriate GSA parameter
formulation and then used these parameters
to solve the DR problem. The steady-state DR
problem was tested with this proposed program.
The results showed that the GSA method could
be a promising choice as an optimization tool
for the DR problem, with the ability to give

more accurate reconciled data.
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NOMENCLATURE

AIC
AVTI

Akaike information criterion

Average number of type 1 errors
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a, b, ¢ : Tuning constants for the redescending
estimator

DR Data reconciliation

AE Difference of fitness values between

the child generation and the parent generation

F Feed flow rate

GA Genetic algorithm

GSA Genetic simulated annealing algorithm

g The set of inequalities constraints

h The set of equality constraints

N Number of variables

n Total number of measured variables

nout Total number of detected gross error

P Probability

OP Optimization of Probability

SA Simulated annealing

u The set of unmeasured variables

WLS Weighted least squares

xM The set of measured variables

X The set of reconciled values

M Measured value

€ The magnitude of random error

P Some obijective function dependent
upon the difference between the
measurement of a variable and its
value for any measured variables

Superscripts

L Lower bound of variable

§) Upper bound of variable

Subscripts

i Variable index



