
บทคัดย่อ

	 	 ทางเลือกของการสร้างโดเมนสม่ำ�เสมอย่อยภายในเอลิเมนต์สำ�หรับการวิเคราะห์สมูทไฟไนท์เอลิเมนต์

ได้ถูกนำ�เสนอสำ�หรับงานวิจัยในครั้งนี้ โดเมนสม่ำ�เสมอย่อย 3 โดเมน ถูกสร้างขึ้นมาด้วยการประยุกต์แนวคิด

ของความสมมาตรเพื่อให้เกิดการกระจายตัวของโดเมนย่อยดังกล่าวทั่วทั้งขอบเขตของปัญหา เทคนิค

การเปลี่ยนแปลงความชันของความเครียดเป็นกุญแจสำ�คัญสำ�หรับการกระจายสนามความเครียดตลอดโดเมน
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ที่ปลายคานในรูปฟังก์ชันพาราโบล่า พารามิเตอร์ควบคุมที่ใช้มี 2 ตัว อย่างแรกคือขนาดของโครงตาข่าย

จากหยาบสุด ซึ่งมีขนาด 16x4 ไปจนถึงขนาดละเอียด 48x12 ในอัตราส่วน 4:1 ซึ่งเป็นอัตราส่วนเดียวกันกับ

ความยาวในแนวนอนต่อความลึกของคาน พารามิเตอร์ตัวที่สองคือ 

สมูทไฟไนทเอลิเมนตดวยการสรางโดเมนสม่ําเสมอ 3 สวน จากเอลิเมนตทรงสี่เหลี่ยม 

สําหรับปญหาความเคนในระนาบ 2 มิต ิ
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บทคัดยอ 

ทางเลือกของการสรางโดเมนสม่ําเสมอยอยภายในเอลิเมนตสําหรับการวิเคราะหสมูทไฟไนทเอลิเมนตไดถูกนําเสนอสําหรับ

งานวิจัยในครั้งน้ี โดเมนสม่ําเสมอยอย 3 โดเมน ถูกสรางข้ึนมาดวยการประยุกตแนวคิดของความสมมาตรเพ่ือใหเกิดการกระจายตัว

ของโดเมนยอยดังกลาวทั่วทั้งขอบเขตของปญหา เทคนิคการเปลี่ยนแปลงความชันของความเครียดเปนกุญแจสําคัญ

สําหรับการกระจายสนามความเครียดตลอดโดเมนสม่ําเสมอยอย ปญหาความเคนในระนาบ 2 มิติ ซึ่งใชสําหรับงานวิจัยคือคานยื่น

ปลายท่ีรับแรงเฉือนกระทําท่ีปลายคานในรูปฟงกชันพาราโบลา พารามิเตอรควบคุมท่ีใชมี 2 ตัว อยางแรกคือขนาดของโครงตาขาย

จากหยาบสุด ซึ่งมีขนาด 16x4 ไปจนถึงขนาดละเอียด 48x12 ในอัตราสวน 4:1 ซึ่งเปนอัตราสวนเดียวกันกับความยาวในแนวนอนตอ

ความลึกของคาน พารามิเตอรตัวท่ีสองคือ 𝛼𝛼𝛼𝛼 (𝛼𝛼𝛼𝛼𝑥𝑥𝑥𝑥 = 𝛼𝛼𝛼𝛼𝑦𝑦𝑦𝑦) ซึ่งคิดเปนเศษสวนเทียบกับความยาวดานของเอลิเมนตโดยคาท่ีใชคือ 0.2-0.3 

0.3-0.4 และ 0.4-0.5 ตามลําดับ คาความเคนตั้งฉากและความเคนเฉือน ณ หนาตัดคานที่ระยะความยาวกึ่งกลางคานและ

คาการเคลื่อนท่ีของปลายคานซึ่งไดจากการวิเคราะหเชิงตัวเลขถูกนํามาเปรียบเทียบกับคาท่ีไดจากทางทฤษฎี ซึ่งคํานวณไดจาก

ตําแหนงเดียวกัน เห็นไดอยางชัดเจนวาความแมนยําของการเคลื่อนท่ีปลายคานท่ีไดข้ึนอยูกับพารามิเตอรตัวท่ีสอง ความเคนตั้งฉาก 

𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 เมื่อ 𝛼𝛼𝛼𝛼 เทากับ 0.3-0.4 และ 0.4-0.5 น้ัน พบวามีคาใกลเคียงกับคาท่ีไดทางทฤษฎีและไมแตกตางกันอยางมีนัยสําคัญ ในขณะท่ี

ความถูกตองของความเคนเฉือน 𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥𝑦𝑦𝑦𝑦 ท่ีคํานวณไดน้ัน กลับพบวาข้ึนอยูกับจํานวนความละเอียดของโครงตาขายมากกวาคาของ 𝛼𝛼𝛼𝛼  
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Abstract
The alternative way to create sub-smoothing domains within an element for smoothed finite element analysis was 

proposed in this research. Three sub-cell smoothing domains were established continuously with the utilization of 
symmetrical pattern over the entire problem domain. Strain gradient technique is the most important key to distribute 
strain field smoothly within smoothing domain. Two-dimensional plane stress problem employed for this research was a 
cantilever beam subjected to parabola shear force with a maximum magnitude of 1000 unit at free end. Two control 
parameters were used. The first one is meshing ranging from coarse mesh 16x4 to finer mesh 48x12 as the same 4:1 ratio 
of horizontal to vertical dimension of beam. The latter is 𝛼𝛼𝛼𝛼 (𝛼𝛼𝛼𝛼𝑥𝑥𝑥𝑥 = 𝛼𝛼𝛼𝛼𝑦𝑦𝑦𝑦) measured as fracture of an element side. The values 
of 𝛼𝛼𝛼𝛼 were 0.2-0.3, 0.3-0.4 and 0.4-0.5 respectively. Numerically evaluated normal and shear stresses over the cross-
section area at the middle span and displacement at free end were compared to the exact solutions accordingly. Obviously, 
the free end displacement accuracy strongly influenced by the second control parameter. The normal stresses 𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 at 𝛼𝛼𝛼𝛼
equal to 0.3-0.4 and 0.4-0.5 compared to the exact solutions were found to be at the same accuracy while shear stresses 
𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥𝑦𝑦𝑦𝑦 were found to be dependent on mesh size than the value of 𝛼𝛼𝛼𝛼.

Keywords: Smoothed finite element; Sub-cell smoothing domains; Strain gradient; Two-dimensional plane stress;
Cantilever beam

 ซึ่งคิดเป็นเศษส่วนเทียบกับ

ความยาวด้านของเอลิเมนต์ โดยค่าที่ใช้คือ 0.2-0.3 0.3-0.4 และ 0.4-0.5 ตามลำ�ดับ ค่าความเค้นตั้งฉาก

และความเค้นเฉือน ณ หน้าตัดคานที่ระยะความยาวก่ึงกลางคานและค่าการเคลื่อนที่ของปลายคานซึ่งได้จาก

การวิเคราะห์เชิงตัวเลขถูกนำ�มาเปรียบเทียบกับค่าที่ ได้จากทางทฤษฎี ซึ่งคำ�นวณได้จากตำ�แหน่งเดียวกัน

เห็นได้อย่างชัดเจนว่าความแม่นยำ�ของการเคลื่อนที่ปลายคานที่ได้ขึ้นอยู่กับพารามิเตอร์ตัวที่สอง ความเค้น

ตั้งฉาก 
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proposed in this research. Three sub-cell smoothing domains were established continuously with the utilization of 
symmetrical pattern over the entire problem domain. Strain gradient technique is the most important key to distribute 
strain field smoothly within smoothing domain. Two-dimensional plane stress problem employed for this research was a 
cantilever beam subjected to parabola shear force with a maximum magnitude of 1000 unit at free end. Two control 
parameters were used. The first one is meshing ranging from coarse mesh 16x4 to finer mesh 48x12 as the same 4:1 ratio 
of horizontal to vertical dimension of beam. The latter is 𝛼𝛼𝛼𝛼 (𝛼𝛼𝛼𝛼𝑥𝑥𝑥𝑥 = 𝛼𝛼𝛼𝛼𝑦𝑦𝑦𝑦) measured as fracture of an element side. The values 
of 𝛼𝛼𝛼𝛼 were 0.2-0.3, 0.3-0.4 and 0.4-0.5 respectively. Numerically evaluated normal and shear stresses over the cross-
section area at the middle span and displacement at free end were compared to the exact solutions accordingly. Obviously, 
the free end displacement accuracy strongly influenced by the second control parameter. The normal stresses 𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 at 𝛼𝛼𝛼𝛼
equal to 0.3-0.4 and 0.4-0.5 compared to the exact solutions were found to be at the same accuracy while shear stresses 
𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥𝑦𝑦𝑦𝑦 were found to be dependent on mesh size than the value of 𝛼𝛼𝛼𝛼.
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บทคัดยอ 

ทางเลือกของการสรางโดเมนสม่ําเสมอยอยภายในเอลิเมนตสําหรับการวิเคราะหสมูทไฟไนทเอลิเมนตไดถูกนําเสนอสําหรับ

งานวิจัยในครั้งน้ี โดเมนสม่ําเสมอยอย 3 โดเมน ถูกสรางข้ึนมาดวยการประยุกตแนวคิดของความสมมาตรเพ่ือใหเกิดการกระจายตัว

ของโดเมนยอยดังกลาวทั่วทั้งขอบเขตของปญหา เทคนิคการเปลี่ยนแปลงความชันของความเครียดเปนกุญแจสําคัญ

สําหรับการกระจายสนามความเครียดตลอดโดเมนสม่ําเสมอยอย ปญหาความเคนในระนาบ 2 มิติ ซึ่งใชสําหรับงานวิจัยคือคานยื่น

ปลายท่ีรับแรงเฉือนกระทําท่ีปลายคานในรูปฟงกชันพาราโบลา พารามิเตอรควบคุมท่ีใชมี 2 ตัว อยางแรกคือขนาดของโครงตาขาย

จากหยาบสุด ซึ่งมีขนาด 16x4 ไปจนถึงขนาดละเอียด 48x12 ในอัตราสวน 4:1 ซึ่งเปนอัตราสวนเดียวกันกับความยาวในแนวนอนตอ

ความลึกของคาน พารามิเตอรตัวท่ีสองคือ 𝛼𝛼𝛼𝛼 (𝛼𝛼𝛼𝛼𝑥𝑥𝑥𝑥 = 𝛼𝛼𝛼𝛼𝑦𝑦𝑦𝑦) ซึ่งคิดเปนเศษสวนเทียบกับความยาวดานของเอลิเมนตโดยคาท่ีใชคือ 0.2-0.3 

0.3-0.4 และ 0.4-0.5 ตามลําดับ คาความเคนตั้งฉากและความเคนเฉือน ณ หนาตัดคานที่ระยะความยาวกึ่งกลางคานและ

คาการเคลื่อนท่ีของปลายคานซึ่งไดจากการวิเคราะหเชิงตัวเลขถูกนํามาเปรียบเทียบกับคาท่ีไดจากทางทฤษฎี ซึ่งคํานวณไดจาก

ตําแหนงเดียวกัน เห็นไดอยางชัดเจนวาความแมนยําของการเคลื่อนท่ีปลายคานท่ีไดข้ึนอยูกับพารามิเตอรตัวท่ีสอง ความเคนตั้งฉาก 
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บทคัดยอ 

ทางเลือกของการสรางโดเมนสม่ําเสมอยอยภายในเอลิเมนตสําหรับการวิเคราะหสมูทไฟไนทเอลิเมนตไดถูกนําเสนอสําหรับ

งานวิจัยในครั้งน้ี โดเมนสม่ําเสมอยอย 3 โดเมน ถูกสรางข้ึนมาดวยการประยุกตแนวคิดของความสมมาตรเพ่ือใหเกิดการกระจายตัว

ของโดเมนยอยดังกลาวทั่วทั้งขอบเขตของปญหา เทคนิคการเปลี่ยนแปลงความชันของความเครียดเปนกุญแจสําคัญ

สําหรับการกระจายสนามความเครียดตลอดโดเมนสม่ําเสมอยอย ปญหาความเคนในระนาบ 2 มิติ ซึ่งใชสําหรับงานวิจัยคือคานยื่น

ปลายท่ีรับแรงเฉือนกระทําท่ีปลายคานในรูปฟงกชันพาราโบลา พารามิเตอรควบคุมท่ีใชมี 2 ตัว อยางแรกคือขนาดของโครงตาขาย

จากหยาบสุด ซึ่งมีขนาด 16x4 ไปจนถึงขนาดละเอียด 48x12 ในอัตราสวน 4:1 ซึ่งเปนอัตราสวนเดียวกันกับความยาวในแนวนอนตอ

ความลึกของคาน พารามิเตอรตัวท่ีสองคือ 𝛼𝛼𝛼𝛼 (𝛼𝛼𝛼𝛼𝑥𝑥𝑥𝑥 = 𝛼𝛼𝛼𝛼𝑦𝑦𝑦𝑦) ซึ่งคิดเปนเศษสวนเทียบกับความยาวดานของเอลิเมนตโดยคาท่ีใชคือ 0.2-0.3 

0.3-0.4 และ 0.4-0.5 ตามลําดับ คาความเคนตั้งฉากและความเคนเฉือน ณ หนาตัดคานที่ระยะความยาวกึ่งกลางคานและ

คาการเคลื่อนท่ีของปลายคานซึ่งไดจากการวิเคราะหเชิงตัวเลขถูกนํามาเปรียบเทียบกับคาท่ีไดจากทางทฤษฎี ซึ่งคํานวณไดจาก

ตําแหนงเดียวกัน เห็นไดอยางชัดเจนวาความแมนยําของการเคลื่อนท่ีปลายคานท่ีไดข้ึนอยูกับพารามิเตอรตัวท่ีสอง ความเคนตั้งฉาก 
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1.	 บทนำ�

	 	 วธิไีฟไนทเ์อลเิมนตจ์ดัวา่เปน็วธิกีารคำ�นวณเชงิ

ตวัเลขทีน่ยิมใช้ ในการแก้ปญัหาสมการเชิงอนพุนัธท่ั์วไป

หรอืสมการเชงิอนพุนัธย์อ่ยของปญัหาทางวทิยาศาสตร์

และวศิวกรรมมากทีส่ดุในปจัจบุนัเนื่องจากความสามารถ

ในการจัดการกับความซับซ้อนทั้งในส่วนของสมการ

เชิงอนุพันธ์ รูปทรงของปัญหาโจทย์และเงื่อนไขขอบ 

รวมทั้งมีผลการคำ�นวณท่ีมีความแม่นยำ�  วิธีไฟไนท์-

เอลิเมนต์ใช้หลักในการแบ่งโดเมนของปัญหาออกเป็น

ส่วนเล็กๆ เรียกว่าเอลิเมนต์ (Elements) ซ่ึงเชื่อมโยงกัน

ด้วยโครงตาข่าย (Mesh) ฟังก์ชันของความเครียด

ถกูสรา้งมาจากการใชฟ้งักช์นัโพลโินเมยีลเพื่อประมาณ

ค่าของการเปลี่ยนตำ�แหน่งภายในเอลิเมนต์ สติฟเนส

ของแต่ละเอลิเมนต์จะถูกนำ�มารวมกันเป็นสติฟเนส

ของทัง้โดเมนเพื่อแกร้ะบบสมการหาคา่ของการเปลีย่น

ตำ�แหน่ง ความเค้นและความเครียดของปัญหาต่อไป 

ความแม่นยำ�ของคำ�ตอบที่ได้จากวิธีไฟไนท์เอลิเมนต์นี้

ขึน้อยูก่บัรปูแบบการเสยีรปูของเอลเิมนต ์[1] ถงึแมว้า่

เอลิเมนต์รูปสามเหลี่ยมพื้นฐาน (Constant Strain 

Triangular Element) จะมีความยืดหยุ่นมากกว่า

ในการสร้างโครงตาข่ายของปัญหาที่มีความซับซ้อน

ของรูปทรงก็ตาม ความแม่นยำ�ของค่าที่ ได้ก็ยัง

น้อยกว่าเอลิเมนต์แบบทรงสี่เหลี่ยมพื้นฐาน (Bilinear 

Quadrilateral element) นอกจากนีว้ธีิไฟไนท์เอลเิมนต์

ยงัมพีฤตกิรรมที่ใหค้า่ความแขง็แกรง่ของการวเิคราะห์

สูงกว่าความจริง รวมไปถึงปัญหาเรื่องความเที่ยงตรง

ของผลลัพธ์อีกด้วย 
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	 	 นักวิจัยหลายกลุ่มได้พยายามคิดค้นวิธีใหม่ๆ

ขึ้นมาเพื่อขจัดปัญหาเหล่านั้นออกไป ได้แก่ วิธีไม่ใช้

โครงตาข่าย (Meshless Methods) [2] วิธีการ

แบ่งออกเป็นหนึ่ง (Partition of Unity) [3] และวิธี

ไฟไนท์เอลิเมนต์แบบเอลิเมนต์ที่มีด้านมากกว่า 4 ด้าน

(Polygonal Finite Element Methods) [4-6]

วิธีไม่ใช้ โครงตาข่ายสามารถใช้ได้ดีกับปัญหาท่ีมีการ

เปลี่ยนตำ�แหน่งมาก (Large deformation) วิธีการ

แบ่งออกเป็นหนึ่งยอมให้ ใช้รูปทรงเรขาคณิตของ

โดเมนปัญหาเป็นอิสระไม่ขึ้นตรงกับโครงตาข่ายที่

สร้างขึ้นจากไฟไนท์เอลิเมนต์ ส่วนวิธีไฟไนท์เอลิเมนต์

แบบเอลิเมนต์ท่ีมีด้านมากกว่า 4 ด้านนั้นสามารถ

สร้างโครงตาข่ายเป็นรูปหลายเหลี่ยมใดๆ ก็ได้ [7]

Liu et al. [8,9] ได้คิดค้นวิธีที่เรียกว่าสมูทไฟไนท์-

เอลิเมนต์ (Smoothed Finite Element Method, 

SFEM) โดยอาศัยหลักการของ gradient smoothing 

technique หลักพื้นฐานที่สำ�คัญของวิธีนี้คือการสร้าง

สนามความเครยีด (strain field) ดว้ยการใช ้Smoothed 

Galerkin weak form ซึ่งจะทำ�ให้ โมเดลที่ได้ด้วยวิธีนี้

มคีวามแขง็แกรง่นอ้ยกวา่วธิไีฟไนท์เอลเิมนต์และเขา้ใกล้

ผลเฉลยแม่นตรงมากขึ้นรวมทั้งมีความถูกต้องแม่นยำ�

มากกว่าวิธีไฟไนท์เอลิเมนต์เดิม [10]

	 	 เทคนิคการสร้างโดเมนสม่ำ�เสมอ (smoothing 

domains) นั้นสามารถทำ�ได้หลายแบบคือ [9] cell-

based SFEM (CSFEM) node-based SFEM

(NSFEM) และ edge-based SFEM (ESFEM) 

เป็นต้น ดังแสดงในภาพที่ 1 ขึ้นอยู่กับการใช้ชิ้นส่วนใด

ในการสร้างโดเมนสม่ำ�เสมอนั่นเอง ทำ�ให้มีทางเลือก

หลายทางสำ�หรับการวิเคราะห์ปัญหาที่ต้องการ

นอกจากนี้แล้ววิธีสมูทไฟไนท์เอลิเมนต์นี้ยังสามารถ

ภาพที่ 1 รูปแบบการสร้างโดเมนสม่ำ�เสมอ

	 	 ในวิธี cell-based SFEM ซึ่งถือว่าเป็นวิธี

SFEM ที่เป็นพื้นฐานนั้นได้ถูกศึกษาอย่างแพร่หลาย

เชน่ นำ�ไปใชก้บัปญัหาทางดา้นพลศาสตร ์(Dynamics)

[12] ปัญหาเกี่ยวกับแผ่นและแผ่นเปลือกบาง (Plate 

and Shell) [13] ปัญหาเกี่ยวกับกลศาสตร์ของ

การแตกหักโดยใช้ร่วมกับวิธี Extended Finite

Element Method (XFEM) สำ�หรบัปญัหาใน 2 มติ ิ[14]

	 	 งานวจิยันี ้ทำ�การศกึษาผลของการใชเ้อลเิมนต์

ทรงส่ีเหล่ียมเพื่อสรา้งโดเมนยอ่ยสม่ำ�เสมอ (Smooth-

ing domains) จำ�นวน 3 โดเมนภายในเอลิเมนต์หลัก

ที่สร้างขึ้นมาจากโครงตาข่ายทรงเหลี่ยมจตุรัสด้วย

โปรแกรม MATLAB [16] ความยาวแต่ละด้าน

ของโดเมนย่อยนี้ถูกกำ�หนดให้เป็นอัตราส่วน 
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งานวิจัยในครั้งน้ี โดเมนสม่ําเสมอยอย 3 โดเมน ถูกสรางข้ึนมาดวยการประยุกตแนวคิดของความสมมาตรเพ่ือใหเกิดการกระจายตัว

ของโดเมนยอยดังกลาวทั่วทั้งขอบเขตของปญหา เทคนิคการเปลี่ยนแปลงความชันของความเครียดเปนกุญแจสําคัญ

สําหรับการกระจายสนามความเครียดตลอดโดเมนสม่ําเสมอยอย ปญหาความเคนในระนาบ 2 มิติ ซึ่งใชสําหรับงานวิจัยคือคานยื่น

ปลายท่ีรับแรงเฉือนกระทําท่ีปลายคานในรูปฟงกชันพาราโบลา พารามิเตอรควบคุมท่ีใชมี 2 ตัว อยางแรกคือขนาดของโครงตาขาย

จากหยาบสุด ซึ่งมีขนาด 16x4 ไปจนถึงขนาดละเอียด 48x12 ในอัตราสวน 4:1 ซึ่งเปนอัตราสวนเดียวกันกับความยาวในแนวนอนตอ

ความลึกของคาน พารามิเตอรตัวท่ีสองคือ 𝛼𝛼𝛼𝛼 (𝛼𝛼𝛼𝛼𝑥𝑥𝑥𝑥 = 𝛼𝛼𝛼𝛼𝑦𝑦𝑦𝑦) ซึ่งคิดเปนเศษสวนเทียบกับความยาวดานของเอลิเมนตโดยคาท่ีใชคือ 0.2-0.3 

0.3-0.4 และ 0.4-0.5 ตามลําดับ คาความเคนตั้งฉากและความเคนเฉือน ณ หนาตัดคานที่ระยะความยาวกึ่งกลางคานและ

คาการเคลื่อนท่ีของปลายคานซึ่งไดจากการวิเคราะหเชิงตัวเลขถูกนํามาเปรียบเทียบกับคาท่ีไดจากทางทฤษฎี ซึ่งคํานวณไดจาก

ตําแหนงเดียวกัน เห็นไดอยางชัดเจนวาความแมนยําของการเคลื่อนท่ีปลายคานท่ีไดข้ึนอยูกับพารามิเตอรตัวท่ีสอง ความเคนตั้งฉาก 

𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 เมื่อ 𝛼𝛼𝛼𝛼 เทากับ 0.3-0.4 และ 0.4-0.5 น้ัน พบวามีคาใกลเคียงกับคาท่ีไดทางทฤษฎีและไมแตกตางกันอยางมีนัยสําคัญ ในขณะท่ี

ความถูกตองของความเคนเฉือน 𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥𝑦𝑦𝑦𝑦 ท่ีคํานวณไดน้ัน กลับพบวาข้ึนอยูกับจํานวนความละเอียดของโครงตาขายมากกวาคาของ 𝛼𝛼𝛼𝛼  

 

คําสําคัญ: สมูทไฟไนทเอลิเมนต; โดเมนสม่ําเสมอยอย; การเปลี่ยนแปลงความชัน; ปญหาความเคนใน 2 มิติ; คานยื่น 

Abstract
The alternative way to create sub-smoothing domains within an element for smoothed finite element analysis was 

proposed in this research. Three sub-cell smoothing domains were established continuously with the utilization of 
symmetrical pattern over the entire problem domain. Strain gradient technique is the most important key to distribute 
strain field smoothly within smoothing domain. Two-dimensional plane stress problem employed for this research was a 
cantilever beam subjected to parabola shear force with a maximum magnitude of 1000 unit at free end. Two control 
parameters were used. The first one is meshing ranging from coarse mesh 16x4 to finer mesh 48x12 as the same 4:1 ratio 
of horizontal to vertical dimension of beam. The latter is 𝛼𝛼𝛼𝛼 (𝛼𝛼𝛼𝛼𝑥𝑥𝑥𝑥 = 𝛼𝛼𝛼𝛼𝑦𝑦𝑦𝑦) measured as fracture of an element side. The values 
of 𝛼𝛼𝛼𝛼 were 0.2-0.3, 0.3-0.4 and 0.4-0.5 respectively. Numerically evaluated normal and shear stresses over the cross-
section area at the middle span and displacement at free end were compared to the exact solutions accordingly. Obviously, 
the free end displacement accuracy strongly influenced by the second control parameter. The normal stresses 𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 at 𝛼𝛼𝛼𝛼
equal to 0.3-0.4 and 0.4-0.5 compared to the exact solutions were found to be at the same accuracy while shear stresses 
𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥𝑦𝑦𝑦𝑦 were found to be dependent on mesh size than the value of 𝛼𝛼𝛼𝛼.

Keywords: Smoothed finite element; Sub-cell smoothing domains; Strain gradient; Two-dimensional plane stress;
Cantilever beam

เทียบกับความยาวเดิมของด้านของเอลิเมนต์หลัก 

อัตราส่วนของโครงตาข่ายในแนวดิ่งต่อแนวนอน

ถูกกำ�หนดให้มีค่าเท่ากับ 1:4 ซึ่งเป็นอัตราส่วน

เดียวกันกับขนาดของคานยื่นปลายที่ใช้ ในการศึกษา

หลักในการสมมาตรของ Unit cell ถูกนำ�มา

ประยุกต์ ใช้กับโดเมนสม่ำ�เสมอภายในเอลิเมนต์

ที่ถูกสร้างขึ้นเพื่อให้เกิดความต่อเนื่องภายในโดเมน

ทั้งหมดของปัญหา 

1. บทนํา  

วิธีไฟไนทเอลิเมนตจัดวาเปนวิธีการคํานวณเชิง

ตัวเลขท่ีนิยมใชในการแกปญหาสมการเชิงอนุพันธ

ท่ัวไปหรือสมการเชิงอนุพันธยอยของปญหาทาง

วิทยาศาสตรและวิศวกรรมมากท่ีสุดในปจจุบัน

เนื่องจากความสามารถในการจัดการกับความซับซอน

ท้ังในสวนของสมการเชิงอนุพันธ รูปทรงของปญหา

โจทยและเง่ือนไขขอบ รวมท้ังมีผลการคํานวณท่ีมี

ความแมนยํา วิธีไฟไนทเอลิเมนตใชหลักในการแบง

โดเมนของปญหาออกเปนสวนเล็ก ๆ เรียกวาเอลิเมนต 

(Elements) ซ่ึงเชื่อมโยงกันดวยโครงตาขาย (Mesh) 

ฟงกชันของความเครียดถูกสรางมาจากการใชฟงกชัน

โพลิโนเมียลเพ่ือประมาณคาของการเปลี่ยนตําแหนง

ภายในเอลิเมนต สติฟเนสของแตละเอลิเมนตจะถูก

นํามารวมกันเปนสติฟเนสของท้ังโดเมนเพ่ือแกระบบ

สมการหาคาของการเปลี่ยนตําแหนง ความเคนและ

ความเครียดของปญหาตอไป ความแมนยําของ

คําตอบท่ีไดจากวิธีไฟไนทเอลิเมนตนี้ข้ึนอยูกับรูปแบบ

การเสียรูปของเอลิเมนต [1] ถึงแมวาเอลิเมนตรูป

สามเหลี่ยมพ้ืนฐาน (Constant Strain Triangular 

Element) จะมีความยืดหยุนมากกวาในการสรางโครง

ตาขายของปญหาท่ีมีความซับซอนของรูปทรงก็ตาม 

ความแมนยําของคาท่ีไดก็ยังนอยกวาเอลิเมนตแบบ

ทรงสี่เหลี่ยมพ้ืนฐาน (Bilinear Quadrilateral element) 

นอกจากนี้วิธีไฟไนทเอลิเมนตยังมีพฤติกรรมท่ีใหคา

ความแข็งแกรงของการวิเคราะหสูงกวาความจริง 

รวมไปถึงปญหาเรื่องความเท่ียงตรงของผลลัพธอีกดวย  

นักวิจัยหลายกลุมไดพยายามคิดคนวิธีใหม ๆ 

ข้ึนมาเพ่ือขจัดปญหาเหลานั้นออกไป ไดแก วิธีไมใช

โครงตาขาย (Meshless Methods) [2] วิธีการแบง

ออกเปนหนึ่ง (Partition of Unity) [3] และวิธีไฟไนท

เอลิเมนตแบบเอลิเมนต ท่ีมีดานมากกวา 4 ดาน 

(Polygonal Finite Element Methods) [4-6] วิธีไม

ใชโครงตาขายสามารถใชไดดีกับปญหาท่ีมีการเปลี่ยน

ตําแหนงมาก (Large deformation) วิธีการแบง

ออกเปนหนึ่งยอมใหใชรูปทรงเรขาคณิตของโดเมน

ปญหาเปนอิสระไมข้ึนตรงกับโครงตาขายท่ีสรางข้ึน

จากไฟไนทเอลิเมนต สวนวิธีไฟไนทเอลิเมนตแบบ

เอลิเมนตท่ีมีดานมากกวา 4 ดานนั้นสามารถสราง

โครงตาขายเปนรูปหลายเหลี่ยมใด ๆ ก็ได [7] Liu et 

al. [8,9] ไดคิดคนวิธีท่ีเรียกวาสมูทไฟไนทเอลิเมนต 

(Smoothed Finite Element Method, SFEM) โดย

อาศัยหลักการของ gradient smoothing technique 

หลักพ้ืนฐานท่ีสําคัญของวิธีนี้ คือการสรางสนาม

ความเครียด (strain field) ดวยการใช Smoothed 

Galerkin weak form ซ่ึงจะทําใหโมเดลท่ีไดดวยวิธีนี้

มีความแข็งแกรงนอยกวาวิธีไฟไนทเอลิเมนตและเขา

ใกลผลเฉลยแมนตรงมากข้ึนรวมท้ังมีความถูกตอง

แมนยํามากกวาวิธีไฟไนทเอลิเมนตเดิม [10] 

เทคนิคการสรางโดเมนสมํ่าเสมอ (smoothing 

domains) นั้นสามารถทําไดหลายแบบคือ [9] cell-

based SFEM (CSFEM) node-based SFEM (NSFEM) 

และ edge-based SFEM (ESFEM) เปนตน ดังแสดง

ในภาพท่ี 1 ข้ึนอยูกับการใชชิ้นสวนใดในการสราง

โดเมนสมํ่าเสมอนั่นเอง ทําใหมีทางเลือกหลายทาง

สําหรับการวิเคราะหปญหาท่ีตองการ นอกจากนี้แลว 

วิธีสมูทไฟไนทเอลิเมนตนี้ยังสามารถนําไปปรับปรุงใช

กับปญหา geometry nonlinearity ใน 3 มิติท่ีมีวัสดุ

เปนแบบใกลบีบอัดไมได (nearly-incompressible 

material) ไดอยางมีประสิทธิภาพ [11] 
 

 
 

ภาพท่ี 1 รูปแบบการสรางโดเมนสมํ่าเสมอ 
 

ในวิธี cell-based SFEM ซ่ึงถือวาเปนวิธี SFEM 

ท่ีเปนพ้ืนฐานนั้นไดถูกศึกษาอยางแพรหลาย เชน 

นำ�ไปปรับปรุงใช้กับปัญหา geometry nonlinearity 

ใน 3 มิติที่มีวัสดุเป็นแบบใกล้บีบอัดไม่ได้ (nearly-

incompressible material) ไดอ้ยา่งมปีระสทิธภิาพ [11]
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2.	 วิธีการวิจัย

	 	 2.1	 สมการครอบคลุมปัญหาอิลาสติคใน 2 มิติ

(Governing Equations for 2D Elasticity Problem)

	 	 	 ตวัแปรภายในซึง่ไมท่ราบคา่ทัง้สามตวัของ

ปัญหาความเค้นในระนาบ 2 มิติ ภายใต้ทฤษฎีอิลาสติค

เชิงเส้นได้แก่ การเปลี่ยนตำ�แหน่ง (displacement)  

ความเครียด (strain) และความเค้น (stress) สามารถ

เขยีนใหอ้ยู่ในรปูของเวกเตอร์ไดด้งัสมการที ่1 ถงึ 3 คือ

	

นําไปใชกับปญหาทางดานพลศาสตร (Dynamics) 

[12] ปญหาเก่ียวกับแผนและแผนเปลือกบาง (Plate 

and Shell) [13] ปญหาเกี่ยวกับกลศาสตรของ

การแตกหักโดยใชรวมกับวิธี Extended Finite Element 

Method (XFEM) สําหรับปญหาใน 2 มิติ [14] 

งานวิจัยนี้ ทําการศึกษาผลของการใชเอลิเมนต

ทรงสี่เหลี่ยมเพ่ือสรางโดเมนยอยสมํ่าเสมอ (Smoothing 

domains) จํานวน 3 โดเมนภายในเอลิเมนตหลักท่ี

สรางข้ึนมาจากโครงตาขายทรงเหลี่ยมจตุรัสดวย

โปรแกรม MATLAB [16] ความยาวแตละดานของ

โดเมนยอยนี้ถูกกําหนดใหเปนอัตราสวน 𝛼𝛼𝛼𝛼 เทียบกับ

ความยาวเดิมของดานของเอลิเมนตหลัก อัตราสวน

ของโครงตาขายในแนวดิ่งตอแนวนอนถูกกําหนดใหมี

คาเทากับ 1:4 ซ่ึงเปนอัตราสวนเดียวกันกับขนาดของ

คานยื่นปลายท่ีใชในการศึกษา หลักในการสมมาตร

ของ  Unit cell ถ ูกนํามาประย ุกต ใ ช ก ับ โด เมน

สมํ่าเสมอภายในเอลิเมนตท่ีถูกสรางข้ึนเพ่ือใหเกิด

ความตอเนื่องภายในโดเมนท้ังหมดของปญหา  
 

2. วิธีการวิจัย 

2.1 สมการครอบคลุมปญหาอิลาสติคใน 2 มิติ 

(Governing Equations for 2D Elasticity Problem) 

ตัวแปรภายในซ่ึงไมทราบคาท้ังสามตัวของ

ปญหาความเคนในระนาบ 2 มิติ ภายใตทฤษฎีอิลาสติค

เชิงเสนไดแก การเปลี่ยนตําแหนง (displacement)  

ความเครียด (strain) และความเคน (stress) สามารถ

เขียนใหอยูในรูปของเวกเตอรไดดังสมการท่ี 1 ถึง 3 คือ 
 

𝑢𝑢𝑢𝑢 = [𝑢𝑢𝑢𝑢𝑥𝑥𝑥𝑥 𝑢𝑢𝑢𝑢𝑦𝑦𝑦𝑦]𝑇𝑇𝑇𝑇 (1) 
 

𝜀𝜀𝜀𝜀 = [𝜀𝜀𝜀𝜀𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 𝜀𝜀𝜀𝜀𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 2𝜀𝜀𝜀𝜀𝑥𝑥𝑥𝑥𝑦𝑦𝑦𝑦]𝑇𝑇𝑇𝑇 (2) 
 

𝜎𝜎𝜎𝜎 = [𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 𝜎𝜎𝜎𝜎𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥𝑦𝑦𝑦𝑦]𝑇𝑇𝑇𝑇 (3) 
 

สมการดังกลาวจะถูกเชื่อมโยงเขาดวยกันดวย

สมการ kinematic, constitutive และ internal-

equilibrium ถาสมมติใหคาความเคนและเครียด 

ณ สถานะเริ่มตนมีคาเปนศูนย ความเชื่อมโยงของ

สมการดังกลาวสามารถเขียนไดเปนสมการในรูป

สัญลักษณของเทนเซอร (Tensor Notations) คือ 
  

     𝜀𝜀𝜀𝜀 = 𝐷𝐷𝐷𝐷𝑢𝑢𝑢𝑢,   𝜎𝜎𝜎𝜎 = 𝐸𝐸𝐸𝐸𝜀𝜀𝜀𝜀,   𝐷𝐷𝐷𝐷𝑇𝑇𝑇𝑇 ∙ 𝜎𝜎𝜎𝜎 + 𝑏𝑏𝑏𝑏 = 0      (4) 
 

เม่ือเวคเตอร 𝑏𝑏𝑏𝑏 คือแรงภายในเนื่องจากน้ําหนัก

ของวัตถุ และ 𝐸𝐸𝐸𝐸 คืออิลาสติคโมดูลัสเมทริกซ และ 𝐷𝐷𝐷𝐷 

เปนดิฟเฟอเรนเชียลเมทริกซโอเปอเรเตอร 

เ งื ่อนไขขอบที่ถูกกําหนดไวบนโดเมนของ

ปญหาทางกลศาสตร  Γ นั้น แบงออกได เปน 2 

ประเภทคือเง่ือนไขขอบของการเปลี่ยนตําแหนง 

(Displacement boundary conditions) แ ล ะ

เง่ือนไขขอบของแรง (Force boundary conditions) 

การท่ีจะระบุเง่ือนไขขอบเหลานั้น นิยมแบงโดเมน

ของปญหาดังกลาวออกเปน 2 สวนดวยกัน คือ Γu 

และ Γt เพ่ือแยกความแตกตางของเง่ือนไขขอบท้ัง 2 

ประเภท ดังแสดงในภาพที่ 2 เมื่อเงื่อนไขขอบของ

การเปลี่ยนตําแหนงถูกกําหนดใหอยูบนโดเมน Γu 

โดย 𝑢𝑢𝑢𝑢� หมายถึงการเคลื่อนท่ีบนเง่ือนไขขอบท่ีกําหนด

ไวซ่ึงมักจะมีคาเทากับศูนย u� = 0 ณ ตําแหนงของ

ฐานรองรับ สวนเง่ือนไขขอบของแรงนั้นถูกกําหนดให

อยูบนโดเมน Γt ในรูปของสมการ σn = t̂ โดย t̂ 

หมายถึงแรงบนเง่ือนไขขอบท่ีกําหนดไวในรูปของแรง

ตอหนึ่งหนวยพ้ืนท่ีและ σ𝑛𝑛𝑛𝑛 คือเวคเตอรของความเคน

นั่นเอง สมการท่ี 4 รวมกับเง่ือนไขขอบท้ังสองแบบท่ี

ไดกลาวมาแลวนี้เปนสมการท่ีเรียกวา Strong Form 

ของปญหาความเคนในระนาบซ่ึงไมสะดวกสําหรับ

การแกสมการเพื่อหาผลเฉลยแมนตรง นอกจากนี้

ในกรณีที ่ป ญหามีความสลับซับซอนหร ือลําด ับ

อนุพันธของตัวแปรท่ีไมทราบคามีลําดับสูงข้ึน การหา

ผลเฉลยดังกลาวในรูปของ Closed Form อาจไม

สามารถทําได วิธีท่ีสะดวกกวาและสามารถหาคาได

คือการเปลี่ยนจากรูป Strong Form ดังกลาวใหอยูใน

รูปของ Weak Form ดวยการแทนท่ีสมการอนุพันธ

ของ Strong Form ดวยการอินทิเกรตหรือเปนการเฉลี่ย

คาท้ังหมดท่ีอยูในชวงโดเมนนั้น ๆ 

	 (1)

	

นําไปใชกับปญหาทางดานพลศาสตร (Dynamics) 

[12] ปญหาเก่ียวกับแผนและแผนเปลือกบาง (Plate 

and Shell) [13] ปญหาเกี่ยวกับกลศาสตรของ

การแตกหักโดยใชรวมกับวิธี Extended Finite Element 

Method (XFEM) สําหรับปญหาใน 2 มิติ [14] 

งานวิจัยนี้ ทําการศึกษาผลของการใชเอลิเมนต

ทรงสี่เหลี่ยมเพ่ือสรางโดเมนยอยสมํ่าเสมอ (Smoothing 

domains) จํานวน 3 โดเมนภายในเอลิเมนตหลักท่ี

สรางข้ึนมาจากโครงตาขายทรงเหลี่ยมจตุรัสดวย

โปรแกรม MATLAB [16] ความยาวแตละดานของ

โดเมนยอยนี้ถูกกําหนดใหเปนอัตราสวน 𝛼𝛼𝛼𝛼 เทียบกับ

ความยาวเดิมของดานของเอลิเมนตหลัก อัตราสวน

ของโครงตาขายในแนวดิ่งตอแนวนอนถูกกําหนดใหมี

คาเทากับ 1:4 ซ่ึงเปนอัตราสวนเดียวกันกับขนาดของ

คานยื่นปลายท่ีใชในการศึกษา หลักในการสมมาตร

ของ  Unit cell ถ ูกนํามาประย ุกต ใ ช ก ับ โด เมน

สมํ่าเสมอภายในเอลิเมนตท่ีถูกสรางข้ึนเพ่ือใหเกิด

ความตอเนื่องภายในโดเมนท้ังหมดของปญหา  
 

2. วิธีการวิจัย 

2.1 สมการครอบคลุมปญหาอิลาสติคใน 2 มิติ 

(Governing Equations for 2D Elasticity Problem) 

ตัวแปรภายในซ่ึงไมทราบคาท้ังสามตัวของ

ปญหาความเคนในระนาบ 2 มิติ ภายใตทฤษฎีอิลาสติค

เชิงเสนไดแก การเปลี่ยนตําแหนง (displacement)  

ความเครียด (strain) และความเคน (stress) สามารถ

เขียนใหอยูในรูปของเวกเตอรไดดังสมการท่ี 1 ถึง 3 คือ 
 

𝑢𝑢𝑢𝑢 = [𝑢𝑢𝑢𝑢𝑥𝑥𝑥𝑥 𝑢𝑢𝑢𝑢𝑦𝑦𝑦𝑦]𝑇𝑇𝑇𝑇 (1) 
 

𝜀𝜀𝜀𝜀 = [𝜀𝜀𝜀𝜀𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 𝜀𝜀𝜀𝜀𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 2𝜀𝜀𝜀𝜀𝑥𝑥𝑥𝑥𝑦𝑦𝑦𝑦]𝑇𝑇𝑇𝑇 (2) 
 

𝜎𝜎𝜎𝜎 = [𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 𝜎𝜎𝜎𝜎𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥𝑦𝑦𝑦𝑦]𝑇𝑇𝑇𝑇 (3) 
 

สมการดังกลาวจะถูกเชื่อมโยงเขาดวยกันดวย

สมการ kinematic, constitutive และ internal-

equilibrium ถาสมมติใหคาความเคนและเครียด 

ณ สถานะเริ่มตนมีคาเปนศูนย ความเชื่อมโยงของ

สมการดังกลาวสามารถเขียนไดเปนสมการในรูป

สัญลักษณของเทนเซอร (Tensor Notations) คือ 
  

     𝜀𝜀𝜀𝜀 = 𝐷𝐷𝐷𝐷𝑢𝑢𝑢𝑢,   𝜎𝜎𝜎𝜎 = 𝐸𝐸𝐸𝐸𝜀𝜀𝜀𝜀,   𝐷𝐷𝐷𝐷𝑇𝑇𝑇𝑇 ∙ 𝜎𝜎𝜎𝜎 + 𝑏𝑏𝑏𝑏 = 0      (4) 
 

เม่ือเวคเตอร 𝑏𝑏𝑏𝑏 คือแรงภายในเนื่องจากน้ําหนัก

ของวัตถุ และ 𝐸𝐸𝐸𝐸 คืออิลาสติคโมดูลัสเมทริกซ และ 𝐷𝐷𝐷𝐷 

เปนดิฟเฟอเรนเชียลเมทริกซโอเปอเรเตอร 

เ งื ่อนไขขอบที่ถูกกําหนดไวบนโดเมนของ

ปญหาทางกลศาสตร  Γ นั้น แบงออกได เปน 2 

ประเภทคือเง่ือนไขขอบของการเปลี่ยนตําแหนง 

(Displacement boundary conditions) แ ล ะ

เง่ือนไขขอบของแรง (Force boundary conditions) 

การท่ีจะระบุเง่ือนไขขอบเหลานั้น นิยมแบงโดเมน

ของปญหาดังกลาวออกเปน 2 สวนดวยกัน คือ Γu 

และ Γt เพ่ือแยกความแตกตางของเง่ือนไขขอบท้ัง 2 

ประเภท ดังแสดงในภาพที่ 2 เมื่อเงื่อนไขขอบของ

การเปลี่ยนตําแหนงถูกกําหนดใหอยูบนโดเมน Γu 

โดย 𝑢𝑢𝑢𝑢� หมายถึงการเคลื่อนท่ีบนเง่ือนไขขอบท่ีกําหนด

ไวซ่ึงมักจะมีคาเทากับศูนย u� = 0 ณ ตําแหนงของ

ฐานรองรับ สวนเง่ือนไขขอบของแรงนั้นถูกกําหนดให

อยูบนโดเมน Γt ในรูปของสมการ σn = t̂ โดย t̂ 

หมายถึงแรงบนเง่ือนไขขอบท่ีกําหนดไวในรูปของแรง

ตอหนึ่งหนวยพ้ืนท่ีและ σ𝑛𝑛𝑛𝑛 คือเวคเตอรของความเคน

นั่นเอง สมการท่ี 4 รวมกับเง่ือนไขขอบท้ังสองแบบท่ี

ไดกลาวมาแลวนี้เปนสมการท่ีเรียกวา Strong Form 

ของปญหาความเคนในระนาบซ่ึงไมสะดวกสําหรับ

การแกสมการเพื่อหาผลเฉลยแมนตรง นอกจากนี้

ในกรณีที ่ป ญหามีความสลับซับซอนหร ือลําด ับ

อนุพันธของตัวแปรท่ีไมทราบคามีลําดับสูงข้ึน การหา

ผลเฉลยดังกลาวในรูปของ Closed Form อาจไม

สามารถทําได วิธีท่ีสะดวกกวาและสามารถหาคาได

คือการเปลี่ยนจากรูป Strong Form ดังกลาวใหอยูใน

รูปของ Weak Form ดวยการแทนท่ีสมการอนุพันธ

ของ Strong Form ดวยการอินทิเกรตหรือเปนการเฉลี่ย

คาท้ังหมดท่ีอยูในชวงโดเมนนั้น ๆ 

	 (2)

	

นําไปใชกับปญหาทางดานพลศาสตร (Dynamics) 

[12] ปญหาเก่ียวกับแผนและแผนเปลือกบาง (Plate 

and Shell) [13] ปญหาเกี่ยวกับกลศาสตรของ

การแตกหักโดยใชรวมกับวิธี Extended Finite Element 

Method (XFEM) สําหรับปญหาใน 2 มิติ [14] 

งานวิจัยนี้ ทําการศึกษาผลของการใชเอลิเมนต

ทรงสี่เหลี่ยมเพ่ือสรางโดเมนยอยสมํ่าเสมอ (Smoothing 

domains) จํานวน 3 โดเมนภายในเอลิเมนตหลักท่ี

สรางข้ึนมาจากโครงตาขายทรงเหลี่ยมจตุรัสดวย

โปรแกรม MATLAB [16] ความยาวแตละดานของ

โดเมนยอยนี้ถูกกําหนดใหเปนอัตราสวน 𝛼𝛼𝛼𝛼 เทียบกับ

ความยาวเดิมของดานของเอลิเมนตหลัก อัตราสวน

ของโครงตาขายในแนวดิ่งตอแนวนอนถูกกําหนดใหมี

คาเทากับ 1:4 ซ่ึงเปนอัตราสวนเดียวกันกับขนาดของ

คานยื่นปลายท่ีใชในการศึกษา หลักในการสมมาตร

ของ  Unit cell ถ ูกนํามาประย ุกต ใ ช ก ับ โด เมน

สมํ่าเสมอภายในเอลิเมนตท่ีถูกสรางข้ึนเพ่ือใหเกิด

ความตอเนื่องภายในโดเมนท้ังหมดของปญหา  
 

2. วิธีการวิจัย 

2.1 สมการครอบคลุมปญหาอิลาสติคใน 2 มิติ 

(Governing Equations for 2D Elasticity Problem) 

ตัวแปรภายในซ่ึงไมทราบคาท้ังสามตัวของ

ปญหาความเคนในระนาบ 2 มิติ ภายใตทฤษฎีอิลาสติค

เชิงเสนไดแก การเปลี่ยนตําแหนง (displacement)  

ความเครียด (strain) และความเคน (stress) สามารถ

เขียนใหอยูในรูปของเวกเตอรไดดังสมการท่ี 1 ถึง 3 คือ 
 

𝑢𝑢𝑢𝑢 = [𝑢𝑢𝑢𝑢𝑥𝑥𝑥𝑥 𝑢𝑢𝑢𝑢𝑦𝑦𝑦𝑦]𝑇𝑇𝑇𝑇 (1) 
 

𝜀𝜀𝜀𝜀 = [𝜀𝜀𝜀𝜀𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 𝜀𝜀𝜀𝜀𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 2𝜀𝜀𝜀𝜀𝑥𝑥𝑥𝑥𝑦𝑦𝑦𝑦]𝑇𝑇𝑇𝑇 (2) 
 

𝜎𝜎𝜎𝜎 = [𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 𝜎𝜎𝜎𝜎𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥𝑦𝑦𝑦𝑦]𝑇𝑇𝑇𝑇 (3) 
 

สมการดังกลาวจะถูกเชื่อมโยงเขาดวยกันดวย

สมการ kinematic, constitutive และ internal-

equilibrium ถาสมมติใหคาความเคนและเครียด 

ณ สถานะเริ่มตนมีคาเปนศูนย ความเชื่อมโยงของ

สมการดังกลาวสามารถเขียนไดเปนสมการในรูป

สัญลักษณของเทนเซอร (Tensor Notations) คือ 
  

     𝜀𝜀𝜀𝜀 = 𝐷𝐷𝐷𝐷𝑢𝑢𝑢𝑢,   𝜎𝜎𝜎𝜎 = 𝐸𝐸𝐸𝐸𝜀𝜀𝜀𝜀,   𝐷𝐷𝐷𝐷𝑇𝑇𝑇𝑇 ∙ 𝜎𝜎𝜎𝜎 + 𝑏𝑏𝑏𝑏 = 0      (4) 
 

เม่ือเวคเตอร 𝑏𝑏𝑏𝑏 คือแรงภายในเนื่องจากน้ําหนัก

ของวัตถุ และ 𝐸𝐸𝐸𝐸 คืออิลาสติคโมดูลัสเมทริกซ และ 𝐷𝐷𝐷𝐷 

เปนดิฟเฟอเรนเชียลเมทริกซโอเปอเรเตอร 

เ งื ่อนไขขอบที่ถูกกําหนดไวบนโดเมนของ

ปญหาทางกลศาสตร  Γ นั้น แบงออกได เปน 2 

ประเภทคือเง่ือนไขขอบของการเปลี่ยนตําแหนง 

(Displacement boundary conditions) แ ล ะ

เง่ือนไขขอบของแรง (Force boundary conditions) 

การท่ีจะระบุเง่ือนไขขอบเหลานั้น นิยมแบงโดเมน

ของปญหาดังกลาวออกเปน 2 สวนดวยกัน คือ Γu 

และ Γt เพ่ือแยกความแตกตางของเง่ือนไขขอบท้ัง 2 

ประเภท ดังแสดงในภาพที่ 2 เมื่อเงื่อนไขขอบของ

การเปลี่ยนตําแหนงถูกกําหนดใหอยูบนโดเมน Γu 

โดย 𝑢𝑢𝑢𝑢� หมายถึงการเคลื่อนท่ีบนเง่ือนไขขอบท่ีกําหนด

ไวซ่ึงมักจะมีคาเทากับศูนย u� = 0 ณ ตําแหนงของ

ฐานรองรับ สวนเง่ือนไขขอบของแรงนั้นถูกกําหนดให

อยูบนโดเมน Γt ในรูปของสมการ σn = t̂ โดย t̂ 

หมายถึงแรงบนเง่ือนไขขอบท่ีกําหนดไวในรูปของแรง

ตอหนึ่งหนวยพ้ืนท่ีและ σ𝑛𝑛𝑛𝑛 คือเวคเตอรของความเคน

นั่นเอง สมการท่ี 4 รวมกับเง่ือนไขขอบท้ังสองแบบท่ี

ไดกลาวมาแลวนี้เปนสมการท่ีเรียกวา Strong Form 

ของปญหาความเคนในระนาบซ่ึงไมสะดวกสําหรับ

การแกสมการเพื่อหาผลเฉลยแมนตรง นอกจากนี้

ในกรณีที ่ป ญหามีความสลับซับซอนหร ือลําด ับ

อนุพันธของตัวแปรท่ีไมทราบคามีลําดับสูงข้ึน การหา

ผลเฉลยดังกลาวในรูปของ Closed Form อาจไม

สามารถทําได วิธีท่ีสะดวกกวาและสามารถหาคาได

คือการเปลี่ยนจากรูป Strong Form ดังกลาวใหอยูใน

รูปของ Weak Form ดวยการแทนท่ีสมการอนุพันธ

ของ Strong Form ดวยการอินทิเกรตหรือเปนการเฉลี่ย

คาท้ังหมดท่ีอยูในชวงโดเมนนั้น ๆ 

	 (3)

	 	 	 สมการดงักลา่วจะถกูเชื่อมโยงเขา้ดว้ยกนั

ด้วยสมการ kinematic, constitutive และ internal-

equilibrium ถ้าสมมติให้ค่าความเค้นและเครียด

ณ สถานะเร่ิมต้นมีค่าเป็นศูนย์ ความเชื่อมโยงของสมการ

ดังกล่าวสามารถเขียนได้เป็นสมการในรูปสัญลักษณ์

ของเทนเซอร์ (Tensor Notations) คือ

	

นําไปใชกับปญหาทางดานพลศาสตร (Dynamics) 

[12] ปญหาเก่ียวกับแผนและแผนเปลือกบาง (Plate 

and Shell) [13] ปญหาเกี่ยวกับกลศาสตรของ

การแตกหักโดยใชรวมกับวิธี Extended Finite Element 

Method (XFEM) สําหรับปญหาใน 2 มิติ [14] 

งานวิจัยนี้ ทําการศึกษาผลของการใชเอลิเมนต

ทรงสี่เหลี่ยมเพ่ือสรางโดเมนยอยสมํ่าเสมอ (Smoothing 

domains) จํานวน 3 โดเมนภายในเอลิเมนตหลักท่ี

สรางข้ึนมาจากโครงตาขายทรงเหลี่ยมจตุรัสดวย

โปรแกรม MATLAB [16] ความยาวแตละดานของ

โดเมนยอยนี้ถูกกําหนดใหเปนอัตราสวน 𝛼𝛼𝛼𝛼 เทียบกับ

ความยาวเดิมของดานของเอลิเมนตหลัก อัตราสวน

ของโครงตาขายในแนวดิ่งตอแนวนอนถูกกําหนดใหมี

คาเทากับ 1:4 ซ่ึงเปนอัตราสวนเดียวกันกับขนาดของ

คานยื่นปลายท่ีใชในการศึกษา หลักในการสมมาตร

ของ  Unit cell ถ ูกนํามาประย ุกต ใ ช ก ับ โด เมน

สมํ่าเสมอภายในเอลิเมนตท่ีถูกสรางข้ึนเพ่ือใหเกิด

ความตอเนื่องภายในโดเมนท้ังหมดของปญหา  
 

2. วิธีการวิจัย 

2.1 สมการครอบคลุมปญหาอิลาสติคใน 2 มิติ 

(Governing Equations for 2D Elasticity Problem) 

ตัวแปรภายในซ่ึงไมทราบคาท้ังสามตัวของ

ปญหาความเคนในระนาบ 2 มิติ ภายใตทฤษฎีอิลาสติค

เชิงเสนไดแก การเปลี่ยนตําแหนง (displacement)  

ความเครียด (strain) และความเคน (stress) สามารถ

เขียนใหอยูในรูปของเวกเตอรไดดังสมการท่ี 1 ถึง 3 คือ 
 

𝑢𝑢𝑢𝑢 = [𝑢𝑢𝑢𝑢𝑥𝑥𝑥𝑥 𝑢𝑢𝑢𝑢𝑦𝑦𝑦𝑦]𝑇𝑇𝑇𝑇 (1) 
 

𝜀𝜀𝜀𝜀 = [𝜀𝜀𝜀𝜀𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 𝜀𝜀𝜀𝜀𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 2𝜀𝜀𝜀𝜀𝑥𝑥𝑥𝑥𝑦𝑦𝑦𝑦]𝑇𝑇𝑇𝑇 (2) 
 

𝜎𝜎𝜎𝜎 = [𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 𝜎𝜎𝜎𝜎𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥𝑦𝑦𝑦𝑦]𝑇𝑇𝑇𝑇 (3) 
 

สมการดังกลาวจะถูกเชื่อมโยงเขาดวยกันดวย

สมการ kinematic, constitutive และ internal-

equilibrium ถาสมมติใหคาความเคนและเครียด 

ณ สถานะเริ่มตนมีคาเปนศูนย ความเชื่อมโยงของ

สมการดังกลาวสามารถเขียนไดเปนสมการในรูป

สัญลักษณของเทนเซอร (Tensor Notations) คือ 
  

     𝜀𝜀𝜀𝜀 = 𝐷𝐷𝐷𝐷𝑢𝑢𝑢𝑢,   𝜎𝜎𝜎𝜎 = 𝐸𝐸𝐸𝐸𝜀𝜀𝜀𝜀,   𝐷𝐷𝐷𝐷𝑇𝑇𝑇𝑇 ∙ 𝜎𝜎𝜎𝜎 + 𝑏𝑏𝑏𝑏 = 0      (4) 
 

เม่ือเวคเตอร 𝑏𝑏𝑏𝑏 คือแรงภายในเนื่องจากน้ําหนัก

ของวัตถุ และ 𝐸𝐸𝐸𝐸 คืออิลาสติคโมดูลัสเมทริกซ และ 𝐷𝐷𝐷𝐷 

เปนดิฟเฟอเรนเชียลเมทริกซโอเปอเรเตอร 

เ งื ่อนไขขอบที่ถูกกําหนดไวบนโดเมนของ

ปญหาทางกลศาสตร  Γ นั้น แบงออกได เปน 2 

ประเภทคือเง่ือนไขขอบของการเปลี่ยนตําแหนง 

(Displacement boundary conditions) แ ล ะ

เง่ือนไขขอบของแรง (Force boundary conditions) 

การท่ีจะระบุเง่ือนไขขอบเหลานั้น นิยมแบงโดเมน

ของปญหาดังกลาวออกเปน 2 สวนดวยกัน คือ Γu 

และ Γt เพ่ือแยกความแตกตางของเง่ือนไขขอบท้ัง 2 

ประเภท ดังแสดงในภาพที่ 2 เมื่อเงื่อนไขขอบของ

การเปลี่ยนตําแหนงถูกกําหนดใหอยูบนโดเมน Γu 

โดย 𝑢𝑢𝑢𝑢� หมายถึงการเคลื่อนท่ีบนเง่ือนไขขอบท่ีกําหนด

ไวซ่ึงมักจะมีคาเทากับศูนย u� = 0 ณ ตําแหนงของ

ฐานรองรับ สวนเง่ือนไขขอบของแรงนั้นถูกกําหนดให

อยูบนโดเมน Γt ในรูปของสมการ σn = t̂ โดย t̂ 

หมายถึงแรงบนเง่ือนไขขอบท่ีกําหนดไวในรูปของแรง

ตอหนึ่งหนวยพ้ืนท่ีและ σ𝑛𝑛𝑛𝑛 คือเวคเตอรของความเคน

นั่นเอง สมการท่ี 4 รวมกับเง่ือนไขขอบท้ังสองแบบท่ี

ไดกลาวมาแลวนี้เปนสมการท่ีเรียกวา Strong Form 

ของปญหาความเคนในระนาบซ่ึงไมสะดวกสําหรับ

การแกสมการเพื่อหาผลเฉลยแมนตรง นอกจากนี้

ในกรณีที ่ป ญหามีความสลับซับซอนหร ือลําด ับ

อนุพันธของตัวแปรท่ีไมทราบคามีลําดับสูงข้ึน การหา

ผลเฉลยดังกลาวในรูปของ Closed Form อาจไม

สามารถทําได วิธีท่ีสะดวกกวาและสามารถหาคาได

คือการเปลี่ยนจากรูป Strong Form ดังกลาวใหอยูใน

รูปของ Weak Form ดวยการแทนท่ีสมการอนุพันธ

ของ Strong Form ดวยการอินทิเกรตหรือเปนการเฉลี่ย

คาท้ังหมดท่ีอยูในชวงโดเมนนั้น ๆ 

	 (4)

	 	 	 เมื่อเวคเตอร์ b คือแรงภายในเนื่องจาก

น้ำ�หนักของวัตถุ และ E คืออิลาสติคโมดูลัสเมทริกซ์ 

และ D เป็นดิฟเฟอเรนเชียลเมทริกซ์ โอเปอเรเตอร์

	 	 	 เงื่อนไขขอบที่ถูกกำ�หนดไว้บนโดเมนของ

ปญัหาทางกลศาสตร ์

นําไปใชกับปญหาทางดานพลศาสตร (Dynamics) 

[12] ปญหาเก่ียวกับแผนและแผนเปลือกบาง (Plate 

and Shell) [13] ปญหาเกี่ยวกับกลศาสตรของ

การแตกหักโดยใชรวมกับวิธี Extended Finite Element 

Method (XFEM) สําหรับปญหาใน 2 มิติ [14] 

งานวิจัยนี้ ทําการศึกษาผลของการใชเอลิเมนต

ทรงสี่เหลี่ยมเพ่ือสรางโดเมนยอยสมํ่าเสมอ (Smoothing 

domains) จํานวน 3 โดเมนภายในเอลิเมนตหลักท่ี

สรางข้ึนมาจากโครงตาขายทรงเหลี่ยมจตุรัสดวย

โปรแกรม MATLAB [16] ความยาวแตละดานของ

โดเมนยอยนี้ถูกกําหนดใหเปนอัตราสวน 𝛼𝛼𝛼𝛼 เทียบกับ

ความยาวเดิมของดานของเอลิเมนตหลัก อัตราสวน

ของโครงตาขายในแนวดิ่งตอแนวนอนถูกกําหนดใหมี

คาเทากับ 1:4 ซ่ึงเปนอัตราสวนเดียวกันกับขนาดของ

คานยื่นปลายท่ีใชในการศึกษา หลักในการสมมาตร

ของ  Unit cell ถ ูกนํามาประย ุกต ใ ช ก ับ โด เมน

สมํ่าเสมอภายในเอลิเมนตท่ีถูกสรางข้ึนเพ่ือใหเกิด

ความตอเนื่องภายในโดเมนท้ังหมดของปญหา  
 

2. วิธีการวิจัย 

2.1 สมการครอบคลุมปญหาอิลาสติคใน 2 มิติ 

(Governing Equations for 2D Elasticity Problem) 

ตัวแปรภายในซ่ึงไมทราบคาท้ังสามตัวของ

ปญหาความเคนในระนาบ 2 มิติ ภายใตทฤษฎีอิลาสติค

เชิงเสนไดแก การเปลี่ยนตําแหนง (displacement)  

ความเครียด (strain) และความเคน (stress) สามารถ

เขียนใหอยูในรูปของเวกเตอรไดดังสมการท่ี 1 ถึง 3 คือ 
 

𝑢𝑢𝑢𝑢 = [𝑢𝑢𝑢𝑢𝑥𝑥𝑥𝑥 𝑢𝑢𝑢𝑢𝑦𝑦𝑦𝑦]𝑇𝑇𝑇𝑇 (1) 
 

𝜀𝜀𝜀𝜀 = [𝜀𝜀𝜀𝜀𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 𝜀𝜀𝜀𝜀𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 2𝜀𝜀𝜀𝜀𝑥𝑥𝑥𝑥𝑦𝑦𝑦𝑦]𝑇𝑇𝑇𝑇 (2) 
 

𝜎𝜎𝜎𝜎 = [𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 𝜎𝜎𝜎𝜎𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥𝑦𝑦𝑦𝑦]𝑇𝑇𝑇𝑇 (3) 
 

สมการดังกลาวจะถูกเชื่อมโยงเขาดวยกันดวย

สมการ kinematic, constitutive และ internal-

equilibrium ถาสมมติใหคาความเคนและเครียด 

ณ สถานะเริ่มตนมีคาเปนศูนย ความเชื่อมโยงของ

สมการดังกลาวสามารถเขียนไดเปนสมการในรูป

สัญลักษณของเทนเซอร (Tensor Notations) คือ 
  

     𝜀𝜀𝜀𝜀 = 𝐷𝐷𝐷𝐷𝑢𝑢𝑢𝑢,   𝜎𝜎𝜎𝜎 = 𝐸𝐸𝐸𝐸𝜀𝜀𝜀𝜀,   𝐷𝐷𝐷𝐷𝑇𝑇𝑇𝑇 ∙ 𝜎𝜎𝜎𝜎 + 𝑏𝑏𝑏𝑏 = 0      (4) 
 

เม่ือเวคเตอร 𝑏𝑏𝑏𝑏 คือแรงภายในเนื่องจากน้ําหนัก

ของวัตถุ และ 𝐸𝐸𝐸𝐸 คืออิลาสติคโมดูลัสเมทริกซ และ 𝐷𝐷𝐷𝐷 

เปนดิฟเฟอเรนเชียลเมทริกซโอเปอเรเตอร 

เ งื ่อนไขขอบที่ถูกกําหนดไวบนโดเมนของ

ปญหาทางกลศาสตร  Γ นั้น แบงออกได เปน 2 

ประเภทคือเง่ือนไขขอบของการเปลี่ยนตําแหนง 

(Displacement boundary conditions) แ ล ะ

เง่ือนไขขอบของแรง (Force boundary conditions) 

การท่ีจะระบุเง่ือนไขขอบเหลานั้น นิยมแบงโดเมน

ของปญหาดังกลาวออกเปน 2 สวนดวยกัน คือ Γu 

และ Γt เพ่ือแยกความแตกตางของเง่ือนไขขอบท้ัง 2 

ประเภท ดังแสดงในภาพที่ 2 เมื่อเงื่อนไขขอบของ

การเปลี่ยนตําแหนงถูกกําหนดใหอยูบนโดเมน Γu 

โดย 𝑢𝑢𝑢𝑢� หมายถึงการเคลื่อนท่ีบนเง่ือนไขขอบท่ีกําหนด

ไวซ่ึงมักจะมีคาเทากับศูนย u� = 0 ณ ตําแหนงของ

ฐานรองรับ สวนเง่ือนไขขอบของแรงนั้นถูกกําหนดให

อยูบนโดเมน Γt ในรูปของสมการ σn = t̂ โดย t̂ 

หมายถึงแรงบนเง่ือนไขขอบท่ีกําหนดไวในรูปของแรง

ตอหนึ่งหนวยพ้ืนท่ีและ σ𝑛𝑛𝑛𝑛 คือเวคเตอรของความเคน

นั่นเอง สมการท่ี 4 รวมกับเง่ือนไขขอบท้ังสองแบบท่ี

ไดกลาวมาแลวนี้เปนสมการท่ีเรียกวา Strong Form 

ของปญหาความเคนในระนาบซ่ึงไมสะดวกสําหรับ

การแกสมการเพื่อหาผลเฉลยแมนตรง นอกจากนี้

ในกรณีที ่ป ญหามีความสลับซับซอนหร ือลําด ับ

อนุพันธของตัวแปรท่ีไมทราบคามีลําดับสูงข้ึน การหา

ผลเฉลยดังกลาวในรูปของ Closed Form อาจไม

สามารถทําได วิธีท่ีสะดวกกวาและสามารถหาคาได

คือการเปลี่ยนจากรูป Strong Form ดังกลาวใหอยูใน

รูปของ Weak Form ดวยการแทนท่ีสมการอนุพันธ

ของ Strong Form ดวยการอินทิเกรตหรือเปนการเฉลี่ย

คาท้ังหมดท่ีอยูในชวงโดเมนนั้น ๆ 

 นัน้ แบง่ออกไดเ้ปน็ 2 ประเภท

คือเงื่อนไขขอบของการเปลี่ยนตำ�แหน่ง (Displace-

ment boundary conditions) และเงื่อนไขขอบ

ของแรง (Force boundary conditions) การที่จะ

ระบุเงื่อนไขขอบเหล่านั้น นิยมแบ่งโดเมนของปัญหา

ดังกล่าวออกเป็น 2 ส่วนด้วยกัน คือ 

นําไปใชกับปญหาทางดานพลศาสตร (Dynamics) 

[12] ปญหาเก่ียวกับแผนและแผนเปลือกบาง (Plate 

and Shell) [13] ปญหาเกี่ยวกับกลศาสตรของ

การแตกหักโดยใชรวมกับวิธี Extended Finite Element 

Method (XFEM) สําหรับปญหาใน 2 มิติ [14] 

งานวิจัยนี้ ทําการศึกษาผลของการใชเอลิเมนต

ทรงสี่เหลี่ยมเพ่ือสรางโดเมนยอยสมํ่าเสมอ (Smoothing 

domains) จํานวน 3 โดเมนภายในเอลิเมนตหลักท่ี

สรางข้ึนมาจากโครงตาขายทรงเหลี่ยมจตุรัสดวย

โปรแกรม MATLAB [16] ความยาวแตละดานของ

โดเมนยอยนี้ถูกกําหนดใหเปนอัตราสวน 𝛼𝛼𝛼𝛼 เทียบกับ

ความยาวเดิมของดานของเอลิเมนตหลัก อัตราสวน

ของโครงตาขายในแนวดิ่งตอแนวนอนถูกกําหนดใหมี

คาเทากับ 1:4 ซ่ึงเปนอัตราสวนเดียวกันกับขนาดของ

คานยื่นปลายท่ีใชในการศึกษา หลักในการสมมาตร

ของ  Unit cell ถ ูกนํามาประย ุกต ใ ช ก ับ โด เมน

สมํ่าเสมอภายในเอลิเมนตท่ีถูกสรางข้ึนเพ่ือใหเกิด
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2. วิธีการวิจัย 

2.1 สมการครอบคลุมปญหาอิลาสติคใน 2 มิติ 

(Governing Equations for 2D Elasticity Problem) 

ตัวแปรภายในซ่ึงไมทราบคาท้ังสามตัวของ

ปญหาความเคนในระนาบ 2 มิติ ภายใตทฤษฎีอิลาสติค

เชิงเสนไดแก การเปลี่ยนตําแหนง (displacement)  

ความเครียด (strain) และความเคน (stress) สามารถ

เขียนใหอยูในรูปของเวกเตอรไดดังสมการท่ี 1 ถึง 3 คือ 
 

𝑢𝑢𝑢𝑢 = [𝑢𝑢𝑢𝑢𝑥𝑥𝑥𝑥 𝑢𝑢𝑢𝑢𝑦𝑦𝑦𝑦]𝑇𝑇𝑇𝑇 (1) 
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สมการดังกลาวจะถูกเชื่อมโยงเขาดวยกันดวย

สมการ kinematic, constitutive และ internal-

equilibrium ถาสมมติใหคาความเคนและเครียด 

ณ สถานะเริ่มตนมีคาเปนศูนย ความเชื่อมโยงของ

สมการดังกลาวสามารถเขียนไดเปนสมการในรูป

สัญลักษณของเทนเซอร (Tensor Notations) คือ 
  

     𝜀𝜀𝜀𝜀 = 𝐷𝐷𝐷𝐷𝑢𝑢𝑢𝑢,   𝜎𝜎𝜎𝜎 = 𝐸𝐸𝐸𝐸𝜀𝜀𝜀𝜀,   𝐷𝐷𝐷𝐷𝑇𝑇𝑇𝑇 ∙ 𝜎𝜎𝜎𝜎 + 𝑏𝑏𝑏𝑏 = 0      (4) 
 

เม่ือเวคเตอร 𝑏𝑏𝑏𝑏 คือแรงภายในเนื่องจากน้ําหนัก

ของวัตถุ และ 𝐸𝐸𝐸𝐸 คืออิลาสติคโมดูลัสเมทริกซ และ 𝐷𝐷𝐷𝐷 

เปนดิฟเฟอเรนเชียลเมทริกซโอเปอเรเตอร 

เ งื ่อนไขขอบที่ถูกกําหนดไวบนโดเมนของ

ปญหาทางกลศาสตร  Γ นั้น แบงออกได เปน 2 

ประเภทคือเง่ือนไขขอบของการเปลี่ยนตําแหนง 

(Displacement boundary conditions) แ ล ะ

เง่ือนไขขอบของแรง (Force boundary conditions) 

การท่ีจะระบุเง่ือนไขขอบเหลานั้น นิยมแบงโดเมน

ของปญหาดังกลาวออกเปน 2 สวนดวยกัน คือ Γu 

และ Γt เพ่ือแยกความแตกตางของเง่ือนไขขอบท้ัง 2 

ประเภท ดังแสดงในภาพที่ 2 เมื่อเงื่อนไขขอบของ

การเปลี่ยนตําแหนงถูกกําหนดใหอยูบนโดเมน Γu 

โดย 𝑢𝑢𝑢𝑢� หมายถึงการเคลื่อนท่ีบนเง่ือนไขขอบท่ีกําหนด

ไวซ่ึงมักจะมีคาเทากับศูนย u� = 0 ณ ตําแหนงของ

ฐานรองรับ สวนเง่ือนไขขอบของแรงนั้นถูกกําหนดให

อยูบนโดเมน Γt ในรูปของสมการ σn = t̂ โดย t̂ 

หมายถึงแรงบนเง่ือนไขขอบท่ีกําหนดไวในรูปของแรง

ตอหนึ่งหนวยพ้ืนท่ีและ σ𝑛𝑛𝑛𝑛 คือเวคเตอรของความเคน

นั่นเอง สมการท่ี 4 รวมกับเง่ือนไขขอบท้ังสองแบบท่ี

ไดกลาวมาแลวนี้เปนสมการท่ีเรียกวา Strong Form 

ของปญหาความเคนในระนาบซ่ึงไมสะดวกสําหรับ

การแกสมการเพื่อหาผลเฉลยแมนตรง นอกจากนี้

ในกรณีที ่ป ญหามีความสลับซับซอนหร ือลําด ับ

อนุพันธของตัวแปรท่ีไมทราบคามีลําดับสูงข้ึน การหา

ผลเฉลยดังกลาวในรูปของ Closed Form อาจไม

สามารถทําได วิธีท่ีสะดวกกวาและสามารถหาคาได

คือการเปลี่ยนจากรูป Strong Form ดังกลาวใหอยูใน

รูปของ Weak Form ดวยการแทนท่ีสมการอนุพันธ

ของ Strong Form ดวยการอินทิเกรตหรือเปนการเฉลี่ย

คาท้ังหมดท่ีอยูในชวงโดเมนนั้น ๆ 

 และ 

นําไปใชกับปญหาทางดานพลศาสตร (Dynamics) 

[12] ปญหาเก่ียวกับแผนและแผนเปลือกบาง (Plate 

and Shell) [13] ปญหาเกี่ยวกับกลศาสตรของ

การแตกหักโดยใชรวมกับวิธี Extended Finite Element 

Method (XFEM) สําหรับปญหาใน 2 มิติ [14] 

งานวิจัยนี้ ทําการศึกษาผลของการใชเอลิเมนต

ทรงสี่เหลี่ยมเพ่ือสรางโดเมนยอยสมํ่าเสมอ (Smoothing 

domains) จํานวน 3 โดเมนภายในเอลิเมนตหลักท่ี

สรางข้ึนมาจากโครงตาขายทรงเหลี่ยมจตุรัสดวย

โปรแกรม MATLAB [16] ความยาวแตละดานของ

โดเมนยอยนี้ถูกกําหนดใหเปนอัตราสวน 𝛼𝛼𝛼𝛼 เทียบกับ

ความยาวเดิมของดานของเอลิเมนตหลัก อัตราสวน

ของโครงตาขายในแนวดิ่งตอแนวนอนถูกกําหนดใหมี

คาเทากับ 1:4 ซ่ึงเปนอัตราสวนเดียวกันกับขนาดของ

คานยื่นปลายท่ีใชในการศึกษา หลักในการสมมาตร

ของ  Unit cell ถ ูกนํามาประย ุกต ใ ช ก ับ โด เมน

สมํ่าเสมอภายในเอลิเมนตท่ีถูกสรางข้ึนเพ่ือใหเกิด

ความตอเนื่องภายในโดเมนท้ังหมดของปญหา  
 

2. วิธีการวิจัย 

2.1 สมการครอบคลุมปญหาอิลาสติคใน 2 มิติ 

(Governing Equations for 2D Elasticity Problem) 

ตัวแปรภายในซ่ึงไมทราบคาท้ังสามตัวของ

ปญหาความเคนในระนาบ 2 มิติ ภายใตทฤษฎีอิลาสติค

เชิงเสนไดแก การเปลี่ยนตําแหนง (displacement)  

ความเครียด (strain) และความเคน (stress) สามารถ

เขียนใหอยูในรูปของเวกเตอรไดดังสมการท่ี 1 ถึง 3 คือ 
 

𝑢𝑢𝑢𝑢 = [𝑢𝑢𝑢𝑢𝑥𝑥𝑥𝑥 𝑢𝑢𝑢𝑢𝑦𝑦𝑦𝑦]𝑇𝑇𝑇𝑇 (1) 
 

𝜀𝜀𝜀𝜀 = [𝜀𝜀𝜀𝜀𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 𝜀𝜀𝜀𝜀𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 2𝜀𝜀𝜀𝜀𝑥𝑥𝑥𝑥𝑦𝑦𝑦𝑦]𝑇𝑇𝑇𝑇 (2) 
 

𝜎𝜎𝜎𝜎 = [𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 𝜎𝜎𝜎𝜎𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥𝑦𝑦𝑦𝑦]𝑇𝑇𝑇𝑇 (3) 
 

สมการดังกลาวจะถูกเชื่อมโยงเขาดวยกันดวย

สมการ kinematic, constitutive และ internal-

equilibrium ถาสมมติใหคาความเคนและเครียด 

ณ สถานะเริ่มตนมีคาเปนศูนย ความเชื่อมโยงของ

สมการดังกลาวสามารถเขียนไดเปนสมการในรูป

สัญลักษณของเทนเซอร (Tensor Notations) คือ 
  

     𝜀𝜀𝜀𝜀 = 𝐷𝐷𝐷𝐷𝑢𝑢𝑢𝑢,   𝜎𝜎𝜎𝜎 = 𝐸𝐸𝐸𝐸𝜀𝜀𝜀𝜀,   𝐷𝐷𝐷𝐷𝑇𝑇𝑇𝑇 ∙ 𝜎𝜎𝜎𝜎 + 𝑏𝑏𝑏𝑏 = 0      (4) 
 

เม่ือเวคเตอร 𝑏𝑏𝑏𝑏 คือแรงภายในเนื่องจากน้ําหนัก

ของวัตถุ และ 𝐸𝐸𝐸𝐸 คืออิลาสติคโมดูลัสเมทริกซ และ 𝐷𝐷𝐷𝐷 

เปนดิฟเฟอเรนเชียลเมทริกซโอเปอเรเตอร 

เ งื ่อนไขขอบที่ถูกกําหนดไวบนโดเมนของ

ปญหาทางกลศาสตร  Γ นั้น แบงออกได เปน 2 

ประเภทคือเง่ือนไขขอบของการเปลี่ยนตําแหนง 

(Displacement boundary conditions) แ ล ะ

เง่ือนไขขอบของแรง (Force boundary conditions) 

การท่ีจะระบุเง่ือนไขขอบเหลานั้น นิยมแบงโดเมน

ของปญหาดังกลาวออกเปน 2 สวนดวยกัน คือ Γu 

และ Γt เพ่ือแยกความแตกตางของเง่ือนไขขอบท้ัง 2 

ประเภท ดังแสดงในภาพที่ 2 เมื่อเงื่อนไขขอบของ

การเปลี่ยนตําแหนงถูกกําหนดใหอยูบนโดเมน Γu 

โดย 𝑢𝑢𝑢𝑢� หมายถึงการเคลื่อนท่ีบนเง่ือนไขขอบท่ีกําหนด

ไวซ่ึงมักจะมีคาเทากับศูนย u� = 0 ณ ตําแหนงของ

ฐานรองรับ สวนเง่ือนไขขอบของแรงนั้นถูกกําหนดให

อยูบนโดเมน Γt ในรูปของสมการ σn = t̂ โดย t̂ 

หมายถึงแรงบนเง่ือนไขขอบท่ีกําหนดไวในรูปของแรง

ตอหนึ่งหนวยพ้ืนท่ีและ σ𝑛𝑛𝑛𝑛 คือเวคเตอรของความเคน

นั่นเอง สมการท่ี 4 รวมกับเง่ือนไขขอบท้ังสองแบบท่ี

ไดกลาวมาแลวนี้เปนสมการท่ีเรียกวา Strong Form 

ของปญหาความเคนในระนาบซ่ึงไมสะดวกสําหรับ

การแกสมการเพื่อหาผลเฉลยแมนตรง นอกจากนี้

ในกรณีที ่ป ญหามีความสลับซับซอนหร ือลําด ับ

อนุพันธของตัวแปรท่ีไมทราบคามีลําดับสูงข้ึน การหา

ผลเฉลยดังกลาวในรูปของ Closed Form อาจไม

สามารถทําได วิธีท่ีสะดวกกวาและสามารถหาคาได

คือการเปลี่ยนจากรูป Strong Form ดังกลาวใหอยูใน

รูปของ Weak Form ดวยการแทนท่ีสมการอนุพันธ

ของ Strong Form ดวยการอินทิเกรตหรือเปนการเฉลี่ย

คาท้ังหมดท่ีอยูในชวงโดเมนนั้น ๆ 

 เพื่อ

แยกความแตกต่างของเงื่อนไขขอบทั้ง 2 ประเภท 

ดังแสดงในภาพที่ 2 เมื่อเงื่อนไขขอบของการเปลี่ยน

ตำ�แหน่งถูกกำ�หนดให้อยู่บนโดเมน 

นําไปใชกับปญหาทางดานพลศาสตร (Dynamics) 

[12] ปญหาเก่ียวกับแผนและแผนเปลือกบาง (Plate 

and Shell) [13] ปญหาเกี่ยวกับกลศาสตรของ

การแตกหักโดยใชรวมกับวิธี Extended Finite Element 

Method (XFEM) สําหรับปญหาใน 2 มิติ [14] 

งานวิจัยนี้ ทําการศึกษาผลของการใชเอลิเมนต

ทรงสี่เหลี่ยมเพ่ือสรางโดเมนยอยสมํ่าเสมอ (Smoothing 

domains) จํานวน 3 โดเมนภายในเอลิเมนตหลักท่ี

สรางข้ึนมาจากโครงตาขายทรงเหลี่ยมจตุรัสดวย

โปรแกรม MATLAB [16] ความยาวแตละดานของ

โดเมนยอยนี้ถูกกําหนดใหเปนอัตราสวน 𝛼𝛼𝛼𝛼 เทียบกับ

ความยาวเดิมของดานของเอลิเมนตหลัก อัตราสวน

ของโครงตาขายในแนวดิ่งตอแนวนอนถูกกําหนดใหมี

คาเทากับ 1:4 ซ่ึงเปนอัตราสวนเดียวกันกับขนาดของ

คานยื่นปลายท่ีใชในการศึกษา หลักในการสมมาตร

ของ  Unit cell ถ ูกนํามาประย ุกต ใ ช ก ับ โด เมน

สมํ่าเสมอภายในเอลิเมนตท่ีถูกสรางข้ึนเพ่ือใหเกิด

ความตอเนื่องภายในโดเมนท้ังหมดของปญหา  
 

2. วิธีการวิจัย 

2.1 สมการครอบคลุมปญหาอิลาสติคใน 2 มิติ 

(Governing Equations for 2D Elasticity Problem) 

ตัวแปรภายในซ่ึงไมทราบคาท้ังสามตัวของ

ปญหาความเคนในระนาบ 2 มิติ ภายใตทฤษฎีอิลาสติค

เชิงเสนไดแก การเปลี่ยนตําแหนง (displacement)  

ความเครียด (strain) และความเคน (stress) สามารถ

เขียนใหอยูในรูปของเวกเตอรไดดังสมการท่ี 1 ถึง 3 คือ 
 

𝑢𝑢𝑢𝑢 = [𝑢𝑢𝑢𝑢𝑥𝑥𝑥𝑥 𝑢𝑢𝑢𝑢𝑦𝑦𝑦𝑦]𝑇𝑇𝑇𝑇 (1) 
 

𝜀𝜀𝜀𝜀 = [𝜀𝜀𝜀𝜀𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 𝜀𝜀𝜀𝜀𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 2𝜀𝜀𝜀𝜀𝑥𝑥𝑥𝑥𝑦𝑦𝑦𝑦]𝑇𝑇𝑇𝑇 (2) 
 

𝜎𝜎𝜎𝜎 = [𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 𝜎𝜎𝜎𝜎𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥𝑦𝑦𝑦𝑦]𝑇𝑇𝑇𝑇 (3) 
 

สมการดังกลาวจะถูกเชื่อมโยงเขาดวยกันดวย

สมการ kinematic, constitutive และ internal-

equilibrium ถาสมมติใหคาความเคนและเครียด 

ณ สถานะเริ่มตนมีคาเปนศูนย ความเชื่อมโยงของ

สมการดังกลาวสามารถเขียนไดเปนสมการในรูป

สัญลักษณของเทนเซอร (Tensor Notations) คือ 
  

     𝜀𝜀𝜀𝜀 = 𝐷𝐷𝐷𝐷𝑢𝑢𝑢𝑢,   𝜎𝜎𝜎𝜎 = 𝐸𝐸𝐸𝐸𝜀𝜀𝜀𝜀,   𝐷𝐷𝐷𝐷𝑇𝑇𝑇𝑇 ∙ 𝜎𝜎𝜎𝜎 + 𝑏𝑏𝑏𝑏 = 0      (4) 
 

เม่ือเวคเตอร 𝑏𝑏𝑏𝑏 คือแรงภายในเนื่องจากน้ําหนัก

ของวัตถุ และ 𝐸𝐸𝐸𝐸 คืออิลาสติคโมดูลัสเมทริกซ และ 𝐷𝐷𝐷𝐷 

เปนดิฟเฟอเรนเชียลเมทริกซโอเปอเรเตอร 

เ งื ่อนไขขอบที่ถูกกําหนดไวบนโดเมนของ

ปญหาทางกลศาสตร  Γ นั้น แบงออกได เปน 2 

ประเภทคือเง่ือนไขขอบของการเปลี่ยนตําแหนง 

(Displacement boundary conditions) แ ล ะ

เง่ือนไขขอบของแรง (Force boundary conditions) 

การท่ีจะระบุเง่ือนไขขอบเหลานั้น นิยมแบงโดเมน

ของปญหาดังกลาวออกเปน 2 สวนดวยกัน คือ Γu 

และ Γt เพ่ือแยกความแตกตางของเง่ือนไขขอบท้ัง 2 

ประเภท ดังแสดงในภาพที่ 2 เมื่อเงื่อนไขขอบของ

การเปลี่ยนตําแหนงถูกกําหนดใหอยูบนโดเมน Γu 

โดย 𝑢𝑢𝑢𝑢� หมายถึงการเคลื่อนท่ีบนเง่ือนไขขอบท่ีกําหนด

ไวซ่ึงมักจะมีคาเทากับศูนย u� = 0 ณ ตําแหนงของ

ฐานรองรับ สวนเง่ือนไขขอบของแรงนั้นถูกกําหนดให

อยูบนโดเมน Γt ในรูปของสมการ σn = t̂ โดย t̂ 

หมายถึงแรงบนเง่ือนไขขอบท่ีกําหนดไวในรูปของแรง

ตอหนึ่งหนวยพ้ืนท่ีและ σ𝑛𝑛𝑛𝑛 คือเวคเตอรของความเคน

นั่นเอง สมการท่ี 4 รวมกับเง่ือนไขขอบท้ังสองแบบท่ี

ไดกลาวมาแลวนี้เปนสมการท่ีเรียกวา Strong Form 

ของปญหาความเคนในระนาบซ่ึงไมสะดวกสําหรับ

การแกสมการเพื่อหาผลเฉลยแมนตรง นอกจากนี้

ในกรณีที ่ป ญหามีความสลับซับซอนหร ือลําด ับ

อนุพันธของตัวแปรท่ีไมทราบคามีลําดับสูงข้ึน การหา

ผลเฉลยดังกลาวในรูปของ Closed Form อาจไม

สามารถทําได วิธีท่ีสะดวกกวาและสามารถหาคาได

คือการเปลี่ยนจากรูป Strong Form ดังกลาวใหอยูใน

รูปของ Weak Form ดวยการแทนท่ีสมการอนุพันธ

ของ Strong Form ดวยการอินทิเกรตหรือเปนการเฉลี่ย

คาท้ังหมดท่ีอยูในชวงโดเมนนั้น ๆ 

 โดย û
หมายถึงการเคลื่อนที่บนเงื่อนไขขอบที่กำ�หนดไว้

ซึ่งมักจะมีค่าเท่ากับศูนย์ û = 0 ณ ตำ�แหน่งของ

ฐานรองรับ ส่วนเงื่อนไขขอบของแรงนั้นถูกกำ�หนด

ให้อยู่บนโดเมน 

นําไปใชกับปญหาทางดานพลศาสตร (Dynamics) 

[12] ปญหาเก่ียวกับแผนและแผนเปลือกบาง (Plate 

and Shell) [13] ปญหาเกี่ยวกับกลศาสตรของ

การแตกหักโดยใชรวมกับวิธี Extended Finite Element 

Method (XFEM) สําหรับปญหาใน 2 มิติ [14] 

งานวิจัยนี้ ทําการศึกษาผลของการใชเอลิเมนต

ทรงสี่เหลี่ยมเพ่ือสรางโดเมนยอยสมํ่าเสมอ (Smoothing 

domains) จํานวน 3 โดเมนภายในเอลิเมนตหลักท่ี
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2. วิธีการวิจัย 

2.1 สมการครอบคลุมปญหาอิลาสติคใน 2 มิติ 

(Governing Equations for 2D Elasticity Problem) 

ตัวแปรภายในซ่ึงไมทราบคาท้ังสามตัวของ

ปญหาความเคนในระนาบ 2 มิติ ภายใตทฤษฎีอิลาสติค

เชิงเสนไดแก การเปลี่ยนตําแหนง (displacement)  

ความเครียด (strain) และความเคน (stress) สามารถ

เขียนใหอยูในรูปของเวกเตอรไดดังสมการท่ี 1 ถึง 3 คือ 
 

𝑢𝑢𝑢𝑢 = [𝑢𝑢𝑢𝑢𝑥𝑥𝑥𝑥 𝑢𝑢𝑢𝑢𝑦𝑦𝑦𝑦]𝑇𝑇𝑇𝑇 (1) 
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𝜎𝜎𝜎𝜎 = [𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 𝜎𝜎𝜎𝜎𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥𝑦𝑦𝑦𝑦]𝑇𝑇𝑇𝑇 (3) 
 

สมการดังกลาวจะถูกเชื่อมโยงเขาดวยกันดวย

สมการ kinematic, constitutive และ internal-

equilibrium ถาสมมติใหคาความเคนและเครียด 

ณ สถานะเริ่มตนมีคาเปนศูนย ความเชื่อมโยงของ

สมการดังกลาวสามารถเขียนไดเปนสมการในรูป

สัญลักษณของเทนเซอร (Tensor Notations) คือ 
  

     𝜀𝜀𝜀𝜀 = 𝐷𝐷𝐷𝐷𝑢𝑢𝑢𝑢,   𝜎𝜎𝜎𝜎 = 𝐸𝐸𝐸𝐸𝜀𝜀𝜀𝜀,   𝐷𝐷𝐷𝐷𝑇𝑇𝑇𝑇 ∙ 𝜎𝜎𝜎𝜎 + 𝑏𝑏𝑏𝑏 = 0      (4) 
 

เม่ือเวคเตอร 𝑏𝑏𝑏𝑏 คือแรงภายในเนื่องจากน้ําหนัก

ของวัตถุ และ 𝐸𝐸𝐸𝐸 คืออิลาสติคโมดูลัสเมทริกซ และ 𝐷𝐷𝐷𝐷 

เปนดิฟเฟอเรนเชียลเมทริกซโอเปอเรเตอร 

เ งื ่อนไขขอบที่ถูกกําหนดไวบนโดเมนของ

ปญหาทางกลศาสตร  Γ นั้น แบงออกได เปน 2 

ประเภทคือเง่ือนไขขอบของการเปลี่ยนตําแหนง 

(Displacement boundary conditions) แ ล ะ

เง่ือนไขขอบของแรง (Force boundary conditions) 

การท่ีจะระบุเง่ือนไขขอบเหลานั้น นิยมแบงโดเมน

ของปญหาดังกลาวออกเปน 2 สวนดวยกัน คือ Γu 

และ Γt เพ่ือแยกความแตกตางของเง่ือนไขขอบท้ัง 2 

ประเภท ดังแสดงในภาพที่ 2 เมื่อเงื่อนไขขอบของ

การเปลี่ยนตําแหนงถูกกําหนดใหอยูบนโดเมน Γu 

โดย 𝑢𝑢𝑢𝑢� หมายถึงการเคลื่อนท่ีบนเง่ือนไขขอบท่ีกําหนด

ไวซ่ึงมักจะมีคาเทากับศูนย u� = 0 ณ ตําแหนงของ

ฐานรองรับ สวนเง่ือนไขขอบของแรงนั้นถูกกําหนดให

อยูบนโดเมน Γt ในรูปของสมการ σn = t̂ โดย t̂ 

หมายถึงแรงบนเง่ือนไขขอบท่ีกําหนดไวในรูปของแรง

ตอหนึ่งหนวยพ้ืนท่ีและ σ𝑛𝑛𝑛𝑛 คือเวคเตอรของความเคน

นั่นเอง สมการท่ี 4 รวมกับเง่ือนไขขอบท้ังสองแบบท่ี

ไดกลาวมาแลวนี้เปนสมการท่ีเรียกวา Strong Form 

ของปญหาความเคนในระนาบซ่ึงไมสะดวกสําหรับ

การแกสมการเพื่อหาผลเฉลยแมนตรง นอกจากนี้

ในกรณีที ่ป ญหามีความสลับซับซอนหร ือลําด ับ

อนุพันธของตัวแปรท่ีไมทราบคามีลําดับสูงข้ึน การหา

ผลเฉลยดังกลาวในรูปของ Closed Form อาจไม

สามารถทําได วิธีท่ีสะดวกกวาและสามารถหาคาได

คือการเปลี่ยนจากรูป Strong Form ดังกลาวใหอยูใน

รูปของ Weak Form ดวยการแทนท่ีสมการอนุพันธ

ของ Strong Form ดวยการอินทิเกรตหรือเปนการเฉลี่ย

คาท้ังหมดท่ีอยูในชวงโดเมนนั้น ๆ 

 ในรูปของสมการ 

นําไปใชกับปญหาทางดานพลศาสตร (Dynamics) 
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การแตกหักโดยใชรวมกับวิธี Extended Finite Element 
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ทรงสี่เหลี่ยมเพ่ือสรางโดเมนยอยสมํ่าเสมอ (Smoothing 

domains) จํานวน 3 โดเมนภายในเอลิเมนตหลักท่ี
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ประเภทคือเง่ือนไขขอบของการเปลี่ยนตําแหนง 

(Displacement boundary conditions) แ ล ะ

เง่ือนไขขอบของแรง (Force boundary conditions) 
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ฐานรองรับ สวนเง่ือนไขขอบของแรงนั้นถูกกําหนดให
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ตอหนึ่งหนวยพ้ืนท่ีและ σ𝑛𝑛𝑛𝑛 คือเวคเตอรของความเคน

นั่นเอง สมการท่ี 4 รวมกับเง่ือนไขขอบท้ังสองแบบท่ี

ไดกลาวมาแลวนี้เปนสมการท่ีเรียกวา Strong Form 

ของปญหาความเคนในระนาบซ่ึงไมสะดวกสําหรับ

การแกสมการเพื่อหาผลเฉลยแมนตรง นอกจากนี้

ในกรณีที ่ป ญหามีความสลับซับซอนหร ือลําด ับ

อนุพันธของตัวแปรท่ีไมทราบคามีลําดับสูงข้ึน การหา
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and Shell) [13] ปญหาเกี่ยวกับกลศาสตรของ

การแตกหักโดยใชรวมกับวิธี Extended Finite Element 
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ทรงสี่เหลี่ยมเพ่ือสรางโดเมนยอยสมํ่าเสมอ (Smoothing 
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คานยื่นปลายท่ีใชในการศึกษา หลักในการสมมาตร
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2. วิธีการวิจัย 

2.1 สมการครอบคลุมปญหาอิลาสติคใน 2 มิติ 

(Governing Equations for 2D Elasticity Problem) 

ตัวแปรภายในซ่ึงไมทราบคาท้ังสามตัวของ

ปญหาความเคนในระนาบ 2 มิติ ภายใตทฤษฎีอิลาสติค

เชิงเสนไดแก การเปลี่ยนตําแหนง (displacement)  

ความเครียด (strain) และความเคน (stress) สามารถ

เขียนใหอยูในรูปของเวกเตอรไดดังสมการท่ี 1 ถึง 3 คือ 
 

𝑢𝑢𝑢𝑢 = [𝑢𝑢𝑢𝑢𝑥𝑥𝑥𝑥 𝑢𝑢𝑢𝑢𝑦𝑦𝑦𝑦]𝑇𝑇𝑇𝑇 (1) 
 

𝜀𝜀𝜀𝜀 = [𝜀𝜀𝜀𝜀𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 𝜀𝜀𝜀𝜀𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 2𝜀𝜀𝜀𝜀𝑥𝑥𝑥𝑥𝑦𝑦𝑦𝑦]𝑇𝑇𝑇𝑇 (2) 
 

𝜎𝜎𝜎𝜎 = [𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 𝜎𝜎𝜎𝜎𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥𝑦𝑦𝑦𝑦]𝑇𝑇𝑇𝑇 (3) 
 

สมการดังกลาวจะถูกเชื่อมโยงเขาดวยกันดวย

สมการ kinematic, constitutive และ internal-

equilibrium ถาสมมติใหคาความเคนและเครียด 

ณ สถานะเริ่มตนมีคาเปนศูนย ความเชื่อมโยงของ

สมการดังกลาวสามารถเขียนไดเปนสมการในรูป

สัญลักษณของเทนเซอร (Tensor Notations) คือ 
  

     𝜀𝜀𝜀𝜀 = 𝐷𝐷𝐷𝐷𝑢𝑢𝑢𝑢,   𝜎𝜎𝜎𝜎 = 𝐸𝐸𝐸𝐸𝜀𝜀𝜀𝜀,   𝐷𝐷𝐷𝐷𝑇𝑇𝑇𝑇 ∙ 𝜎𝜎𝜎𝜎 + 𝑏𝑏𝑏𝑏 = 0      (4) 
 

เม่ือเวคเตอร 𝑏𝑏𝑏𝑏 คือแรงภายในเนื่องจากน้ําหนัก

ของวัตถุ และ 𝐸𝐸𝐸𝐸 คืออิลาสติคโมดูลัสเมทริกซ และ 𝐷𝐷𝐷𝐷 

เปนดิฟเฟอเรนเชียลเมทริกซโอเปอเรเตอร 

เ งื ่อนไขขอบที่ถูกกําหนดไวบนโดเมนของ

ปญหาทางกลศาสตร  Γ นั้น แบงออกได เปน 2 

ประเภทคือเง่ือนไขขอบของการเปลี่ยนตําแหนง 

(Displacement boundary conditions) แ ล ะ

เง่ือนไขขอบของแรง (Force boundary conditions) 

การท่ีจะระบุเง่ือนไขขอบเหลานั้น นิยมแบงโดเมน

ของปญหาดังกลาวออกเปน 2 สวนดวยกัน คือ Γu 

และ Γt เพ่ือแยกความแตกตางของเง่ือนไขขอบท้ัง 2 

ประเภท ดังแสดงในภาพที่ 2 เมื่อเงื่อนไขขอบของ

การเปลี่ยนตําแหนงถูกกําหนดใหอยูบนโดเมน Γu 

โดย 𝑢𝑢𝑢𝑢� หมายถึงการเคลื่อนท่ีบนเง่ือนไขขอบท่ีกําหนด

ไวซ่ึงมักจะมีคาเทากับศูนย u� = 0 ณ ตําแหนงของ

ฐานรองรับ สวนเง่ือนไขขอบของแรงนั้นถูกกําหนดให

อยูบนโดเมน Γt ในรูปของสมการ σn = t̂ โดย t̂ 

หมายถึงแรงบนเง่ือนไขขอบท่ีกําหนดไวในรูปของแรง

ตอหนึ่งหนวยพ้ืนท่ีและ σ𝑛𝑛𝑛𝑛 คือเวคเตอรของความเคน

นั่นเอง สมการท่ี 4 รวมกับเง่ือนไขขอบท้ังสองแบบท่ี

ไดกลาวมาแลวนี้เปนสมการท่ีเรียกวา Strong Form 

ของปญหาความเคนในระนาบซ่ึงไมสะดวกสําหรับ

การแกสมการเพื่อหาผลเฉลยแมนตรง นอกจากนี้

ในกรณีที ่ป ญหามีความสลับซับซอนหร ือลําด ับ

อนุพันธของตัวแปรท่ีไมทราบคามีลําดับสูงข้ึน การหา

ผลเฉลยดังกลาวในรูปของ Closed Form อาจไม

สามารถทําได วิธีท่ีสะดวกกวาและสามารถหาคาได

คือการเปลี่ยนจากรูป Strong Form ดังกลาวใหอยูใน

รูปของ Weak Form ดวยการแทนท่ีสมการอนุพันธ

ของ Strong Form ดวยการอินทิเกรตหรือเปนการเฉลี่ย

คาท้ังหมดท่ีอยูในชวงโดเมนนั้น ๆ 

 โดย 
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ณ สถานะเริ่มตนมีคาเปนศูนย ความเชื่อมโยงของ

สมการดังกลาวสามารถเขียนไดเปนสมการในรูป

สัญลักษณของเทนเซอร (Tensor Notations) คือ 
  

     𝜀𝜀𝜀𝜀 = 𝐷𝐷𝐷𝐷𝑢𝑢𝑢𝑢,   𝜎𝜎𝜎𝜎 = 𝐸𝐸𝐸𝐸𝜀𝜀𝜀𝜀,   𝐷𝐷𝐷𝐷𝑇𝑇𝑇𝑇 ∙ 𝜎𝜎𝜎𝜎 + 𝑏𝑏𝑏𝑏 = 0      (4) 
 

เม่ือเวคเตอร 𝑏𝑏𝑏𝑏 คือแรงภายในเนื่องจากน้ําหนัก

ของวัตถุ และ 𝐸𝐸𝐸𝐸 คืออิลาสติคโมดูลัสเมทริกซ และ 𝐷𝐷𝐷𝐷 

เปนดิฟเฟอเรนเชียลเมทริกซโอเปอเรเตอร 

เ งื ่อนไขขอบที่ถูกกําหนดไวบนโดเมนของ

ปญหาทางกลศาสตร  Γ นั้น แบงออกได เปน 2 

ประเภทคือเง่ือนไขขอบของการเปลี่ยนตําแหนง 

(Displacement boundary conditions) แ ล ะ

เง่ือนไขขอบของแรง (Force boundary conditions) 

การท่ีจะระบุเง่ือนไขขอบเหลานั้น นิยมแบงโดเมน

ของปญหาดังกลาวออกเปน 2 สวนดวยกัน คือ Γu 

และ Γt เพ่ือแยกความแตกตางของเง่ือนไขขอบท้ัง 2 

ประเภท ดังแสดงในภาพที่ 2 เมื่อเงื่อนไขขอบของ

การเปลี่ยนตําแหนงถูกกําหนดใหอยูบนโดเมน Γu 

โดย 𝑢𝑢𝑢𝑢� หมายถึงการเคลื่อนท่ีบนเง่ือนไขขอบท่ีกําหนด

ไวซ่ึงมักจะมีคาเทากับศูนย u� = 0 ณ ตําแหนงของ

ฐานรองรับ สวนเง่ือนไขขอบของแรงนั้นถูกกําหนดให

อยูบนโดเมน Γt ในรูปของสมการ σn = t̂ โดย t̂ 

หมายถึงแรงบนเง่ือนไขขอบท่ีกําหนดไวในรูปของแรง

ตอหนึ่งหนวยพ้ืนท่ีและ σ𝑛𝑛𝑛𝑛 คือเวคเตอรของความเคน

นั่นเอง สมการท่ี 4 รวมกับเง่ือนไขขอบท้ังสองแบบท่ี

ไดกลาวมาแลวนี้เปนสมการท่ีเรียกวา Strong Form 

ของปญหาความเคนในระนาบซ่ึงไมสะดวกสําหรับ

การแกสมการเพื่อหาผลเฉลยแมนตรง นอกจากนี้

ในกรณีที ่ป ญหามีความสลับซับซอนหร ือลําด ับ

อนุพันธของตัวแปรท่ีไมทราบคามีลําดับสูงข้ึน การหา

ผลเฉลยดังกลาวในรูปของ Closed Form อาจไม

สามารถทําได วิธีท่ีสะดวกกวาและสามารถหาคาได

คือการเปลี่ยนจากรูป Strong Form ดังกลาวใหอยูใน

รูปของ Weak Form ดวยการแทนท่ีสมการอนุพันธ

ของ Strong Form ดวยการอินทิเกรตหรือเปนการเฉลี่ย

คาท้ังหมดท่ีอยูในชวงโดเมนนั้น ๆ 

 

หมายถึงแรงบนเงื่อนไขขอบที่กำ�หนดไว้ ในรูปของแรง

ต่อหนึ่งหน่วยพื้นที่และ 

นําไปใชกับปญหาทางดานพลศาสตร (Dynamics) 

[12] ปญหาเก่ียวกับแผนและแผนเปลือกบาง (Plate 

and Shell) [13] ปญหาเกี่ยวกับกลศาสตรของ

การแตกหักโดยใชรวมกับวิธี Extended Finite Element 

Method (XFEM) สําหรับปญหาใน 2 มิติ [14] 

งานวิจัยนี้ ทําการศึกษาผลของการใชเอลิเมนต

ทรงสี่เหลี่ยมเพ่ือสรางโดเมนยอยสมํ่าเสมอ (Smoothing 

domains) จํานวน 3 โดเมนภายในเอลิเมนตหลักท่ี

สรางข้ึนมาจากโครงตาขายทรงเหลี่ยมจตุรัสดวย

โปรแกรม MATLAB [16] ความยาวแตละดานของ

โดเมนยอยนี้ถูกกําหนดใหเปนอัตราสวน 𝛼𝛼𝛼𝛼 เทียบกับ

ความยาวเดิมของดานของเอลิเมนตหลัก อัตราสวน

ของโครงตาขายในแนวดิ่งตอแนวนอนถูกกําหนดใหมี

คาเทากับ 1:4 ซ่ึงเปนอัตราสวนเดียวกันกับขนาดของ

คานยื่นปลายท่ีใชในการศึกษา หลักในการสมมาตร

ของ  Unit cell ถ ูกนํามาประย ุกต ใ ช ก ับ โด เมน

สมํ่าเสมอภายในเอลิเมนตท่ีถูกสรางข้ึนเพ่ือใหเกิด

ความตอเนื่องภายในโดเมนท้ังหมดของปญหา  
 

2. วิธีการวิจัย 

2.1 สมการครอบคลุมปญหาอิลาสติคใน 2 มิติ 

(Governing Equations for 2D Elasticity Problem) 

ตัวแปรภายในซ่ึงไมทราบคาท้ังสามตัวของ

ปญหาความเคนในระนาบ 2 มิติ ภายใตทฤษฎีอิลาสติค

เชิงเสนไดแก การเปลี่ยนตําแหนง (displacement)  

ความเครียด (strain) และความเคน (stress) สามารถ

เขียนใหอยูในรูปของเวกเตอรไดดังสมการท่ี 1 ถึง 3 คือ 
 

𝑢𝑢𝑢𝑢 = [𝑢𝑢𝑢𝑢𝑥𝑥𝑥𝑥 𝑢𝑢𝑢𝑢𝑦𝑦𝑦𝑦]𝑇𝑇𝑇𝑇 (1) 
 

𝜀𝜀𝜀𝜀 = [𝜀𝜀𝜀𝜀𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 𝜀𝜀𝜀𝜀𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 2𝜀𝜀𝜀𝜀𝑥𝑥𝑥𝑥𝑦𝑦𝑦𝑦]𝑇𝑇𝑇𝑇 (2) 
 

𝜎𝜎𝜎𝜎 = [𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 𝜎𝜎𝜎𝜎𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥𝑦𝑦𝑦𝑦]𝑇𝑇𝑇𝑇 (3) 
 

สมการดังกลาวจะถูกเชื่อมโยงเขาดวยกันดวย

สมการ kinematic, constitutive และ internal-

equilibrium ถาสมมติใหคาความเคนและเครียด 

ณ สถานะเริ่มตนมีคาเปนศูนย ความเชื่อมโยงของ

สมการดังกลาวสามารถเขียนไดเปนสมการในรูป

สัญลักษณของเทนเซอร (Tensor Notations) คือ 
  

     𝜀𝜀𝜀𝜀 = 𝐷𝐷𝐷𝐷𝑢𝑢𝑢𝑢,   𝜎𝜎𝜎𝜎 = 𝐸𝐸𝐸𝐸𝜀𝜀𝜀𝜀,   𝐷𝐷𝐷𝐷𝑇𝑇𝑇𝑇 ∙ 𝜎𝜎𝜎𝜎 + 𝑏𝑏𝑏𝑏 = 0      (4) 
 

เม่ือเวคเตอร 𝑏𝑏𝑏𝑏 คือแรงภายในเนื่องจากน้ําหนัก

ของวัตถุ และ 𝐸𝐸𝐸𝐸 คืออิลาสติคโมดูลัสเมทริกซ และ 𝐷𝐷𝐷𝐷 

เปนดิฟเฟอเรนเชียลเมทริกซโอเปอเรเตอร 

เ งื ่อนไขขอบที่ถูกกําหนดไวบนโดเมนของ

ปญหาทางกลศาสตร  Γ นั้น แบงออกได เปน 2 

ประเภทคือเง่ือนไขขอบของการเปลี่ยนตําแหนง 

(Displacement boundary conditions) แ ล ะ

เง่ือนไขขอบของแรง (Force boundary conditions) 

การท่ีจะระบุเง่ือนไขขอบเหลานั้น นิยมแบงโดเมน

ของปญหาดังกลาวออกเปน 2 สวนดวยกัน คือ Γu 

และ Γt เพ่ือแยกความแตกตางของเง่ือนไขขอบท้ัง 2 

ประเภท ดังแสดงในภาพที่ 2 เมื่อเงื่อนไขขอบของ

การเปลี่ยนตําแหนงถูกกําหนดใหอยูบนโดเมน Γu 

โดย 𝑢𝑢𝑢𝑢� หมายถึงการเคลื่อนท่ีบนเง่ือนไขขอบท่ีกําหนด

ไวซ่ึงมักจะมีคาเทากับศูนย u� = 0 ณ ตําแหนงของ

ฐานรองรับ สวนเง่ือนไขขอบของแรงนั้นถูกกําหนดให

อยูบนโดเมน Γt ในรูปของสมการ σn = t̂ โดย t̂ 

หมายถึงแรงบนเง่ือนไขขอบท่ีกําหนดไวในรูปของแรง

ตอหนึ่งหนวยพ้ืนท่ีและ σ𝑛𝑛𝑛𝑛 คือเวคเตอรของความเคน

นั่นเอง สมการท่ี 4 รวมกับเง่ือนไขขอบท้ังสองแบบท่ี

ไดกลาวมาแลวนี้เปนสมการท่ีเรียกวา Strong Form 

ของปญหาความเคนในระนาบซ่ึงไมสะดวกสําหรับ

การแกสมการเพื่อหาผลเฉลยแมนตรง นอกจากนี้

ในกรณีที ่ป ญหามีความสลับซับซอนหร ือลําด ับ

อนุพันธของตัวแปรท่ีไมทราบคามีลําดับสูงข้ึน การหา

ผลเฉลยดังกลาวในรูปของ Closed Form อาจไม

สามารถทําได วิธีท่ีสะดวกกวาและสามารถหาคาได

คือการเปลี่ยนจากรูป Strong Form ดังกลาวใหอยูใน

รูปของ Weak Form ดวยการแทนท่ีสมการอนุพันธ

ของ Strong Form ดวยการอินทิเกรตหรือเปนการเฉลี่ย

คาท้ังหมดท่ีอยูในชวงโดเมนนั้น ๆ 

 คือเวคเตอร์ของความเค้น

นั่นเอง สมการที่ 4 รวมกับเงื่อนไขขอบทั้งสองแบบ

ที่ไดก้ลา่วมาแลว้นีเ้ปน็สมการทีเ่รยีกวา่ Strong Form 

ของปัญหาความเค้นในระนาบซึ่งไม่สะดวกสำ�หรับ

การแก้สมการเพื่อหาผลเฉลยแม่นตรง นอกจากนี้

ในกรณีที่ปัญหามีความสลับซับซ้อนหรือลำ�ดับ

อนุพันธ์ของตัวแปรที่ไม่ทราบค่ามีลำ�ดับสูงขึ้น การหา

ผลเฉลยดังกล่าวในรูปของ Closed Form อาจไม่

สามารถทำ�ได ้วธิท่ีีสะดวกกวา่และสามารถหาคา่ไดค้อื

การเปลี่ยนจากรูป Strong Form ดังกล่าวให้อยู่ในรูป

ของ Weak Form ด้วยการแทนที่สมการอนุพันธ์ของ 

Strong Form ด้วยการอินทิเกรตหรอืเป็นการเฉลี่ยค่า

ทั้งหมดที่อยู่ในช่วงโดเมนนั้นๆ

ภาพที่ 2 เงื่อนไขขอบของโดเมนของปัญหา [17]

	 	 	 วิธีการเปล่ียนรูปของ Strong Form ไปเป็น

Weak Form นั้นสามารถทำ�ได้ 2 แบบด้วยกันคือ

การใช้หลักการของพลังงาน (Energy Methods)

หรือหลักการของการถ่วงเศษน้ำ�หนักตกค้าง

(Weighted Residual Methods) ในที่นี้จะขอกล่าวถึง

การเปลี่ยนรูปสมการด้วยวิธีแรก เริ่มจากการ

พจิารณาแบง่โดเมนของปญัหาออกเปน็สว่นเลก็ๆ ดว้ย

 
 

ภาพท่ี 2 เง่ือนไขขอบของโดเมนของปญหา [17] 

 

วิธีการเปลี่ยนรูปของ Strong Form ไปเปน 

Weak Form นั้นสามารถทําได 2 แบบดวยกันคือ 

การใชหลักการของพลังงาน (Energy Methods) 

หรื อหลักการของการถ ว ง เศษน้ํ าหนักตกค า ง 

(Weighted Residual Methods) ในท่ีนี้จะขอกลาวถึง

การเปลี่ยนรูปสมการดวยวิธีแรก เริ่มจากการพิจารณา

แบงโดเมนของปญหาออกเปนสวนเล็ก ๆ ดวยโครง

ตาขาย (Mesh) เรียกวาเอลิเมนตดังแสดงในภาพท่ี 3 

ใชสัญลักษณดวยตัวยกเปน 𝑒𝑒𝑒𝑒 เอลิเมนตดังกลาวใน 2 

มิติ อาจเปนเอลิเมนตสามเหลี่ยมหรือสี่เหลี่ยมก็ได 

สมการพลังงานศักยรวมท้ังหมดท่ีเปนฟงกชันนอล 

(ฟงกชันของฟงกชัน) ของเอลิเมนตสามารถเขียนได

ดังสมการท่ี 5 
 

 
 

ภาพท่ี 3 การแบงโดเมนออกเปนเอลิเมนตยอย [17] 
 
 

Π𝑒𝑒𝑒𝑒 = 𝑈𝑈𝑈𝑈𝑒𝑒𝑒𝑒 −𝑊𝑊𝑊𝑊𝑒𝑒𝑒𝑒  (5) 

 

เรียกสมการนี้วา Total Potential Energy 

Functional (TPE) เม่ือพลังงานภายในท่ีเกิดข้ึนมาจาก

พลังงานความเครียดภายในของวัตถุซ่ึงมีสมการคือ 

 

𝑈𝑈𝑈𝑈𝑒𝑒𝑒𝑒 =
1
2
� 𝜎𝜎𝜎𝜎𝑇𝑇𝑇𝑇𝜀𝜀𝜀𝜀 𝑑𝑑𝑑𝑑Ω𝑒𝑒𝑒𝑒 =

1
2
� 𝜀𝜀𝜀𝜀𝑇𝑇𝑇𝑇𝐸𝐸𝐸𝐸 𝜀𝜀𝜀𝜀 𝑑𝑑𝑑𝑑Ω𝑒𝑒𝑒𝑒
Ω𝑒𝑒𝑒𝑒Ω𝑒𝑒𝑒𝑒

 (6) 

 

และพลังงานภายนอกที่เกิดขึ้นเปนผลรวมของแรง

ภายในท่ีทราบคาแลวกับแรงภายนอกซ่ึงกระทํา

บริเวณขอบของโดเมน Γ𝑡𝑡𝑡𝑡 นั่นเองโดยมีสมการคือ 
 

𝑊𝑊𝑊𝑊𝑒𝑒𝑒𝑒 = � 𝑢𝑢𝑢𝑢𝑇𝑇𝑇𝑇𝑏𝑏𝑏𝑏 𝑑𝑑𝑑𝑑Ω𝑒𝑒𝑒𝑒
Ω𝑒𝑒𝑒𝑒

+ � 𝑢𝑢𝑢𝑢𝑇𝑇𝑇𝑇𝑡̂𝑡𝑡𝑡 𝑑𝑑𝑑𝑑Γ𝑒𝑒𝑒𝑒
Γ𝑒𝑒𝑒𝑒

 (7) 

 

หลังจากการแทนคาดวย 𝑢𝑢𝑢𝑢 = ∑𝑁𝑁𝑁𝑁𝑢𝑢𝑢𝑢𝑒𝑒𝑒𝑒 , 𝜀𝜀𝜀𝜀 =

𝐵𝐵𝐵𝐵𝑢𝑢𝑢𝑢𝑒𝑒𝑒𝑒, 𝜎𝜎𝜎𝜎 = 𝐸𝐸𝐸𝐸𝜀𝜀𝜀𝜀 กลับลงไปในสมการ TPE ของแตละ 

เอลิเมนตรวมกับหลักการของการแปรผัน (Variational 

Principle) ซ่ึงกลาววา 𝛿𝛿𝛿𝛿Π = 0 เ ม่ือเทียบกับการ

เปลี่ยนแปลง 𝛿𝛿𝛿𝛿𝑢𝑢𝑢𝑢 ท่ีเกิดข้ึนเพียงเล็กนอย [18] จะได

สมการไฟไนทเอลิเมนตสุดทายในรูป 
 

             𝐾𝐾𝐾𝐾𝑢𝑢𝑢𝑢 = 𝐹𝐹𝐹𝐹     (8) 
 

เม่ือ 𝐾𝐾𝐾𝐾, 𝑢𝑢𝑢𝑢, 𝐹𝐹𝐹𝐹 คือสติฟเนสเมทริกซ เวคเตอร

การเปลี่ยนตําแหนงที่จุดตอและเวคเตอรของแรง

ภายในท่ีจุดตอในระบบโคออรดิเนตหลักตามลําดับ 
 

2.2 โดเมนสมํ่าเสมอทรงส่ีเหล่ียม (Quadrilateral 

Smoothing Domains) 

งานวิจัยในครั้งนี้  ใชการแบงโดเมนของท้ัง

ปญหาออกเปนเอลิเมนตยอยโดยใชเอลิเมนตทรง

สี่เหลี่ยม (Quadrilateral element) ดังแสดงในภาพ

ท่ี 4 เอลิเมนตหลักดังกลาวจะถูกนํามาแบงออกเปน

สวนยอยที่เรียกวาโดเมนสมํ่าเสมอ (smoothing 

domain, SD) ดวยการใชเอลิเมนตทรงสี่เหลี่ยมจํานวน 

3 เอลิเมนต จํานวนนอยท่ีสุดของโดเมนสมํ่าเสมอ

สําหรับปญหาของของแข็งใน 2 มิติซ่ึงเสนอโดย [19] 

มีคาเทากับ 2𝑛𝑛𝑛𝑛/3 เม่ือ 𝑛𝑛𝑛𝑛 คือจํานวนจุดตอท้ังหมด

ของปญหา การแบงโดเมนยอยสมํ่าเสมอนี้ สามารถ

ทําไดโดยทําการลากเสนเชื่อมตอระหวางก่ึงกลางดาน

ท้ังสองท่ีอยูตรงขามกันดังแสดงในภาพท่ี 4 

 



สมูทไฟไนท์เอลิเมนต์ด้วยการสร้างโดเมนสม่ำ�เสมอ 3 ส่วน
จากเอลิเมนต์ทรงสี่เหลี่ยม สำ�หรับปัญหาความเค้นในระนาบ 2 มิติ
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โครงตาข่าย (Mesh) เรียกว่าเอลิเมนต์ดังแสดง

ในภาพที่ 3 ใช้สัญลักษณ์ด้วยตัวยกเป็น 

 
 

ภาพท่ี 2 เง่ือนไขขอบของโดเมนของปญหา [17] 

 

วิธีการเปลี่ยนรูปของ Strong Form ไปเปน 

Weak Form นั้นสามารถทําได 2 แบบดวยกันคือ 

การใชหลักการของพลังงาน (Energy Methods) 

หรื อหลักการของการถ ว ง เศษน้ํ าหนักตกค า ง 

(Weighted Residual Methods) ในท่ีนี้จะขอกลาวถึง

การเปลี่ยนรูปสมการดวยวิธีแรก เริ่มจากการพิจารณา

แบงโดเมนของปญหาออกเปนสวนเล็ก ๆ ดวยโครง

ตาขาย (Mesh) เรียกวาเอลิเมนตดังแสดงในภาพท่ี 3 

ใชสัญลักษณดวยตัวยกเปน 𝑒𝑒𝑒𝑒 เอลิเมนตดังกลาวใน 2 

มิติ อาจเปนเอลิเมนตสามเหลี่ยมหรือสี่เหลี่ยมก็ได 

สมการพลังงานศักยรวมท้ังหมดท่ีเปนฟงกชันนอล 

(ฟงกชันของฟงกชัน) ของเอลิเมนตสามารถเขียนได

ดังสมการท่ี 5 
 

 
 

ภาพท่ี 3 การแบงโดเมนออกเปนเอลิเมนตยอย [17] 
 
 

Π𝑒𝑒𝑒𝑒 = 𝑈𝑈𝑈𝑈𝑒𝑒𝑒𝑒 −𝑊𝑊𝑊𝑊𝑒𝑒𝑒𝑒  (5) 

 

เรียกสมการนี้วา Total Potential Energy 

Functional (TPE) เม่ือพลังงานภายในท่ีเกิดข้ึนมาจาก

พลังงานความเครียดภายในของวัตถุซ่ึงมีสมการคือ 

 

𝑈𝑈𝑈𝑈𝑒𝑒𝑒𝑒 =
1
2
� 𝜎𝜎𝜎𝜎𝑇𝑇𝑇𝑇𝜀𝜀𝜀𝜀 𝑑𝑑𝑑𝑑Ω𝑒𝑒𝑒𝑒 =

1
2
� 𝜀𝜀𝜀𝜀𝑇𝑇𝑇𝑇𝐸𝐸𝐸𝐸 𝜀𝜀𝜀𝜀 𝑑𝑑𝑑𝑑Ω𝑒𝑒𝑒𝑒
Ω𝑒𝑒𝑒𝑒Ω𝑒𝑒𝑒𝑒

 (6) 

 

และพลังงานภายนอกที่เกิดขึ้นเปนผลรวมของแรง

ภายในท่ีทราบคาแลวกับแรงภายนอกซ่ึงกระทํา

บริเวณขอบของโดเมน Γ𝑡𝑡𝑡𝑡 นั่นเองโดยมีสมการคือ 
 

𝑊𝑊𝑊𝑊𝑒𝑒𝑒𝑒 = � 𝑢𝑢𝑢𝑢𝑇𝑇𝑇𝑇𝑏𝑏𝑏𝑏 𝑑𝑑𝑑𝑑Ω𝑒𝑒𝑒𝑒
Ω𝑒𝑒𝑒𝑒

+ � 𝑢𝑢𝑢𝑢𝑇𝑇𝑇𝑇𝑡̂𝑡𝑡𝑡 𝑑𝑑𝑑𝑑Γ𝑒𝑒𝑒𝑒
Γ𝑒𝑒𝑒𝑒

 (7) 

 

หลังจากการแทนคาดวย 𝑢𝑢𝑢𝑢 = ∑𝑁𝑁𝑁𝑁𝑢𝑢𝑢𝑢𝑒𝑒𝑒𝑒 , 𝜀𝜀𝜀𝜀 =

𝐵𝐵𝐵𝐵𝑢𝑢𝑢𝑢𝑒𝑒𝑒𝑒, 𝜎𝜎𝜎𝜎 = 𝐸𝐸𝐸𝐸𝜀𝜀𝜀𝜀 กลับลงไปในสมการ TPE ของแตละ 

เอลิเมนตรวมกับหลักการของการแปรผัน (Variational 

Principle) ซ่ึงกลาววา 𝛿𝛿𝛿𝛿Π = 0 เ ม่ือเทียบกับการ

เปลี่ยนแปลง 𝛿𝛿𝛿𝛿𝑢𝑢𝑢𝑢 ท่ีเกิดข้ึนเพียงเล็กนอย [18] จะได

สมการไฟไนทเอลิเมนตสุดทายในรูป 
 

             𝐾𝐾𝐾𝐾𝑢𝑢𝑢𝑢 = 𝐹𝐹𝐹𝐹     (8) 
 

เม่ือ 𝐾𝐾𝐾𝐾, 𝑢𝑢𝑢𝑢, 𝐹𝐹𝐹𝐹 คือสติฟเนสเมทริกซ เวคเตอร

การเปลี่ยนตําแหนงที่จุดตอและเวคเตอรของแรง

ภายในท่ีจุดตอในระบบโคออรดิเนตหลักตามลําดับ 
 

2.2 โดเมนสมํ่าเสมอทรงส่ีเหล่ียม (Quadrilateral 

Smoothing Domains) 

งานวิจัยในครั้งนี้  ใชการแบงโดเมนของท้ัง

ปญหาออกเปนเอลิเมนตยอยโดยใชเอลิเมนตทรง

สี่เหลี่ยม (Quadrilateral element) ดังแสดงในภาพ

ท่ี 4 เอลิเมนตหลักดังกลาวจะถูกนํามาแบงออกเปน

สวนยอยที่เรียกวาโดเมนสมํ่าเสมอ (smoothing 

domain, SD) ดวยการใชเอลิเมนตทรงสี่เหลี่ยมจํานวน 

3 เอลิเมนต จํานวนนอยท่ีสุดของโดเมนสมํ่าเสมอ

สําหรับปญหาของของแข็งใน 2 มิติซ่ึงเสนอโดย [19] 

มีคาเทากับ 2𝑛𝑛𝑛𝑛/3 เม่ือ 𝑛𝑛𝑛𝑛 คือจํานวนจุดตอท้ังหมด

ของปญหา การแบงโดเมนยอยสมํ่าเสมอนี้ สามารถ

ทําไดโดยทําการลากเสนเชื่อมตอระหวางก่ึงกลางดาน

ท้ังสองท่ีอยูตรงขามกันดังแสดงในภาพท่ี 4 

 

 เอลิเมนต์

ดังกล่าวใน 2 มิติ อาจเป็นเอลิเมนต์สามเหลี่ยม

หรือส่ีเหล่ียมก็ได้ สมการพลังงานศักย์รวมท้ังหมดที่

เป็นฟังก์ชันนอล (ฟังก์ชันของฟังก์ชัน) ของเอลิเมนต์

สามารถเขียนได้ดังสมการที่ 5

	

 
 

ภาพท่ี 2 เง่ือนไขขอบของโดเมนของปญหา [17] 

 

วิธีการเปลี่ยนรูปของ Strong Form ไปเปน 

Weak Form นั้นสามารถทําได 2 แบบดวยกันคือ 

การใชหลักการของพลังงาน (Energy Methods) 

หรื อหลักการของการถ ว ง เศษน้ํ าหนักตกค า ง 

(Weighted Residual Methods) ในท่ีนี้จะขอกลาวถึง

การเปลี่ยนรูปสมการดวยวิธีแรก เริ่มจากการพิจารณา

แบงโดเมนของปญหาออกเปนสวนเล็ก ๆ ดวยโครง

ตาขาย (Mesh) เรียกวาเอลิเมนตดังแสดงในภาพท่ี 3 

ใชสัญลักษณดวยตัวยกเปน 𝑒𝑒𝑒𝑒 เอลิเมนตดังกลาวใน 2 

มิติ อาจเปนเอลิเมนตสามเหลี่ยมหรือสี่เหลี่ยมก็ได 

สมการพลังงานศักยรวมท้ังหมดท่ีเปนฟงกชันนอล 

(ฟงกชันของฟงกชัน) ของเอลิเมนตสามารถเขียนได

ดังสมการท่ี 5 
 

 
 

ภาพท่ี 3 การแบงโดเมนออกเปนเอลิเมนตยอย [17] 
 
 

Π𝑒𝑒𝑒𝑒 = 𝑈𝑈𝑈𝑈𝑒𝑒𝑒𝑒 −𝑊𝑊𝑊𝑊𝑒𝑒𝑒𝑒  (5) 

 

เรียกสมการนี้วา Total Potential Energy 

Functional (TPE) เม่ือพลังงานภายในท่ีเกิดข้ึนมาจาก

พลังงานความเครียดภายในของวัตถุซ่ึงมีสมการคือ 

 

𝑈𝑈𝑈𝑈𝑒𝑒𝑒𝑒 =
1
2
� 𝜎𝜎𝜎𝜎𝑇𝑇𝑇𝑇𝜀𝜀𝜀𝜀 𝑑𝑑𝑑𝑑Ω𝑒𝑒𝑒𝑒 =

1
2
� 𝜀𝜀𝜀𝜀𝑇𝑇𝑇𝑇𝐸𝐸𝐸𝐸 𝜀𝜀𝜀𝜀 𝑑𝑑𝑑𝑑Ω𝑒𝑒𝑒𝑒
Ω𝑒𝑒𝑒𝑒Ω𝑒𝑒𝑒𝑒

 (6) 

 

และพลังงานภายนอกที่เกิดขึ้นเปนผลรวมของแรง

ภายในท่ีทราบคาแลวกับแรงภายนอกซ่ึงกระทํา

บริเวณขอบของโดเมน Γ𝑡𝑡𝑡𝑡 นั่นเองโดยมีสมการคือ 
 

𝑊𝑊𝑊𝑊𝑒𝑒𝑒𝑒 = � 𝑢𝑢𝑢𝑢𝑇𝑇𝑇𝑇𝑏𝑏𝑏𝑏 𝑑𝑑𝑑𝑑Ω𝑒𝑒𝑒𝑒
Ω𝑒𝑒𝑒𝑒

+ � 𝑢𝑢𝑢𝑢𝑇𝑇𝑇𝑇𝑡̂𝑡𝑡𝑡 𝑑𝑑𝑑𝑑Γ𝑒𝑒𝑒𝑒
Γ𝑒𝑒𝑒𝑒

 (7) 

 

หลังจากการแทนคาดวย 𝑢𝑢𝑢𝑢 = ∑𝑁𝑁𝑁𝑁𝑢𝑢𝑢𝑢𝑒𝑒𝑒𝑒 , 𝜀𝜀𝜀𝜀 =

𝐵𝐵𝐵𝐵𝑢𝑢𝑢𝑢𝑒𝑒𝑒𝑒, 𝜎𝜎𝜎𝜎 = 𝐸𝐸𝐸𝐸𝜀𝜀𝜀𝜀 กลับลงไปในสมการ TPE ของแตละ 

เอลิเมนตรวมกับหลักการของการแปรผัน (Variational 

Principle) ซ่ึงกลาววา 𝛿𝛿𝛿𝛿Π = 0 เ ม่ือเทียบกับการ

เปลี่ยนแปลง 𝛿𝛿𝛿𝛿𝑢𝑢𝑢𝑢 ท่ีเกิดข้ึนเพียงเล็กนอย [18] จะได

สมการไฟไนทเอลิเมนตสุดทายในรูป 
 

             𝐾𝐾𝐾𝐾𝑢𝑢𝑢𝑢 = 𝐹𝐹𝐹𝐹     (8) 
 

เม่ือ 𝐾𝐾𝐾𝐾, 𝑢𝑢𝑢𝑢, 𝐹𝐹𝐹𝐹 คือสติฟเนสเมทริกซ เวคเตอร

การเปลี่ยนตําแหนงที่จุดตอและเวคเตอรของแรง

ภายในท่ีจุดตอในระบบโคออรดิเนตหลักตามลําดับ 
 

2.2 โดเมนสมํ่าเสมอทรงส่ีเหล่ียม (Quadrilateral 

Smoothing Domains) 

งานวิจัยในครั้งนี้  ใชการแบงโดเมนของท้ัง

ปญหาออกเปนเอลิเมนตยอยโดยใชเอลิเมนตทรง

สี่เหลี่ยม (Quadrilateral element) ดังแสดงในภาพ

ท่ี 4 เอลิเมนตหลักดังกลาวจะถูกนํามาแบงออกเปน

สวนยอยที่เรียกวาโดเมนสมํ่าเสมอ (smoothing 

domain, SD) ดวยการใชเอลิเมนตทรงสี่เหลี่ยมจํานวน 

3 เอลิเมนต จํานวนนอยท่ีสุดของโดเมนสมํ่าเสมอ

สําหรับปญหาของของแข็งใน 2 มิติซ่ึงเสนอโดย [19] 

มีคาเทากับ 2𝑛𝑛𝑛𝑛/3 เม่ือ 𝑛𝑛𝑛𝑛 คือจํานวนจุดตอท้ังหมด

ของปญหา การแบงโดเมนยอยสมํ่าเสมอนี้ สามารถ

ทําไดโดยทําการลากเสนเชื่อมตอระหวางก่ึงกลางดาน

ท้ังสองท่ีอยูตรงขามกันดังแสดงในภาพท่ี 4 

 

	 (8)

	 	 	 เมื่อ 

 
 

ภาพท่ี 2 เง่ือนไขขอบของโดเมนของปญหา [17] 

 

วิธีการเปลี่ยนรูปของ Strong Form ไปเปน 

Weak Form นั้นสามารถทําได 2 แบบดวยกันคือ 

การใชหลักการของพลังงาน (Energy Methods) 

หรื อหลักการของการถ ว ง เศษน้ํ าหนักตกค า ง 

(Weighted Residual Methods) ในท่ีนี้จะขอกลาวถึง

การเปลี่ยนรูปสมการดวยวิธีแรก เริ่มจากการพิจารณา

แบงโดเมนของปญหาออกเปนสวนเล็ก ๆ ดวยโครง

ตาขาย (Mesh) เรียกวาเอลิเมนตดังแสดงในภาพท่ี 3 

ใชสัญลักษณดวยตัวยกเปน 𝑒𝑒𝑒𝑒 เอลิเมนตดังกลาวใน 2 

มิติ อาจเปนเอลิเมนตสามเหลี่ยมหรือสี่เหลี่ยมก็ได 

สมการพลังงานศักยรวมท้ังหมดท่ีเปนฟงกชันนอล 

(ฟงกชันของฟงกชัน) ของเอลิเมนตสามารถเขียนได

ดังสมการท่ี 5 
 

 
 

ภาพท่ี 3 การแบงโดเมนออกเปนเอลิเมนตยอย [17] 
 
 

Π𝑒𝑒𝑒𝑒 = 𝑈𝑈𝑈𝑈𝑒𝑒𝑒𝑒 −𝑊𝑊𝑊𝑊𝑒𝑒𝑒𝑒  (5) 

 

เรียกสมการนี้วา Total Potential Energy 

Functional (TPE) เม่ือพลังงานภายในท่ีเกิดข้ึนมาจาก

พลังงานความเครียดภายในของวัตถุซ่ึงมีสมการคือ 

 

𝑈𝑈𝑈𝑈𝑒𝑒𝑒𝑒 =
1
2
� 𝜎𝜎𝜎𝜎𝑇𝑇𝑇𝑇𝜀𝜀𝜀𝜀 𝑑𝑑𝑑𝑑Ω𝑒𝑒𝑒𝑒 =

1
2
� 𝜀𝜀𝜀𝜀𝑇𝑇𝑇𝑇𝐸𝐸𝐸𝐸 𝜀𝜀𝜀𝜀 𝑑𝑑𝑑𝑑Ω𝑒𝑒𝑒𝑒
Ω𝑒𝑒𝑒𝑒Ω𝑒𝑒𝑒𝑒

 (6) 

 

และพลังงานภายนอกที่เกิดขึ้นเปนผลรวมของแรง

ภายในท่ีทราบคาแลวกับแรงภายนอกซ่ึงกระทํา

บริเวณขอบของโดเมน Γ𝑡𝑡𝑡𝑡 นั่นเองโดยมีสมการคือ 
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หลังจากการแทนคาดวย 𝑢𝑢𝑢𝑢 = ∑𝑁𝑁𝑁𝑁𝑢𝑢𝑢𝑢𝑒𝑒𝑒𝑒 , 𝜀𝜀𝜀𝜀 =

𝐵𝐵𝐵𝐵𝑢𝑢𝑢𝑢𝑒𝑒𝑒𝑒, 𝜎𝜎𝜎𝜎 = 𝐸𝐸𝐸𝐸𝜀𝜀𝜀𝜀 กลับลงไปในสมการ TPE ของแตละ 

เอลิเมนตรวมกับหลักการของการแปรผัน (Variational 

Principle) ซ่ึงกลาววา 𝛿𝛿𝛿𝛿Π = 0 เ ม่ือเทียบกับการ

เปลี่ยนแปลง 𝛿𝛿𝛿𝛿𝑢𝑢𝑢𝑢 ท่ีเกิดข้ึนเพียงเล็กนอย [18] จะได

สมการไฟไนทเอลิเมนตสุดทายในรูป 
 

             𝐾𝐾𝐾𝐾𝑢𝑢𝑢𝑢 = 𝐹𝐹𝐹𝐹     (8) 
 

เม่ือ 𝐾𝐾𝐾𝐾, 𝑢𝑢𝑢𝑢, 𝐹𝐹𝐹𝐹 คือสติฟเนสเมทริกซ เวคเตอร

การเปลี่ยนตําแหนงที่จุดตอและเวคเตอรของแรง

ภายในท่ีจุดตอในระบบโคออรดิเนตหลักตามลําดับ 
 

2.2 โดเมนสมํ่าเสมอทรงส่ีเหล่ียม (Quadrilateral 

Smoothing Domains) 

งานวิจัยในครั้งนี้  ใชการแบงโดเมนของท้ัง

ปญหาออกเปนเอลิเมนตยอยโดยใชเอลิเมนตทรง

สี่เหลี่ยม (Quadrilateral element) ดังแสดงในภาพ

ท่ี 4 เอลิเมนตหลักดังกลาวจะถูกนํามาแบงออกเปน

สวนยอยที่เรียกวาโดเมนสมํ่าเสมอ (smoothing 

domain, SD) ดวยการใชเอลิเมนตทรงสี่เหลี่ยมจํานวน 

3 เอลิเมนต จํานวนนอยท่ีสุดของโดเมนสมํ่าเสมอ

สําหรับปญหาของของแข็งใน 2 มิติซ่ึงเสนอโดย [19] 

มีคาเทากับ 2𝑛𝑛𝑛𝑛/3 เม่ือ 𝑛𝑛𝑛𝑛 คือจํานวนจุดตอท้ังหมด

ของปญหา การแบงโดเมนยอยสมํ่าเสมอนี้ สามารถ

ทําไดโดยทําการลากเสนเชื่อมตอระหวางก่ึงกลางดาน

ท้ังสองท่ีอยูตรงขามกันดังแสดงในภาพท่ี 4 
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ภาพท่ี 2 เง่ือนไขขอบของโดเมนของปญหา [17] 

 

วิธีการเปลี่ยนรูปของ Strong Form ไปเปน 

Weak Form นั้นสามารถทําได 2 แบบดวยกันคือ 

การใชหลักการของพลังงาน (Energy Methods) 

หรื อหลักการของการถ ว ง เศษน้ํ าหนักตกค า ง 

(Weighted Residual Methods) ในท่ีนี้จะขอกลาวถึง

การเปลี่ยนรูปสมการดวยวิธีแรก เริ่มจากการพิจารณา
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ตาขาย (Mesh) เรียกวาเอลิเมนตดังแสดงในภาพท่ี 3 

ใชสัญลักษณดวยตัวยกเปน 𝑒𝑒𝑒𝑒 เอลิเมนตดังกลาวใน 2 

มิติ อาจเปนเอลิเมนตสามเหลี่ยมหรือสี่เหลี่ยมก็ได 

สมการพลังงานศักยรวมท้ังหมดท่ีเปนฟงกชันนอล 

(ฟงกชันของฟงกชัน) ของเอลิเมนตสามารถเขียนได

ดังสมการท่ี 5 
 

 
 

ภาพท่ี 3 การแบงโดเมนออกเปนเอลิเมนตยอย [17] 
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ภายในท่ีจุดตอในระบบโคออรดิเนตหลักตามลําดับ 
 

2.2 โดเมนสมํ่าเสมอทรงส่ีเหล่ียม (Quadrilateral 

Smoothing Domains) 

งานวิจัยในครั้งนี้  ใชการแบงโดเมนของท้ัง

ปญหาออกเปนเอลิเมนตยอยโดยใชเอลิเมนตทรง

สี่เหลี่ยม (Quadrilateral element) ดังแสดงในภาพ

ท่ี 4 เอลิเมนตหลักดังกลาวจะถูกนํามาแบงออกเปน

สวนยอยที่เรียกวาโดเมนสมํ่าเสมอ (smoothing 

domain, SD) ดวยการใชเอลิเมนตทรงสี่เหลี่ยมจํานวน 

3 เอลิเมนต จํานวนนอยท่ีสุดของโดเมนสมํ่าเสมอ

สําหรับปญหาของของแข็งใน 2 มิติซ่ึงเสนอโดย [19] 

มีคาเทากับ 2𝑛𝑛𝑛𝑛/3 เม่ือ 𝑛𝑛𝑛𝑛 คือจํานวนจุดตอท้ังหมด

ของปญหา การแบงโดเมนยอยสมํ่าเสมอนี้ สามารถ

ทําไดโดยทําการลากเสนเชื่อมตอระหวางก่ึงกลางดาน

ท้ังสองท่ีอยูตรงขามกันดังแสดงในภาพท่ี 4 

 

 คือจำ�นวนจุดต่อทั้งหมด
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ภาพท่ี 2 เง่ือนไขขอบของโดเมนของปญหา [17] 

 

วิธีการเปลี่ยนรูปของ Strong Form ไปเปน 

Weak Form นั้นสามารถทําได 2 แบบดวยกันคือ 

การใชหลักการของพลังงาน (Energy Methods) 

หรื อหลักการของการถ ว ง เศษน้ํ าหนักตกค า ง 

(Weighted Residual Methods) ในท่ีนี้จะขอกลาวถึง

การเปลี่ยนรูปสมการดวยวิธีแรก เริ่มจากการพิจารณา

แบงโดเมนของปญหาออกเปนสวนเล็ก ๆ ดวยโครง

ตาขาย (Mesh) เรียกวาเอลิเมนตดังแสดงในภาพท่ี 3 

ใชสัญลักษณดวยตัวยกเปน 𝑒𝑒𝑒𝑒 เอลิเมนตดังกลาวใน 2 

มิติ อาจเปนเอลิเมนตสามเหลี่ยมหรือสี่เหลี่ยมก็ได 

สมการพลังงานศักยรวมท้ังหมดท่ีเปนฟงกชันนอล 

(ฟงกชันของฟงกชัน) ของเอลิเมนตสามารถเขียนได

ดังสมการท่ี 5 
 

 
 

ภาพท่ี 3 การแบงโดเมนออกเปนเอลิเมนตยอย [17] 
 
 

Π𝑒𝑒𝑒𝑒 = 𝑈𝑈𝑈𝑈𝑒𝑒𝑒𝑒 −𝑊𝑊𝑊𝑊𝑒𝑒𝑒𝑒  (5) 
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Functional (TPE) เม่ือพลังงานภายในท่ีเกิดข้ึนมาจาก
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เม่ือ 𝐾𝐾𝐾𝐾, 𝑢𝑢𝑢𝑢, 𝐹𝐹𝐹𝐹 คือสติฟเนสเมทริกซ เวคเตอร

การเปลี่ยนตําแหนงที่จุดตอและเวคเตอรของแรง

ภายในท่ีจุดตอในระบบโคออรดิเนตหลักตามลําดับ 
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domain, SD) ดวยการใชเอลิเมนตทรงสี่เหลี่ยมจํานวน 

3 เอลิเมนต จํานวนนอยท่ีสุดของโดเมนสมํ่าเสมอ

สําหรับปญหาของของแข็งใน 2 มิติซ่ึงเสนอโดย [19] 
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ท้ังสองท่ีอยูตรงขามกันดังแสดงในภาพท่ี 4 
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Functional (TPE) เมื่อพลงังานภายในทีเ่กดิขึน้มาจาก

พลังงานความเครียดภายในของวัตถุซึ่งมีสมการคือ

	

 
 

ภาพท่ี 2 เง่ือนไขขอบของโดเมนของปญหา [17] 

 

วิธีการเปลี่ยนรูปของ Strong Form ไปเปน 

Weak Form นั้นสามารถทําได 2 แบบดวยกันคือ 
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หรื อหลักการของการถ ว ง เศษน้ํ าหนักตกค า ง 

(Weighted Residual Methods) ในท่ีนี้จะขอกลาวถึง

การเปลี่ยนรูปสมการดวยวิธีแรก เริ่มจากการพิจารณา

แบงโดเมนของปญหาออกเปนสวนเล็ก ๆ ดวยโครง

ตาขาย (Mesh) เรียกวาเอลิเมนตดังแสดงในภาพท่ี 3 

ใชสัญลักษณดวยตัวยกเปน 𝑒𝑒𝑒𝑒 เอลิเมนตดังกลาวใน 2 

มิติ อาจเปนเอลิเมนตสามเหลี่ยมหรือสี่เหลี่ยมก็ได 

สมการพลังงานศักยรวมท้ังหมดท่ีเปนฟงกชันนอล 

(ฟงกชันของฟงกชัน) ของเอลิเมนตสามารถเขียนได

ดังสมการท่ี 5 
 

 
 

ภาพท่ี 3 การแบงโดเมนออกเปนเอลิเมนตยอย [17] 
 
 

Π𝑒𝑒𝑒𝑒 = 𝑈𝑈𝑈𝑈𝑒𝑒𝑒𝑒 −𝑊𝑊𝑊𝑊𝑒𝑒𝑒𝑒  (5) 

 

เรียกสมการนี้วา Total Potential Energy 

Functional (TPE) เม่ือพลังงานภายในท่ีเกิดข้ึนมาจาก
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การเปลี่ยนตําแหนงที่จุดตอและเวคเตอรของแรง
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(Weighted Residual Methods) ในท่ีนี้จะขอกลาวถึง

การเปลี่ยนรูปสมการดวยวิธีแรก เริ่มจากการพิจารณา

แบงโดเมนของปญหาออกเปนสวนเล็ก ๆ ดวยโครง

ตาขาย (Mesh) เรียกวาเอลิเมนตดังแสดงในภาพท่ี 3 

ใชสัญลักษณดวยตัวยกเปน 𝑒𝑒𝑒𝑒 เอลิเมนตดังกลาวใน 2 

มิติ อาจเปนเอลิเมนตสามเหลี่ยมหรือสี่เหลี่ยมก็ได 

สมการพลังงานศักยรวมท้ังหมดท่ีเปนฟงกชันนอล 

(ฟงกชันของฟงกชัน) ของเอลิเมนตสามารถเขียนได

ดังสมการท่ี 5 
 

 
 

ภาพท่ี 3 การแบงโดเมนออกเปนเอลิเมนตยอย [17] 
 
 

Π𝑒𝑒𝑒𝑒 = 𝑈𝑈𝑈𝑈𝑒𝑒𝑒𝑒 −𝑊𝑊𝑊𝑊𝑒𝑒𝑒𝑒  (5) 

 

เรียกสมการนี้วา Total Potential Energy 

Functional (TPE) เม่ือพลังงานภายในท่ีเกิดข้ึนมาจาก
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ภายในท่ีทราบคาแลวกับแรงภายนอกซ่ึงกระทํา
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เปลี่ยนแปลง 𝛿𝛿𝛿𝛿𝑢𝑢𝑢𝑢 ท่ีเกิดข้ึนเพียงเล็กนอย [18] จะได

สมการไฟไนทเอลิเมนตสุดทายในรูป 
 

             𝐾𝐾𝐾𝐾𝑢𝑢𝑢𝑢 = 𝐹𝐹𝐹𝐹     (8) 
 

เม่ือ 𝐾𝐾𝐾𝐾, 𝑢𝑢𝑢𝑢, 𝐹𝐹𝐹𝐹 คือสติฟเนสเมทริกซ เวคเตอร

การเปลี่ยนตําแหนงที่จุดตอและเวคเตอรของแรง

ภายในท่ีจุดตอในระบบโคออรดิเนตหลักตามลําดับ 
 

2.2 โดเมนสมํ่าเสมอทรงส่ีเหล่ียม (Quadrilateral 

Smoothing Domains) 

งานวิจัยในครั้งนี้  ใชการแบงโดเมนของท้ัง

ปญหาออกเปนเอลิเมนตยอยโดยใชเอลิเมนตทรง
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ท่ี 4 เอลิเมนตหลักดังกลาวจะถูกนํามาแบงออกเปน

สวนยอยที่เรียกวาโดเมนสมํ่าเสมอ (smoothing 

domain, SD) ดวยการใชเอลิเมนตทรงสี่เหลี่ยมจํานวน 

3 เอลิเมนต จํานวนนอยท่ีสุดของโดเมนสมํ่าเสมอ

สําหรับปญหาของของแข็งใน 2 มิติซ่ึงเสนอโดย [19] 

มีคาเทากับ 2𝑛𝑛𝑛𝑛/3 เม่ือ 𝑛𝑛𝑛𝑛 คือจํานวนจุดตอท้ังหมด

ของปญหา การแบงโดเมนยอยสมํ่าเสมอนี้ สามารถ

ทําไดโดยทําการลากเสนเชื่อมตอระหวางก่ึงกลางดาน

ท้ังสองท่ีอยูตรงขามกันดังแสดงในภาพท่ี 4 
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หลังจากการแทนคาดวย 𝑢𝑢𝑢𝑢 = ∑𝑁𝑁𝑁𝑁𝑢𝑢𝑢𝑢𝑒𝑒𝑒𝑒 , 𝜀𝜀𝜀𝜀 =

𝐵𝐵𝐵𝐵𝑢𝑢𝑢𝑢𝑒𝑒𝑒𝑒, 𝜎𝜎𝜎𝜎 = 𝐸𝐸𝐸𝐸𝜀𝜀𝜀𝜀 กลับลงไปในสมการ TPE ของแตละ 

เอลิเมนตรวมกับหลักการของการแปรผัน (Variational 

Principle) ซ่ึงกลาววา 𝛿𝛿𝛿𝛿Π = 0 เ ม่ือเทียบกับการ

เปลี่ยนแปลง 𝛿𝛿𝛿𝛿𝑢𝑢𝑢𝑢 ท่ีเกิดข้ึนเพียงเล็กนอย [18] จะได

สมการไฟไนทเอลิเมนตสุดทายในรูป 
 

             𝐾𝐾𝐾𝐾𝑢𝑢𝑢𝑢 = 𝐹𝐹𝐹𝐹     (8) 
 

เม่ือ 𝐾𝐾𝐾𝐾, 𝑢𝑢𝑢𝑢, 𝐹𝐹𝐹𝐹 คือสติฟเนสเมทริกซ เวคเตอร

การเปลี่ยนตําแหนงที่จุดตอและเวคเตอรของแรง

ภายในท่ีจุดตอในระบบโคออรดิเนตหลักตามลําดับ 
 

2.2 โดเมนสมํ่าเสมอทรงส่ีเหล่ียม (Quadrilateral 

Smoothing Domains) 

งานวิจัยในครั้งนี้  ใชการแบงโดเมนของท้ัง

ปญหาออกเปนเอลิเมนตยอยโดยใชเอลิเมนตทรง

สี่เหลี่ยม (Quadrilateral element) ดังแสดงในภาพ

ท่ี 4 เอลิเมนตหลักดังกลาวจะถูกนํามาแบงออกเปน

สวนยอยที่เรียกวาโดเมนสมํ่าเสมอ (smoothing 

domain, SD) ดวยการใชเอลิเมนตทรงสี่เหลี่ยมจํานวน 

3 เอลิเมนต จํานวนนอยท่ีสุดของโดเมนสมํ่าเสมอ

สําหรับปญหาของของแข็งใน 2 มิติซ่ึงเสนอโดย [19] 

มีคาเทากับ 2𝑛𝑛𝑛𝑛/3 เม่ือ 𝑛𝑛𝑛𝑛 คือจํานวนจุดตอท้ังหมด

ของปญหา การแบงโดเมนยอยสมํ่าเสมอนี้ สามารถ

ทําไดโดยทําการลากเสนเชื่อมตอระหวางก่ึงกลางดาน

ท้ังสองท่ีอยูตรงขามกันดังแสดงในภาพท่ี 4 

 

 ที่เกิดขึ้นเพียงเล็กน้อย 

[18] จะได้สมการไฟไนท์เอลิเมนต์สุดท้ายในรูป

ภาพท่ี 4 การแบ่งเอลิเมนต์ออกเป็น 3 โดเมนสม่ำ�เสมอ

	 	 	 เนื่องจากการเคลื่อนที่ปลายจุดต่อของ

ด้านที่อยู่บนโดเมนสม่ำ�เสมอนี้ ใช้การประมาณเป็น

แบบเชงิเสน้ เมทรกิซค์วามเครยีด-การเปลีย่นตำ�แหนง่

แบบสม่ำ�เสมอในระบบโคออร์ดิเนตหลัก ที่สามารถ

คำ�นวณได้ด้วยการใช้ค่าของฟังก์ชันรูปร่าง (Shape 

function) ของเกาส์ ณ จุดกึ่งกลางด้านเพียงจุดเดียว

โดยไม่จำ�เป็นต้องหาอนุพันธ์ของมัน ในทางปฏิบัติน้ัน

นยิมใชก้ารประมาณเชงิเสน้สำ�หรบัการหาคา่ของฟงักช์นั

รูปร่างดังกล่าว

 
 

ภาพท่ี 4 การแบงเอลิเมนตออกเปน 3 โดเมนสมํ่าเสมอ 
 

เนื่องจากการเคลื่อนท่ีปลายจุดตอของดานท่ี

อยูบนโดเมนสมํ่าเสมอนี้ใชการประมาณเปนแบบเชิง

เสน เมทริกซความเครียด-การเปลี่ยนตําแหนงแบบ

สมํ่าเสมอในระบบโคออรดิเนตหลัก ท่ีสามารถคํานวณ

ไดดวยการใชคาของฟงกชันรูปราง (Shape function) 

ของเกาส ณ จุดก่ึงกลางดานเพียงจุดเดียวโดยไม

จําเปนตองหาอนุพันธของมัน ในทางปฏิบัตินั้นนิยมใช

การประมาณเชิงเสนสําหรับการหาคาของฟงกชัน

รูปรางดังกลาว 
 

 
 

ภาพท่ี 5 ตําแหนงของจุดเกาส (Gauss Points) 
 

ภาพท่ี 5 วงกลมทึบ 1-2-3-4 แสดงตําแหนง

จุดตอของเอลิเมนตทรงสี่เหลี่ยมหลัก วงกลม 5-6-7-8 

แสดงตําแหนงของจุดตอของโดเมนยอยสมํ่าเสมอ 3 

โดเมนท่ีถูกสรางข้ึนมา วงกลมกากบาท g1-g10 แสดง

ตําแหนงจุดของเกาสท้ังหมด คาของฟงกชันรูปราง

สามารถหาไดโดยคาเฉลี่ยของฟงกชันรูปรางของจุด

ตอท้ังสองบนดานท่ีกําลังพิจารณา เชน 
 

 N1(5) มีคาเทากับ (N1(1) + N1(2)) 2⁄ =
(1 + 0)/2 = 0.5  

ในลั กษณะ เดี ย ว กัน  𝑁𝑁𝑁𝑁2(5) มี ค า เ ท า กั บ 
(𝑁𝑁𝑁𝑁2(1) + 𝑁𝑁𝑁𝑁2(2)) 2⁄ = (0 + 1 2⁄ ) = 0.5  

𝑁𝑁𝑁𝑁1(8) มีคาเทากับ    
(N1(1) + N1(2) + N1(3) + N1(4)) 4⁄ = 1/4   

คาของฟงกชันรูปราง 𝑁𝑁𝑁𝑁1(𝑔𝑔𝑔𝑔1) มีคาเทากับ 
(𝑁𝑁𝑁𝑁1(5) + 𝑁𝑁𝑁𝑁1(2)) 2⁄ = (0.5 + 0)/2 = 1/4   

ทํานองเดียวกัน คาฟงกชันรูปราง 𝑁𝑁𝑁𝑁2(𝑔𝑔𝑔𝑔1) มี

คาเทากับ (𝑁𝑁𝑁𝑁2(2) + 𝑁𝑁𝑁𝑁2(5)) 2⁄ = (1 + 0.5)/2 =

3/4 เปนตน 
 

2.3 สมการสมูทไฟไนทเอลิเมนต (Smoothed 

Finite Element Equation) 

จากหลักการของวิธีสมูทไฟไนทเอลิ เมนต

ท้ังหมดท่ีกลาวมาเบื้องตน สามารถเขียนเปนสมการ

ไดวา 

                            𝐾𝐾𝐾𝐾�𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑢𝑢𝑢𝑢� = 𝐹𝐹𝐹𝐹�      (9) 
 

สัญลักษณบารดานบนใชเพ่ือแสดงใหเห็นถึง

ความแตกตางกับสมการไฟไนทเอลิเมนตนั่นเอง ดังนั้น 

สติฟเนสเมทริกซสมํ่าเสมอในระบบโคออรดิเนตหลัก 

สามารถเขียนใหอยู ในรูปของผลรวมของสติฟเนส 

สมํ่าเสมอยอยไดเปน 
 

𝐾𝐾𝐾𝐾�𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = �𝐾𝐾𝐾𝐾�𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑒𝑒𝑒𝑒 = �𝐵𝐵𝐵𝐵�𝑇𝑇𝑇𝑇𝐷𝐷𝐷𝐷𝐵𝐵𝐵𝐵�𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠
𝑛𝑛𝑛𝑛Γ
𝑠𝑠𝑠𝑠

𝑘𝑘𝑘𝑘=1

 (10) 

 

เ มื ่อ  𝐵𝐵𝐵𝐵� ค ือ strain-displacement matrix 

ภายหลังการแกระบบสมการท่ี 9 ดวยวิธีการทาง

คณิตศาสตรท่ีเหมาะสม ก็สามารถหาคาการเปลี่ยน

ตําแหนงของปลายจุดตอที่ตองการไดและนําไปสู

การวิเคราะหเพ่ือหาคาความเคน ความเครียดภายใน

ชิ้นสวนไดตอไป 
 

2.4 การสรางสนามความเครียดสมํ่าเสมอ 

(Smoothed Strain Field Construction) 

ความแตกตางท่ีสําคัญระหวางวิธีไฟไนทเอลิเมนต

และสมูทไฟไนทเอลิเมนตอยูท่ีข้ันตอนของการสราง

สนามความเครียดแบบสมํ่าเสมอโดยอาศัยเทคนิคของ 

strain smoothing บนโดเมนสมํ่าเสมอท่ีอยูภายในทุก

เอลิเมนตนั่นเอง ซ่ึงไมมีข้ันตอนนี้ในวิธีไฟไนทเอลิเมนต

ปกติ ขั ้นตอนอื ่น ๆ นอกเหนือจากขั ้นตอนนี ้นัน้

เหมือนกับวิธีไฟไนทเอลิเมนตทุกประการ ทําให
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ภาพที่ 5 ตำ�แหน่งของจุดเกาส์ (Gauss Points)

	 	 	 ภาพที่ 5 วงกลมทึบ 1-2-3-4 แสดง

ตำ�แหน่งจุดต่อของเอลิเมนต์ทรงสี่เหลี่ยมหลัก วงกลม 

5-6-7-8 แสดงตำ�แหน่งของจุดต่อของโดเมนย่อย

สม่ำ�เสมอ 3 โดเมนที่ถูกสร้างขึ้นมา วงกลมกากบาท 

g1-g10 แสดงตำ�แหน่งจุดของเกาส์ท้ังหมด ค่าของ

ฟังก์ชันรูปร่างสามารถหาได้ โดยค่าเฉลี่ยของฟังก์ชัน

รูปร่างของจุดต่อทั้งสองบนด้านที่กำ�ลังพิจารณา เช่น

	 	 	 N
1
(5) มีค่าเท่ากับ (N

1
(1) + N

1
(2))/2

= (1 + 0)/2 = 0.5

	 	 	 ในลักษณะเดียวกัน N
2
(5) มีค่าเท่ากับ

(N
2
(1) + N

2
(2))/2 = (0 + 1/2) = 0.5

			   N
1
(8) มีค่าเท่ากับ (N

1
(1) + N

1
(2) +

(N
1
(3) + N

1
(4))/4 = 1/4

	 	 	 ค่าของฟังก์ชันรูปร่าง N
1
(g
1
) มีค่า

เท่ากับ (N
1
(5) + N

1
(2))/2 = (0.5 + 0)/2 = 1/4    

	 	 	 ทำ�นองเดียวกัน ค่าฟังก์ชันรูปร่าง

N
2
(g
1
) มีค่าเท่ากับ (N

2
(2) + N

2
(5))/2 = (1 + 0.5)/2 

= 3/4 เป็นต้น

	 	 2.3	 สมการสมทูไฟไนทเ์อลเิมนต ์(Smoothed 

Finite Element Equation)

	 	 	 จากหลักการของวิธีสมูทไฟไนท์เอลิเมนต์

ทั้งหมดที่กล่าวมาเบื้องต้น สามารถเขียนเป็นสมการ

ได้ว่า

	

 
 

ภาพท่ี 4 การแบงเอลิเมนตออกเปน 3 โดเมนสมํ่าเสมอ 
 

เนื่องจากการเคลื่อนท่ีปลายจุดตอของดานท่ี

อยูบนโดเมนสมํ่าเสมอนี้ใชการประมาณเปนแบบเชิง

เสน เมทริกซความเครียด-การเปลี่ยนตําแหนงแบบ

สมํ่าเสมอในระบบโคออรดิเนตหลัก ท่ีสามารถคํานวณ

ไดดวยการใชคาของฟงกชันรูปราง (Shape function) 

ของเกาส ณ จุดก่ึงกลางดานเพียงจุดเดียวโดยไม

จําเปนตองหาอนุพันธของมัน ในทางปฏิบัตินั้นนิยมใช

การประมาณเชิงเสนสําหรับการหาคาของฟงกชัน

รูปรางดังกลาว 
 

 
 

ภาพท่ี 5 ตําแหนงของจุดเกาส (Gauss Points) 
 

ภาพท่ี 5 วงกลมทึบ 1-2-3-4 แสดงตําแหนง

จุดตอของเอลิเมนตทรงสี่เหลี่ยมหลัก วงกลม 5-6-7-8 

แสดงตําแหนงของจุดตอของโดเมนยอยสมํ่าเสมอ 3 

โดเมนท่ีถูกสรางข้ึนมา วงกลมกากบาท g1-g10 แสดง

ตําแหนงจุดของเกาสท้ังหมด คาของฟงกชันรูปราง

สามารถหาไดโดยคาเฉลี่ยของฟงกชันรูปรางของจุด

ตอท้ังสองบนดานท่ีกําลังพิจารณา เชน 
 

 N1(5) มีคาเทากับ (N1(1) + N1(2)) 2⁄ =
(1 + 0)/2 = 0.5  

ในลั กษณะ เดี ย ว กัน  𝑁𝑁𝑁𝑁2(5) มี ค า เ ท า กั บ 
(𝑁𝑁𝑁𝑁2(1) + 𝑁𝑁𝑁𝑁2(2)) 2⁄ = (0 + 1 2⁄ ) = 0.5  

𝑁𝑁𝑁𝑁1(8) มีคาเทากับ    
(N1(1) + N1(2) + N1(3) + N1(4)) 4⁄ = 1/4   

คาของฟงกชันรูปราง 𝑁𝑁𝑁𝑁1(𝑔𝑔𝑔𝑔1) มีคาเทากับ 
(𝑁𝑁𝑁𝑁1(5) + 𝑁𝑁𝑁𝑁1(2)) 2⁄ = (0.5 + 0)/2 = 1/4   

ทํานองเดียวกัน คาฟงกชันรูปราง 𝑁𝑁𝑁𝑁2(𝑔𝑔𝑔𝑔1) มี

คาเทากับ (𝑁𝑁𝑁𝑁2(2) + 𝑁𝑁𝑁𝑁2(5)) 2⁄ = (1 + 0.5)/2 =

3/4 เปนตน 
 

2.3 สมการสมูทไฟไนทเอลิเมนต (Smoothed 

Finite Element Equation) 

จากหลักการของวิธีสมูทไฟไนทเอลิ เมนต

ท้ังหมดท่ีกลาวมาเบื้องตน สามารถเขียนเปนสมการ

ไดวา 

                            𝐾𝐾𝐾𝐾�𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑢𝑢𝑢𝑢� = 𝐹𝐹𝐹𝐹�      (9) 
 

สัญลักษณบารดานบนใชเพ่ือแสดงใหเห็นถึง

ความแตกตางกับสมการไฟไนทเอลิเมนตนั่นเอง ดังนั้น 

สติฟเนสเมทริกซสมํ่าเสมอในระบบโคออรดิเนตหลัก 

สามารถเขียนใหอยู ในรูปของผลรวมของสติฟเนส 

สมํ่าเสมอยอยไดเปน 
 

𝐾𝐾𝐾𝐾�𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = �𝐾𝐾𝐾𝐾�𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑒𝑒𝑒𝑒 = �𝐵𝐵𝐵𝐵�𝑇𝑇𝑇𝑇𝐷𝐷𝐷𝐷𝐵𝐵𝐵𝐵�𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠
𝑛𝑛𝑛𝑛Γ
𝑠𝑠𝑠𝑠

𝑘𝑘𝑘𝑘=1

 (10) 

 

เ มื ่อ  𝐵𝐵𝐵𝐵� ค ือ strain-displacement matrix 

ภายหลังการแกระบบสมการท่ี 9 ดวยวิธีการทาง

คณิตศาสตรท่ีเหมาะสม ก็สามารถหาคาการเปลี่ยน

ตําแหนงของปลายจุดตอที่ตองการไดและนําไปสู

การวิเคราะหเพ่ือหาคาความเคน ความเครียดภายใน

ชิ้นสวนไดตอไป 
 

2.4 การสรางสนามความเครียดสมํ่าเสมอ 

(Smoothed Strain Field Construction) 

ความแตกตางท่ีสําคัญระหวางวิธีไฟไนทเอลิเมนต

และสมูทไฟไนทเอลิเมนตอยูท่ีข้ันตอนของการสราง

สนามความเครียดแบบสมํ่าเสมอโดยอาศัยเทคนิคของ 

strain smoothing บนโดเมนสมํ่าเสมอท่ีอยูภายในทุก

เอลิเมนตนั่นเอง ซ่ึงไมมีข้ันตอนนี้ในวิธีไฟไนทเอลิเมนต

ปกติ ขั ้นตอนอื ่น ๆ นอกเหนือจากขั ้นตอนนี ้นัน้

เหมือนกับวิธีไฟไนทเอลิเมนตทุกประการ ทําให

	 (9)

	 	 	 สัญลักษณ์บาร์ด้านบนใช้เพื่อแสดง

ให้เห็นถึงความแตกต่างกับสมการไฟไนท์เอลิเมนต์

นั่นเอง ดังนั้น สติฟเนสเมทริกซ์สม่ำ�เสมอในระบบ

โคออรด์เินตหลกั สามารถเขยีนใหอ้ยู่ในรปูของผลรวม

ของสติฟเนส สม่ำ�เสมอย่อยได้เป็น

	

 
 

ภาพท่ี 4 การแบงเอลิเมนตออกเปน 3 โดเมนสมํ่าเสมอ 
 

เนื่องจากการเคลื่อนท่ีปลายจุดตอของดานท่ี

อยูบนโดเมนสมํ่าเสมอนี้ใชการประมาณเปนแบบเชิง

เสน เมทริกซความเครียด-การเปลี่ยนตําแหนงแบบ

สมํ่าเสมอในระบบโคออรดิเนตหลัก ท่ีสามารถคํานวณ

ไดดวยการใชคาของฟงกชันรูปราง (Shape function) 

ของเกาส ณ จุดก่ึงกลางดานเพียงจุดเดียวโดยไม

จําเปนตองหาอนุพันธของมัน ในทางปฏิบัตินั้นนิยมใช

การประมาณเชิงเสนสําหรับการหาคาของฟงกชัน

รูปรางดังกลาว 
 

 
 

ภาพท่ี 5 ตําแหนงของจุดเกาส (Gauss Points) 
 

ภาพท่ี 5 วงกลมทึบ 1-2-3-4 แสดงตําแหนง

จุดตอของเอลิเมนตทรงสี่เหลี่ยมหลัก วงกลม 5-6-7-8 

แสดงตําแหนงของจุดตอของโดเมนยอยสมํ่าเสมอ 3 

โดเมนท่ีถูกสรางข้ึนมา วงกลมกากบาท g1-g10 แสดง

ตําแหนงจุดของเกาสท้ังหมด คาของฟงกชันรูปราง

สามารถหาไดโดยคาเฉลี่ยของฟงกชันรูปรางของจุด

ตอท้ังสองบนดานท่ีกําลังพิจารณา เชน 
 

 N1(5) มีคาเทากับ (N1(1) + N1(2)) 2⁄ =
(1 + 0)/2 = 0.5  

ในลั กษณะ เดี ย ว กัน  𝑁𝑁𝑁𝑁2(5) มี ค า เ ท า กั บ 
(𝑁𝑁𝑁𝑁2(1) + 𝑁𝑁𝑁𝑁2(2)) 2⁄ = (0 + 1 2⁄ ) = 0.5  

𝑁𝑁𝑁𝑁1(8) มีคาเทากับ    
(N1(1) + N1(2) + N1(3) + N1(4)) 4⁄ = 1/4   

คาของฟงกชันรูปราง 𝑁𝑁𝑁𝑁1(𝑔𝑔𝑔𝑔1) มีคาเทากับ 
(𝑁𝑁𝑁𝑁1(5) + 𝑁𝑁𝑁𝑁1(2)) 2⁄ = (0.5 + 0)/2 = 1/4   

ทํานองเดียวกัน คาฟงกชันรูปราง 𝑁𝑁𝑁𝑁2(𝑔𝑔𝑔𝑔1) มี

คาเทากับ (𝑁𝑁𝑁𝑁2(2) + 𝑁𝑁𝑁𝑁2(5)) 2⁄ = (1 + 0.5)/2 =

3/4 เปนตน 
 

2.3 สมการสมูทไฟไนทเอลิเมนต (Smoothed 

Finite Element Equation) 

จากหลักการของวิธีสมูทไฟไนทเอลิ เมนต

ท้ังหมดท่ีกลาวมาเบื้องตน สามารถเขียนเปนสมการ

ไดวา 

                            𝐾𝐾𝐾𝐾�𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑢𝑢𝑢𝑢� = 𝐹𝐹𝐹𝐹�      (9) 
 

สัญลักษณบารดานบนใชเพ่ือแสดงใหเห็นถึง

ความแตกตางกับสมการไฟไนทเอลิเมนตนั่นเอง ดังนั้น 

สติฟเนสเมทริกซสมํ่าเสมอในระบบโคออรดิเนตหลัก 

สามารถเขียนใหอยู ในรูปของผลรวมของสติฟเนส 

สมํ่าเสมอยอยไดเปน 
 

𝐾𝐾𝐾𝐾�𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = �𝐾𝐾𝐾𝐾�𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑒𝑒𝑒𝑒 = �𝐵𝐵𝐵𝐵�𝑇𝑇𝑇𝑇𝐷𝐷𝐷𝐷𝐵𝐵𝐵𝐵�𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠
𝑛𝑛𝑛𝑛Γ
𝑠𝑠𝑠𝑠

𝑘𝑘𝑘𝑘=1

 (10) 

 

เ มื ่อ  𝐵𝐵𝐵𝐵� ค ือ strain-displacement matrix 

ภายหลังการแกระบบสมการท่ี 9 ดวยวิธีการทาง

คณิตศาสตรท่ีเหมาะสม ก็สามารถหาคาการเปลี่ยน

ตําแหนงของปลายจุดตอที่ตองการไดและนําไปสู

การวิเคราะหเพ่ือหาคาความเคน ความเครียดภายใน

ชิ้นสวนไดตอไป 
 

2.4 การสรางสนามความเครียดสมํ่าเสมอ 

(Smoothed Strain Field Construction) 

ความแตกตางท่ีสําคัญระหวางวิธีไฟไนทเอลิเมนต

และสมูทไฟไนทเอลิเมนตอยูท่ีข้ันตอนของการสราง

สนามความเครียดแบบสมํ่าเสมอโดยอาศัยเทคนิคของ 

strain smoothing บนโดเมนสมํ่าเสมอท่ีอยูภายในทุก

เอลิเมนตนั่นเอง ซ่ึงไมมีข้ันตอนนี้ในวิธีไฟไนทเอลิเมนต

ปกติ ขั ้นตอนอื ่น ๆ นอกเหนือจากขั ้นตอนนี ้นัน้

เหมือนกับวิธีไฟไนทเอลิเมนตทุกประการ ทําให

	(10)

			   เม่ือ 

 
 

ภาพท่ี 4 การแบงเอลิเมนตออกเปน 3 โดเมนสมํ่าเสมอ 
 

เนื่องจากการเคลื่อนท่ีปลายจุดตอของดานท่ี

อยูบนโดเมนสมํ่าเสมอนี้ใชการประมาณเปนแบบเชิง

เสน เมทริกซความเครียด-การเปลี่ยนตําแหนงแบบ

สมํ่าเสมอในระบบโคออรดิเนตหลัก ท่ีสามารถคํานวณ

ไดดวยการใชคาของฟงกชันรูปราง (Shape function) 

ของเกาส ณ จุดก่ึงกลางดานเพียงจุดเดียวโดยไม

จําเปนตองหาอนุพันธของมัน ในทางปฏิบัตินั้นนิยมใช

การประมาณเชิงเสนสําหรับการหาคาของฟงกชัน

รูปรางดังกลาว 
 

 
 

ภาพท่ี 5 ตําแหนงของจุดเกาส (Gauss Points) 
 

ภาพท่ี 5 วงกลมทึบ 1-2-3-4 แสดงตําแหนง

จุดตอของเอลิเมนตทรงสี่เหลี่ยมหลัก วงกลม 5-6-7-8 

แสดงตําแหนงของจุดตอของโดเมนยอยสมํ่าเสมอ 3 

โดเมนท่ีถูกสรางข้ึนมา วงกลมกากบาท g1-g10 แสดง

ตําแหนงจุดของเกาสท้ังหมด คาของฟงกชันรูปราง

สามารถหาไดโดยคาเฉลี่ยของฟงกชันรูปรางของจุด

ตอท้ังสองบนดานท่ีกําลังพิจารณา เชน 
 

 N1(5) มีคาเทากับ (N1(1) + N1(2)) 2⁄ =
(1 + 0)/2 = 0.5  

ในลั กษณะ เดี ย ว กัน  𝑁𝑁𝑁𝑁2(5) มี ค า เ ท า กั บ 
(𝑁𝑁𝑁𝑁2(1) + 𝑁𝑁𝑁𝑁2(2)) 2⁄ = (0 + 1 2⁄ ) = 0.5  

𝑁𝑁𝑁𝑁1(8) มีคาเทากับ    
(N1(1) + N1(2) + N1(3) + N1(4)) 4⁄ = 1/4   

คาของฟงกชันรูปราง 𝑁𝑁𝑁𝑁1(𝑔𝑔𝑔𝑔1) มีคาเทากับ 
(𝑁𝑁𝑁𝑁1(5) + 𝑁𝑁𝑁𝑁1(2)) 2⁄ = (0.5 + 0)/2 = 1/4   

ทํานองเดียวกัน คาฟงกชันรูปราง 𝑁𝑁𝑁𝑁2(𝑔𝑔𝑔𝑔1) มี

คาเทากับ (𝑁𝑁𝑁𝑁2(2) + 𝑁𝑁𝑁𝑁2(5)) 2⁄ = (1 + 0.5)/2 =

3/4 เปนตน 
 

2.3 สมการสมูทไฟไนทเอลิเมนต (Smoothed 

Finite Element Equation) 

จากหลักการของวิธีสมูทไฟไนทเอลิ เมนต

ท้ังหมดท่ีกลาวมาเบื้องตน สามารถเขียนเปนสมการ

ไดวา 

                            𝐾𝐾𝐾𝐾�𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑢𝑢𝑢𝑢� = 𝐹𝐹𝐹𝐹�      (9) 
 

สัญลักษณบารดานบนใชเพ่ือแสดงใหเห็นถึง

ความแตกตางกับสมการไฟไนทเอลิเมนตนั่นเอง ดังนั้น 

สติฟเนสเมทริกซสมํ่าเสมอในระบบโคออรดิเนตหลัก 

สามารถเขียนใหอยู ในรูปของผลรวมของสติฟเนส 

สมํ่าเสมอยอยไดเปน 
 

𝐾𝐾𝐾𝐾�𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = �𝐾𝐾𝐾𝐾�𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑒𝑒𝑒𝑒 = �𝐵𝐵𝐵𝐵�𝑇𝑇𝑇𝑇𝐷𝐷𝐷𝐷𝐵𝐵𝐵𝐵�𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠
𝑛𝑛𝑛𝑛Γ
𝑠𝑠𝑠𝑠

𝑘𝑘𝑘𝑘=1

 (10) 

 

เ มื ่อ  𝐵𝐵𝐵𝐵� ค ือ strain-displacement matrix 

ภายหลังการแกระบบสมการท่ี 9 ดวยวิธีการทาง

คณิตศาสตรท่ีเหมาะสม ก็สามารถหาคาการเปลี่ยน

ตําแหนงของปลายจุดตอที่ตองการไดและนําไปสู

การวิเคราะหเพ่ือหาคาความเคน ความเครียดภายใน

ชิ้นสวนไดตอไป 
 

2.4 การสรางสนามความเครียดสมํ่าเสมอ 

(Smoothed Strain Field Construction) 

ความแตกตางท่ีสําคัญระหวางวิธีไฟไนทเอลิเมนต

และสมูทไฟไนทเอลิเมนตอยูท่ีข้ันตอนของการสราง

สนามความเครียดแบบสมํ่าเสมอโดยอาศัยเทคนิคของ 

strain smoothing บนโดเมนสมํ่าเสมอท่ีอยูภายในทุก

เอลิเมนตนั่นเอง ซ่ึงไมมีข้ันตอนนี้ในวิธีไฟไนทเอลิเมนต

ปกติ ขั ้นตอนอื ่น ๆ นอกเหนือจากขั ้นตอนนี ้นัน้

เหมือนกับวิธีไฟไนทเอลิเมนตทุกประการ ทําให

 คือ strain-displacement

matrix ภายหลังการแก้ระบบสมการที่ 9 ด้วยวิธีการ

ทางคณิตศาสตร์ที่เหมาะสม ก็สามารถหาค่าการ

เปลี่ยนตำ�แหน่งของปลายจุดต่อที่ต้องการได้และ

นำ�ไปสู่การวิเคราะห์เพื่อหาค่าความเค้น ความเครียด

ภายในชิ้นส่วนได้ต่อไป

	 	 2.4	 การสร้างสนามความเครียดสม่ำ�เสมอ 

(Smoothed Strain Field Construction)

	 	 	 ความแตกต่างที่สำ�คัญระหว่างวิธี

ไฟไนท์เอลิเมนต์และสมูทไฟไนท์เอลิเมนต์อยู่ที่

ขัน้ตอนของการสรา้งสนามความเครยีดแบบสม่ำ�เสมอ

โดยอาศัยเทคนิคของ strain smoothing บนโดเมน

สม่ำ�เสมอที่อยู่ภายในทุกเอลิเมนต์นั่นเอง ซึ่งไม่มี

ขั้นตอนนี้ ในวิธีไฟไนท์เอลิเมนต์ปกติ ขั้นตอนอื่นๆ

นอกเหนอืจากขัน้ตอนนีน้ัน้เหมอืนกบัวธิไีฟไนทเ์อลเิมนต์

ทุกประการ ทำ�ให้สามารถใช้ประโยชน์จากโปรแกรม

ไฟไนท์เอลิเมนต์ ซึ่งมีใช้กันอย่างแพร่หลายทั้งส่วน

ที่เป็น open source และ commercial software

โดยไม่จำ�เป็นต้องสร้างขึ้นใหม่ทั้งหมด สนามหรือ

ตัวแปรความเครียดสม่ำ�เสมอนี้ สามารถสร้างขึ้น

ได้ด้วยการปรับปรุงตัวแปรสนามความเครียด

ที่ ได้จากวิธีไฟไนท์เอลิเมนต์ปกติโดยใช้ smoothing 

operation ขบวนการดังกล่าวเริ่มจากการสร้าง

โครงตาข่าย (Element mesh) แบบสามเหลี่ยมหรือ

สี่เหลี่ยมด้วยวิธีปกติเหมือนกับในวิธีไฟไนท์เอลิเมนต์

แล้วหาค่าของตัวแปรความเครียดในรูปของ

 
 

ภาพท่ี 4 การแบงเอลิเมนตออกเปน 3 โดเมนสมํ่าเสมอ 
 

เนื่องจากการเคลื่อนท่ีปลายจุดตอของดานท่ี

อยูบนโดเมนสมํ่าเสมอนี้ใชการประมาณเปนแบบเชิง

เสน เมทริกซความเครียด-การเปลี่ยนตําแหนงแบบ

สมํ่าเสมอในระบบโคออรดิเนตหลัก ท่ีสามารถคํานวณ

ไดดวยการใชคาของฟงกชันรูปราง (Shape function) 

ของเกาส ณ จุดก่ึงกลางดานเพียงจุดเดียวโดยไม

จําเปนตองหาอนุพันธของมัน ในทางปฏิบัตินั้นนิยมใช

การประมาณเชิงเสนสําหรับการหาคาของฟงกชัน

รูปรางดังกลาว 
 

 
 

ภาพท่ี 5 ตําแหนงของจุดเกาส (Gauss Points) 
 

ภาพท่ี 5 วงกลมทึบ 1-2-3-4 แสดงตําแหนง

จุดตอของเอลิเมนตทรงสี่เหลี่ยมหลัก วงกลม 5-6-7-8 

แสดงตําแหนงของจุดตอของโดเมนยอยสมํ่าเสมอ 3 

โดเมนท่ีถูกสรางข้ึนมา วงกลมกากบาท g1-g10 แสดง

ตําแหนงจุดของเกาสท้ังหมด คาของฟงกชันรูปราง

สามารถหาไดโดยคาเฉลี่ยของฟงกชันรูปรางของจุด

ตอท้ังสองบนดานท่ีกําลังพิจารณา เชน 
 

 N1(5) มีคาเทากับ (N1(1) + N1(2)) 2⁄ =
(1 + 0)/2 = 0.5  

ในลั กษณะ เดี ย ว กัน  𝑁𝑁𝑁𝑁2(5) มี ค า เ ท า กั บ 
(𝑁𝑁𝑁𝑁2(1) + 𝑁𝑁𝑁𝑁2(2)) 2⁄ = (0 + 1 2⁄ ) = 0.5  

𝑁𝑁𝑁𝑁1(8) มีคาเทากับ    
(N1(1) + N1(2) + N1(3) + N1(4)) 4⁄ = 1/4   

คาของฟงกชันรูปราง 𝑁𝑁𝑁𝑁1(𝑔𝑔𝑔𝑔1) มีคาเทากับ 
(𝑁𝑁𝑁𝑁1(5) + 𝑁𝑁𝑁𝑁1(2)) 2⁄ = (0.5 + 0)/2 = 1/4   

ทํานองเดียวกัน คาฟงกชันรูปราง 𝑁𝑁𝑁𝑁2(𝑔𝑔𝑔𝑔1) มี

คาเทากับ (𝑁𝑁𝑁𝑁2(2) + 𝑁𝑁𝑁𝑁2(5)) 2⁄ = (1 + 0.5)/2 =

3/4 เปนตน 
 

2.3 สมการสมูทไฟไนทเอลิเมนต (Smoothed 

Finite Element Equation) 

จากหลักการของวิธีสมูทไฟไนทเอลิ เมนต

ท้ังหมดท่ีกลาวมาเบื้องตน สามารถเขียนเปนสมการ

ไดวา 

                            𝐾𝐾𝐾𝐾�𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑢𝑢𝑢𝑢� = 𝐹𝐹𝐹𝐹�      (9) 
 

สัญลักษณบารดานบนใชเพ่ือแสดงใหเห็นถึง

ความแตกตางกับสมการไฟไนทเอลิเมนตนั่นเอง ดังนั้น 

สติฟเนสเมทริกซสมํ่าเสมอในระบบโคออรดิเนตหลัก 

สามารถเขียนใหอยู ในรูปของผลรวมของสติฟเนส 

สมํ่าเสมอยอยไดเปน 
 

𝐾𝐾𝐾𝐾�𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = �𝐾𝐾𝐾𝐾�𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑒𝑒𝑒𝑒 = �𝐵𝐵𝐵𝐵�𝑇𝑇𝑇𝑇𝐷𝐷𝐷𝐷𝐵𝐵𝐵𝐵�𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠
𝑛𝑛𝑛𝑛Γ
𝑠𝑠𝑠𝑠

𝑘𝑘𝑘𝑘=1

 (10) 

 

เ มื ่อ  𝐵𝐵𝐵𝐵� ค ือ strain-displacement matrix 

ภายหลังการแกระบบสมการท่ี 9 ดวยวิธีการทาง

คณิตศาสตรท่ีเหมาะสม ก็สามารถหาคาการเปลี่ยน

ตําแหนงของปลายจุดตอที่ตองการไดและนําไปสู

การวิเคราะหเพ่ือหาคาความเคน ความเครียดภายใน

ชิ้นสวนไดตอไป 
 

2.4 การสรางสนามความเครียดสมํ่าเสมอ 

(Smoothed Strain Field Construction) 

ความแตกตางท่ีสําคัญระหวางวิธีไฟไนทเอลิเมนต

และสมูทไฟไนทเอลิเมนตอยูท่ีข้ันตอนของการสราง

สนามความเครียดแบบสมํ่าเสมอโดยอาศัยเทคนิคของ 

strain smoothing บนโดเมนสมํ่าเสมอท่ีอยูภายในทุก

เอลิเมนตนั่นเอง ซ่ึงไมมีข้ันตอนนี้ในวิธีไฟไนทเอลิเมนต

ปกติ ขั ้นตอนอื ่น ๆ นอกเหนือจากขั ้นตอนนี ้นัน้

เหมือนกับวิธีไฟไนทเอลิเมนตทุกประการ ทําให



สมูทไฟไนท์เอลิเมนต์ด้วยการสร้างโดเมนสม่ำ�เสมอ 3 ส่วน
จากเอลิเมนต์ทรงสี่เหลี่ยม สำ�หรับปัญหาความเค้นในระนาบ 2 มิติ
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สามารถใชประโยชนจากโปรแกรมไฟไนทเอลิเมนต 

ซ่ึ ง มี ใช กันอย างแพรหลาย ท้ังส วน ท่ี เปน open 

source แ ล ะ  commercial software โ ด ย ไ ม

จําเปนตองสรางข้ึนใหมท้ังหมด สนามหรือตัวแปร

ความเครียดสมํ่าเสมอนี้ สามารถสรางข้ึนไดดวยการ

ปรับปรุงตัวแปรสนามความเครียดท่ีไดจากวิธีไฟไนท

เ อ ลิ เ ม น ต ป ก ติ โ ด ย ใ ช  smoothing operation 

ขบวนการดังกลาวเริ่มจากการสรางโครงตาขาย 

(Element mesh) แบบสามเหลี่ยมหรือสี่เหลี่ยมดวย

วิธีปกติเหมือนกับในวิธีไฟไนทเอลิเมนตแลวหาคาของ

ตัวแปรความเครียดในรูปของ 
 

𝜀𝜀𝜀𝜀̃ = 𝐷𝐷𝐷𝐷 ��𝑁𝑁𝑁𝑁𝐼𝐼𝐼𝐼(𝑥𝑥𝑥𝑥)𝑑̅𝑑𝑑𝑑𝐼𝐼𝐼𝐼

𝑁𝑁𝑁𝑁

𝐼𝐼𝐼𝐼=1

� = �𝐵𝐵𝐵𝐵�𝐼𝐼𝐼𝐼𝑑̅𝑑𝑑𝑑𝐼𝐼𝐼𝐼

𝑁𝑁𝑁𝑁

𝐼𝐼𝐼𝐼=1

= 𝐵𝐵𝐵𝐵�𝑑̅𝑑𝑑𝑑 (11) 

 

การคํานวณหาคาของตัวแปรความเครียด

สมํ่าเสมอ ε� ณ ตําแหนง 𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘 จะใชเทคนิคการประมาณ

ของคาอินทิเกรตของฟงกชัน [20] กลาวคือ 
 

𝜀𝜀𝜀𝜀(̅𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘) = � 𝐿𝐿𝐿𝐿 
Ω𝑘𝑘𝑘𝑘
𝑠𝑠𝑠𝑠

𝑢𝑢𝑢𝑢�(𝑥𝑥𝑥𝑥)𝑊𝑊𝑊𝑊(𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘 − 𝑥𝑥𝑥𝑥)𝑑𝑑𝑑𝑑Ω    (12) 

 

เม่ือ Ω𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠   คือโดเมนสมํ่าเสมอสําหรับตําแหนง 

𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘 และ 𝑊𝑊𝑊𝑊(𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘 − 𝑥𝑥𝑥𝑥) คือฟงกชันน้ําหนักท่ีสัมพันธ

กับคา ณ ตําแหนงดังกลาว ตัวแปรความเครียดท่ีอยู

ภายในโดเมนสมํ่าเสมอนี้จะถูกคํานวณจากการกระจาย

ตัวแปรความเครียดในสมการท่ี 11 ตลอดท่ัวท้ังโดเมน

 Ω𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠  และถูกสมมติใหมีคาคงท่ี ฟงกชันน้ําหนักท่ีใชนั้น 

มีความสําคัญกับการทําใหตัวแปรความเครียดท่ีได

จากวิธีไฟไนทเอลิเมนตเกิดการกระจายตัวอยาง

สมํ่าเสมอตลอดท่ัวท้ังโดเมน ซ่ึงจะตองมีคุณสมบัติ

ดังตอไปนี้ [9] (1) คาของมันจะตองไมเปนศูนยและ

ตองมีคาเปนบวกภายในโดเมนสมํ่าเสมอท่ีพิจารณา 

(2) ตองมีศูนยกลางอยูท่ีตําแหนง 𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘 (3) ตองเปนไป

ตามเง่ือนไขของคุณสมบัติการมีคาเปน 1 (Unity 

property) เพ่ือความงายของการคํานวณโดยท่ียังคง

สอดคลองตามเง่ือนไขดังกลาวขางตน งานวิจัยนี้จะ

กําหนดใหใช Heaviside step function ซ่ึงเปนฟงกชัน

น้ําหนักอยางงายและแสดงไดดังสมการท่ี 13 
 

𝑊𝑊𝑊𝑊(𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘 − 𝑥𝑥𝑥𝑥) = �
1
𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠

 ,       𝑥𝑥𝑥𝑥 ∈ 𝛺𝛺𝛺𝛺𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠

0,          𝑥𝑥𝑥𝑥 ∉ 𝛺𝛺𝛺𝛺𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠
        (13) 

 

เม่ือ 𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠  คือพ้ืนท่ีของโดเมนสมํ่าเสมอท่ีกําลัง

พิจารณาอยู 

ในกรณีท่ัวไป การเปลี่ยนจากตัวแปรความเครียด

ซ่ึงอาจไมสามารถหาไดงาย มาเปนตัวแปรของการเปลีย่น

ตําแหนงซ่ึงหาไดงายกวานั้น เปนสิ่งท่ีหลีกเลี่ยงไมได 

นอกเหนือไปจากนั้น การท่ีตัวแปรของการเปลี่ยน

ตําแหนงถูกสมมติใหมีความตอเนื่องตลอดบนขอบเขต

ของโดเมนสมํ่าเสมอ ทําใหสามารถเปลี่ยนรูปของ

สมการ ท่ี  12 โ ด ย ใ ช ก า ร อิ น ทิ เ ก ร ต ที ล ะ ส ว น 

(Integration by part) กลายเปน 
 

𝜀𝜀𝜀𝜀(̅𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘) =  
1
𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠

 � 𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥)
Γ𝑘𝑘𝑘𝑘
𝑠𝑠𝑠𝑠

𝑢𝑢𝑢𝑢�(𝑥𝑥𝑥𝑥)𝑑𝑑𝑑𝑑Γ   (14) 

 

เ ม่ือ 𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥) คือเวกเตอรองคประกอบของ

เวกเตอรหนึ่งหนวยท้ังสองทิศทางท่ีพุงออกจากดาน

หรือขอบเขตของโดเมนสมํ่าเสมอนั่นเอง 
 

𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥) = �
𝑛𝑛𝑛𝑛𝑥𝑥𝑥𝑥 0
0 𝑛𝑛𝑛𝑛𝑦𝑦𝑦𝑦
𝑛𝑛𝑛𝑛𝑦𝑦𝑦𝑦 𝑛𝑛𝑛𝑛𝑥𝑥𝑥𝑥

� (15) 

 

สติฟเนสเมทริกซสมํ่าเสมอในระบบโคออรดิเนต

หลักในสมการที่ 10 นั้น ขึ้นอยูกับคาของ strain-

displacement matrix 𝐵𝐵𝐵𝐵� ห า ก ทํา ก า ร แ ท นค า 

𝑢𝑢𝑢𝑢�(𝑥𝑥𝑥𝑥) = ∑𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖𝑢𝑢𝑢𝑢�𝑖𝑖𝑖𝑖 ลงในสมการท่ี 14 แลวจัดรูปสมการ

ใหมจะไดวา 
 

𝜀𝜀𝜀𝜀(̅𝑥𝑥𝑥𝑥) = 𝐵𝐵𝐵𝐵�(𝑥𝑥𝑥𝑥)𝑢𝑢𝑢𝑢�(𝑥𝑥𝑥𝑥) ⇒ 𝐵𝐵𝐵𝐵�(𝑥𝑥𝑥𝑥)

=  
1
𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠

 � 𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥)
Γ𝑘𝑘𝑘𝑘
𝑠𝑠𝑠𝑠

𝑁𝑁𝑁𝑁(𝑥𝑥𝑥𝑥) 𝑑𝑑𝑑𝑑Γ = �
𝑏𝑏𝑏𝑏�𝑥𝑥𝑥𝑥 0
0 𝑏𝑏𝑏𝑏�𝑦𝑦𝑦𝑦
𝑏𝑏𝑏𝑏�𝑦𝑦𝑦𝑦 𝑏𝑏𝑏𝑏�𝑥𝑥𝑥𝑥

�      (16) 

 

 

	(11)

			   การคำ�นวณหาคา่ของตัวแปรความเครียด

สม่ำ�เสมอ 

สามารถใชประโยชนจากโปรแกรมไฟไนทเอลิเมนต 

ซ่ึ ง มี ใช กันอย างแพรหลาย ท้ังส วน ท่ี เปน open 

source แ ล ะ  commercial software โ ด ย ไ ม

จําเปนตองสรางข้ึนใหมท้ังหมด สนามหรือตัวแปร

ความเครียดสมํ่าเสมอนี้ สามารถสรางข้ึนไดดวยการ

ปรับปรุงตัวแปรสนามความเครียดท่ีไดจากวิธีไฟไนท

เ อ ลิ เ ม น ต ป ก ติ โ ด ย ใ ช  smoothing operation 

ขบวนการดังกลาวเริ่มจากการสรางโครงตาขาย 

(Element mesh) แบบสามเหลี่ยมหรือสี่เหลี่ยมดวย

วิธีปกติเหมือนกับในวิธีไฟไนทเอลิเมนตแลวหาคาของ

ตัวแปรความเครียดในรูปของ 
 

𝜀𝜀𝜀𝜀̃ = 𝐷𝐷𝐷𝐷 ��𝑁𝑁𝑁𝑁𝐼𝐼𝐼𝐼(𝑥𝑥𝑥𝑥)𝑑̅𝑑𝑑𝑑𝐼𝐼𝐼𝐼

𝑁𝑁𝑁𝑁

𝐼𝐼𝐼𝐼=1

� = �𝐵𝐵𝐵𝐵�𝐼𝐼𝐼𝐼𝑑̅𝑑𝑑𝑑𝐼𝐼𝐼𝐼

𝑁𝑁𝑁𝑁

𝐼𝐼𝐼𝐼=1

= 𝐵𝐵𝐵𝐵�𝑑̅𝑑𝑑𝑑 (11) 

 

การคํานวณหาคาของตัวแปรความเครียด

สมํ่าเสมอ ε� ณ ตําแหนง 𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘 จะใชเทคนิคการประมาณ

ของคาอินทิเกรตของฟงกชัน [20] กลาวคือ 
 

𝜀𝜀𝜀𝜀(̅𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘) = � 𝐿𝐿𝐿𝐿 
Ω𝑘𝑘𝑘𝑘
𝑠𝑠𝑠𝑠

𝑢𝑢𝑢𝑢�(𝑥𝑥𝑥𝑥)𝑊𝑊𝑊𝑊(𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘 − 𝑥𝑥𝑥𝑥)𝑑𝑑𝑑𝑑Ω    (12) 

 

เม่ือ Ω𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠   คือโดเมนสมํ่าเสมอสําหรับตําแหนง 

𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘 และ 𝑊𝑊𝑊𝑊(𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘 − 𝑥𝑥𝑥𝑥) คือฟงกชันน้ําหนักท่ีสัมพันธ

กับคา ณ ตําแหนงดังกลาว ตัวแปรความเครียดท่ีอยู

ภายในโดเมนสมํ่าเสมอนี้จะถูกคํานวณจากการกระจาย

ตัวแปรความเครียดในสมการท่ี 11 ตลอดท่ัวท้ังโดเมน

 Ω𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠  และถูกสมมติใหมีคาคงท่ี ฟงกชันน้ําหนักท่ีใชนั้น 

มีความสําคัญกับการทําใหตัวแปรความเครียดท่ีได

จากวิธีไฟไนทเอลิเมนตเกิดการกระจายตัวอยาง

สมํ่าเสมอตลอดท่ัวท้ังโดเมน ซ่ึงจะตองมีคุณสมบัติ

ดังตอไปนี้ [9] (1) คาของมันจะตองไมเปนศูนยและ

ตองมีคาเปนบวกภายในโดเมนสมํ่าเสมอท่ีพิจารณา 

(2) ตองมีศูนยกลางอยูท่ีตําแหนง 𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘 (3) ตองเปนไป

ตามเง่ือนไขของคุณสมบัติการมีคาเปน 1 (Unity 

property) เพ่ือความงายของการคํานวณโดยท่ียังคง

สอดคลองตามเง่ือนไขดังกลาวขางตน งานวิจัยนี้จะ

กําหนดใหใช Heaviside step function ซ่ึงเปนฟงกชัน

น้ําหนักอยางงายและแสดงไดดังสมการท่ี 13 
 

𝑊𝑊𝑊𝑊(𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘 − 𝑥𝑥𝑥𝑥) = �
1
𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠

 ,       𝑥𝑥𝑥𝑥 ∈ 𝛺𝛺𝛺𝛺𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠

0,          𝑥𝑥𝑥𝑥 ∉ 𝛺𝛺𝛺𝛺𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠
        (13) 

 

เม่ือ 𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠  คือพ้ืนท่ีของโดเมนสมํ่าเสมอท่ีกําลัง

พิจารณาอยู 

ในกรณีท่ัวไป การเปลี่ยนจากตัวแปรความเครียด

ซ่ึงอาจไมสามารถหาไดงาย มาเปนตัวแปรของการเปลีย่น

ตําแหนงซ่ึงหาไดงายกวานั้น เปนสิ่งท่ีหลีกเลี่ยงไมได 

นอกเหนือไปจากนั้น การท่ีตัวแปรของการเปลี่ยน

ตําแหนงถูกสมมติใหมีความตอเนื่องตลอดบนขอบเขต

ของโดเมนสมํ่าเสมอ ทําใหสามารถเปลี่ยนรูปของ

สมการ ท่ี  12 โ ด ย ใ ช ก า ร อิ น ทิ เ ก รต ที ล ะ ส ว น 

(Integration by part) กลายเปน 
 

𝜀𝜀𝜀𝜀(̅𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘) =  
1
𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠

 � 𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥)
Γ𝑘𝑘𝑘𝑘
𝑠𝑠𝑠𝑠

𝑢𝑢𝑢𝑢�(𝑥𝑥𝑥𝑥)𝑑𝑑𝑑𝑑Γ   (14) 

 

เ ม่ือ 𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥) คือเวกเตอรองคประกอบของ

เวกเตอรหนึ่งหนวยท้ังสองทิศทางท่ีพุงออกจากดาน

หรือขอบเขตของโดเมนสมํ่าเสมอนั่นเอง 
 

𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥) = �
𝑛𝑛𝑛𝑛𝑥𝑥𝑥𝑥 0
0 𝑛𝑛𝑛𝑛𝑦𝑦𝑦𝑦
𝑛𝑛𝑛𝑛𝑦𝑦𝑦𝑦 𝑛𝑛𝑛𝑛𝑥𝑥𝑥𝑥

� (15) 

 

สติฟเนสเมทริกซสมํ่าเสมอในระบบโคออรดิเนต

หลักในสมการที่ 10 นั้น ขึ้นอยูกับคาของ strain-

displacement matrix 𝐵𝐵𝐵𝐵� ห า ก ทํา ก า ร แ ท นค า 

𝑢𝑢𝑢𝑢�(𝑥𝑥𝑥𝑥) = ∑𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖𝑢𝑢𝑢𝑢�𝑖𝑖𝑖𝑖 ลงในสมการท่ี 14 แลวจัดรูปสมการ

ใหมจะไดวา 
 

𝜀𝜀𝜀𝜀(̅𝑥𝑥𝑥𝑥) = 𝐵𝐵𝐵𝐵�(𝑥𝑥𝑥𝑥)𝑢𝑢𝑢𝑢�(𝑥𝑥𝑥𝑥) ⇒ 𝐵𝐵𝐵𝐵�(𝑥𝑥𝑥𝑥)

=  
1
𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠

 � 𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥)
Γ𝑘𝑘𝑘𝑘
𝑠𝑠𝑠𝑠

𝑁𝑁𝑁𝑁(𝑥𝑥𝑥𝑥) 𝑑𝑑𝑑𝑑Γ = �
𝑏𝑏𝑏𝑏�𝑥𝑥𝑥𝑥 0
0 𝑏𝑏𝑏𝑏�𝑦𝑦𝑦𝑦
𝑏𝑏𝑏𝑏�𝑦𝑦𝑦𝑦 𝑏𝑏𝑏𝑏�𝑥𝑥𝑥𝑥

�      (16) 

 

 

 ณ ตำ�แหนง่ 

สามารถใชประโยชนจากโปรแกรมไฟไนทเอลิเมนต 

ซ่ึ ง มี ใช กันอย างแพรหลาย ท้ังส วน ท่ี เปน open 

source แ ล ะ  commercial software โ ด ย ไ ม

จําเปนตองสรางข้ึนใหมท้ังหมด สนามหรือตัวแปร

ความเครียดสมํ่าเสมอนี้ สามารถสรางข้ึนไดดวยการ

ปรับปรุงตัวแปรสนามความเครียดท่ีไดจากวิธีไฟไนท

เ อ ลิ เ ม น ต ป ก ติ โ ด ย ใ ช  smoothing operation 

ขบวนการดังกลาวเริ่มจากการสรางโครงตาขาย 

(Element mesh) แบบสามเหลี่ยมหรือสี่เหลี่ยมดวย

วิธีปกติเหมือนกับในวิธีไฟไนทเอลิเมนตแลวหาคาของ

ตัวแปรความเครียดในรูปของ 
 

𝜀𝜀𝜀𝜀̃ = 𝐷𝐷𝐷𝐷 ��𝑁𝑁𝑁𝑁𝐼𝐼𝐼𝐼(𝑥𝑥𝑥𝑥)𝑑̅𝑑𝑑𝑑𝐼𝐼𝐼𝐼

𝑁𝑁𝑁𝑁

𝐼𝐼𝐼𝐼=1

� = �𝐵𝐵𝐵𝐵�𝐼𝐼𝐼𝐼𝑑̅𝑑𝑑𝑑𝐼𝐼𝐼𝐼

𝑁𝑁𝑁𝑁

𝐼𝐼𝐼𝐼=1

= 𝐵𝐵𝐵𝐵�𝑑̅𝑑𝑑𝑑 (11) 

 

การคํานวณหาคาของตัวแปรความเครียด

สมํ่าเสมอ ε� ณ ตําแหนง 𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘 จะใชเทคนิคการประมาณ

ของคาอินทิเกรตของฟงกชัน [20] กลาวคือ 
 

𝜀𝜀𝜀𝜀(̅𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘) = � 𝐿𝐿𝐿𝐿 
Ω𝑘𝑘𝑘𝑘
𝑠𝑠𝑠𝑠

𝑢𝑢𝑢𝑢�(𝑥𝑥𝑥𝑥)𝑊𝑊𝑊𝑊(𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘 − 𝑥𝑥𝑥𝑥)𝑑𝑑𝑑𝑑Ω    (12) 

 

เม่ือ Ω𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠   คือโดเมนสมํ่าเสมอสําหรับตําแหนง 

𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘 และ 𝑊𝑊𝑊𝑊(𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘 − 𝑥𝑥𝑥𝑥) คือฟงกชันน้ําหนักท่ีสัมพันธ

กับคา ณ ตําแหนงดังกลาว ตัวแปรความเครียดท่ีอยู

ภายในโดเมนสมํ่าเสมอนี้จะถูกคํานวณจากการกระจาย

ตัวแปรความเครียดในสมการท่ี 11 ตลอดท่ัวท้ังโดเมน

 Ω𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠  และถูกสมมติใหมีคาคงท่ี ฟงกชันน้ําหนักท่ีใชนั้น 

มีความสําคัญกับการทําใหตัวแปรความเครียดท่ีได

จากวิธีไฟไนทเอลิเมนตเกิดการกระจายตัวอยาง

สมํ่าเสมอตลอดท่ัวท้ังโดเมน ซ่ึงจะตองมีคุณสมบัติ

ดังตอไปนี้ [9] (1) คาของมันจะตองไมเปนศูนยและ

ตองมีคาเปนบวกภายในโดเมนสมํ่าเสมอท่ีพิจารณา 

(2) ตองมีศูนยกลางอยูท่ีตําแหนง 𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘 (3) ตองเปนไป

ตามเง่ือนไขของคุณสมบัติการมีคาเปน 1 (Unity 

property) เพ่ือความงายของการคํานวณโดยท่ียังคง

สอดคลองตามเง่ือนไขดังกลาวขางตน งานวิจัยนี้จะ

กําหนดใหใช Heaviside step function ซ่ึงเปนฟงกชัน

น้ําหนักอยางงายและแสดงไดดังสมการท่ี 13 
 

𝑊𝑊𝑊𝑊(𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘 − 𝑥𝑥𝑥𝑥) = �
1
𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠

 ,       𝑥𝑥𝑥𝑥 ∈ 𝛺𝛺𝛺𝛺𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠

0,          𝑥𝑥𝑥𝑥 ∉ 𝛺𝛺𝛺𝛺𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠
        (13) 

 

เม่ือ 𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠  คือพ้ืนท่ีของโดเมนสมํ่าเสมอท่ีกําลัง

พิจารณาอยู 

ในกรณีท่ัวไป การเปลี่ยนจากตัวแปรความเครียด

ซ่ึงอาจไมสามารถหาไดงาย มาเปนตัวแปรของการเปลีย่น

ตําแหนงซ่ึงหาไดงายกวานั้น เปนสิ่งท่ีหลีกเลี่ยงไมได 

นอกเหนือไปจากนั้น การท่ีตัวแปรของการเปลี่ยน

ตําแหนงถูกสมมติใหมีความตอเนื่องตลอดบนขอบเขต

ของโดเมนสมํ่าเสมอ ทําใหสามารถเปลี่ยนรูปของ

สมการ ท่ี  12 โ ด ย ใ ช ก า ร อิ น ทิ เ ก รต ที ล ะ ส ว น 

(Integration by part) กลายเปน 
 

𝜀𝜀𝜀𝜀(̅𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘) =  
1
𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠

 � 𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥)
Γ𝑘𝑘𝑘𝑘
𝑠𝑠𝑠𝑠

𝑢𝑢𝑢𝑢�(𝑥𝑥𝑥𝑥)𝑑𝑑𝑑𝑑Γ   (14) 

 

เ ม่ือ 𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥) คือเวกเตอรองคประกอบของ

เวกเตอรหนึ่งหนวยท้ังสองทิศทางท่ีพุงออกจากดาน

หรือขอบเขตของโดเมนสมํ่าเสมอนั่นเอง 
 

𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥) = �
𝑛𝑛𝑛𝑛𝑥𝑥𝑥𝑥 0
0 𝑛𝑛𝑛𝑛𝑦𝑦𝑦𝑦
𝑛𝑛𝑛𝑛𝑦𝑦𝑦𝑦 𝑛𝑛𝑛𝑛𝑥𝑥𝑥𝑥

� (15) 

 

สติฟเนสเมทริกซสมํ่าเสมอในระบบโคออรดิเนต

หลักในสมการที่ 10 นั้น ขึ้นอยูกับคาของ strain-

displacement matrix 𝐵𝐵𝐵𝐵� ห า ก ทํา ก า ร แ ท นค า 

𝑢𝑢𝑢𝑢�(𝑥𝑥𝑥𝑥) = ∑𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖𝑢𝑢𝑢𝑢�𝑖𝑖𝑖𝑖 ลงในสมการท่ี 14 แลวจัดรูปสมการ

ใหมจะไดวา 
 

𝜀𝜀𝜀𝜀(̅𝑥𝑥𝑥𝑥) = 𝐵𝐵𝐵𝐵�(𝑥𝑥𝑥𝑥)𝑢𝑢𝑢𝑢�(𝑥𝑥𝑥𝑥) ⇒ 𝐵𝐵𝐵𝐵�(𝑥𝑥𝑥𝑥)

=  
1
𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠

 � 𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥)
Γ𝑘𝑘𝑘𝑘
𝑠𝑠𝑠𝑠

𝑁𝑁𝑁𝑁(𝑥𝑥𝑥𝑥) 𝑑𝑑𝑑𝑑Γ = �
𝑏𝑏𝑏𝑏�𝑥𝑥𝑥𝑥 0
0 𝑏𝑏𝑏𝑏�𝑦𝑦𝑦𝑦
𝑏𝑏𝑏𝑏�𝑦𝑦𝑦𝑦 𝑏𝑏𝑏𝑏�𝑥𝑥𝑥𝑥

�      (16) 

 

 

 จะใชเ้ทคนคิการประมาณ

ของค่าอินทิเกรตของฟังก์ชัน [20] กล่าวคือ

	

สามารถใชประโยชนจากโปรแกรมไฟไนทเอลิเมนต 

ซ่ึ ง มี ใช กันอย างแพรหลาย ท้ังส วน ท่ี เปน open 

source แ ล ะ  commercial software โ ด ย ไ ม

จําเปนตองสรางข้ึนใหมท้ังหมด สนามหรือตัวแปร

ความเครียดสมํ่าเสมอนี้ สามารถสรางข้ึนไดดวยการ

ปรับปรุงตัวแปรสนามความเครียดท่ีไดจากวิธีไฟไนท

เ อ ลิ เ ม น ต ป ก ติ โ ด ย ใ ช  smoothing operation 

ขบวนการดังกลาวเริ่มจากการสรางโครงตาขาย 

(Element mesh) แบบสามเหลี่ยมหรือสี่เหลี่ยมดวย

วิธีปกติเหมือนกับในวิธีไฟไนทเอลิเมนตแลวหาคาของ

ตัวแปรความเครียดในรูปของ 
 

𝜀𝜀𝜀𝜀̃ = 𝐷𝐷𝐷𝐷 ��𝑁𝑁𝑁𝑁𝐼𝐼𝐼𝐼(𝑥𝑥𝑥𝑥)𝑑̅𝑑𝑑𝑑𝐼𝐼𝐼𝐼

𝑁𝑁𝑁𝑁

𝐼𝐼𝐼𝐼=1

� = �𝐵𝐵𝐵𝐵�𝐼𝐼𝐼𝐼𝑑̅𝑑𝑑𝑑𝐼𝐼𝐼𝐼

𝑁𝑁𝑁𝑁

𝐼𝐼𝐼𝐼=1

= 𝐵𝐵𝐵𝐵�𝑑̅𝑑𝑑𝑑 (11) 

 

การคํานวณหาคาของตัวแปรความเครียด

สมํ่าเสมอ ε� ณ ตําแหนง 𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘 จะใชเทคนิคการประมาณ

ของคาอินทิเกรตของฟงกชัน [20] กลาวคือ 
 

𝜀𝜀𝜀𝜀(̅𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘) = � 𝐿𝐿𝐿𝐿 
Ω𝑘𝑘𝑘𝑘
𝑠𝑠𝑠𝑠

𝑢𝑢𝑢𝑢�(𝑥𝑥𝑥𝑥)𝑊𝑊𝑊𝑊(𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘 − 𝑥𝑥𝑥𝑥)𝑑𝑑𝑑𝑑Ω    (12) 

 

เม่ือ Ω𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠   คือโดเมนสมํ่าเสมอสําหรับตําแหนง 

𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘 และ 𝑊𝑊𝑊𝑊(𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘 − 𝑥𝑥𝑥𝑥) คือฟงกชันน้ําหนักท่ีสัมพันธ

กับคา ณ ตําแหนงดังกลาว ตัวแปรความเครียดท่ีอยู

ภายในโดเมนสมํ่าเสมอนี้จะถูกคํานวณจากการกระจาย

ตัวแปรความเครียดในสมการท่ี 11 ตลอดท่ัวท้ังโดเมน

 Ω𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠  และถูกสมมติใหมีคาคงท่ี ฟงกชันน้ําหนักท่ีใชนั้น 

มีความสําคัญกับการทําใหตัวแปรความเครียดท่ีได

จากวิธีไฟไนทเอลิเมนตเกิดการกระจายตัวอยาง

สมํ่าเสมอตลอดท่ัวท้ังโดเมน ซ่ึงจะตองมีคุณสมบัติ

ดังตอไปนี้ [9] (1) คาของมันจะตองไมเปนศูนยและ

ตองมีคาเปนบวกภายในโดเมนสมํ่าเสมอท่ีพิจารณา 

(2) ตองมีศูนยกลางอยูท่ีตําแหนง 𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘 (3) ตองเปนไป

ตามเง่ือนไขของคุณสมบัติการมีคาเปน 1 (Unity 

property) เพ่ือความงายของการคํานวณโดยท่ียังคง

สอดคลองตามเง่ือนไขดังกลาวขางตน งานวิจัยนี้จะ

กําหนดใหใช Heaviside step function ซ่ึงเปนฟงกชัน

น้ําหนักอยางงายและแสดงไดดังสมการท่ี 13 
 

𝑊𝑊𝑊𝑊(𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘 − 𝑥𝑥𝑥𝑥) = �
1
𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠

 ,       𝑥𝑥𝑥𝑥 ∈ 𝛺𝛺𝛺𝛺𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠

0,          𝑥𝑥𝑥𝑥 ∉ 𝛺𝛺𝛺𝛺𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠
        (13) 

 

เม่ือ 𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠  คือพ้ืนท่ีของโดเมนสมํ่าเสมอท่ีกําลัง

พิจารณาอยู 

ในกรณีท่ัวไป การเปลี่ยนจากตัวแปรความเครียด

ซ่ึงอาจไมสามารถหาไดงาย มาเปนตัวแปรของการเปลีย่น

ตําแหนงซ่ึงหาไดงายกวานั้น เปนสิ่งท่ีหลีกเลี่ยงไมได 

นอกเหนือไปจากนั้น การท่ีตัวแปรของการเปลี่ยน

ตําแหนงถูกสมมติใหมีความตอเนื่องตลอดบนขอบเขต

ของโดเมนสมํ่าเสมอ ทําใหสามารถเปลี่ยนรูปของ

สมการ ท่ี  12 โ ด ย ใ ช ก า ร อิ น ทิ เ ก รต ที ล ะ ส ว น 

(Integration by part) กลายเปน 
 

𝜀𝜀𝜀𝜀(̅𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘) =  
1
𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠

 � 𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥)
Γ𝑘𝑘𝑘𝑘
𝑠𝑠𝑠𝑠

𝑢𝑢𝑢𝑢�(𝑥𝑥𝑥𝑥)𝑑𝑑𝑑𝑑Γ   (14) 

 

เ ม่ือ 𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥) คือเวกเตอรองคประกอบของ

เวกเตอรหนึ่งหนวยท้ังสองทิศทางท่ีพุงออกจากดาน

หรือขอบเขตของโดเมนสมํ่าเสมอนั่นเอง 
 

𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥) = �
𝑛𝑛𝑛𝑛𝑥𝑥𝑥𝑥 0
0 𝑛𝑛𝑛𝑛𝑦𝑦𝑦𝑦
𝑛𝑛𝑛𝑛𝑦𝑦𝑦𝑦 𝑛𝑛𝑛𝑛𝑥𝑥𝑥𝑥

� (15) 

 

สติฟเนสเมทริกซสมํ่าเสมอในระบบโคออรดิเนต

หลักในสมการที่ 10 นั้น ขึ้นอยูกับคาของ strain-

displacement matrix 𝐵𝐵𝐵𝐵� ห า ก ทํา ก า ร แ ท นค า 

𝑢𝑢𝑢𝑢�(𝑥𝑥𝑥𝑥) = ∑𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖𝑢𝑢𝑢𝑢�𝑖𝑖𝑖𝑖 ลงในสมการท่ี 14 แลวจัดรูปสมการ

ใหมจะไดวา 
 

𝜀𝜀𝜀𝜀(̅𝑥𝑥𝑥𝑥) = 𝐵𝐵𝐵𝐵�(𝑥𝑥𝑥𝑥)𝑢𝑢𝑢𝑢�(𝑥𝑥𝑥𝑥) ⇒ 𝐵𝐵𝐵𝐵�(𝑥𝑥𝑥𝑥)

=  
1
𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠

 � 𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥)
Γ𝑘𝑘𝑘𝑘
𝑠𝑠𝑠𝑠

𝑁𝑁𝑁𝑁(𝑥𝑥𝑥𝑥) 𝑑𝑑𝑑𝑑Γ = �
𝑏𝑏𝑏𝑏�𝑥𝑥𝑥𝑥 0
0 𝑏𝑏𝑏𝑏�𝑦𝑦𝑦𝑦
𝑏𝑏𝑏𝑏�𝑦𝑦𝑦𝑦 𝑏𝑏𝑏𝑏�𝑥𝑥𝑥𝑥

�      (16) 

 

 

	 (12)

			   เมื่อ 

สามารถใชประโยชนจากโปรแกรมไฟไนทเอลิเมนต 

ซ่ึ ง มี ใช กันอย างแพรหลาย ท้ังส วน ท่ี เปน open 

source แ ล ะ  commercial software โ ด ย ไ ม

จําเปนตองสรางข้ึนใหมท้ังหมด สนามหรือตัวแปร

ความเครียดสมํ่าเสมอนี้ สามารถสรางข้ึนไดดวยการ

ปรับปรุงตัวแปรสนามความเครียดท่ีไดจากวิธีไฟไนท

เ อ ลิ เ ม น ต ป ก ติ โ ด ย ใ ช  smoothing operation 

ขบวนการดังกลาวเริ่มจากการสรางโครงตาขาย 

(Element mesh) แบบสามเหลี่ยมหรือสี่เหลี่ยมดวย

วิธีปกติเหมือนกับในวิธีไฟไนทเอลิเมนตแลวหาคาของ

ตัวแปรความเครียดในรูปของ 
 

𝜀𝜀𝜀𝜀̃ = 𝐷𝐷𝐷𝐷 ��𝑁𝑁𝑁𝑁𝐼𝐼𝐼𝐼(𝑥𝑥𝑥𝑥)𝑑̅𝑑𝑑𝑑𝐼𝐼𝐼𝐼

𝑁𝑁𝑁𝑁

𝐼𝐼𝐼𝐼=1

� = �𝐵𝐵𝐵𝐵�𝐼𝐼𝐼𝐼𝑑̅𝑑𝑑𝑑𝐼𝐼𝐼𝐼

𝑁𝑁𝑁𝑁

𝐼𝐼𝐼𝐼=1

= 𝐵𝐵𝐵𝐵�𝑑̅𝑑𝑑𝑑 (11) 

 

การคํานวณหาคาของตัวแปรความเครียด

สมํ่าเสมอ ε� ณ ตําแหนง 𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘 จะใชเทคนิคการประมาณ

ของคาอินทิเกรตของฟงกชัน [20] กลาวคือ 
 

𝜀𝜀𝜀𝜀(̅𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘) = � 𝐿𝐿𝐿𝐿 
Ω𝑘𝑘𝑘𝑘
𝑠𝑠𝑠𝑠

𝑢𝑢𝑢𝑢�(𝑥𝑥𝑥𝑥)𝑊𝑊𝑊𝑊(𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘 − 𝑥𝑥𝑥𝑥)𝑑𝑑𝑑𝑑Ω    (12) 

 

เม่ือ Ω𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠   คือโดเมนสมํ่าเสมอสําหรับตําแหนง 

𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘 และ 𝑊𝑊𝑊𝑊(𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘 − 𝑥𝑥𝑥𝑥) คือฟงกชันน้ําหนักท่ีสัมพันธ

กับคา ณ ตําแหนงดังกลาว ตัวแปรความเครียดท่ีอยู

ภายในโดเมนสมํ่าเสมอนี้จะถูกคํานวณจากการกระจาย

ตัวแปรความเครียดในสมการท่ี 11 ตลอดท่ัวท้ังโดเมน

 Ω𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠  และถูกสมมติใหมีคาคงท่ี ฟงกชันน้ําหนักท่ีใชนั้น 

มีความสําคัญกับการทําใหตัวแปรความเครียดท่ีได

จากวิธีไฟไนทเอลิเมนตเกิดการกระจายตัวอยาง

สมํ่าเสมอตลอดท่ัวท้ังโดเมน ซ่ึงจะตองมีคุณสมบัติ

ดังตอไปนี้ [9] (1) คาของมันจะตองไมเปนศูนยและ

ตองมีคาเปนบวกภายในโดเมนสมํ่าเสมอท่ีพิจารณา 

(2) ตองมีศูนยกลางอยูท่ีตําแหนง 𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘 (3) ตองเปนไป

ตามเง่ือนไขของคุณสมบัติการมีคาเปน 1 (Unity 

property) เพ่ือความงายของการคํานวณโดยท่ียังคง

สอดคลองตามเง่ือนไขดังกลาวขางตน งานวิจัยนี้จะ

กําหนดใหใช Heaviside step function ซ่ึงเปนฟงกชัน

น้ําหนักอยางงายและแสดงไดดังสมการท่ี 13 
 

𝑊𝑊𝑊𝑊(𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘 − 𝑥𝑥𝑥𝑥) = �
1
𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠

 ,       𝑥𝑥𝑥𝑥 ∈ 𝛺𝛺𝛺𝛺𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠

0,          𝑥𝑥𝑥𝑥 ∉ 𝛺𝛺𝛺𝛺𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠
        (13) 

 

เม่ือ 𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠  คือพ้ืนท่ีของโดเมนสมํ่าเสมอท่ีกําลัง

พิจารณาอยู 

ในกรณีท่ัวไป การเปลี่ยนจากตัวแปรความเครียด

ซ่ึงอาจไมสามารถหาไดงาย มาเปนตัวแปรของการเปลีย่น

ตําแหนงซ่ึงหาไดงายกวานั้น เปนสิ่งท่ีหลีกเลี่ยงไมได 

นอกเหนือไปจากนั้น การท่ีตัวแปรของการเปลี่ยน

ตําแหนงถูกสมมติใหมีความตอเนื่องตลอดบนขอบเขต

ของโดเมนสมํ่าเสมอ ทําใหสามารถเปลี่ยนรูปของ

สมการ ท่ี  12 โ ด ย ใ ช ก า ร อิ น ทิ เ ก รต ที ล ะ ส ว น 

(Integration by part) กลายเปน 
 

𝜀𝜀𝜀𝜀(̅𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘) =  
1
𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠

 � 𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥)
Γ𝑘𝑘𝑘𝑘
𝑠𝑠𝑠𝑠

𝑢𝑢𝑢𝑢�(𝑥𝑥𝑥𝑥)𝑑𝑑𝑑𝑑Γ   (14) 

 

เ ม่ือ 𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥) คือเวกเตอรองคประกอบของ

เวกเตอรหนึ่งหนวยท้ังสองทิศทางท่ีพุงออกจากดาน

หรือขอบเขตของโดเมนสมํ่าเสมอนั่นเอง 
 

𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥) = �
𝑛𝑛𝑛𝑛𝑥𝑥𝑥𝑥 0
0 𝑛𝑛𝑛𝑛𝑦𝑦𝑦𝑦
𝑛𝑛𝑛𝑛𝑦𝑦𝑦𝑦 𝑛𝑛𝑛𝑛𝑥𝑥𝑥𝑥

� (15) 

 

สติฟเนสเมทริกซสมํ่าเสมอในระบบโคออรดิเนต

หลักในสมการที่ 10 นั้น ขึ้นอยูกับคาของ strain-

displacement matrix 𝐵𝐵𝐵𝐵� ห า ก ทํา ก า ร แ ท นค า 

𝑢𝑢𝑢𝑢�(𝑥𝑥𝑥𝑥) = ∑𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖𝑢𝑢𝑢𝑢�𝑖𝑖𝑖𝑖 ลงในสมการท่ี 14 แลวจัดรูปสมการ

ใหมจะไดวา 
 

𝜀𝜀𝜀𝜀(̅𝑥𝑥𝑥𝑥) = 𝐵𝐵𝐵𝐵�(𝑥𝑥𝑥𝑥)𝑢𝑢𝑢𝑢�(𝑥𝑥𝑥𝑥) ⇒ 𝐵𝐵𝐵𝐵�(𝑥𝑥𝑥𝑥)

=  
1
𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠

 � 𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥)
Γ𝑘𝑘𝑘𝑘
𝑠𝑠𝑠𝑠

𝑁𝑁𝑁𝑁(𝑥𝑥𝑥𝑥) 𝑑𝑑𝑑𝑑Γ = �
𝑏𝑏𝑏𝑏�𝑥𝑥𝑥𝑥 0
0 𝑏𝑏𝑏𝑏�𝑦𝑦𝑦𝑦
𝑏𝑏𝑏𝑏�𝑦𝑦𝑦𝑦 𝑏𝑏𝑏𝑏�𝑥𝑥𝑥𝑥

�      (16) 

 

 

 คือโดเมนสม่ำ�เสมอสำ�หรับ

ตำ�แหน่ง 

สามารถใชประโยชนจากโปรแกรมไฟไนทเอลิเมนต 

ซ่ึ ง มี ใช กันอย างแพรหลาย ท้ังส วน ท่ี เปน open 

source แ ล ะ  commercial software โ ด ย ไ ม

จําเปนตองสรางข้ึนใหมท้ังหมด สนามหรือตัวแปร

ความเครียดสมํ่าเสมอนี้ สามารถสรางข้ึนไดดวยการ

ปรับปรุงตัวแปรสนามความเครียดท่ีไดจากวิธีไฟไนท

เ อ ลิ เ ม น ต ป ก ติ โ ด ย ใ ช  smoothing operation 

ขบวนการดังกลาวเริ่มจากการสรางโครงตาขาย 

(Element mesh) แบบสามเหลี่ยมหรือสี่เหลี่ยมดวย

วิธีปกติเหมือนกับในวิธีไฟไนทเอลิเมนตแลวหาคาของ

ตัวแปรความเครียดในรูปของ 
 

𝜀𝜀𝜀𝜀̃ = 𝐷𝐷𝐷𝐷 ��𝑁𝑁𝑁𝑁𝐼𝐼𝐼𝐼(𝑥𝑥𝑥𝑥)𝑑̅𝑑𝑑𝑑𝐼𝐼𝐼𝐼

𝑁𝑁𝑁𝑁

𝐼𝐼𝐼𝐼=1

� = �𝐵𝐵𝐵𝐵�𝐼𝐼𝐼𝐼𝑑̅𝑑𝑑𝑑𝐼𝐼𝐼𝐼

𝑁𝑁𝑁𝑁

𝐼𝐼𝐼𝐼=1

= 𝐵𝐵𝐵𝐵�𝑑̅𝑑𝑑𝑑 (11) 

 

การคํานวณหาคาของตัวแปรความเครียด

สมํ่าเสมอ ε� ณ ตําแหนง 𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘 จะใชเทคนิคการประมาณ

ของคาอินทิเกรตของฟงกชัน [20] กลาวคือ 
 

𝜀𝜀𝜀𝜀(̅𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘) = � 𝐿𝐿𝐿𝐿 
Ω𝑘𝑘𝑘𝑘
𝑠𝑠𝑠𝑠

𝑢𝑢𝑢𝑢�(𝑥𝑥𝑥𝑥)𝑊𝑊𝑊𝑊(𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘 − 𝑥𝑥𝑥𝑥)𝑑𝑑𝑑𝑑Ω    (12) 

 

เม่ือ Ω𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠   คือโดเมนสมํ่าเสมอสําหรับตําแหนง 

𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘 และ 𝑊𝑊𝑊𝑊(𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘 − 𝑥𝑥𝑥𝑥) คือฟงกชันน้ําหนักท่ีสัมพันธ

กับคา ณ ตําแหนงดังกลาว ตัวแปรความเครียดท่ีอยู

ภายในโดเมนสมํ่าเสมอนี้จะถูกคํานวณจากการกระจาย

ตัวแปรความเครียดในสมการท่ี 11 ตลอดท่ัวท้ังโดเมน

 Ω𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠  และถูกสมมติใหมีคาคงท่ี ฟงกชันน้ําหนักท่ีใชนั้น 

มีความสําคัญกับการทําใหตัวแปรความเครียดท่ีได

จากวิธีไฟไนทเอลิเมนตเกิดการกระจายตัวอยาง

สมํ่าเสมอตลอดท่ัวท้ังโดเมน ซ่ึงจะตองมีคุณสมบัติ

ดังตอไปนี้ [9] (1) คาของมันจะตองไมเปนศูนยและ

ตองมีคาเปนบวกภายในโดเมนสมํ่าเสมอท่ีพิจารณา 

(2) ตองมีศูนยกลางอยูท่ีตําแหนง 𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘 (3) ตองเปนไป

ตามเง่ือนไขของคุณสมบัติการมีคาเปน 1 (Unity 

property) เพ่ือความงายของการคํานวณโดยท่ียังคง

สอดคลองตามเง่ือนไขดังกลาวขางตน งานวิจัยนี้จะ

กําหนดใหใช Heaviside step function ซ่ึงเปนฟงกชัน

น้ําหนักอยางงายและแสดงไดดังสมการท่ี 13 
 

𝑊𝑊𝑊𝑊(𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘 − 𝑥𝑥𝑥𝑥) = �
1
𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠

 ,       𝑥𝑥𝑥𝑥 ∈ 𝛺𝛺𝛺𝛺𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠

0,          𝑥𝑥𝑥𝑥 ∉ 𝛺𝛺𝛺𝛺𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠
        (13) 

 

เม่ือ 𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠  คือพ้ืนท่ีของโดเมนสมํ่าเสมอท่ีกําลัง

พิจารณาอยู 

ในกรณีท่ัวไป การเปลี่ยนจากตัวแปรความเครียด

ซ่ึงอาจไมสามารถหาไดงาย มาเปนตัวแปรของการเปลีย่น

ตําแหนงซ่ึงหาไดงายกวานั้น เปนสิ่งท่ีหลีกเลี่ยงไมได 

นอกเหนือไปจากนั้น การท่ีตัวแปรของการเปลี่ยน

ตําแหนงถูกสมมติใหมีความตอเนื่องตลอดบนขอบเขต

ของโดเมนสมํ่าเสมอ ทําใหสามารถเปลี่ยนรูปของ

สมการ ท่ี  12 โ ด ย ใ ช ก า ร อิ น ทิ เ ก รต ที ล ะ ส ว น 

(Integration by part) กลายเปน 
 

𝜀𝜀𝜀𝜀(̅𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘) =  
1
𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠

 � 𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥)
Γ𝑘𝑘𝑘𝑘
𝑠𝑠𝑠𝑠

𝑢𝑢𝑢𝑢�(𝑥𝑥𝑥𝑥)𝑑𝑑𝑑𝑑Γ   (14) 

 

เ ม่ือ 𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥) คือเวกเตอรองคประกอบของ

เวกเตอรหนึ่งหนวยท้ังสองทิศทางท่ีพุงออกจากดาน

หรือขอบเขตของโดเมนสมํ่าเสมอนั่นเอง 
 

𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥) = �
𝑛𝑛𝑛𝑛𝑥𝑥𝑥𝑥 0
0 𝑛𝑛𝑛𝑛𝑦𝑦𝑦𝑦
𝑛𝑛𝑛𝑛𝑦𝑦𝑦𝑦 𝑛𝑛𝑛𝑛𝑥𝑥𝑥𝑥

� (15) 

 

สติฟเนสเมทริกซสมํ่าเสมอในระบบโคออรดิเนต

หลักในสมการที่ 10 นั้น ขึ้นอยูกับคาของ strain-

displacement matrix 𝐵𝐵𝐵𝐵� ห า ก ทํา ก า ร แ ท นค า 

𝑢𝑢𝑢𝑢�(𝑥𝑥𝑥𝑥) = ∑𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖𝑢𝑢𝑢𝑢�𝑖𝑖𝑖𝑖 ลงในสมการท่ี 14 แลวจัดรูปสมการ

ใหมจะไดวา 
 

𝜀𝜀𝜀𝜀(̅𝑥𝑥𝑥𝑥) = 𝐵𝐵𝐵𝐵�(𝑥𝑥𝑥𝑥)𝑢𝑢𝑢𝑢�(𝑥𝑥𝑥𝑥) ⇒ 𝐵𝐵𝐵𝐵�(𝑥𝑥𝑥𝑥)

=  
1
𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠

 � 𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥)
Γ𝑘𝑘𝑘𝑘
𝑠𝑠𝑠𝑠

𝑁𝑁𝑁𝑁(𝑥𝑥𝑥𝑥) 𝑑𝑑𝑑𝑑Γ = �
𝑏𝑏𝑏𝑏�𝑥𝑥𝑥𝑥 0
0 𝑏𝑏𝑏𝑏�𝑦𝑦𝑦𝑦
𝑏𝑏𝑏𝑏�𝑦𝑦𝑦𝑦 𝑏𝑏𝑏𝑏�𝑥𝑥𝑥𝑥

�      (16) 

 

 

และ 

สามารถใชประโยชนจากโปรแกรมไฟไนทเอลิเมนต 

ซ่ึ ง มี ใช กันอย างแพรหลาย ท้ังส วน ท่ี เปน open 

source แ ล ะ  commercial software โ ด ย ไ ม

จําเปนตองสรางข้ึนใหมท้ังหมด สนามหรือตัวแปร

ความเครียดสมํ่าเสมอนี้ สามารถสรางข้ึนไดดวยการ

ปรับปรุงตัวแปรสนามความเครียดท่ีไดจากวิธีไฟไนท

เ อ ลิ เ ม น ต ป ก ติ โ ด ย ใ ช  smoothing operation 

ขบวนการดังกลาวเริ่มจากการสรางโครงตาขาย 

(Element mesh) แบบสามเหลี่ยมหรือสี่เหลี่ยมดวย

วิธีปกติเหมือนกับในวิธีไฟไนทเอลิเมนตแลวหาคาของ

ตัวแปรความเครียดในรูปของ 
 

𝜀𝜀𝜀𝜀̃ = 𝐷𝐷𝐷𝐷 ��𝑁𝑁𝑁𝑁𝐼𝐼𝐼𝐼(𝑥𝑥𝑥𝑥)𝑑̅𝑑𝑑𝑑𝐼𝐼𝐼𝐼

𝑁𝑁𝑁𝑁

𝐼𝐼𝐼𝐼=1

� = �𝐵𝐵𝐵𝐵�𝐼𝐼𝐼𝐼𝑑̅𝑑𝑑𝑑𝐼𝐼𝐼𝐼

𝑁𝑁𝑁𝑁

𝐼𝐼𝐼𝐼=1

= 𝐵𝐵𝐵𝐵�𝑑̅𝑑𝑑𝑑 (11) 

 

การคํานวณหาคาของตัวแปรความเครียด

สมํ่าเสมอ ε� ณ ตําแหนง 𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘 จะใชเทคนิคการประมาณ

ของคาอินทิเกรตของฟงกชัน [20] กลาวคือ 
 

𝜀𝜀𝜀𝜀(̅𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘) = � 𝐿𝐿𝐿𝐿 
Ω𝑘𝑘𝑘𝑘
𝑠𝑠𝑠𝑠

𝑢𝑢𝑢𝑢�(𝑥𝑥𝑥𝑥)𝑊𝑊𝑊𝑊(𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘 − 𝑥𝑥𝑥𝑥)𝑑𝑑𝑑𝑑Ω    (12) 

 

เม่ือ Ω𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠   คือโดเมนสมํ่าเสมอสําหรับตําแหนง 

𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘 และ 𝑊𝑊𝑊𝑊(𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘 − 𝑥𝑥𝑥𝑥) คือฟงกชันน้ําหนักท่ีสัมพันธ

กับคา ณ ตําแหนงดังกลาว ตัวแปรความเครียดท่ีอยู

ภายในโดเมนสมํ่าเสมอนี้จะถูกคํานวณจากการกระจาย

ตัวแปรความเครียดในสมการท่ี 11 ตลอดท่ัวท้ังโดเมน

 Ω𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠  และถูกสมมติใหมีคาคงท่ี ฟงกชันน้ําหนักท่ีใชนั้น 

มีความสําคัญกับการทําใหตัวแปรความเครียดท่ีได

จากวิธีไฟไนทเอลิเมนตเกิดการกระจายตัวอยาง

สมํ่าเสมอตลอดท่ัวท้ังโดเมน ซ่ึงจะตองมีคุณสมบัติ

ดังตอไปนี้ [9] (1) คาของมันจะตองไมเปนศูนยและ

ตองมีคาเปนบวกภายในโดเมนสมํ่าเสมอท่ีพิจารณา 

(2) ตองมีศูนยกลางอยูท่ีตําแหนง 𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘 (3) ตองเปนไป

ตามเง่ือนไขของคุณสมบัติการมีคาเปน 1 (Unity 

property) เพ่ือความงายของการคํานวณโดยท่ียังคง

สอดคลองตามเง่ือนไขดังกลาวขางตน งานวิจัยนี้จะ

กําหนดใหใช Heaviside step function ซ่ึงเปนฟงกชัน

น้ําหนักอยางงายและแสดงไดดังสมการท่ี 13 
 

𝑊𝑊𝑊𝑊(𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘 − 𝑥𝑥𝑥𝑥) = �
1
𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠

 ,       𝑥𝑥𝑥𝑥 ∈ 𝛺𝛺𝛺𝛺𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠

0,          𝑥𝑥𝑥𝑥 ∉ 𝛺𝛺𝛺𝛺𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠
        (13) 

 

เม่ือ 𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠  คือพ้ืนท่ีของโดเมนสมํ่าเสมอท่ีกําลัง

พิจารณาอยู 

ในกรณีท่ัวไป การเปลี่ยนจากตัวแปรความเครียด

ซ่ึงอาจไมสามารถหาไดงาย มาเปนตัวแปรของการเปลีย่น

ตําแหนงซ่ึงหาไดงายกวานั้น เปนสิ่งท่ีหลีกเลี่ยงไมได 

นอกเหนือไปจากนั้น การท่ีตัวแปรของการเปลี่ยน

ตําแหนงถูกสมมติใหมีความตอเนื่องตลอดบนขอบเขต

ของโดเมนสมํ่าเสมอ ทําใหสามารถเปลี่ยนรูปของ

สมการ ท่ี  12 โ ด ย ใ ช ก า ร อิ น ทิ เ ก รต ที ล ะ ส ว น 

(Integration by part) กลายเปน 
 

𝜀𝜀𝜀𝜀(̅𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘) =  
1
𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠

 � 𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥)
Γ𝑘𝑘𝑘𝑘
𝑠𝑠𝑠𝑠

𝑢𝑢𝑢𝑢�(𝑥𝑥𝑥𝑥)𝑑𝑑𝑑𝑑Γ   (14) 

 

เ ม่ือ 𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥) คือเวกเตอรองคประกอบของ

เวกเตอรหนึ่งหนวยท้ังสองทิศทางท่ีพุงออกจากดาน

หรือขอบเขตของโดเมนสมํ่าเสมอนั่นเอง 
 

𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥) = �
𝑛𝑛𝑛𝑛𝑥𝑥𝑥𝑥 0
0 𝑛𝑛𝑛𝑛𝑦𝑦𝑦𝑦
𝑛𝑛𝑛𝑛𝑦𝑦𝑦𝑦 𝑛𝑛𝑛𝑛𝑥𝑥𝑥𝑥

� (15) 

 

สติฟเนสเมทริกซสมํ่าเสมอในระบบโคออรดิเนต

หลักในสมการที่ 10 นั้น ขึ้นอยูกับคาของ strain-

displacement matrix 𝐵𝐵𝐵𝐵� ห า ก ทํา ก า ร แ ท นค า 

𝑢𝑢𝑢𝑢�(𝑥𝑥𝑥𝑥) = ∑𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖𝑢𝑢𝑢𝑢�𝑖𝑖𝑖𝑖 ลงในสมการท่ี 14 แลวจัดรูปสมการ

ใหมจะไดวา 
 

𝜀𝜀𝜀𝜀(̅𝑥𝑥𝑥𝑥) = 𝐵𝐵𝐵𝐵�(𝑥𝑥𝑥𝑥)𝑢𝑢𝑢𝑢�(𝑥𝑥𝑥𝑥) ⇒ 𝐵𝐵𝐵𝐵�(𝑥𝑥𝑥𝑥)

=  
1
𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠

 � 𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥)
Γ𝑘𝑘𝑘𝑘
𝑠𝑠𝑠𝑠

𝑁𝑁𝑁𝑁(𝑥𝑥𝑥𝑥) 𝑑𝑑𝑑𝑑Γ = �
𝑏𝑏𝑏𝑏�𝑥𝑥𝑥𝑥 0
0 𝑏𝑏𝑏𝑏�𝑦𝑦𝑦𝑦
𝑏𝑏𝑏𝑏�𝑦𝑦𝑦𝑦 𝑏𝑏𝑏𝑏�𝑥𝑥𝑥𝑥

�      (16) 

 

 

 คือฟังก์ชันน้ำ�หนัก

ที่สัมพันธ์กับค่า ณ ตำ�แหน่งดังกล่าว ตัวแปรความ

เครียดที่อยู่ภายในโดเมนสม่ำ�เสมอนี้จะถูกคำ�นวณจาก

การกระจายตัวแปรความเครียดในสมการที่ 11 ตลอด

ทั่วทั้งโดเมน 

สามารถใชประโยชนจากโปรแกรมไฟไนทเอลิเมนต 

ซ่ึ ง มี ใช กันอย างแพรหลาย ท้ังส วน ท่ี เปน open 

source แ ล ะ  commercial software โ ด ย ไ ม

จําเปนตองสรางข้ึนใหมท้ังหมด สนามหรือตัวแปร

ความเครียดสมํ่าเสมอนี้ สามารถสรางข้ึนไดดวยการ

ปรับปรุงตัวแปรสนามความเครียดท่ีไดจากวิธีไฟไนท

เ อ ลิ เ ม น ต ป ก ติ โ ด ย ใ ช  smoothing operation 

ขบวนการดังกลาวเริ่มจากการสรางโครงตาขาย 

(Element mesh) แบบสามเหลี่ยมหรือสี่เหลี่ยมดวย

วิธีปกติเหมือนกับในวิธีไฟไนทเอลิเมนตแลวหาคาของ

ตัวแปรความเครียดในรูปของ 
 

𝜀𝜀𝜀𝜀̃ = 𝐷𝐷𝐷𝐷 ��𝑁𝑁𝑁𝑁𝐼𝐼𝐼𝐼(𝑥𝑥𝑥𝑥)𝑑̅𝑑𝑑𝑑𝐼𝐼𝐼𝐼

𝑁𝑁𝑁𝑁

𝐼𝐼𝐼𝐼=1

� = �𝐵𝐵𝐵𝐵�𝐼𝐼𝐼𝐼𝑑̅𝑑𝑑𝑑𝐼𝐼𝐼𝐼

𝑁𝑁𝑁𝑁

𝐼𝐼𝐼𝐼=1

= 𝐵𝐵𝐵𝐵�𝑑̅𝑑𝑑𝑑 (11) 

 

การคํานวณหาคาของตัวแปรความเครียด

สมํ่าเสมอ ε� ณ ตําแหนง 𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘 จะใชเทคนิคการประมาณ

ของคาอินทิเกรตของฟงกชัน [20] กลาวคือ 
 

𝜀𝜀𝜀𝜀(̅𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘) = � 𝐿𝐿𝐿𝐿 
Ω𝑘𝑘𝑘𝑘
𝑠𝑠𝑠𝑠

𝑢𝑢𝑢𝑢�(𝑥𝑥𝑥𝑥)𝑊𝑊𝑊𝑊(𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘 − 𝑥𝑥𝑥𝑥)𝑑𝑑𝑑𝑑Ω    (12) 

 

เม่ือ Ω𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠   คือโดเมนสมํ่าเสมอสําหรับตําแหนง 

𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘 และ 𝑊𝑊𝑊𝑊(𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘 − 𝑥𝑥𝑥𝑥) คือฟงกชันน้ําหนักท่ีสัมพันธ

กับคา ณ ตําแหนงดังกลาว ตัวแปรความเครียดท่ีอยู

ภายในโดเมนสมํ่าเสมอนี้จะถูกคํานวณจากการกระจาย

ตัวแปรความเครียดในสมการท่ี 11 ตลอดท่ัวท้ังโดเมน

 Ω𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠  และถูกสมมติใหมีคาคงท่ี ฟงกชันน้ําหนักท่ีใชนั้น 

มีความสําคัญกับการทําใหตัวแปรความเครียดท่ีได

จากวิธีไฟไนทเอลิเมนตเกิดการกระจายตัวอยาง

สมํ่าเสมอตลอดท่ัวท้ังโดเมน ซ่ึงจะตองมีคุณสมบัติ

ดังตอไปนี้ [9] (1) คาของมันจะตองไมเปนศูนยและ

ตองมีคาเปนบวกภายในโดเมนสมํ่าเสมอท่ีพิจารณา 

(2) ตองมีศูนยกลางอยูท่ีตําแหนง 𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘 (3) ตองเปนไป

ตามเง่ือนไขของคุณสมบัติการมีคาเปน 1 (Unity 

property) เพ่ือความงายของการคํานวณโดยท่ียังคง

สอดคลองตามเง่ือนไขดังกลาวขางตน งานวิจัยนี้จะ

กําหนดใหใช Heaviside step function ซ่ึงเปนฟงกชัน

น้ําหนักอยางงายและแสดงไดดังสมการท่ี 13 
 

𝑊𝑊𝑊𝑊(𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘 − 𝑥𝑥𝑥𝑥) = �
1
𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠

 ,       𝑥𝑥𝑥𝑥 ∈ 𝛺𝛺𝛺𝛺𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠

0,          𝑥𝑥𝑥𝑥 ∉ 𝛺𝛺𝛺𝛺𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠
        (13) 

 

เม่ือ 𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠  คือพ้ืนท่ีของโดเมนสมํ่าเสมอท่ีกําลัง

พิจารณาอยู 

ในกรณีท่ัวไป การเปลี่ยนจากตัวแปรความเครียด

ซ่ึงอาจไมสามารถหาไดงาย มาเปนตัวแปรของการเปลีย่น

ตําแหนงซ่ึงหาไดงายกวานั้น เปนสิ่งท่ีหลีกเลี่ยงไมได 

นอกเหนือไปจากนั้น การท่ีตัวแปรของการเปลี่ยน

ตําแหนงถูกสมมติใหมีความตอเนื่องตลอดบนขอบเขต

ของโดเมนสมํ่าเสมอ ทําใหสามารถเปลี่ยนรูปของ

สมการ ท่ี  12 โ ด ย ใ ช ก า ร อิ น ทิ เ ก รต ที ล ะ ส ว น 

(Integration by part) กลายเปน 
 

𝜀𝜀𝜀𝜀(̅𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘) =  
1
𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠

 � 𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥)
Γ𝑘𝑘𝑘𝑘
𝑠𝑠𝑠𝑠

𝑢𝑢𝑢𝑢�(𝑥𝑥𝑥𝑥)𝑑𝑑𝑑𝑑Γ   (14) 

 

เ ม่ือ 𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥) คือเวกเตอรองคประกอบของ

เวกเตอรหนึ่งหนวยท้ังสองทิศทางท่ีพุงออกจากดาน

หรือขอบเขตของโดเมนสมํ่าเสมอนั่นเอง 
 

𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥) = �
𝑛𝑛𝑛𝑛𝑥𝑥𝑥𝑥 0
0 𝑛𝑛𝑛𝑛𝑦𝑦𝑦𝑦
𝑛𝑛𝑛𝑛𝑦𝑦𝑦𝑦 𝑛𝑛𝑛𝑛𝑥𝑥𝑥𝑥

� (15) 

 

สติฟเนสเมทริกซสมํ่าเสมอในระบบโคออรดิเนต

หลักในสมการที่ 10 นั้น ขึ้นอยูกับคาของ strain-

displacement matrix 𝐵𝐵𝐵𝐵� ห า ก ทํา ก า ร แ ท นค า 

𝑢𝑢𝑢𝑢�(𝑥𝑥𝑥𝑥) = ∑𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖𝑢𝑢𝑢𝑢�𝑖𝑖𝑖𝑖 ลงในสมการท่ี 14 แลวจัดรูปสมการ

ใหมจะไดวา 
 

𝜀𝜀𝜀𝜀(̅𝑥𝑥𝑥𝑥) = 𝐵𝐵𝐵𝐵�(𝑥𝑥𝑥𝑥)𝑢𝑢𝑢𝑢�(𝑥𝑥𝑥𝑥) ⇒ 𝐵𝐵𝐵𝐵�(𝑥𝑥𝑥𝑥)

=  
1
𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠

 � 𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥)
Γ𝑘𝑘𝑘𝑘
𝑠𝑠𝑠𝑠

𝑁𝑁𝑁𝑁(𝑥𝑥𝑥𝑥) 𝑑𝑑𝑑𝑑Γ = �
𝑏𝑏𝑏𝑏�𝑥𝑥𝑥𝑥 0
0 𝑏𝑏𝑏𝑏�𝑦𝑦𝑦𝑦
𝑏𝑏𝑏𝑏�𝑦𝑦𝑦𝑦 𝑏𝑏𝑏𝑏�𝑥𝑥𝑥𝑥

�      (16) 

 

 

 และถูกสมมติให้มีค่าคงที่ ฟังก์ชัน

น้ำ�หนักที่ใช้นั้น มีความสำ�คัญกับการทำ�ให้ตัวแปร

ความเครียดที่ ได้จากวิธีไฟไนท์เอลิเมนต์เกิดการ

กระจายตัวอย่างสม่ำ�เสมอตลอดทั่วทั้งโดเมน ซึ่ง

จะต้องมีคุณสมบัติดังต่อไปนี้ [9] (1) ค่าของมัน

จะต้องไม่เป็นศูนย์และต้องมีค่าเป็นบวกภายใน

โดเมนสม่ำ�เสมอที่พิจารณา (2) ต้องมีศูนย์กลางอยู่ที่

ตำ�แหนง่ 

สามารถใชประโยชนจากโปรแกรมไฟไนทเอลิเมนต 

ซ่ึ ง มี ใช กันอย างแพรหลาย ท้ังส วน ท่ี เปน open 

source แ ล ะ  commercial software โ ด ย ไ ม

จําเปนตองสรางข้ึนใหมท้ังหมด สนามหรือตัวแปร

ความเครียดสมํ่าเสมอนี้ สามารถสรางข้ึนไดดวยการ

ปรับปรุงตัวแปรสนามความเครียดท่ีไดจากวิธีไฟไนท

เ อ ลิ เ ม น ต ป ก ติ โ ด ย ใ ช  smoothing operation 

ขบวนการดังกลาวเริ่มจากการสรางโครงตาขาย 

(Element mesh) แบบสามเหลี่ยมหรือสี่เหลี่ยมดวย

วิธีปกติเหมือนกับในวิธีไฟไนทเอลิเมนตแลวหาคาของ

ตัวแปรความเครียดในรูปของ 
 

𝜀𝜀𝜀𝜀̃ = 𝐷𝐷𝐷𝐷 ��𝑁𝑁𝑁𝑁𝐼𝐼𝐼𝐼(𝑥𝑥𝑥𝑥)𝑑̅𝑑𝑑𝑑𝐼𝐼𝐼𝐼

𝑁𝑁𝑁𝑁

𝐼𝐼𝐼𝐼=1

� = �𝐵𝐵𝐵𝐵�𝐼𝐼𝐼𝐼𝑑̅𝑑𝑑𝑑𝐼𝐼𝐼𝐼

𝑁𝑁𝑁𝑁

𝐼𝐼𝐼𝐼=1

= 𝐵𝐵𝐵𝐵�𝑑̅𝑑𝑑𝑑 (11) 

 

การคํานวณหาคาของตัวแปรความเครียด

สมํ่าเสมอ ε� ณ ตําแหนง 𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘 จะใชเทคนิคการประมาณ

ของคาอินทิเกรตของฟงกชัน [20] กลาวคือ 
 

𝜀𝜀𝜀𝜀(̅𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘) = � 𝐿𝐿𝐿𝐿 
Ω𝑘𝑘𝑘𝑘
𝑠𝑠𝑠𝑠

𝑢𝑢𝑢𝑢�(𝑥𝑥𝑥𝑥)𝑊𝑊𝑊𝑊(𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘 − 𝑥𝑥𝑥𝑥)𝑑𝑑𝑑𝑑Ω    (12) 

 

เม่ือ Ω𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠   คือโดเมนสมํ่าเสมอสําหรับตําแหนง 

𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘 และ 𝑊𝑊𝑊𝑊(𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘 − 𝑥𝑥𝑥𝑥) คือฟงกชันน้ําหนักท่ีสัมพันธ

กับคา ณ ตําแหนงดังกลาว ตัวแปรความเครียดท่ีอยู

ภายในโดเมนสมํ่าเสมอนี้จะถูกคํานวณจากการกระจาย

ตัวแปรความเครียดในสมการท่ี 11 ตลอดท่ัวท้ังโดเมน

 Ω𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠  และถูกสมมติใหมีคาคงท่ี ฟงกชันน้ําหนักท่ีใชนั้น 

มีความสําคัญกับการทําใหตัวแปรความเครียดท่ีได

จากวิธีไฟไนทเอลิเมนตเกิดการกระจายตัวอยาง

สมํ่าเสมอตลอดท่ัวท้ังโดเมน ซ่ึงจะตองมีคุณสมบัติ

ดังตอไปนี้ [9] (1) คาของมันจะตองไมเปนศูนยและ

ตองมีคาเปนบวกภายในโดเมนสมํ่าเสมอท่ีพิจารณา 

(2) ตองมีศูนยกลางอยูท่ีตําแหนง 𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘 (3) ตองเปนไป

ตามเง่ือนไขของคุณสมบัติการมีคาเปน 1 (Unity 

property) เพ่ือความงายของการคํานวณโดยท่ียังคง

สอดคลองตามเง่ือนไขดังกลาวขางตน งานวิจัยนี้จะ

กําหนดใหใช Heaviside step function ซ่ึงเปนฟงกชัน

น้ําหนักอยางงายและแสดงไดดังสมการท่ี 13 
 

𝑊𝑊𝑊𝑊(𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘 − 𝑥𝑥𝑥𝑥) = �
1
𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠

 ,       𝑥𝑥𝑥𝑥 ∈ 𝛺𝛺𝛺𝛺𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠

0,          𝑥𝑥𝑥𝑥 ∉ 𝛺𝛺𝛺𝛺𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠
        (13) 

 

เม่ือ 𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠  คือพ้ืนท่ีของโดเมนสมํ่าเสมอท่ีกําลัง

พิจารณาอยู 

ในกรณีท่ัวไป การเปลี่ยนจากตัวแปรความเครียด

ซ่ึงอาจไมสามารถหาไดงาย มาเปนตัวแปรของการเปลีย่น

ตําแหนงซ่ึงหาไดงายกวานั้น เปนสิ่งท่ีหลีกเลี่ยงไมได 

นอกเหนือไปจากนั้น การท่ีตัวแปรของการเปลี่ยน

ตําแหนงถูกสมมติใหมีความตอเนื่องตลอดบนขอบเขต

ของโดเมนสมํ่าเสมอ ทําใหสามารถเปลี่ยนรูปของ

สมการ ท่ี  12 โ ด ย ใ ช ก า ร อิ น ทิ เ ก ร ต ที ล ะ ส ว น 

(Integration by part) กลายเปน 
 

𝜀𝜀𝜀𝜀(̅𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘) =  
1
𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠

 � 𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥)
Γ𝑘𝑘𝑘𝑘
𝑠𝑠𝑠𝑠

𝑢𝑢𝑢𝑢�(𝑥𝑥𝑥𝑥)𝑑𝑑𝑑𝑑Γ   (14) 

 

เ ม่ือ 𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥) คือเวกเตอรองคประกอบของ

เวกเตอรหนึ่งหนวยท้ังสองทิศทางท่ีพุงออกจากดาน

หรือขอบเขตของโดเมนสมํ่าเสมอนั่นเอง 
 

𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥) = �
𝑛𝑛𝑛𝑛𝑥𝑥𝑥𝑥 0
0 𝑛𝑛𝑛𝑛𝑦𝑦𝑦𝑦
𝑛𝑛𝑛𝑛𝑦𝑦𝑦𝑦 𝑛𝑛𝑛𝑛𝑥𝑥𝑥𝑥

� (15) 

 

สติฟเนสเมทริกซสมํ่าเสมอในระบบโคออรดิเนต

หลักในสมการที่ 10 นั้น ขึ้นอยูกับคาของ strain-

displacement matrix 𝐵𝐵𝐵𝐵� ห า ก ทํา ก า ร แ ท นค า 

𝑢𝑢𝑢𝑢�(𝑥𝑥𝑥𝑥) = ∑𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖𝑢𝑢𝑢𝑢�𝑖𝑖𝑖𝑖 ลงในสมการท่ี 14 แลวจัดรูปสมการ

ใหมจะไดวา 
 

𝜀𝜀𝜀𝜀(̅𝑥𝑥𝑥𝑥) = 𝐵𝐵𝐵𝐵�(𝑥𝑥𝑥𝑥)𝑢𝑢𝑢𝑢�(𝑥𝑥𝑥𝑥) ⇒ 𝐵𝐵𝐵𝐵�(𝑥𝑥𝑥𝑥)

=  
1
𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠

 � 𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥)
Γ𝑘𝑘𝑘𝑘
𝑠𝑠𝑠𝑠

𝑁𝑁𝑁𝑁(𝑥𝑥𝑥𝑥) 𝑑𝑑𝑑𝑑Γ = �
𝑏𝑏𝑏𝑏�𝑥𝑥𝑥𝑥 0
0 𝑏𝑏𝑏𝑏�𝑦𝑦𝑦𝑦
𝑏𝑏𝑏𝑏�𝑦𝑦𝑦𝑦 𝑏𝑏𝑏𝑏�𝑥𝑥𝑥𝑥

�      (16) 

 

 

(3) ตอ้งเปน็ไปตามเงื่อนไขของคณุสมบตัิ

การมีค่าเป็น 1 (Unity property) เพื่อความง่าย

ของการคำ�นวณโดยที่ยังคงสอดคล้องตามเงื่อนไข

ดังกล่าวข้างต้น งานวิจัยนี้จะกำ�หนดให้ ใช้ Heaviside 

step function ซึ่งเป็นฟังก์ชันน้ำ�หนักอย่างง่ายและ

แสดงได้ดังสมการที่ 13

	

สามารถใชประโยชนจากโปรแกรมไฟไนทเอลิเมนต 

ซ่ึ ง มี ใช กันอย างแพรหลาย ท้ังส วน ท่ี เปน open 

source แ ล ะ  commercial software โ ด ย ไ ม

จําเปนตองสรางข้ึนใหมท้ังหมด สนามหรือตัวแปร

ความเครียดสมํ่าเสมอนี้ สามารถสรางข้ึนไดดวยการ

ปรับปรุงตัวแปรสนามความเครียดท่ีไดจากวิธีไฟไนท

เ อ ลิ เ ม น ต ป ก ติ โ ด ย ใ ช  smoothing operation 

ขบวนการดังกลาวเริ่มจากการสรางโครงตาขาย 

(Element mesh) แบบสามเหลี่ยมหรือสี่เหลี่ยมดวย

วิธีปกติเหมือนกับในวิธีไฟไนทเอลิเมนตแลวหาคาของ

ตัวแปรความเครียดในรูปของ 
 

𝜀𝜀𝜀𝜀̃ = 𝐷𝐷𝐷𝐷 ��𝑁𝑁𝑁𝑁𝐼𝐼𝐼𝐼(𝑥𝑥𝑥𝑥)𝑑̅𝑑𝑑𝑑𝐼𝐼𝐼𝐼

𝑁𝑁𝑁𝑁

𝐼𝐼𝐼𝐼=1

� = �𝐵𝐵𝐵𝐵�𝐼𝐼𝐼𝐼𝑑̅𝑑𝑑𝑑𝐼𝐼𝐼𝐼

𝑁𝑁𝑁𝑁

𝐼𝐼𝐼𝐼=1

= 𝐵𝐵𝐵𝐵�𝑑̅𝑑𝑑𝑑 (11) 

 

การคํานวณหาคาของตัวแปรความเครียด

สมํ่าเสมอ ε� ณ ตําแหนง 𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘 จะใชเทคนิคการประมาณ

ของคาอินทิเกรตของฟงกชัน [20] กลาวคือ 
 

𝜀𝜀𝜀𝜀(̅𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘) = � 𝐿𝐿𝐿𝐿 
Ω𝑘𝑘𝑘𝑘
𝑠𝑠𝑠𝑠

𝑢𝑢𝑢𝑢�(𝑥𝑥𝑥𝑥)𝑊𝑊𝑊𝑊(𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘 − 𝑥𝑥𝑥𝑥)𝑑𝑑𝑑𝑑Ω    (12) 

 

เม่ือ Ω𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠   คือโดเมนสมํ่าเสมอสําหรับตําแหนง 

𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘 และ 𝑊𝑊𝑊𝑊(𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘 − 𝑥𝑥𝑥𝑥) คือฟงกชันน้ําหนักท่ีสัมพันธ

กับคา ณ ตําแหนงดังกลาว ตัวแปรความเครียดท่ีอยู

ภายในโดเมนสมํ่าเสมอนี้จะถูกคํานวณจากการกระจาย

ตัวแปรความเครียดในสมการท่ี 11 ตลอดท่ัวท้ังโดเมน

 Ω𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠  และถูกสมมติใหมีคาคงท่ี ฟงกชันน้ําหนักท่ีใชนั้น 

มีความสําคัญกับการทําใหตัวแปรความเครียดท่ีได

จากวิธีไฟไนทเอลิเมนตเกิดการกระจายตัวอยาง

สมํ่าเสมอตลอดท่ัวท้ังโดเมน ซ่ึงจะตองมีคุณสมบัติ

ดังตอไปนี้ [9] (1) คาของมันจะตองไมเปนศูนยและ

ตองมีคาเปนบวกภายในโดเมนสมํ่าเสมอท่ีพิจารณา 

(2) ตองมีศูนยกลางอยูท่ีตําแหนง 𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘 (3) ตองเปนไป

ตามเง่ือนไขของคุณสมบัติการมีคาเปน 1 (Unity 

property) เพ่ือความงายของการคํานวณโดยท่ียังคง

สอดคลองตามเง่ือนไขดังกลาวขางตน งานวิจัยนี้จะ

กําหนดใหใช Heaviside step function ซ่ึงเปนฟงกชัน

น้ําหนักอยางงายและแสดงไดดังสมการท่ี 13 
 

𝑊𝑊𝑊𝑊(𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘 − 𝑥𝑥𝑥𝑥) = �
1
𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠

 ,       𝑥𝑥𝑥𝑥 ∈ 𝛺𝛺𝛺𝛺𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠

0,          𝑥𝑥𝑥𝑥 ∉ 𝛺𝛺𝛺𝛺𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠
        (13) 

 

เม่ือ 𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠  คือพ้ืนท่ีของโดเมนสมํ่าเสมอท่ีกําลัง

พิจารณาอยู 

ในกรณีท่ัวไป การเปลี่ยนจากตัวแปรความเครียด

ซ่ึงอาจไมสามารถหาไดงาย มาเปนตัวแปรของการเปลีย่น

ตําแหนงซ่ึงหาไดงายกวานั้น เปนสิ่งท่ีหลีกเลี่ยงไมได 

นอกเหนือไปจากนั้น การท่ีตัวแปรของการเปลี่ยน

ตําแหนงถูกสมมติใหมีความตอเนื่องตลอดบนขอบเขต

ของโดเมนสมํ่าเสมอ ทําใหสามารถเปลี่ยนรูปของ

สมการ ท่ี  12 โ ด ย ใ ช ก า ร อิ น ทิ เ ก รต ที ล ะ ส ว น 

(Integration by part) กลายเปน 
 

𝜀𝜀𝜀𝜀(̅𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘) =  
1
𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠

 � 𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥)
Γ𝑘𝑘𝑘𝑘
𝑠𝑠𝑠𝑠

𝑢𝑢𝑢𝑢�(𝑥𝑥𝑥𝑥)𝑑𝑑𝑑𝑑Γ   (14) 

 

เ ม่ือ 𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥) คือเวกเตอรองคประกอบของ

เวกเตอรหนึ่งหนวยท้ังสองทิศทางท่ีพุงออกจากดาน

หรือขอบเขตของโดเมนสมํ่าเสมอนั่นเอง 
 

𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥) = �
𝑛𝑛𝑛𝑛𝑥𝑥𝑥𝑥 0
0 𝑛𝑛𝑛𝑛𝑦𝑦𝑦𝑦
𝑛𝑛𝑛𝑛𝑦𝑦𝑦𝑦 𝑛𝑛𝑛𝑛𝑥𝑥𝑥𝑥

� (15) 

 

สติฟเนสเมทริกซสมํ่าเสมอในระบบโคออรดิเนต

หลักในสมการที่ 10 นั้น ขึ้นอยูกับคาของ strain-

displacement matrix 𝐵𝐵𝐵𝐵� ห า ก ทํา ก า ร แ ท นค า 

𝑢𝑢𝑢𝑢�(𝑥𝑥𝑥𝑥) = ∑𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖𝑢𝑢𝑢𝑢�𝑖𝑖𝑖𝑖 ลงในสมการท่ี 14 แลวจัดรูปสมการ

ใหมจะไดวา 
 

𝜀𝜀𝜀𝜀(̅𝑥𝑥𝑥𝑥) = 𝐵𝐵𝐵𝐵�(𝑥𝑥𝑥𝑥)𝑢𝑢𝑢𝑢�(𝑥𝑥𝑥𝑥) ⇒ 𝐵𝐵𝐵𝐵�(𝑥𝑥𝑥𝑥)

=  
1
𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠

 � 𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥)
Γ𝑘𝑘𝑘𝑘
𝑠𝑠𝑠𝑠

𝑁𝑁𝑁𝑁(𝑥𝑥𝑥𝑥) 𝑑𝑑𝑑𝑑Γ = �
𝑏𝑏𝑏𝑏�𝑥𝑥𝑥𝑥 0
0 𝑏𝑏𝑏𝑏�𝑦𝑦𝑦𝑦
𝑏𝑏𝑏𝑏�𝑦𝑦𝑦𝑦 𝑏𝑏𝑏𝑏�𝑥𝑥𝑥𝑥

�      (16) 

 

 

	 (13)

			   เมื่อ 

สามารถใชประโยชนจากโปรแกรมไฟไนทเอลิเมนต 

ซ่ึ ง มี ใช กันอย างแพรหลาย ท้ังส วน ท่ี เปน open 

source แ ล ะ  commercial software โ ด ย ไ ม

จําเปนตองสรางข้ึนใหมท้ังหมด สนามหรือตัวแปร

ความเครียดสมํ่าเสมอนี้ สามารถสรางข้ึนไดดวยการ

ปรับปรุงตัวแปรสนามความเครียดท่ีไดจากวิธีไฟไนท

เ อ ลิ เ ม น ต ป ก ติ โ ด ย ใ ช  smoothing operation 

ขบวนการดังกลาวเริ่มจากการสรางโครงตาขาย 

(Element mesh) แบบสามเหลี่ยมหรือสี่เหลี่ยมดวย

วิธีปกติเหมือนกับในวิธีไฟไนทเอลิเมนตแลวหาคาของ

ตัวแปรความเครียดในรูปของ 
 

𝜀𝜀𝜀𝜀̃ = 𝐷𝐷𝐷𝐷 ��𝑁𝑁𝑁𝑁𝐼𝐼𝐼𝐼(𝑥𝑥𝑥𝑥)𝑑̅𝑑𝑑𝑑𝐼𝐼𝐼𝐼

𝑁𝑁𝑁𝑁

𝐼𝐼𝐼𝐼=1

� = �𝐵𝐵𝐵𝐵�𝐼𝐼𝐼𝐼𝑑̅𝑑𝑑𝑑𝐼𝐼𝐼𝐼

𝑁𝑁𝑁𝑁

𝐼𝐼𝐼𝐼=1

= 𝐵𝐵𝐵𝐵�𝑑̅𝑑𝑑𝑑 (11) 

 

การคํานวณหาคาของตัวแปรความเครียด

สมํ่าเสมอ ε� ณ ตําแหนง 𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘 จะใชเทคนิคการประมาณ

ของคาอินทิเกรตของฟงกชัน [20] กลาวคือ 
 

𝜀𝜀𝜀𝜀(̅𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘) = � 𝐿𝐿𝐿𝐿 
Ω𝑘𝑘𝑘𝑘
𝑠𝑠𝑠𝑠

𝑢𝑢𝑢𝑢�(𝑥𝑥𝑥𝑥)𝑊𝑊𝑊𝑊(𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘 − 𝑥𝑥𝑥𝑥)𝑑𝑑𝑑𝑑Ω    (12) 

 

เม่ือ Ω𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠   คือโดเมนสมํ่าเสมอสําหรับตําแหนง 

𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘 และ 𝑊𝑊𝑊𝑊(𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘 − 𝑥𝑥𝑥𝑥) คือฟงกชันน้ําหนักท่ีสัมพันธ

กับคา ณ ตําแหนงดังกลาว ตัวแปรความเครียดท่ีอยู

ภายในโดเมนสมํ่าเสมอนี้จะถูกคํานวณจากการกระจาย

ตัวแปรความเครียดในสมการท่ี 11 ตลอดท่ัวท้ังโดเมน

 Ω𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠  และถูกสมมติใหมีคาคงท่ี ฟงกชันน้ําหนักท่ีใชนั้น 

มีความสําคัญกับการทําใหตัวแปรความเครียดท่ีได

จากวิธีไฟไนทเอลิเมนตเกิดการกระจายตัวอยาง

สมํ่าเสมอตลอดท่ัวท้ังโดเมน ซ่ึงจะตองมีคุณสมบัติ

ดังตอไปนี้ [9] (1) คาของมันจะตองไมเปนศูนยและ

ตองมีคาเปนบวกภายในโดเมนสมํ่าเสมอท่ีพิจารณา 

(2) ตองมีศูนยกลางอยูท่ีตําแหนง 𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘 (3) ตองเปนไป

ตามเง่ือนไขของคุณสมบัติการมีคาเปน 1 (Unity 

property) เพ่ือความงายของการคํานวณโดยท่ียังคง

สอดคลองตามเง่ือนไขดังกลาวขางตน งานวิจัยนี้จะ

กําหนดใหใช Heaviside step function ซ่ึงเปนฟงกชัน

น้ําหนักอยางงายและแสดงไดดังสมการท่ี 13 
 

𝑊𝑊𝑊𝑊(𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘 − 𝑥𝑥𝑥𝑥) = �
1
𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠

 ,       𝑥𝑥𝑥𝑥 ∈ 𝛺𝛺𝛺𝛺𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠

0,          𝑥𝑥𝑥𝑥 ∉ 𝛺𝛺𝛺𝛺𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠
        (13) 

 

เม่ือ 𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠  คือพ้ืนท่ีของโดเมนสมํ่าเสมอท่ีกําลัง

พิจารณาอยู 

ในกรณีท่ัวไป การเปลี่ยนจากตัวแปรความเครียด

ซ่ึงอาจไมสามารถหาไดงาย มาเปนตัวแปรของการเปลีย่น

ตําแหนงซ่ึงหาไดงายกวานั้น เปนสิ่งท่ีหลีกเลี่ยงไมได 

นอกเหนือไปจากนั้น การท่ีตัวแปรของการเปลี่ยน

ตําแหนงถูกสมมติใหมีความตอเนื่องตลอดบนขอบเขต

ของโดเมนสมํ่าเสมอ ทําใหสามารถเปลี่ยนรูปของ

สมการ ท่ี  12 โ ด ย ใ ช ก า ร อิ น ทิ เ ก รต ที ล ะ ส ว น 

(Integration by part) กลายเปน 
 

𝜀𝜀𝜀𝜀(̅𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘) =  
1
𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠

 � 𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥)
Γ𝑘𝑘𝑘𝑘
𝑠𝑠𝑠𝑠

𝑢𝑢𝑢𝑢�(𝑥𝑥𝑥𝑥)𝑑𝑑𝑑𝑑Γ   (14) 

 

เ ม่ือ 𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥) คือเวกเตอรองคประกอบของ

เวกเตอรหนึ่งหนวยท้ังสองทิศทางท่ีพุงออกจากดาน

หรือขอบเขตของโดเมนสมํ่าเสมอนั่นเอง 
 

𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥) = �
𝑛𝑛𝑛𝑛𝑥𝑥𝑥𝑥 0
0 𝑛𝑛𝑛𝑛𝑦𝑦𝑦𝑦
𝑛𝑛𝑛𝑛𝑦𝑦𝑦𝑦 𝑛𝑛𝑛𝑛𝑥𝑥𝑥𝑥

� (15) 

 

สติฟเนสเมทริกซสมํ่าเสมอในระบบโคออรดิเนต

หลักในสมการที่ 10 นั้น ขึ้นอยูกับคาของ strain-

displacement matrix 𝐵𝐵𝐵𝐵� ห า ก ทํา ก า ร แ ท นค า 

𝑢𝑢𝑢𝑢�(𝑥𝑥𝑥𝑥) = ∑𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖𝑢𝑢𝑢𝑢�𝑖𝑖𝑖𝑖 ลงในสมการท่ี 14 แลวจัดรูปสมการ

ใหมจะไดวา 
 

𝜀𝜀𝜀𝜀(̅𝑥𝑥𝑥𝑥) = 𝐵𝐵𝐵𝐵�(𝑥𝑥𝑥𝑥)𝑢𝑢𝑢𝑢�(𝑥𝑥𝑥𝑥) ⇒ 𝐵𝐵𝐵𝐵�(𝑥𝑥𝑥𝑥)

=  
1
𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠

 � 𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥)
Γ𝑘𝑘𝑘𝑘
𝑠𝑠𝑠𝑠

𝑁𝑁𝑁𝑁(𝑥𝑥𝑥𝑥) 𝑑𝑑𝑑𝑑Γ = �
𝑏𝑏𝑏𝑏�𝑥𝑥𝑥𝑥 0
0 𝑏𝑏𝑏𝑏�𝑦𝑦𝑦𝑦
𝑏𝑏𝑏𝑏�𝑦𝑦𝑦𝑦 𝑏𝑏𝑏𝑏�𝑥𝑥𝑥𝑥

�      (16) 

 

 

 คือพื้นที่ของโดเมนสม่ำ�เสมอ

ที่กำ�ลังพิจารณาอยู่

	 	 	 ในกรณีทั่วไป การเปลี่ยนจากตัวแปร

ความเครยีดซึง่อาจไมส่ามารถหาไดง้า่ย มาเปน็ตวัแปร

ของการเปลี่ยนตำ�แหน่งซึ่งหาได้ง่ายกว่านั้น เป็นสิ่งที่

หลีกเลี่ยงไม่ได้ นอกเหนือไปจากนั้น การที่ตัวแปร

ของการเปลี่ยนตำ�แหน่งถูกสมมติให้มีความต่อเนื่อง

ตลอดบนขอบเขตของโดเมนสม่ำ�เสมอ ทำ�ให้สามารถ

เปลี่ยนรูปของสมการที่ 12 โดยใช้การอินทิเกรต

ทีละส่วน (Integration by part) กลายเป็น

	

สามารถใชประโยชนจากโปรแกรมไฟไนทเอลิเมนต 

ซ่ึ ง มี ใช กันอย างแพรหลาย ท้ังส วน ท่ี เปน open 

source แ ล ะ  commercial software โ ด ย ไ ม

จําเปนตองสรางข้ึนใหมท้ังหมด สนามหรือตัวแปร

ความเครียดสมํ่าเสมอนี้ สามารถสรางข้ึนไดดวยการ

ปรับปรุงตัวแปรสนามความเครียดท่ีไดจากวิธีไฟไนท

เ อ ลิ เ ม น ต ป ก ติ โ ด ย ใ ช  smoothing operation 

ขบวนการดังกลาวเริ่มจากการสรางโครงตาขาย 

(Element mesh) แบบสามเหลี่ยมหรือสี่เหลี่ยมดวย

วิธีปกติเหมือนกับในวิธีไฟไนทเอลิเมนตแลวหาคาของ

ตัวแปรความเครียดในรูปของ 
 

𝜀𝜀𝜀𝜀̃ = 𝐷𝐷𝐷𝐷 ��𝑁𝑁𝑁𝑁𝐼𝐼𝐼𝐼(𝑥𝑥𝑥𝑥)𝑑̅𝑑𝑑𝑑𝐼𝐼𝐼𝐼

𝑁𝑁𝑁𝑁

𝐼𝐼𝐼𝐼=1

� = �𝐵𝐵𝐵𝐵�𝐼𝐼𝐼𝐼𝑑̅𝑑𝑑𝑑𝐼𝐼𝐼𝐼

𝑁𝑁𝑁𝑁

𝐼𝐼𝐼𝐼=1

= 𝐵𝐵𝐵𝐵�𝑑̅𝑑𝑑𝑑 (11) 

 

การคํานวณหาคาของตัวแปรความเครียด

สมํ่าเสมอ ε� ณ ตําแหนง 𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘 จะใชเทคนิคการประมาณ

ของคาอินทิเกรตของฟงกชัน [20] กลาวคือ 
 

𝜀𝜀𝜀𝜀(̅𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘) = � 𝐿𝐿𝐿𝐿 
Ω𝑘𝑘𝑘𝑘
𝑠𝑠𝑠𝑠

𝑢𝑢𝑢𝑢�(𝑥𝑥𝑥𝑥)𝑊𝑊𝑊𝑊(𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘 − 𝑥𝑥𝑥𝑥)𝑑𝑑𝑑𝑑Ω    (12) 

 

เม่ือ Ω𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠   คือโดเมนสมํ่าเสมอสําหรับตําแหนง 

𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘 และ 𝑊𝑊𝑊𝑊(𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘 − 𝑥𝑥𝑥𝑥) คือฟงกชันน้ําหนักท่ีสัมพันธ

กับคา ณ ตําแหนงดังกลาว ตัวแปรความเครียดท่ีอยู

ภายในโดเมนสมํ่าเสมอนี้จะถูกคํานวณจากการกระจาย

ตัวแปรความเครียดในสมการท่ี 11 ตลอดท่ัวท้ังโดเมน

 Ω𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠  และถูกสมมติใหมีคาคงท่ี ฟงกชันน้ําหนักท่ีใชนั้น 

มีความสําคัญกับการทําใหตัวแปรความเครียดท่ีได

จากวิธีไฟไนทเอลิเมนตเกิดการกระจายตัวอยาง

สมํ่าเสมอตลอดท่ัวท้ังโดเมน ซ่ึงจะตองมีคุณสมบัติ

ดังตอไปนี้ [9] (1) คาของมันจะตองไมเปนศูนยและ

ตองมีคาเปนบวกภายในโดเมนสมํ่าเสมอท่ีพิจารณา 

(2) ตองมีศูนยกลางอยูท่ีตําแหนง 𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘 (3) ตองเปนไป

ตามเง่ือนไขของคุณสมบัติการมีคาเปน 1 (Unity 

property) เพ่ือความงายของการคํานวณโดยท่ียังคง

สอดคลองตามเง่ือนไขดังกลาวขางตน งานวิจัยนี้จะ

กําหนดใหใช Heaviside step function ซ่ึงเปนฟงกชัน

น้ําหนักอยางงายและแสดงไดดังสมการท่ี 13 
 

𝑊𝑊𝑊𝑊(𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘 − 𝑥𝑥𝑥𝑥) = �
1
𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠

 ,       𝑥𝑥𝑥𝑥 ∈ 𝛺𝛺𝛺𝛺𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠

0,          𝑥𝑥𝑥𝑥 ∉ 𝛺𝛺𝛺𝛺𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠
        (13) 

 

เม่ือ 𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠  คือพ้ืนท่ีของโดเมนสมํ่าเสมอท่ีกําลัง

พิจารณาอยู 

ในกรณีท่ัวไป การเปลี่ยนจากตัวแปรความเครียด

ซ่ึงอาจไมสามารถหาไดงาย มาเปนตัวแปรของการเปลีย่น

ตําแหนงซ่ึงหาไดงายกวานั้น เปนสิ่งท่ีหลีกเลี่ยงไมได 

นอกเหนือไปจากนั้น การท่ีตัวแปรของการเปลี่ยน

ตําแหนงถูกสมมติใหมีความตอเนื่องตลอดบนขอบเขต

ของโดเมนสมํ่าเสมอ ทําใหสามารถเปลี่ยนรูปของ

สมการ ท่ี  12 โ ด ย ใ ช ก า ร อิ น ทิ เ ก รต ที ล ะ ส ว น 

(Integration by part) กลายเปน 
 

𝜀𝜀𝜀𝜀(̅𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘) =  
1
𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠

 � 𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥)
Γ𝑘𝑘𝑘𝑘
𝑠𝑠𝑠𝑠

𝑢𝑢𝑢𝑢�(𝑥𝑥𝑥𝑥)𝑑𝑑𝑑𝑑Γ   (14) 

 

เ ม่ือ 𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥) คือเวกเตอรองคประกอบของ

เวกเตอรหนึ่งหนวยท้ังสองทิศทางท่ีพุงออกจากดาน

หรือขอบเขตของโดเมนสมํ่าเสมอนั่นเอง 
 

𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥) = �
𝑛𝑛𝑛𝑛𝑥𝑥𝑥𝑥 0
0 𝑛𝑛𝑛𝑛𝑦𝑦𝑦𝑦
𝑛𝑛𝑛𝑛𝑦𝑦𝑦𝑦 𝑛𝑛𝑛𝑛𝑥𝑥𝑥𝑥

� (15) 

 

สติฟเนสเมทริกซสมํ่าเสมอในระบบโคออรดิเนต

หลักในสมการที่ 10 นั้น ขึ้นอยูกับคาของ strain-

displacement matrix 𝐵𝐵𝐵𝐵� ห า ก ทํา ก า ร แ ท นค า 

𝑢𝑢𝑢𝑢�(𝑥𝑥𝑥𝑥) = ∑𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖𝑢𝑢𝑢𝑢�𝑖𝑖𝑖𝑖 ลงในสมการท่ี 14 แลวจัดรูปสมการ

ใหมจะไดวา 
 

𝜀𝜀𝜀𝜀(̅𝑥𝑥𝑥𝑥) = 𝐵𝐵𝐵𝐵�(𝑥𝑥𝑥𝑥)𝑢𝑢𝑢𝑢�(𝑥𝑥𝑥𝑥) ⇒ 𝐵𝐵𝐵𝐵�(𝑥𝑥𝑥𝑥)

=  
1
𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠

 � 𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥)
Γ𝑘𝑘𝑘𝑘
𝑠𝑠𝑠𝑠

𝑁𝑁𝑁𝑁(𝑥𝑥𝑥𝑥) 𝑑𝑑𝑑𝑑Γ = �
𝑏𝑏𝑏𝑏�𝑥𝑥𝑥𝑥 0
0 𝑏𝑏𝑏𝑏�𝑦𝑦𝑦𝑦
𝑏𝑏𝑏𝑏�𝑦𝑦𝑦𝑦 𝑏𝑏𝑏𝑏�𝑥𝑥𝑥𝑥

�      (16) 

 

 

	 (14)

	 	 	 เมื่อ 

สามารถใชประโยชนจากโปรแกรมไฟไนทเอลิเมนต 

ซ่ึ ง มี ใช กันอย างแพรหลาย ท้ังส วน ท่ี เปน open 

source แ ล ะ  commercial software โ ด ย ไ ม

จําเปนตองสรางข้ึนใหมท้ังหมด สนามหรือตัวแปร

ความเครียดสมํ่าเสมอนี้ สามารถสรางข้ึนไดดวยการ

ปรับปรุงตัวแปรสนามความเครียดท่ีไดจากวิธีไฟไนท

เ อ ลิ เ ม น ต ป ก ติ โ ด ย ใ ช  smoothing operation 

ขบวนการดังกลาวเริ่มจากการสรางโครงตาขาย 

(Element mesh) แบบสามเหลี่ยมหรือสี่เหลี่ยมดวย

วิธีปกติเหมือนกับในวิธีไฟไนทเอลิเมนตแลวหาคาของ

ตัวแปรความเครียดในรูปของ 
 

𝜀𝜀𝜀𝜀̃ = 𝐷𝐷𝐷𝐷 ��𝑁𝑁𝑁𝑁𝐼𝐼𝐼𝐼(𝑥𝑥𝑥𝑥)𝑑̅𝑑𝑑𝑑𝐼𝐼𝐼𝐼

𝑁𝑁𝑁𝑁

𝐼𝐼𝐼𝐼=1

� = �𝐵𝐵𝐵𝐵�𝐼𝐼𝐼𝐼𝑑̅𝑑𝑑𝑑𝐼𝐼𝐼𝐼

𝑁𝑁𝑁𝑁

𝐼𝐼𝐼𝐼=1

= 𝐵𝐵𝐵𝐵�𝑑̅𝑑𝑑𝑑 (11) 

 

การคํานวณหาคาของตัวแปรความเครียด

สมํ่าเสมอ ε� ณ ตําแหนง 𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘 จะใชเทคนิคการประมาณ

ของคาอินทิเกรตของฟงกชัน [20] กลาวคือ 
 

𝜀𝜀𝜀𝜀(̅𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘) = � 𝐿𝐿𝐿𝐿 
Ω𝑘𝑘𝑘𝑘
𝑠𝑠𝑠𝑠

𝑢𝑢𝑢𝑢�(𝑥𝑥𝑥𝑥)𝑊𝑊𝑊𝑊(𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘 − 𝑥𝑥𝑥𝑥)𝑑𝑑𝑑𝑑Ω    (12) 

 

เม่ือ Ω𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠   คือโดเมนสมํ่าเสมอสําหรับตําแหนง 

𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘 และ 𝑊𝑊𝑊𝑊(𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘 − 𝑥𝑥𝑥𝑥) คือฟงกชันน้ําหนักท่ีสัมพันธ

กับคา ณ ตําแหนงดังกลาว ตัวแปรความเครียดท่ีอยู

ภายในโดเมนสมํ่าเสมอนี้จะถูกคํานวณจากการกระจาย

ตัวแปรความเครียดในสมการท่ี 11 ตลอดท่ัวท้ังโดเมน

 Ω𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠  และถูกสมมติใหมีคาคงท่ี ฟงกชันน้ําหนักท่ีใชนั้น 

มีความสําคัญกับการทําใหตัวแปรความเครียดท่ีได

จากวิธีไฟไนทเอลิเมนตเกิดการกระจายตัวอยาง

สมํ่าเสมอตลอดท่ัวท้ังโดเมน ซ่ึงจะตองมีคุณสมบัติ

ดังตอไปนี้ [9] (1) คาของมันจะตองไมเปนศูนยและ

ตองมีคาเปนบวกภายในโดเมนสมํ่าเสมอท่ีพิจารณา 

(2) ตองมีศูนยกลางอยูท่ีตําแหนง 𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘 (3) ตองเปนไป

ตามเง่ือนไขของคุณสมบัติการมีคาเปน 1 (Unity 

property) เพ่ือความงายของการคํานวณโดยท่ียังคง

สอดคลองตามเง่ือนไขดังกลาวขางตน งานวิจัยนี้จะ

กําหนดใหใช Heaviside step function ซ่ึงเปนฟงกชัน

น้ําหนักอยางงายและแสดงไดดังสมการท่ี 13 
 

𝑊𝑊𝑊𝑊(𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘 − 𝑥𝑥𝑥𝑥) = �
1
𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠

 ,       𝑥𝑥𝑥𝑥 ∈ 𝛺𝛺𝛺𝛺𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠

0,          𝑥𝑥𝑥𝑥 ∉ 𝛺𝛺𝛺𝛺𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠
        (13) 

 

เม่ือ 𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠  คือพ้ืนท่ีของโดเมนสมํ่าเสมอท่ีกําลัง

พิจารณาอยู 

ในกรณีท่ัวไป การเปลี่ยนจากตัวแปรความเครียด

ซ่ึงอาจไมสามารถหาไดงาย มาเปนตัวแปรของการเปลีย่น

ตําแหนงซ่ึงหาไดงายกวานั้น เปนสิ่งท่ีหลีกเลี่ยงไมได 

นอกเหนือไปจากนั้น การท่ีตัวแปรของการเปลี่ยน

ตําแหนงถูกสมมติใหมีความตอเนื่องตลอดบนขอบเขต

ของโดเมนสมํ่าเสมอ ทําใหสามารถเปลี่ยนรูปของ

สมการ ท่ี  12 โ ด ย ใ ช ก า ร อิ น ทิ เ ก รต ที ล ะ ส ว น 

(Integration by part) กลายเปน 
 

𝜀𝜀𝜀𝜀(̅𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘) =  
1
𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠

 � 𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥)
Γ𝑘𝑘𝑘𝑘
𝑠𝑠𝑠𝑠

𝑢𝑢𝑢𝑢�(𝑥𝑥𝑥𝑥)𝑑𝑑𝑑𝑑Γ   (14) 

 

เ ม่ือ 𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥) คือเวกเตอรองคประกอบของ

เวกเตอรหนึ่งหนวยท้ังสองทิศทางท่ีพุงออกจากดาน

หรือขอบเขตของโดเมนสมํ่าเสมอนั่นเอง 
 

𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥) = �
𝑛𝑛𝑛𝑛𝑥𝑥𝑥𝑥 0
0 𝑛𝑛𝑛𝑛𝑦𝑦𝑦𝑦
𝑛𝑛𝑛𝑛𝑦𝑦𝑦𝑦 𝑛𝑛𝑛𝑛𝑥𝑥𝑥𝑥

� (15) 

 

สติฟเนสเมทริกซสมํ่าเสมอในระบบโคออรดิเนต

หลักในสมการที่ 10 นั้น ขึ้นอยูกับคาของ strain-

displacement matrix 𝐵𝐵𝐵𝐵� ห า ก ทํา ก า ร แ ท นค า 

𝑢𝑢𝑢𝑢�(𝑥𝑥𝑥𝑥) = ∑𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖𝑢𝑢𝑢𝑢�𝑖𝑖𝑖𝑖 ลงในสมการท่ี 14 แลวจัดรูปสมการ

ใหมจะไดวา 
 

𝜀𝜀𝜀𝜀(̅𝑥𝑥𝑥𝑥) = 𝐵𝐵𝐵𝐵�(𝑥𝑥𝑥𝑥)𝑢𝑢𝑢𝑢�(𝑥𝑥𝑥𝑥) ⇒ 𝐵𝐵𝐵𝐵�(𝑥𝑥𝑥𝑥)

=  
1
𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠

 � 𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥)
Γ𝑘𝑘𝑘𝑘
𝑠𝑠𝑠𝑠

𝑁𝑁𝑁𝑁(𝑥𝑥𝑥𝑥) 𝑑𝑑𝑑𝑑Γ = �
𝑏𝑏𝑏𝑏�𝑥𝑥𝑥𝑥 0
0 𝑏𝑏𝑏𝑏�𝑦𝑦𝑦𝑦
𝑏𝑏𝑏𝑏�𝑦𝑦𝑦𝑦 𝑏𝑏𝑏𝑏�𝑥𝑥𝑥𝑥

�      (16) 

 

 

 คือเวกเตอร์องค์ประกอบ

ของเวกเตอร์หนึ่งหน่วยทั้งสองทิศทางที่พุ่งออกจาก

ด้านหรือขอบเขตของโดเมนสม่ำ�เสมอนั่นเอง

	

สามารถใชประโยชนจากโปรแกรมไฟไนทเอลิเมนต 

ซ่ึ ง มี ใช กันอย างแพรหลาย ท้ังส วน ท่ี เปน open 

source แ ล ะ  commercial software โ ด ย ไ ม

จําเปนตองสรางข้ึนใหมท้ังหมด สนามหรือตัวแปร

ความเครียดสมํ่าเสมอนี้ สามารถสรางข้ึนไดดวยการ

ปรับปรุงตัวแปรสนามความเครียดท่ีไดจากวิธีไฟไนท

เ อ ลิ เ ม น ต ป ก ติ โ ด ย ใ ช  smoothing operation 

ขบวนการดังกลาวเริ่มจากการสรางโครงตาขาย 

(Element mesh) แบบสามเหลี่ยมหรือสี่เหลี่ยมดวย

วิธีปกติเหมือนกับในวิธีไฟไนทเอลิเมนตแลวหาคาของ

ตัวแปรความเครียดในรูปของ 
 

𝜀𝜀𝜀𝜀̃ = 𝐷𝐷𝐷𝐷 ��𝑁𝑁𝑁𝑁𝐼𝐼𝐼𝐼(𝑥𝑥𝑥𝑥)𝑑̅𝑑𝑑𝑑𝐼𝐼𝐼𝐼

𝑁𝑁𝑁𝑁

𝐼𝐼𝐼𝐼=1

� = �𝐵𝐵𝐵𝐵�𝐼𝐼𝐼𝐼𝑑̅𝑑𝑑𝑑𝐼𝐼𝐼𝐼

𝑁𝑁𝑁𝑁

𝐼𝐼𝐼𝐼=1

= 𝐵𝐵𝐵𝐵�𝑑̅𝑑𝑑𝑑 (11) 

 

การคํานวณหาคาของตัวแปรความเครียด

สมํ่าเสมอ ε� ณ ตําแหนง 𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘 จะใชเทคนิคการประมาณ

ของคาอินทิเกรตของฟงกชัน [20] กลาวคือ 
 

𝜀𝜀𝜀𝜀(̅𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘) = � 𝐿𝐿𝐿𝐿 
Ω𝑘𝑘𝑘𝑘
𝑠𝑠𝑠𝑠

𝑢𝑢𝑢𝑢�(𝑥𝑥𝑥𝑥)𝑊𝑊𝑊𝑊(𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘 − 𝑥𝑥𝑥𝑥)𝑑𝑑𝑑𝑑Ω    (12) 

 

เม่ือ Ω𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠   คือโดเมนสมํ่าเสมอสําหรับตําแหนง 

𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘 และ 𝑊𝑊𝑊𝑊(𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘 − 𝑥𝑥𝑥𝑥) คือฟงกชันน้ําหนักท่ีสัมพันธ

กับคา ณ ตําแหนงดังกลาว ตัวแปรความเครียดท่ีอยู

ภายในโดเมนสมํ่าเสมอนี้จะถูกคํานวณจากการกระจาย

ตัวแปรความเครียดในสมการท่ี 11 ตลอดท่ัวท้ังโดเมน

 Ω𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠  และถูกสมมติใหมีคาคงท่ี ฟงกชันน้ําหนักท่ีใชนั้น 

มีความสําคัญกับการทําใหตัวแปรความเครียดท่ีได

จากวิธีไฟไนทเอลิเมนตเกิดการกระจายตัวอยาง

สมํ่าเสมอตลอดท่ัวท้ังโดเมน ซ่ึงจะตองมีคุณสมบัติ

ดังตอไปนี้ [9] (1) คาของมันจะตองไมเปนศูนยและ

ตองมีคาเปนบวกภายในโดเมนสมํ่าเสมอท่ีพิจารณา 

(2) ตองมีศูนยกลางอยูท่ีตําแหนง 𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘 (3) ตองเปนไป

ตามเง่ือนไขของคุณสมบัติการมีคาเปน 1 (Unity 

property) เพ่ือความงายของการคํานวณโดยท่ียังคง

สอดคลองตามเง่ือนไขดังกลาวขางตน งานวิจัยนี้จะ

กําหนดใหใช Heaviside step function ซ่ึงเปนฟงกชัน

น้ําหนักอยางงายและแสดงไดดังสมการท่ี 13 
 

𝑊𝑊𝑊𝑊(𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘 − 𝑥𝑥𝑥𝑥) = �
1
𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠

 ,       𝑥𝑥𝑥𝑥 ∈ 𝛺𝛺𝛺𝛺𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠

0,          𝑥𝑥𝑥𝑥 ∉ 𝛺𝛺𝛺𝛺𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠
        (13) 

 

เม่ือ 𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠  คือพ้ืนท่ีของโดเมนสมํ่าเสมอท่ีกําลัง

พิจารณาอยู 

ในกรณีท่ัวไป การเปลี่ยนจากตัวแปรความเครียด

ซ่ึงอาจไมสามารถหาไดงาย มาเปนตัวแปรของการเปลีย่น

ตําแหนงซ่ึงหาไดงายกวานั้น เปนสิ่งท่ีหลีกเลี่ยงไมได 

นอกเหนือไปจากนั้น การท่ีตัวแปรของการเปลี่ยน

ตําแหนงถูกสมมติใหมีความตอเนื่องตลอดบนขอบเขต

ของโดเมนสมํ่าเสมอ ทําใหสามารถเปลี่ยนรูปของ

สมการ ท่ี  12 โ ด ย ใ ช ก า ร อิ น ทิ เ ก รต ที ล ะ ส ว น 

(Integration by part) กลายเปน 
 

𝜀𝜀𝜀𝜀(̅𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘) =  
1
𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠

 � 𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥)
Γ𝑘𝑘𝑘𝑘
𝑠𝑠𝑠𝑠

𝑢𝑢𝑢𝑢�(𝑥𝑥𝑥𝑥)𝑑𝑑𝑑𝑑Γ   (14) 

 

เ ม่ือ 𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥) คือเวกเตอรองคประกอบของ

เวกเตอรหนึ่งหนวยท้ังสองทิศทางท่ีพุงออกจากดาน

หรือขอบเขตของโดเมนสมํ่าเสมอนั่นเอง 
 

𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥) = �
𝑛𝑛𝑛𝑛𝑥𝑥𝑥𝑥 0
0 𝑛𝑛𝑛𝑛𝑦𝑦𝑦𝑦
𝑛𝑛𝑛𝑛𝑦𝑦𝑦𝑦 𝑛𝑛𝑛𝑛𝑥𝑥𝑥𝑥

� (15) 

 

สติฟเนสเมทริกซสมํ่าเสมอในระบบโคออรดิเนต

หลักในสมการที่ 10 นั้น ขึ้นอยูกับคาของ strain-

displacement matrix 𝐵𝐵𝐵𝐵� ห า ก ทํา ก า ร แ ท นค า 

𝑢𝑢𝑢𝑢�(𝑥𝑥𝑥𝑥) = ∑𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖𝑢𝑢𝑢𝑢�𝑖𝑖𝑖𝑖 ลงในสมการท่ี 14 แลวจัดรูปสมการ

ใหมจะไดวา 
 

𝜀𝜀𝜀𝜀(̅𝑥𝑥𝑥𝑥) = 𝐵𝐵𝐵𝐵�(𝑥𝑥𝑥𝑥)𝑢𝑢𝑢𝑢�(𝑥𝑥𝑥𝑥) ⇒ 𝐵𝐵𝐵𝐵�(𝑥𝑥𝑥𝑥)

=  
1
𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠

 � 𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥)
Γ𝑘𝑘𝑘𝑘
𝑠𝑠𝑠𝑠

𝑁𝑁𝑁𝑁(𝑥𝑥𝑥𝑥) 𝑑𝑑𝑑𝑑Γ = �
𝑏𝑏𝑏𝑏�𝑥𝑥𝑥𝑥 0
0 𝑏𝑏𝑏𝑏�𝑦𝑦𝑦𝑦
𝑏𝑏𝑏𝑏�𝑦𝑦𝑦𝑦 𝑏𝑏𝑏𝑏�𝑥𝑥𝑥𝑥

�      (16) 

 

 

	 (15)

	 	 	 สติฟเนสเมทริกซ์สม่ำ�เสมอในระบบ

โคออร์ดิเนตหลักในสมการท่ี 10 น้ัน ขึ้นอยู่กับค่า

ของ strain-displacement matrix 

สามารถใชประโยชนจากโปรแกรมไฟไนทเอลิเมนต 

ซ่ึ ง มี ใช กันอย างแพรหลาย ท้ังส วน ท่ี เปน open 

source แ ล ะ  commercial software โ ด ย ไ ม

จําเปนตองสรางข้ึนใหมท้ังหมด สนามหรือตัวแปร

ความเครียดสมํ่าเสมอนี้ สามารถสรางข้ึนไดดวยการ

ปรับปรุงตัวแปรสนามความเครียดท่ีไดจากวิธีไฟไนท

เ อ ลิ เ ม น ต ป ก ติ โ ด ย ใ ช  smoothing operation 

ขบวนการดังกลาวเริ่มจากการสรางโครงตาขาย 

(Element mesh) แบบสามเหลี่ยมหรือสี่เหลี่ยมดวย

วิธีปกติเหมือนกับในวิธีไฟไนทเอลิเมนตแลวหาคาของ

ตัวแปรความเครียดในรูปของ 
 

𝜀𝜀𝜀𝜀̃ = 𝐷𝐷𝐷𝐷 ��𝑁𝑁𝑁𝑁𝐼𝐼𝐼𝐼(𝑥𝑥𝑥𝑥)𝑑̅𝑑𝑑𝑑𝐼𝐼𝐼𝐼

𝑁𝑁𝑁𝑁

𝐼𝐼𝐼𝐼=1

� = �𝐵𝐵𝐵𝐵�𝐼𝐼𝐼𝐼𝑑̅𝑑𝑑𝑑𝐼𝐼𝐼𝐼

𝑁𝑁𝑁𝑁

𝐼𝐼𝐼𝐼=1

= 𝐵𝐵𝐵𝐵�𝑑̅𝑑𝑑𝑑 (11) 

 

การคํานวณหาคาของตัวแปรความเครียด

สมํ่าเสมอ ε� ณ ตําแหนง 𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘 จะใชเทคนิคการประมาณ

ของคาอินทิเกรตของฟงกชัน [20] กลาวคือ 
 

𝜀𝜀𝜀𝜀(̅𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘) = � 𝐿𝐿𝐿𝐿 
Ω𝑘𝑘𝑘𝑘
𝑠𝑠𝑠𝑠

𝑢𝑢𝑢𝑢�(𝑥𝑥𝑥𝑥)𝑊𝑊𝑊𝑊(𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘 − 𝑥𝑥𝑥𝑥)𝑑𝑑𝑑𝑑Ω    (12) 

 

เม่ือ Ω𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠   คือโดเมนสมํ่าเสมอสําหรับตําแหนง 

𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘 และ 𝑊𝑊𝑊𝑊(𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘 − 𝑥𝑥𝑥𝑥) คือฟงกชันน้ําหนักท่ีสัมพันธ

กับคา ณ ตําแหนงดังกลาว ตัวแปรความเครียดท่ีอยู

ภายในโดเมนสมํ่าเสมอนี้จะถูกคํานวณจากการกระจาย

ตัวแปรความเครียดในสมการท่ี 11 ตลอดท่ัวท้ังโดเมน

 Ω𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠  และถูกสมมติใหมีคาคงท่ี ฟงกชันน้ําหนักท่ีใชนั้น 

มีความสําคัญกับการทําใหตัวแปรความเครียดท่ีได

จากวิธีไฟไนทเอลิเมนตเกิดการกระจายตัวอยาง

สมํ่าเสมอตลอดท่ัวท้ังโดเมน ซ่ึงจะตองมีคุณสมบัติ

ดังตอไปนี้ [9] (1) คาของมันจะตองไมเปนศูนยและ

ตองมีคาเปนบวกภายในโดเมนสมํ่าเสมอท่ีพิจารณา 

(2) ตองมีศูนยกลางอยูท่ีตําแหนง 𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘 (3) ตองเปนไป

ตามเง่ือนไขของคุณสมบัติการมีคาเปน 1 (Unity 

property) เพ่ือความงายของการคํานวณโดยท่ียังคง

สอดคลองตามเง่ือนไขดังกลาวขางตน งานวิจัยนี้จะ

กําหนดใหใช Heaviside step function ซ่ึงเปนฟงกชัน

น้ําหนักอยางงายและแสดงไดดังสมการท่ี 13 
 

𝑊𝑊𝑊𝑊(𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘 − 𝑥𝑥𝑥𝑥) = �
1
𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠

 ,       𝑥𝑥𝑥𝑥 ∈ 𝛺𝛺𝛺𝛺𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠

0,          𝑥𝑥𝑥𝑥 ∉ 𝛺𝛺𝛺𝛺𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠
        (13) 

 

เม่ือ 𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠  คือพ้ืนท่ีของโดเมนสมํ่าเสมอท่ีกําลัง

พิจารณาอยู 

ในกรณีท่ัวไป การเปลี่ยนจากตัวแปรความเครียด

ซ่ึงอาจไมสามารถหาไดงาย มาเปนตัวแปรของการเปลีย่น

ตําแหนงซ่ึงหาไดงายกวานั้น เปนสิ่งท่ีหลีกเลี่ยงไมได 

นอกเหนือไปจากนั้น การท่ีตัวแปรของการเปลี่ยน

ตําแหนงถูกสมมติใหมีความตอเนื่องตลอดบนขอบเขต

ของโดเมนสมํ่าเสมอ ทําใหสามารถเปลี่ยนรูปของ

สมการ ท่ี  12 โ ด ย ใ ช ก า ร อิ น ทิ เ ก รต ที ล ะ ส ว น 

(Integration by part) กลายเปน 
 

𝜀𝜀𝜀𝜀(̅𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘) =  
1
𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠

 � 𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥)
Γ𝑘𝑘𝑘𝑘
𝑠𝑠𝑠𝑠

𝑢𝑢𝑢𝑢�(𝑥𝑥𝑥𝑥)𝑑𝑑𝑑𝑑Γ   (14) 

 

เ ม่ือ 𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥) คือเวกเตอรองคประกอบของ

เวกเตอรหนึ่งหนวยท้ังสองทิศทางท่ีพุงออกจากดาน

หรือขอบเขตของโดเมนสมํ่าเสมอนั่นเอง 
 

𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥) = �
𝑛𝑛𝑛𝑛𝑥𝑥𝑥𝑥 0
0 𝑛𝑛𝑛𝑛𝑦𝑦𝑦𝑦
𝑛𝑛𝑛𝑛𝑦𝑦𝑦𝑦 𝑛𝑛𝑛𝑛𝑥𝑥𝑥𝑥

� (15) 

 

สติฟเนสเมทริกซสมํ่าเสมอในระบบโคออรดิเนต

หลักในสมการที่ 10 นั้น ขึ้นอยูกับคาของ strain-

displacement matrix 𝐵𝐵𝐵𝐵� ห า ก ทํา ก า ร แ ท นค า 

𝑢𝑢𝑢𝑢�(𝑥𝑥𝑥𝑥) = ∑𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖𝑢𝑢𝑢𝑢�𝑖𝑖𝑖𝑖 ลงในสมการท่ี 14 แลวจัดรูปสมการ

ใหมจะไดวา 
 

𝜀𝜀𝜀𝜀(̅𝑥𝑥𝑥𝑥) = 𝐵𝐵𝐵𝐵�(𝑥𝑥𝑥𝑥)𝑢𝑢𝑢𝑢�(𝑥𝑥𝑥𝑥) ⇒ 𝐵𝐵𝐵𝐵�(𝑥𝑥𝑥𝑥)

=  
1
𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠

 � 𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥)
Γ𝑘𝑘𝑘𝑘
𝑠𝑠𝑠𝑠

𝑁𝑁𝑁𝑁(𝑥𝑥𝑥𝑥) 𝑑𝑑𝑑𝑑Γ = �
𝑏𝑏𝑏𝑏�𝑥𝑥𝑥𝑥 0
0 𝑏𝑏𝑏𝑏�𝑦𝑦𝑦𝑦
𝑏𝑏𝑏𝑏�𝑦𝑦𝑦𝑦 𝑏𝑏𝑏𝑏�𝑥𝑥𝑥𝑥

�      (16) 

 

 

 หากทำ�การ

แทนค่า 

สามารถใชประโยชนจากโปรแกรมไฟไนทเอลิเมนต 

ซ่ึ ง มี ใช กันอย างแพรหลาย ท้ังส วน ท่ี เปน open 

source แ ล ะ  commercial software โ ด ย ไ ม

จําเปนตองสรางข้ึนใหมท้ังหมด สนามหรือตัวแปร

ความเครียดสมํ่าเสมอนี้ สามารถสรางข้ึนไดดวยการ

ปรับปรุงตัวแปรสนามความเครียดท่ีไดจากวิธีไฟไนท

เ อ ลิ เ ม น ต ป ก ติ โ ด ย ใ ช  smoothing operation 

ขบวนการดังกลาวเริ่มจากการสรางโครงตาขาย 

(Element mesh) แบบสามเหลี่ยมหรือสี่เหลี่ยมดวย

วิธีปกติเหมือนกับในวิธีไฟไนทเอลิเมนตแลวหาคาของ

ตัวแปรความเครียดในรูปของ 
 

𝜀𝜀𝜀𝜀̃ = 𝐷𝐷𝐷𝐷 ��𝑁𝑁𝑁𝑁𝐼𝐼𝐼𝐼(𝑥𝑥𝑥𝑥)𝑑̅𝑑𝑑𝑑𝐼𝐼𝐼𝐼

𝑁𝑁𝑁𝑁

𝐼𝐼𝐼𝐼=1

� = �𝐵𝐵𝐵𝐵�𝐼𝐼𝐼𝐼𝑑̅𝑑𝑑𝑑𝐼𝐼𝐼𝐼

𝑁𝑁𝑁𝑁

𝐼𝐼𝐼𝐼=1

= 𝐵𝐵𝐵𝐵�𝑑̅𝑑𝑑𝑑 (11) 

 

การคํานวณหาคาของตัวแปรความเครียด

สมํ่าเสมอ ε� ณ ตําแหนง 𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘 จะใชเทคนิคการประมาณ

ของคาอินทิเกรตของฟงกชัน [20] กลาวคือ 
 

𝜀𝜀𝜀𝜀(̅𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘) = � 𝐿𝐿𝐿𝐿 
Ω𝑘𝑘𝑘𝑘
𝑠𝑠𝑠𝑠

𝑢𝑢𝑢𝑢�(𝑥𝑥𝑥𝑥)𝑊𝑊𝑊𝑊(𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘 − 𝑥𝑥𝑥𝑥)𝑑𝑑𝑑𝑑Ω    (12) 

 

เม่ือ Ω𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠   คือโดเมนสมํ่าเสมอสําหรับตําแหนง 

𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘 และ 𝑊𝑊𝑊𝑊(𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘 − 𝑥𝑥𝑥𝑥) คือฟงกชันน้ําหนักท่ีสัมพันธ

กับคา ณ ตําแหนงดังกลาว ตัวแปรความเครียดท่ีอยู

ภายในโดเมนสมํ่าเสมอนี้จะถูกคํานวณจากการกระจาย

ตัวแปรความเครียดในสมการท่ี 11 ตลอดท่ัวท้ังโดเมน

 Ω𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠  และถูกสมมติใหมีคาคงท่ี ฟงกชันน้ําหนักท่ีใชนั้น 

มีความสําคัญกับการทําใหตัวแปรความเครียดท่ีได

จากวิธีไฟไนทเอลิเมนตเกิดการกระจายตัวอยาง

สมํ่าเสมอตลอดท่ัวท้ังโดเมน ซ่ึงจะตองมีคุณสมบัติ

ดังตอไปนี้ [9] (1) คาของมันจะตองไมเปนศูนยและ

ตองมีคาเปนบวกภายในโดเมนสมํ่าเสมอท่ีพิจารณา 

(2) ตองมีศูนยกลางอยูท่ีตําแหนง 𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘 (3) ตองเปนไป

ตามเง่ือนไขของคุณสมบัติการมีคาเปน 1 (Unity 

property) เพ่ือความงายของการคํานวณโดยท่ียังคง

สอดคลองตามเง่ือนไขดังกลาวขางตน งานวิจัยนี้จะ

กําหนดใหใช Heaviside step function ซ่ึงเปนฟงกชัน

น้ําหนักอยางงายและแสดงไดดังสมการท่ี 13 
 

𝑊𝑊𝑊𝑊(𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘 − 𝑥𝑥𝑥𝑥) = �
1
𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠

 ,       𝑥𝑥𝑥𝑥 ∈ 𝛺𝛺𝛺𝛺𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠

0,          𝑥𝑥𝑥𝑥 ∉ 𝛺𝛺𝛺𝛺𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠
        (13) 

 

เม่ือ 𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠  คือพ้ืนท่ีของโดเมนสมํ่าเสมอท่ีกําลัง

พิจารณาอยู 

ในกรณีท่ัวไป การเปลี่ยนจากตัวแปรความเครียด

ซ่ึงอาจไมสามารถหาไดงาย มาเปนตัวแปรของการเปลีย่น

ตําแหนงซ่ึงหาไดงายกวานั้น เปนสิ่งท่ีหลีกเลี่ยงไมได 

นอกเหนือไปจากนั้น การท่ีตัวแปรของการเปลี่ยน

ตําแหนงถูกสมมติใหมีความตอเนื่องตลอดบนขอบเขต

ของโดเมนสมํ่าเสมอ ทําใหสามารถเปลี่ยนรูปของ

สมการ ท่ี  12 โ ด ย ใ ช ก า ร อิ น ทิ เ ก รต ที ล ะ ส ว น 

(Integration by part) กลายเปน 
 

𝜀𝜀𝜀𝜀(̅𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘) =  
1
𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠

 � 𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥)
Γ𝑘𝑘𝑘𝑘
𝑠𝑠𝑠𝑠

𝑢𝑢𝑢𝑢�(𝑥𝑥𝑥𝑥)𝑑𝑑𝑑𝑑Γ   (14) 

 

เ ม่ือ 𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥) คือเวกเตอรองคประกอบของ

เวกเตอรหนึ่งหนวยท้ังสองทิศทางท่ีพุงออกจากดาน

หรือขอบเขตของโดเมนสมํ่าเสมอนั่นเอง 
 

𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥) = �
𝑛𝑛𝑛𝑛𝑥𝑥𝑥𝑥 0
0 𝑛𝑛𝑛𝑛𝑦𝑦𝑦𝑦
𝑛𝑛𝑛𝑛𝑦𝑦𝑦𝑦 𝑛𝑛𝑛𝑛𝑥𝑥𝑥𝑥

� (15) 

 

สติฟเนสเมทริกซสมํ่าเสมอในระบบโคออรดิเนต

หลักในสมการที่ 10 นั้น ขึ้นอยูกับคาของ strain-

displacement matrix 𝐵𝐵𝐵𝐵� ห า ก ทํา ก า ร แ ท นค า 

𝑢𝑢𝑢𝑢�(𝑥𝑥𝑥𝑥) = ∑𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖𝑢𝑢𝑢𝑢�𝑖𝑖𝑖𝑖 ลงในสมการท่ี 14 แลวจัดรูปสมการ

ใหมจะไดวา 
 

𝜀𝜀𝜀𝜀(̅𝑥𝑥𝑥𝑥) = 𝐵𝐵𝐵𝐵�(𝑥𝑥𝑥𝑥)𝑢𝑢𝑢𝑢�(𝑥𝑥𝑥𝑥) ⇒ 𝐵𝐵𝐵𝐵�(𝑥𝑥𝑥𝑥)

=  
1
𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠

 � 𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥)
Γ𝑘𝑘𝑘𝑘
𝑠𝑠𝑠𝑠

𝑁𝑁𝑁𝑁(𝑥𝑥𝑥𝑥) 𝑑𝑑𝑑𝑑Γ = �
𝑏𝑏𝑏𝑏�𝑥𝑥𝑥𝑥 0
0 𝑏𝑏𝑏𝑏�𝑦𝑦𝑦𝑦
𝑏𝑏𝑏𝑏�𝑦𝑦𝑦𝑦 𝑏𝑏𝑏𝑏�𝑥𝑥𝑥𝑥

�      (16) 

 

 

ลงในสมการที่ 14

แล้วจัดรูปสมการใหม่จะได้ว่า

	

สามารถใชประโยชนจากโปรแกรมไฟไนทเอลิเมนต 

ซ่ึ ง มี ใช กันอย างแพรหลาย ท้ังส วน ท่ี เปน open 

source แ ล ะ  commercial software โ ด ย ไ ม

จําเปนตองสรางข้ึนใหมท้ังหมด สนามหรือตัวแปร

ความเครียดสมํ่าเสมอนี้ สามารถสรางข้ึนไดดวยการ

ปรับปรุงตัวแปรสนามความเครียดท่ีไดจากวิธีไฟไนท

เ อ ลิ เ ม น ต ป ก ติ โ ด ย ใ ช  smoothing operation 

ขบวนการดังกลาวเริ่มจากการสรางโครงตาขาย 

(Element mesh) แบบสามเหลี่ยมหรือสี่เหลี่ยมดวย

วิธีปกติเหมือนกับในวิธีไฟไนทเอลิเมนตแลวหาคาของ

ตัวแปรความเครียดในรูปของ 
 

𝜀𝜀𝜀𝜀̃ = 𝐷𝐷𝐷𝐷 ��𝑁𝑁𝑁𝑁𝐼𝐼𝐼𝐼(𝑥𝑥𝑥𝑥)𝑑̅𝑑𝑑𝑑𝐼𝐼𝐼𝐼

𝑁𝑁𝑁𝑁

𝐼𝐼𝐼𝐼=1

� = �𝐵𝐵𝐵𝐵�𝐼𝐼𝐼𝐼𝑑̅𝑑𝑑𝑑𝐼𝐼𝐼𝐼

𝑁𝑁𝑁𝑁

𝐼𝐼𝐼𝐼=1

= 𝐵𝐵𝐵𝐵�𝑑̅𝑑𝑑𝑑 (11) 

 

การคํานวณหาคาของตัวแปรความเครียด

สมํ่าเสมอ ε� ณ ตําแหนง 𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘 จะใชเทคนิคการประมาณ

ของคาอินทิเกรตของฟงกชัน [20] กลาวคือ 
 

𝜀𝜀𝜀𝜀(̅𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘) = � 𝐿𝐿𝐿𝐿 
Ω𝑘𝑘𝑘𝑘
𝑠𝑠𝑠𝑠

𝑢𝑢𝑢𝑢�(𝑥𝑥𝑥𝑥)𝑊𝑊𝑊𝑊(𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘 − 𝑥𝑥𝑥𝑥)𝑑𝑑𝑑𝑑Ω    (12) 

 

เม่ือ Ω𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠   คือโดเมนสมํ่าเสมอสําหรับตําแหนง 

𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘 และ 𝑊𝑊𝑊𝑊(𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘 − 𝑥𝑥𝑥𝑥) คือฟงกชันน้ําหนักท่ีสัมพันธ

กับคา ณ ตําแหนงดังกลาว ตัวแปรความเครียดท่ีอยู

ภายในโดเมนสมํ่าเสมอนี้จะถูกคํานวณจากการกระจาย

ตัวแปรความเครียดในสมการท่ี 11 ตลอดท่ัวท้ังโดเมน

 Ω𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠  และถูกสมมติใหมีคาคงท่ี ฟงกชันน้ําหนักท่ีใชนั้น 

มีความสําคัญกับการทําใหตัวแปรความเครียดท่ีได

จากวิธีไฟไนทเอลิเมนตเกิดการกระจายตัวอยาง

สมํ่าเสมอตลอดท่ัวท้ังโดเมน ซ่ึงจะตองมีคุณสมบัติ

ดังตอไปนี้ [9] (1) คาของมันจะตองไมเปนศูนยและ

ตองมีคาเปนบวกภายในโดเมนสมํ่าเสมอท่ีพิจารณา 

(2) ตองมีศูนยกลางอยูท่ีตําแหนง 𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘 (3) ตองเปนไป

ตามเง่ือนไขของคุณสมบัติการมีคาเปน 1 (Unity 

property) เพ่ือความงายของการคํานวณโดยท่ียังคง

สอดคลองตามเง่ือนไขดังกลาวขางตน งานวิจัยนี้จะ

กําหนดใหใช Heaviside step function ซ่ึงเปนฟงกชัน

น้ําหนักอยางงายและแสดงไดดังสมการท่ี 13 
 

𝑊𝑊𝑊𝑊(𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘 − 𝑥𝑥𝑥𝑥) = �
1
𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠

 ,       𝑥𝑥𝑥𝑥 ∈ 𝛺𝛺𝛺𝛺𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠

0,          𝑥𝑥𝑥𝑥 ∉ 𝛺𝛺𝛺𝛺𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠
        (13) 

 

เม่ือ 𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠  คือพ้ืนท่ีของโดเมนสมํ่าเสมอท่ีกําลัง

พิจารณาอยู 

ในกรณีท่ัวไป การเปลี่ยนจากตัวแปรความเครียด

ซ่ึงอาจไมสามารถหาไดงาย มาเปนตัวแปรของการเปลีย่น

ตําแหนงซ่ึงหาไดงายกวานั้น เปนสิ่งท่ีหลีกเลี่ยงไมได 

นอกเหนือไปจากนั้น การท่ีตัวแปรของการเปลี่ยน

ตําแหนงถูกสมมติใหมีความตอเนื่องตลอดบนขอบเขต

ของโดเมนสมํ่าเสมอ ทําใหสามารถเปลี่ยนรูปของ

สมการ ท่ี  12 โ ด ย ใ ช ก า ร อิ น ทิ เ ก รต ที ล ะ ส ว น 

(Integration by part) กลายเปน 
 

𝜀𝜀𝜀𝜀(̅𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘) =  
1
𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠

 � 𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥)
Γ𝑘𝑘𝑘𝑘
𝑠𝑠𝑠𝑠

𝑢𝑢𝑢𝑢�(𝑥𝑥𝑥𝑥)𝑑𝑑𝑑𝑑Γ   (14) 

 

เ ม่ือ 𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥) คือเวกเตอรองคประกอบของ

เวกเตอรหนึ่งหนวยท้ังสองทิศทางท่ีพุงออกจากดาน

หรือขอบเขตของโดเมนสมํ่าเสมอนั่นเอง 
 

𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥) = �
𝑛𝑛𝑛𝑛𝑥𝑥𝑥𝑥 0
0 𝑛𝑛𝑛𝑛𝑦𝑦𝑦𝑦
𝑛𝑛𝑛𝑛𝑦𝑦𝑦𝑦 𝑛𝑛𝑛𝑛𝑥𝑥𝑥𝑥

� (15) 

 

สติฟเนสเมทริกซสมํ่าเสมอในระบบโคออรดิเนต

หลักในสมการที่ 10 นั้น ขึ้นอยูกับคาของ strain-

displacement matrix 𝐵𝐵𝐵𝐵� ห า ก ทํา ก า ร แ ท นค า 

𝑢𝑢𝑢𝑢�(𝑥𝑥𝑥𝑥) = ∑𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖𝑢𝑢𝑢𝑢�𝑖𝑖𝑖𝑖 ลงในสมการท่ี 14 แลวจัดรูปสมการ

ใหมจะไดวา 
 

𝜀𝜀𝜀𝜀(̅𝑥𝑥𝑥𝑥) = 𝐵𝐵𝐵𝐵�(𝑥𝑥𝑥𝑥)𝑢𝑢𝑢𝑢�(𝑥𝑥𝑥𝑥) ⇒ 𝐵𝐵𝐵𝐵�(𝑥𝑥𝑥𝑥)

=  
1
𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠

 � 𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥)
Γ𝑘𝑘𝑘𝑘
𝑠𝑠𝑠𝑠
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สมการท่ี 17 เปนเพียงการอินทิเกรตตลอด

ความยาวของดานท่ีอยูบนโดเมนสมํ่าเสมอ ซ่ึงถูกสมมติ

วาตัวแปรของการเปลี่ยนตําแหนงเปนเสนตรง เม่ือใช

กฎการอินทิเกรตของเกาส จํานวนของจุดท่ีตองการ

คือ 1 จุด ซ่ึงโดยท่ัวไปมักจะใชจุด ณ ตําแหนงก่ึงกลาง

ของดานนั้น ๆ เมื่อเปนเชนนี้สามารถเปลี่ยนจาก

เครื่องหมายอินทิเกรตเปนเครื่องหมายผลรวมไดเปน 
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3. การโมเดลและวิเคราะหเชิงตัวเลข (Numerical 

Modeling and Simulation) 
 

3 .1  โด เมนส มํ่า เสมอแบบ 3 สวนยอย 

(Three Arbitrary Smoothing Domains) 

การแบงโดเมนสมํ่าเสมอยอยสําหรับงานวิจัยนี้ 

เริ่มตนจากทําการแบงโดเมนใหญของปญหาออกเปน

เอลิ เมนตหลักโดยใช เอลิ เมนตรูปทรงสี่ เหลี่ ยม 

(Quadrilateral element) จากนั ้นจึงทําการแบง

เอล ิเมนตหลักดังกลาวออกเปนโดเมนสมํ่าเสมอ

จํานวน 3 สวนยอย โดยการสุมตําแหนงบนดานท้ังสาม

สอดคลองกับคา 𝛼𝛼𝛼𝛼 ท่ีกําหนดไว ภาพท่ี 6 เปนการสราง 

smoothing domain ในลักษณะแบบอิสระ จะพบวา

ลักษณะรูปรางของโดเมนสมํ่าเสมอยอยท่ีไดจะมีลักษณะ

เปนรูปสี่เหลี่ยมท่ีมีขนาดและรูปรางแตกตางกันอยาง

ไมมีทิศทางและสังเกตไดอยางชัดเจนวาการกระจายตัว

ของโดเมนเปนไปอยางไรการควบคุม ซ่ึงจะสงผลให

การคํานวณหาคาผลลัพธของการวิจัยมีความไม

แนนอน แตกตางกันไปทุกครั้งท่ีมีการสุมเลือกคาของ 

𝛼𝛼𝛼𝛼 ใหม การสรางโดเมนยอยสมํ่าเสมอแบบนี้จึงไม

สามารถนําไปใชได 

 
 

ภาพท่ี 6 การสรางโดเมนยอยสมํ่าเสมอแบบอิสระ 
 

ถึงแมวารูปแบบของการสรางโดเมนสมํ่าเสมอยอย 

3 โดเมน สามารถมีได 4 รูปแบบดวยกัน ดังแสดงใน

ภาพท่ี 7 แตก็เปนเพียงลักษณะของการหมุนเอลิเมนต

ไปในทิศทางทวนเข็มหรือตามเข็มนาฬิกาเทานั้น 

โดเมนสมํ่าเสมอยอยแบบ 3 โดเมนดังกลาวนี้ เม่ือมี

การนําไปประยุกตใชโดยอาศัยคุณสมบัติของการ

กระจายตัวและความสมมาตรแลว จึ ง มีรูปราง

เหมือนกันทุกประการดังแสดงในภาพท่ี 8  
 

 
 

ภาพท่ี 7 โดเมนยอยสมํ่าเสมอ 

 
 

 
 

ภาพท่ี 8 โดเมนสมํ่าเสมอยอย 3 สวนท่ีเปนไปได 

	 (17)
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ภาพท่ี 8 โดเมนสมํ่าเสมอยอย 3 สวนท่ีเปนไปได 

	 (18)

3.	 การโมเดลและวิเคราะห์เชิงตัวเลข (Numerical 

Modeling and Simulation)
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Arbitrary Smoothing Domains)
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เปนรูปสี่เหลี่ยมท่ีมีขนาดและรูปรางแตกตางกันอยาง

ไมมีทิศทางและสังเกตไดอยางชัดเจนวาการกระจายตัว

ของโดเมนเปนไปอยางไรการควบคุม ซ่ึงจะสงผลให

การคํานวณหาคาผลลัพธของการวิจัยมีความไม

แนนอน แตกตางกันไปทุกครั้งท่ีมีการสุมเลือกคาของ 

𝛼𝛼𝛼𝛼 ใหม การสรางโดเมนยอยสมํ่าเสมอแบบนี้จึงไม

สามารถนําไปใชได 

 
 

ภาพท่ี 6 การสรางโดเมนยอยสมํ่าเสมอแบบอิสระ 
 

ถึงแมวารูปแบบของการสรางโดเมนสมํ่าเสมอยอย 

3 โดเมน สามารถมีได 4 รูปแบบดวยกัน ดังแสดงใน

ภาพท่ี 7 แตก็เปนเพียงลักษณะของการหมุนเอลิเมนต

ไปในทิศทางทวนเข็มหรือตามเข็มนาฬิกาเทานั้น 

โดเมนสมํ่าเสมอยอยแบบ 3 โดเมนดังกลาวนี้ เม่ือมี

การนําไปประยุกตใชโดยอาศัยคุณสมบัติของการ

กระจายตัวและความสมมาตรแลว จึ ง มีรูปราง

เหมือนกันทุกประการดังแสดงในภาพท่ี 8  
 

 
 

ภาพท่ี 7 โดเมนยอยสมํ่าเสมอ 

 
 

 
 

ภาพท่ี 8 โดเมนสมํ่าเสมอยอย 3 สวนท่ีเปนไปได 

 ทีก่ำ�หนดไว ้ภาพที ่6 เปน็การสรา้ง 

smoothing domain ในลักษณะแบบอิสระจะพบว่า

ลกัษณะรปูรา่งของโดเมนสม่ำ�เสมอยอ่ยที่ไดจ้ะมลีกัษณะ

เป็นรูปสี่เหลี่ยมท่ีมีขนาดและรูปร่างแตกต่างกันอย่าง

ไมม่ทีศิทางและสงัเกตไดอ้ยา่งชัดเจนวา่การกระจายตวั

ของโดเมนเป็นไปอย่างไร้การควบคุม ซึ่งจะส่งผลให้

การคำ�นวณหาคา่ผลลพัธ์ของการวจิยัมคีวามไมแ่นน่อน 

แตกต่างกันไปทุกครั้งที่มีการสุ่มเลือกค่าของ 

เม่ือ 

𝑏𝑏𝑏𝑏�𝑖𝑖𝑖𝑖 =
1
𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠

� 𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖(𝑥𝑥𝑥𝑥)𝑁𝑁𝑁𝑁(𝑥𝑥𝑥𝑥)𝑑𝑑𝑑𝑑Γ,   𝑖𝑖𝑖𝑖 = 𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦
Γ

   (17) 

 

สมการท่ี 17 เปนเพียงการอินทิเกรตตลอด

ความยาวของดานท่ีอยูบนโดเมนสมํ่าเสมอ ซ่ึงถูกสมมติ

วาตัวแปรของการเปลี่ยนตําแหนงเปนเสนตรง เม่ือใช

กฎการอินทิเกรตของเกาส จํานวนของจุดท่ีตองการ

คือ 1 จุด ซ่ึงโดยท่ัวไปมักจะใชจุด ณ ตําแหนงก่ึงกลาง

ของดานนั้น ๆ เมื่อเปนเชนนี้สามารถเปลี่ยนจาก

เครื่องหมายอินทิเกรตเปนเครื่องหมายผลรวมไดเปน 

𝑏𝑏𝑏𝑏�𝑖𝑖𝑖𝑖 =
1
𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠

�𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗 𝑁𝑁𝑁𝑁�𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗𝐺𝐺𝐺𝐺�𝐿𝐿𝐿𝐿𝑗𝑗𝑗𝑗 ,   𝑖𝑖𝑖𝑖 = 𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦

𝑛𝑛𝑛𝑛Γ
𝑠𝑠𝑠𝑠
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3. การโมเดลและวิเคราะหเชิงตัวเลข (Numerical 

Modeling and Simulation) 
 

3 .1  โด เมนส มํ่า เสมอแบบ 3 สวนยอย 

(Three Arbitrary Smoothing Domains) 

การแบงโดเมนสมํ่าเสมอยอยสําหรับงานวิจัยนี้ 

เริ่มตนจากทําการแบงโดเมนใหญของปญหาออกเปน

เอลิ เมนตหลักโดยใช เอลิ เมนตรูปทรงสี่ เหลี่ ยม 

(Quadrilateral element) จากนั ้นจึงทําการแบง

เอล ิเมนตหลักดังกลาวออกเปนโดเมนสมํ่าเสมอ

จํานวน 3 สวนยอย โดยการสุมตําแหนงบนดานท้ังสาม

สอดคลองกับคา 𝛼𝛼𝛼𝛼 ท่ีกําหนดไว ภาพท่ี 6 เปนการสราง 

smoothing domain ในลักษณะแบบอิสระ จะพบวา

ลักษณะรูปรางของโดเมนสมํ่าเสมอยอยท่ีไดจะมีลักษณะ

เปนรูปสี่เหลี่ยมท่ีมีขนาดและรูปรางแตกตางกันอยาง

ไมมีทิศทางและสังเกตไดอยางชัดเจนวาการกระจายตัว

ของโดเมนเปนไปอยางไรการควบคุม ซ่ึงจะสงผลให

การคํานวณหาคาผลลัพธของการวิจัยมีความไม

แนนอน แตกตางกันไปทุกครั้งท่ีมีการสุมเลือกคาของ 

𝛼𝛼𝛼𝛼 ใหม การสรางโดเมนยอยสมํ่าเสมอแบบนี้จึงไม

สามารถนําไปใชได 

 
 

ภาพท่ี 6 การสรางโดเมนยอยสมํ่าเสมอแบบอิสระ 
 

ถึงแมวารูปแบบของการสรางโดเมนสมํ่าเสมอยอย 

3 โดเมน สามารถมีได 4 รูปแบบดวยกัน ดังแสดงใน

ภาพท่ี 7 แตก็เปนเพียงลักษณะของการหมุนเอลิเมนต

ไปในทิศทางทวนเข็มหรือตามเข็มนาฬิกาเทานั้น 

โดเมนสมํ่าเสมอยอยแบบ 3 โดเมนดังกลาวนี้ เม่ือมี

การนําไปประยุกตใชโดยอาศัยคุณสมบัติของการ

กระจายตัวและความสมมาตรแลว จึ ง มีรูปราง

เหมือนกันทุกประการดังแสดงในภาพท่ี 8  
 

 
 

ภาพท่ี 7 โดเมนยอยสมํ่าเสมอ 

 
 

 
 

ภาพท่ี 8 โดเมนสมํ่าเสมอยอย 3 สวนท่ีเปนไปได 

 ใหม่ 

การสร้างโดเมนย่อยสม่ำ�เสมอแบบนี้จึงไม่สามารถ

นำ�ไปใช้ได้

			   ถึงแม้ว่ารูปแบบของการสร้างโดเมน

สม่ำ�เสมอย่อย 3 โดเมน สามารถมีได้ 4 รูปแบบ

ด้วยกัน ดังแสดงในภาพที่ 7 แต่ก็เป็นเพียงลักษณะ

ของการหมุนเอลิเมนต์ไปในทิศทางทวนเข็มหรือ

ตามเข็มนาฬิกาเท่านั้น โดเมนสม่ำ�เสมอย่อยแบบ

3 โดเมนดังกล่าวนี ้เมื่อมกีารนำ�ไปประยกุต์ใช้ โดยอาศยั

คุณสมบัติของการกระจายตัวและความสมมาตรแล้ว 

จึงมีรูปร่างเหมือนกันทุกประการดังแสดงในภาพที่ 8 

เม่ือ 

𝑏𝑏𝑏𝑏�𝑖𝑖𝑖𝑖 =
1
𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠

� 𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖(𝑥𝑥𝑥𝑥)𝑁𝑁𝑁𝑁(𝑥𝑥𝑥𝑥)𝑑𝑑𝑑𝑑Γ,   𝑖𝑖𝑖𝑖 = 𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦
Γ

   (17) 

 

สมการท่ี 17 เปนเพียงการอินทิเกรตตลอด

ความยาวของดานท่ีอยูบนโดเมนสมํ่าเสมอ ซ่ึงถูกสมมติ

วาตัวแปรของการเปลี่ยนตําแหนงเปนเสนตรง เม่ือใช

กฎการอินทิเกรตของเกาส จํานวนของจุดท่ีตองการ

คือ 1 จุด ซ่ึงโดยท่ัวไปมักจะใชจุด ณ ตําแหนงก่ึงกลาง

ของดานนั้น ๆ เมื่อเปนเชนนี้สามารถเปลี่ยนจาก

เครื่องหมายอินทิเกรตเปนเครื่องหมายผลรวมไดเปน 

𝑏𝑏𝑏𝑏�𝑖𝑖𝑖𝑖 =
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𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠
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3. การโมเดลและวิเคราะหเชิงตัวเลข (Numerical 

Modeling and Simulation) 
 

3 .1  โด เมนส มํ่า เสมอแบบ 3 สวนยอย 

(Three Arbitrary Smoothing Domains) 

การแบงโดเมนสมํ่าเสมอยอยสําหรับงานวิจัยนี้ 

เริ่มตนจากทําการแบงโดเมนใหญของปญหาออกเปน

เอลิ เมนตหลักโดยใช เอลิ เมนตรูปทรงสี่ เหลี่ ยม 

(Quadrilateral element) จากนั ้นจึงทําการแบง

เอล ิเมนตหลักดังกลาวออกเปนโดเมนสมํ่าเสมอ

จํานวน 3 สวนยอย โดยการสุมตําแหนงบนดานท้ังสาม

สอดคลองกับคา 𝛼𝛼𝛼𝛼 ท่ีกําหนดไว ภาพท่ี 6 เปนการสราง 

smoothing domain ในลักษณะแบบอิสระ จะพบวา

ลักษณะรูปรางของโดเมนสมํ่าเสมอยอยท่ีไดจะมีลักษณะ

เปนรูปสี่เหลี่ยมท่ีมีขนาดและรูปรางแตกตางกันอยาง

ไมมีทิศทางและสังเกตไดอยางชัดเจนวาการกระจายตัว

ของโดเมนเปนไปอยางไรการควบคุม ซ่ึงจะสงผลให

การคํานวณหาคาผลลัพธของการวิจัยมีความไม

แนนอน แตกตางกันไปทุกครั้งท่ีมีการสุมเลือกคาของ 

𝛼𝛼𝛼𝛼 ใหม การสรางโดเมนยอยสมํ่าเสมอแบบนี้จึงไม

สามารถนําไปใชได 

 
 

ภาพท่ี 6 การสรางโดเมนยอยสมํ่าเสมอแบบอิสระ 
 

ถึงแมวารูปแบบของการสรางโดเมนสมํ่าเสมอยอย 

3 โดเมน สามารถมีได 4 รูปแบบดวยกัน ดังแสดงใน

ภาพท่ี 7 แตก็เปนเพียงลักษณะของการหมุนเอลิเมนต

ไปในทิศทางทวนเข็มหรือตามเข็มนาฬิกาเทานั้น 

โดเมนสมํ่าเสมอยอยแบบ 3 โดเมนดังกลาวนี้ เม่ือมี

การนําไปประยุกตใชโดยอาศัยคุณสมบัติของการ

กระจายตัวและความสมมาตรแลว จึ ง มีรูปราง

เหมือนกันทุกประการดังแสดงในภาพท่ี 8  
 

 
 

ภาพท่ี 7 โดเมนยอยสมํ่าเสมอ 

 
 

 
 

ภาพท่ี 8 โดเมนสมํ่าเสมอยอย 3 สวนท่ีเปนไปได 
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   (17) 

 

สมการท่ี 17 เปนเพียงการอินทิเกรตตลอด
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วาตัวแปรของการเปลี่ยนตําแหนงเปนเสนตรง เม่ือใช

กฎการอินทิเกรตของเกาส จํานวนของจุดท่ีตองการ

คือ 1 จุด ซ่ึงโดยท่ัวไปมักจะใชจุด ณ ตําแหนงก่ึงกลาง

ของดานนั้น ๆ เมื่อเปนเชนนี้สามารถเปลี่ยนจาก

เครื่องหมายอินทิเกรตเปนเครื่องหมายผลรวมไดเปน 
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3. การโมเดลและวิเคราะหเชิงตัวเลข (Numerical 

Modeling and Simulation) 
 

3 .1  โด เมนส มํ่า เสมอแบบ 3 สวนยอย 

(Three Arbitrary Smoothing Domains) 

การแบงโดเมนสมํ่าเสมอยอยสําหรับงานวิจัยนี้ 

เริ่มตนจากทําการแบงโดเมนใหญของปญหาออกเปน

เอลิ เมนตหลักโดยใช เอลิ เมนตรูปทรงสี่ เหลี่ ยม 

(Quadrilateral element) จากนั ้นจึงทําการแบง

เอล ิเมนตหลักดังกลาวออกเปนโดเมนสมํ่าเสมอ

จํานวน 3 สวนยอย โดยการสุมตําแหนงบนดานท้ังสาม

สอดคลองกับคา 𝛼𝛼𝛼𝛼 ท่ีกําหนดไว ภาพท่ี 6 เปนการสราง 

smoothing domain ในลักษณะแบบอิสระ จะพบวา

ลักษณะรูปรางของโดเมนสมํ่าเสมอยอยท่ีไดจะมีลักษณะ

เปนรูปสี่เหลี่ยมท่ีมีขนาดและรูปรางแตกตางกันอยาง

ไมมีทิศทางและสังเกตไดอยางชัดเจนวาการกระจายตัว

ของโดเมนเปนไปอยางไรการควบคุม ซ่ึงจะสงผลให

การคํานวณหาคาผลลัพธของการวิจัยมีความไม

แนนอน แตกตางกันไปทุกครั้งท่ีมีการสุมเลือกคาของ 

𝛼𝛼𝛼𝛼 ใหม การสรางโดเมนยอยสมํ่าเสมอแบบนี้จึงไม

สามารถนําไปใชได 

 
 

ภาพท่ี 6 การสรางโดเมนยอยสมํ่าเสมอแบบอิสระ 
 

ถึงแมวารูปแบบของการสรางโดเมนสมํ่าเสมอยอย 
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โดเมนสมํ่าเสมอยอยแบบ 3 โดเมนดังกลาวนี้ เม่ือมี

การนําไปประยุกตใชโดยอาศัยคุณสมบัติของการ

กระจายตัวและความสมมาตรแลว จึ ง มีรูปราง
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ภาพท่ี 8 โดเมนสมํ่าเสมอยอย 3 สวนท่ีเปนไปได 

ภาพที่ 6 การสร้างโดเมนย่อยสม่ำ�เสมอแบบอิสระ

ภาพที่ 7 โดเมนย่อยสม่ำ�เสมอ

ภาพที่ 8 โดเมนสม่ำ�เสมอย่อย 3 ส่วนที่เป็นไปได้

			   สำ�หรับงานวิจัยนี้ จะใช้รูปแบบของการ

สร้างโดเมนสม่ำ�เสมอ 3 โดเมนย่อย ตามแบบที่ (4) 

ของภาพที่ 7 สำ�หรับการวิเคราะห์ผลเชิงตัวเลข

ต่อไป เอลิเมนต์ซึ่งประกอบไปด้วยโดเมนสม่ำ�เสมอ

3 โดเมนยอ่ยสำ�หรบังานวจิยัครัง้นี ้แสดงไดด้งัภาพที ่9



สมูทไฟไนท์เอลิเมนต์ด้วยการสร้างโดเมนสม่ำ�เสมอ 3 ส่วน
จากเอลิเมนต์ทรงสี่เหลี่ยม สำ�หรับปัญหาความเค้นในระนาบ 2 มิติ
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ภาพที่ 9 ตัวอย่างการแบ่งโดเมนสม่ำ�เสมอย่อย

แบบ 3 ส่วน

		  3.2 	คานยื่น (Cantilever Beam)

	 	 	 ตัวอย่างคานปลายยื่นที่มีความยาว 48 

หน่วย ความสูง 12 หน่วย และมีความหนา 1 หน่วย

เพื่อกำ�หนดให้เป็นปัญหาความเค้นในระนาบ 2 มิติ 

สำ�หรับทดสอบขบวนการและผลของการวิเคราะห์

ดังแสดงในภาพท่ี 9 ปลายคานด้านขวามือ มีแรงกระทำ�

ในแนวด่ิงโดยมีการกระจายตัวของแรงเป็นรูปพาราโบลา

เท่ากับ 1000 หน่วย ปลายคานด้านซ้ายมือมีสภาพ

เป็นแบบยึดหมุน (Hinge support) ที่ระยะกึ่งกลาง

ของความลึก (D/2) โดยที่ขอบด้านบนและด้านล่าง

มีสภาพเป็นที่รองรับแบบเคลื่อนที่ ได้ ในแนวดิ่ง

(Roller support) ค่าโมดูลัสยืดหยุ่นและอัตราส่วน

ปัวซองมีค่าเท่ากับ 3 x 10
7
Pa และ 0.3 ตามลำ�ดับ

4.	 ผลการวิเคราะห์

	 	 จากการทดสอบคานตัวอย่างด้วยวิธีสมูท-

ไฟไนต์เอลิเมนต์ โดยใช้ โปรแกรม MATLAB

ซึ่งพัฒนาโดย [9] แล้วนำ�มาปรับปรุงในส่วนของ

การสรา้งโดเมนสม่ำ�เสมอยอ่ย 3 โดเมน แลว้นำ�ผลที่ได้

มาวิเคราะห์ โดยการเปรียบเทียบผลการวิเคราะห์

กับผลเฉลยแม่นตรง (Exact Solution) กำ�หนดให้

โครงตาข่ายที่นำ�มาใช้ ในการวิเคราะห์คือ 16x4 24x6 

32x8 40x10 และ 48x12 ตามลำ�ดับ ค่า 
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แนนอน แตกตางกันไปทุกครั้งท่ีมีการสุมเลือกคาของ 

𝛼𝛼𝛼𝛼 ใหม การสรางโดเมนยอยสมํ่าเสมอแบบนี้จึงไม

สามารถนําไปใชได 

 
 

ภาพท่ี 6 การสรางโดเมนยอยสมํ่าเสมอแบบอิสระ 
 

ถึงแมวารูปแบบของการสรางโดเมนสมํ่าเสมอยอย 

3 โดเมน สามารถมีได 4 รูปแบบดวยกัน ดังแสดงใน

ภาพท่ี 7 แตก็เปนเพียงลักษณะของการหมุนเอลิเมนต

ไปในทิศทางทวนเข็มหรือตามเข็มนาฬิกาเทานั้น 

โดเมนสมํ่าเสมอยอยแบบ 3 โดเมนดังกลาวนี้ เม่ือมี

การนําไปประยุกตใชโดยอาศัยคุณสมบัติของการ

กระจายตัวและความสมมาตรแลว จึ ง มีรูปราง

เหมือนกันทุกประการดังแสดงในภาพท่ี 8  
 

 
 

ภาพท่ี 7 โดเมนยอยสมํ่าเสมอ 

 
 

 
 

ภาพท่ี 8 โดเมนสมํ่าเสมอยอย 3 สวนท่ีเปนไปได 

 ที่ใช้

แบ่งออกเป็น 3 ช่วงคือ 0.2-0.3 0.3-0.4 และ 0.4-0.5 

ตามลำ�ดับ

		  4.1 	การเปลี่ยนตำ�แหน่งที่ปลายคาน 

(Displacement) 

 

 

สําหรับงานวิจัยนี้ จะใชรูปแบบของการสราง

โดเมนสมํ่าเสมอ 3 โดเมนยอย ตามแบบท่ี (4) ของ

ภาพที่ 7 สําหรับการวิเคราะหผลเชิงตัวเลขตอไป 

เอลิเมนตซ่ึงประกอบไปดวยโดเมนสมํ่าเสมอ 3 โดเมน

ยอยสําหรับงานวิจัยครั้งนี้ แสดงไดดังภาพท่ี 9 
 

 
 

ภาพท่ี 9 ตัวอยางการแบงโดเมนสมํ่าเสมอยอย 

แบบ 3 สวน 
 

3.2 คานย่ืน (Cantilever Beam) 

ตัวอยางคานปลายยื่นท่ีมีความยาว 48 หนวย 

ความสูง 12 หนวย และมีความหนา 1 หนวย เพ่ือ

กําหนดใหเปนปญหาความเคนในระนาบ 2 มิติ สําหรับ

ทดสอบขบวนการและผลของการวิเคราะห ดังแสดงใน

ภาพท่ี 9 ปลายคานดานขวามือ มีแรงกระทําในแนวดิ่ง

โดยมีการกระจายตัวของแรงเปนรูปพาราโบลาเทากับ 

1000 หนวย ปลายคานดานซายมือมีสภาพเปนแบบ

ยึดหมุน (HINGE SUPPORT) ท่ีระยะก่ึงกลางของความลึก 

(D/2) โดยท่ีขอบดานบนและดานลางมีสภาพเปนท่ี

รองรับแบบเคลื่อนท่ีไดในแนวดิ่ง (ROLLER SUPPORT) 

คาโมดูลัสยืดหยุนและอัตราสวนปวซองมีคาเทากับ 

3 × 107Pa และ 0.3 ตามลําดับ 

 
 

ภาพท่ี 10 คานยื่นปลายรับแรงเฉือนท่ีปลายคาน 
 

โปรแกรมการวิเคราะหสมูทไฟไนทเอลิเมนต

สําหรับปญหาใน 2 มิติดวยโปรแกรม MATLAB [9] 

ถูกนํามาปรับปรุงในสวนของการสรางโดเมนสมํ่าเสมอ

แบบ 3 โดเมนยอย ซ่ึงดานแตละดานมีความยาวเปน

สัดสวน 𝛼𝛼𝛼𝛼 ของความยาวดานเดิม ผลเฉลยแมนตรงนั้น

ไดมาจากการวิเคราะหทางทฤษฎี [21] 
 

4. ผลการวิเคราะห 

จากการทดสอบคานตัวอยางดวยวิธีสมูทไฟไนต

เอลิเมนตโดยใชโปรแกรม MATLAB ซ่ึงพัฒนาโดย [9] 

แลวนํามาปรับปรุง ในสวนของการสรางโด เมน

สมํ่าเสมอยอย 3 โดเมน แลวนําผลท่ีไดมาวิเคราะห 

โดยการเปรียบเทียบผลการวิเคราะหกับผลเฉลย

แมนตรง (Exact Solution) กําหนดใหโครงตาขาย

ที่นํามาใชในการวิเคราะหคือ 16x4 24x6 32x8 

40x10 และ 48x12 ตามลําดับ คา 𝛼𝛼𝛼𝛼 ท่ีใชแบงออกเปน 

3 ชวงคือ 0.2-0.3 0.3-0.4 และ 0.4-0.5 ตามลําดับ 
 

4 . 1  ก า ร เ ป ลี ่ยนตํา แหน ง ที ่ป ล ายคาน 

(Displacement)  
 

 
 
 

ภาพท่ี 11 คาการโกงตัวท่ีปลายคาน  

(Tip Displacements) 
 

ผลการทดสอบเห็นไดอยางชัดเจนวา จํานวน

ของการแบงโครงตาขายและคา 𝛼𝛼𝛼𝛼 ท่ีใชกําหนดระยะ

การแบงโดเมนสมํ่าเสมอยอยนั้น มีผลตอความแมนยํา

ของผลลัพธที่ได โดยที่ใชผลเฉลยแมนตรงเปนตัววัด

คาความแมนยําของผลลัพธ ซึ่งผลเฉลยแมนตรง

คาของการโกงตัวท่ีปลายคานเทากับ -8.9x10-3 จาก

ภาพท่ี 11 จะเห็นวาจํานวนการแบง Mesh ท่ีมากข้ึน

สงผลใหคาความแมนยําเพ่ิมมากข้ึนดวยตามลําดับ 

อยางในกรณีท่ีจํานวน Mesh เทากับ 16x4 ไดผลจาก

การวิเคราะหคือ -8.4955x10-3 ซ่ึงมีคาตางจากผลเฉลย

แมนตรงเทากับ 4.045x10-2 หรือคิดเปนรอยละ 4.55 

 

 

สําหรับงานวิจัยนี้ จะใชรูปแบบของการสราง

โดเมนสมํ่าเสมอ 3 โดเมนยอย ตามแบบท่ี (4) ของ

ภาพที่ 7 สําหรับการวิเคราะหผลเชิงตัวเลขตอไป 

เอลิเมนตซ่ึงประกอบไปดวยโดเมนสมํ่าเสมอ 3 โดเมน

ยอยสําหรับงานวิจัยครั้งนี้ แสดงไดดังภาพท่ี 9 
 

 
 

ภาพท่ี 9 ตัวอยางการแบงโดเมนสมํ่าเสมอยอย 

แบบ 3 สวน 
 

3.2 คานย่ืน (Cantilever Beam) 

ตัวอยางคานปลายยื่นท่ีมีความยาว 48 หนวย 

ความสูง 12 หนวย และมีความหนา 1 หนวย เพ่ือ

กําหนดใหเปนปญหาความเคนในระนาบ 2 มิติ สําหรับ

ทดสอบขบวนการและผลของการวิเคราะห ดังแสดงใน

ภาพท่ี 9 ปลายคานดานขวามือ มีแรงกระทําในแนวดิ่ง

โดยมีการกระจายตัวของแรงเปนรูปพาราโบลาเทากับ 

1000 หนวย ปลายคานดานซายมือมีสภาพเปนแบบ

ยึดหมุน (HINGE SUPPORT) ท่ีระยะก่ึงกลางของความลึก 

(D/2) โดยท่ีขอบดานบนและดานลางมีสภาพเปนท่ี

รองรับแบบเคลื่อนท่ีไดในแนวดิ่ง (ROLLER SUPPORT) 

คาโมดูลัสยืดหยุนและอัตราสวนปวซองมีคาเทากับ 

3 × 107Pa และ 0.3 ตามลําดับ 

 
 

ภาพท่ี 10 คานยื่นปลายรับแรงเฉือนท่ีปลายคาน 
 

โปรแกรมการวิเคราะหสมูทไฟไนทเอลิเมนต

สําหรับปญหาใน 2 มิติดวยโปรแกรม MATLAB [9] 

ถูกนํามาปรับปรุงในสวนของการสรางโดเมนสมํ่าเสมอ

แบบ 3 โดเมนยอย ซ่ึงดานแตละดานมีความยาวเปน

สัดสวน 𝛼𝛼𝛼𝛼 ของความยาวดานเดิม ผลเฉลยแมนตรงนั้น

ไดมาจากการวิเคราะหทางทฤษฎี [21] 
 

4. ผลการวิเคราะห 

จากการทดสอบคานตัวอยางดวยวิธีสมูทไฟไนต

เอลิเมนตโดยใชโปรแกรม MATLAB ซ่ึงพัฒนาโดย [9] 

แลวนํามาปรับปรุง ในสวนของการสรางโด เมน

สมํ่าเสมอยอย 3 โดเมน แลวนําผลท่ีไดมาวิเคราะห 

โดยการเปรียบเทียบผลการวิเคราะหกับผลเฉลย

แมนตรง (Exact Solution) กําหนดใหโครงตาขาย

ที่นํามาใชในการวิเคราะหคือ 16x4 24x6 32x8 

40x10 และ 48x12 ตามลําดับ คา 𝛼𝛼𝛼𝛼 ท่ีใชแบงออกเปน 

3 ชวงคือ 0.2-0.3 0.3-0.4 และ 0.4-0.5 ตามลําดับ 
 

4 . 1  ก า ร เ ป ลี ่ยนตํา แหน ง ที ่ป ล ายคาน 

(Displacement)  
 

 
 
 

ภาพท่ี 11 คาการโกงตัวท่ีปลายคาน  

(Tip Displacements) 
 

ผลการทดสอบเห็นไดอยางชัดเจนวา จํานวน

ของการแบงโครงตาขายและคา 𝛼𝛼𝛼𝛼 ท่ีใชกําหนดระยะ

การแบงโดเมนสมํ่าเสมอยอยนั้น มีผลตอความแมนยํา

ของผลลัพธที่ได โดยที่ใชผลเฉลยแมนตรงเปนตัววัด

คาความแมนยําของผลลัพธ ซึ่งผลเฉลยแมนตรง

คาของการโกงตัวท่ีปลายคานเทากับ -8.9x10-3 จาก

ภาพท่ี 11 จะเห็นวาจํานวนการแบง Mesh ท่ีมากข้ึน

สงผลใหคาความแมนยําเพ่ิมมากข้ึนดวยตามลําดับ 

อยางในกรณีท่ีจํานวน Mesh เทากับ 16x4 ไดผลจาก

การวิเคราะหคือ -8.4955x10-3 ซ่ึงมีคาตางจากผลเฉลย

แมนตรงเทากับ 4.045x10-2 หรือคิดเปนรอยละ 4.55 

ภาพที่ 10 คานยื่นปลายรับแรงเฉือนที่ปลายคาน

	 	 	 โปรแกรมการวิเคราะห์สมูทไฟไนท์เอลิเมนต์

สำ�หรับปัญหาใน 2 มิติด้วยโปรแกรม MATLAB [9] 

ถกูนำ�มาปรบัปรงุในสว่นของการสรา้งโดเมนสม่ำ�เสมอ

แบบ 3 โดเมนย่อย ซึ่งด้านแต่ละด้านมีความยาว

เป็นสัดส่วน 

เม่ือ 

𝑏𝑏𝑏𝑏�𝑖𝑖𝑖𝑖 =
1
𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠

� 𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖(𝑥𝑥𝑥𝑥)𝑁𝑁𝑁𝑁(𝑥𝑥𝑥𝑥)𝑑𝑑𝑑𝑑Γ,   𝑖𝑖𝑖𝑖 = 𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦
Γ

   (17) 

 

สมการท่ี 17 เปนเพียงการอินทิเกรตตลอด

ความยาวของดานท่ีอยูบนโดเมนสมํ่าเสมอ ซ่ึงถูกสมมติ

วาตัวแปรของการเปลี่ยนตําแหนงเปนเสนตรง เม่ือใช

กฎการอินทิเกรตของเกาส จํานวนของจุดท่ีตองการ

คือ 1 จุด ซ่ึงโดยท่ัวไปมักจะใชจุด ณ ตําแหนงก่ึงกลาง

ของดานนั้น ๆ เมื่อเปนเชนนี้สามารถเปลี่ยนจาก

เครื่องหมายอินทิเกรตเปนเครื่องหมายผลรวมไดเปน 

𝑏𝑏𝑏𝑏�𝑖𝑖𝑖𝑖 =
1
𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠

�𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗 𝑁𝑁𝑁𝑁�𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗𝐺𝐺𝐺𝐺�𝐿𝐿𝐿𝐿𝑗𝑗𝑗𝑗 ,   𝑖𝑖𝑖𝑖 = 𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦

𝑛𝑛𝑛𝑛Γ
𝑠𝑠𝑠𝑠

𝑗𝑗𝑗𝑗=1

   (18) 

 

3. การโมเดลและวิเคราะหเชิงตัวเลข (Numerical 

Modeling and Simulation) 
 

3 .1  โด เมนส มํ่า เสมอแบบ 3 สวนยอย 

(Three Arbitrary Smoothing Domains) 

การแบงโดเมนสมํ่าเสมอยอยสําหรับงานวิจัยนี้ 

เริ่มตนจากทําการแบงโดเมนใหญของปญหาออกเปน

เอลิ เมนตหลักโดยใช เอลิ เมนตรูปทรงสี่ เหลี่ ยม 

(Quadrilateral element) จากนั ้นจึงทําการแบง

เอล ิเมนตหลักดังกลาวออกเปนโดเมนสมํ่าเสมอ

จํานวน 3 สวนยอย โดยการสุมตําแหนงบนดานท้ังสาม

สอดคลองกับคา 𝛼𝛼𝛼𝛼 ท่ีกําหนดไว ภาพท่ี 6 เปนการสราง 

smoothing domain ในลักษณะแบบอิสระ จะพบวา

ลักษณะรูปรางของโดเมนสมํ่าเสมอยอยท่ีไดจะมีลักษณะ

เปนรูปสี่เหลี่ยมท่ีมีขนาดและรูปรางแตกตางกันอยาง

ไมมีทิศทางและสังเกตไดอยางชัดเจนวาการกระจายตัว

ของโดเมนเปนไปอยางไรการควบคุม ซ่ึงจะสงผลให

การคํานวณหาคาผลลัพธของการวิจัยมีความไม

แนนอน แตกตางกันไปทุกครั้งท่ีมีการสุมเลือกคาของ 

𝛼𝛼𝛼𝛼 ใหม การสรางโดเมนยอยสมํ่าเสมอแบบนี้จึงไม

สามารถนําไปใชได 

 
 

ภาพท่ี 6 การสรางโดเมนยอยสมํ่าเสมอแบบอิสระ 
 

ถึงแมวารูปแบบของการสรางโดเมนสมํ่าเสมอยอย 

3 โดเมน สามารถมีได 4 รูปแบบดวยกัน ดังแสดงใน

ภาพท่ี 7 แตก็เปนเพียงลักษณะของการหมุนเอลิเมนต

ไปในทิศทางทวนเข็มหรือตามเข็มนาฬิกาเทานั้น 

โดเมนสมํ่าเสมอยอยแบบ 3 โดเมนดังกลาวนี้ เม่ือมี

การนําไปประยุกตใชโดยอาศัยคุณสมบัติของการ

กระจายตัวและความสมมาตรแลว จึ ง มีรูปราง

เหมือนกันทุกประการดังแสดงในภาพท่ี 8  
 

 
 

ภาพท่ี 7 โดเมนยอยสมํ่าเสมอ 

 
 

 
 

ภาพท่ี 8 โดเมนสมํ่าเสมอยอย 3 สวนท่ีเปนไปได 

 ของความยาวด้านเดิม ผลเฉลยแม่น

ตรงนั้นได้มาจากการวิเคราะห์ทางทฤษฎี [21]

 

 

สําหรับงานวิจัยนี้ จะใชรูปแบบของการสราง

โดเมนสมํ่าเสมอ 3 โดเมนยอย ตามแบบท่ี (4) ของ

ภาพที่ 7 สําหรับการวิเคราะหผลเชิงตัวเลขตอไป 

เอลิเมนตซ่ึงประกอบไปดวยโดเมนสมํ่าเสมอ 3 โดเมน

ยอยสําหรับงานวิจัยครั้งนี้ แสดงไดดังภาพท่ี 9 
 

 
 

ภาพท่ี 9 ตัวอยางการแบงโดเมนสมํ่าเสมอยอย 

แบบ 3 สวน 
 

3.2 คานย่ืน (Cantilever Beam) 

ตัวอยางคานปลายยื่นท่ีมีความยาว 48 หนวย 

ความสูง 12 หนวย และมีความหนา 1 หนวย เพ่ือ

กําหนดใหเปนปญหาความเคนในระนาบ 2 มิติ สําหรับ

ทดสอบขบวนการและผลของการวิเคราะห ดังแสดงใน

ภาพท่ี 9 ปลายคานดานขวามือ มีแรงกระทําในแนวดิ่ง

โดยมีการกระจายตัวของแรงเปนรูปพาราโบลาเทากับ 

1000 หนวย ปลายคานดานซายมือมีสภาพเปนแบบ

ยึดหมุน (HINGE SUPPORT) ท่ีระยะก่ึงกลางของความลึก 

(D/2) โดยท่ีขอบดานบนและดานลางมีสภาพเปนท่ี

รองรับแบบเคลื่อนท่ีไดในแนวดิ่ง (ROLLER SUPPORT) 

คาโมดูลัสยืดหยุนและอัตราสวนปวซองมีคาเทากับ 

3 × 107Pa และ 0.3 ตามลําดับ 

 
 

ภาพท่ี 10 คานยื่นปลายรับแรงเฉือนท่ีปลายคาน 
 

โปรแกรมการวิเคราะหสมูทไฟไนทเอลิเมนต

สําหรับปญหาใน 2 มิติดวยโปรแกรม MATLAB [9] 

ถูกนํามาปรับปรุงในสวนของการสรางโดเมนสมํ่าเสมอ

แบบ 3 โดเมนยอย ซ่ึงดานแตละดานมีความยาวเปน

สัดสวน 𝛼𝛼𝛼𝛼 ของความยาวดานเดิม ผลเฉลยแมนตรงนั้น

ไดมาจากการวิเคราะหทางทฤษฎี [21] 
 

4. ผลการวิเคราะห 

จากการทดสอบคานตัวอยางดวยวิธีสมูทไฟไนต

เอลิเมนตโดยใชโปรแกรม MATLAB ซ่ึงพัฒนาโดย [9] 

แลวนํามาปรับปรุง ในสวนของการสรางโด เมน

สมํ่าเสมอยอย 3 โดเมน แลวนําผลท่ีไดมาวิเคราะห 

โดยการเปรียบเทียบผลการวิเคราะหกับผลเฉลย

แมนตรง (Exact Solution) กําหนดใหโครงตาขาย

ที่นํามาใชในการวิเคราะหคือ 16x4 24x6 32x8 

40x10 และ 48x12 ตามลําดับ คา 𝛼𝛼𝛼𝛼 ท่ีใชแบงออกเปน 

3 ชวงคือ 0.2-0.3 0.3-0.4 และ 0.4-0.5 ตามลําดับ 
 

4 . 1  ก า ร เ ป ลี ่ยนตํา แหน ง ที ่ป ล ายคาน 

(Displacement)  
 

 
 
 

ภาพท่ี 11 คาการโกงตัวท่ีปลายคาน  

(Tip Displacements) 
 

ผลการทดสอบเห็นไดอยางชัดเจนวา จํานวน

ของการแบงโครงตาขายและคา 𝛼𝛼𝛼𝛼 ท่ีใชกําหนดระยะ

การแบงโดเมนสมํ่าเสมอยอยนั้น มีผลตอความแมนยํา

ของผลลัพธที่ได โดยที่ใชผลเฉลยแมนตรงเปนตัววัด

คาความแมนยําของผลลัพธ ซึ่งผลเฉลยแมนตรง

คาของการโกงตัวท่ีปลายคานเทากับ -8.9x10-3 จาก

ภาพท่ี 11 จะเห็นวาจํานวนการแบง Mesh ท่ีมากข้ึน

สงผลใหคาความแมนยําเพ่ิมมากข้ึนดวยตามลําดับ 

อยางในกรณีท่ีจํานวน Mesh เทากับ 16x4 ไดผลจาก

การวิเคราะหคือ -8.4955x10-3 ซ่ึงมีคาตางจากผลเฉลย

แมนตรงเทากับ 4.045x10-2 หรือคิดเปนรอยละ 4.55 

ภาพที่ 11 ค่าการโก่งตัวที่ปลายคาน

(Tip Displacements)

	 	 	 ผลการทดสอบเห็นได้อย่างชัดเจนว่า

จำ�นวนของการแบ่งโครงตาข่ายและค่า 

เม่ือ 

𝑏𝑏𝑏𝑏�𝑖𝑖𝑖𝑖 =
1
𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠

� 𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖(𝑥𝑥𝑥𝑥)𝑁𝑁𝑁𝑁(𝑥𝑥𝑥𝑥)𝑑𝑑𝑑𝑑Γ,   𝑖𝑖𝑖𝑖 = 𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦
Γ

   (17) 

 

สมการท่ี 17 เปนเพียงการอินทิเกรตตลอด

ความยาวของดานท่ีอยูบนโดเมนสมํ่าเสมอ ซ่ึงถูกสมมติ

วาตัวแปรของการเปลี่ยนตําแหนงเปนเสนตรง เม่ือใช

กฎการอินทิเกรตของเกาส จํานวนของจุดท่ีตองการ

คือ 1 จุด ซ่ึงโดยท่ัวไปมักจะใชจุด ณ ตําแหนงก่ึงกลาง

ของดานนั้น ๆ เมื่อเปนเชนนี้สามารถเปลี่ยนจาก

เครื่องหมายอินทิเกรตเปนเครื่องหมายผลรวมไดเปน 

𝑏𝑏𝑏𝑏�𝑖𝑖𝑖𝑖 =
1
𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠

�𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗  𝑁𝑁𝑁𝑁�𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗𝐺𝐺𝐺𝐺�𝐿𝐿𝐿𝐿𝑗𝑗𝑗𝑗 ,   𝑖𝑖𝑖𝑖 = 𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦

𝑛𝑛𝑛𝑛Γ
𝑠𝑠𝑠𝑠
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   (18) 

 

3. การโมเดลและวิเคราะหเชิงตัวเลข (Numerical 

Modeling and Simulation) 
 

3 .1  โด เมนส มํ่า เสมอแบบ 3 สวนยอย 

(Three Arbitrary Smoothing Domains) 

การแบงโดเมนสมํ่าเสมอยอยสําหรับงานวิจัยนี้ 

เริ่มตนจากทําการแบงโดเมนใหญของปญหาออกเปน

เอลิ เมนตหลักโดยใช เอลิ เมนตรูปทรงสี่ เหลี่ ยม 

(Quadrilateral element) จากนั ้นจึงทําการแบง

เอล ิเมนตหลักดังกลาวออกเปนโดเมนสมํ่าเสมอ

จํานวน 3 สวนยอย โดยการสุมตําแหนงบนดานท้ังสาม

สอดคลองกับคา 𝛼𝛼𝛼𝛼 ท่ีกําหนดไว ภาพท่ี 6 เปนการสราง 

smoothing domain ในลักษณะแบบอิสระ จะพบวา

ลักษณะรูปรางของโดเมนสมํ่าเสมอยอยท่ีไดจะมีลักษณะ

เปนรูปสี่เหลี่ยมท่ีมีขนาดและรูปรางแตกตางกันอยาง

ไมมีทิศทางและสังเกตไดอยางชัดเจนวาการกระจายตัว

ของโดเมนเปนไปอยางไรการควบคุม ซ่ึงจะสงผลให

การคํานวณหาคาผลลัพธของการวิจัยมีความไม

แนนอน แตกตางกันไปทุกครั้งท่ีมีการสุมเลือกคาของ 

𝛼𝛼𝛼𝛼 ใหม การสรางโดเมนยอยสมํ่าเสมอแบบนี้จึงไม

สามารถนําไปใชได 

 
 

ภาพท่ี 6 การสรางโดเมนยอยสมํ่าเสมอแบบอิสระ 
 

ถึงแมวารูปแบบของการสรางโดเมนสมํ่าเสมอยอย 

3 โดเมน สามารถมีได 4 รูปแบบดวยกัน ดังแสดงใน

ภาพท่ี 7 แตก็เปนเพียงลักษณะของการหมุนเอลิเมนต

ไปในทิศทางทวนเข็มหรือตามเข็มนาฬิกาเทานั้น 

โดเมนสมํ่าเสมอยอยแบบ 3 โดเมนดังกลาวนี้ เม่ือมี

การนําไปประยุกตใชโดยอาศัยคุณสมบัติของการ

กระจายตัวและความสมมาตรแลว จึ ง มีรูปราง

เหมือนกันทุกประการดังแสดงในภาพท่ี 8  
 

 
 

ภาพท่ี 7 โดเมนยอยสมํ่าเสมอ 

 
 

 
 

ภาพท่ี 8 โดเมนสมํ่าเสมอยอย 3 สวนท่ีเปนไปได 

 ที่ ใช้

กำ�หนดระยะการแบ่งโดเมนสม่ำ�เสมอย่อยนั้น

มีผลต่อความแม่นยำ�ของผลลัพธ์ที่ ได้ โดยที่ ใช้

ผลเฉลยแม่นตรงเป็นตัววัดค่าความแม่นยำ�ของ

ผลลัพธ์ ซึ่งผลเฉลยแม่นตรงค่าของการโก่งตัวที่

ปลายคานเท่ากับ -8.9x10
-3
 จากภาพที่ 11 จะเห็นว่า

จำ�นวนการแบ่ง Mesh ที่มากขึ้นส่งผลให้ค่าความ

แม่นยำ�เพิ่มมากขึ้นด้วยตามลำ�ดับ อย่างในกรณีที่

จำ�นวน Mesh เท่ากับ 16x4 ได้ผลจากการวิเคราะห์

คือ -8.4955x10
-3
 ซึ่งมีค่าต่างจากผลเฉลยแม่นตรง

เท่ากับ 4.045x10
-2
 หรือคิดเป็นร้อยละ 4.55 แต่ที่
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จำ�นวน Mesh เทา่กบั 48x12 คา่ที่ไดค้อื -8.8537x10
-3
 

ซึง่มคีา่ตา่งจากผลเฉลยแมน่ตรงเพยีง 4.63x10
-1
 หรอื

รอ้ยละ 0.52 เทา่นัน้ และในกรณขีองคา่ 

เม่ือ 

𝑏𝑏𝑏𝑏�𝑖𝑖𝑖𝑖 =
1
𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠

� 𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖(𝑥𝑥𝑥𝑥)𝑁𝑁𝑁𝑁(𝑥𝑥𝑥𝑥)𝑑𝑑𝑑𝑑Γ,   𝑖𝑖𝑖𝑖 = 𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦
Γ

   (17) 

 

สมการท่ี 17 เปนเพียงการอินทิเกรตตลอด

ความยาวของดานท่ีอยูบนโดเมนสมํ่าเสมอ ซ่ึงถูกสมมติ

วาตัวแปรของการเปลี่ยนตําแหนงเปนเสนตรง เม่ือใช

กฎการอินทิเกรตของเกาส จํานวนของจุดท่ีตองการ

คือ 1 จุด ซ่ึงโดยท่ัวไปมักจะใชจุด ณ ตําแหนงก่ึงกลาง

ของดานนั้น ๆ เมื่อเปนเชนนี้สามารถเปลี่ยนจาก

เครื่องหมายอินทิเกรตเปนเครื่องหมายผลรวมไดเปน 

𝑏𝑏𝑏𝑏�𝑖𝑖𝑖𝑖 =
1
𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠

�𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗 𝑁𝑁𝑁𝑁�𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗𝐺𝐺𝐺𝐺�𝐿𝐿𝐿𝐿𝑗𝑗𝑗𝑗 ,   𝑖𝑖𝑖𝑖 = 𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦

𝑛𝑛𝑛𝑛Γ
𝑠𝑠𝑠𝑠

𝑗𝑗𝑗𝑗=1

   (18) 

 

3. การโมเดลและวิเคราะหเชิงตัวเลข (Numerical 

Modeling and Simulation) 
 

3 .1  โด เมนส มํ่า เสมอแบบ 3 สวนยอย 

(Three Arbitrary Smoothing Domains) 

การแบงโดเมนสมํ่าเสมอยอยสําหรับงานวิจัยนี้ 

เริ่มตนจากทําการแบงโดเมนใหญของปญหาออกเปน

เอลิ เมนตหลักโดยใช เอลิ เมนตรูปทรงสี่ เหลี่ ยม 

(Quadrilateral element) จากนั ้นจึงทําการแบง

เอล ิเมนตหลักดังกลาวออกเปนโดเมนสมํ่าเสมอ

จํานวน 3 สวนยอย โดยการสุมตําแหนงบนดานท้ังสาม

สอดคลองกับคา 𝛼𝛼𝛼𝛼 ท่ีกําหนดไว ภาพท่ี 6 เปนการสราง 

smoothing domain ในลักษณะแบบอิสระ จะพบวา

ลักษณะรูปรางของโดเมนสมํ่าเสมอยอยท่ีไดจะมีลักษณะ

เปนรูปสี่เหลี่ยมท่ีมีขนาดและรูปรางแตกตางกันอยาง

ไมมีทิศทางและสังเกตไดอยางชัดเจนวาการกระจายตัว

ของโดเมนเปนไปอยางไรการควบคุม ซ่ึงจะสงผลให

การคํานวณหาคาผลลัพธของการวิจัยมีความไม

แนนอน แตกตางกันไปทุกครั้งท่ีมีการสุมเลือกคาของ 

𝛼𝛼𝛼𝛼 ใหม การสรางโดเมนยอยสมํ่าเสมอแบบนี้จึงไม

สามารถนําไปใชได 

 
 

ภาพท่ี 6 การสรางโดเมนยอยสมํ่าเสมอแบบอิสระ 
 

ถึงแมวารูปแบบของการสรางโดเมนสมํ่าเสมอยอย 

3 โดเมน สามารถมีได 4 รูปแบบดวยกัน ดังแสดงใน

ภาพท่ี 7 แตก็เปนเพียงลักษณะของการหมุนเอลิเมนต

ไปในทิศทางทวนเข็มหรือตามเข็มนาฬิกาเทานั้น 

โดเมนสมํ่าเสมอยอยแบบ 3 โดเมนดังกลาวนี้ เม่ือมี

การนําไปประยุกตใชโดยอาศัยคุณสมบัติของการ

กระจายตัวและความสมมาตรแลว จึ ง มีรูปราง

เหมือนกันทุกประการดังแสดงในภาพท่ี 8  
 

 
 

ภาพท่ี 7 โดเมนยอยสมํ่าเสมอ 

 
 

 
 

ภาพท่ี 8 โดเมนสมํ่าเสมอยอย 3 สวนท่ีเปนไปได 

 กแ็สดงผล

ไปในทิศทางเดียวกัน กล่าวคือค่า 

เม่ือ 

𝑏𝑏𝑏𝑏�𝑖𝑖𝑖𝑖 =
1
𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠
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Γ
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ภาพท่ี 8 โดเมนสมํ่าเสมอยอย 3 สวนท่ีเปนไปได 

 ยิ่งมีค่าเข้าใกล้

0.5 ผลลัพธ์ที่ ได้ก็จะยิ่งมีค่าใกล้เคียงกับผลเฉลย

แม่นตรงมากขึ้น

		  4.2 	ความเค้นตั้งฉาก (Normal Stress)

	 	 	 ในสว่นของการวิเคราะห์คา่ของความเค้น

ตั้งฉากในแนวราบ 

 

 

แตท่ีจํานวน Mesh เทากับ 48x12 คาท่ีไดคือ -8.8537x10-3 

ซ่ึงมีคาตางจากผลเฉลยแมนตรงเพียง 4.63x10-1 หรือ

รอยละ 0.52 เทานั้น และในกรณีของคา α ก็แสดงผล

ไปในทิศทางเดียวกัน กลาวคือคา 𝛼𝛼𝛼𝛼 ยิ่งมีคาเขาใกล 

0.5 ผลลัพธท่ีไดก็จะยิ่งมีคาใกลเคียงกับผลเฉลยแมน

ตรงมากข้ึน 
 

4.2 ความเคนตั้งฉาก (Normal Stress) 

ในสวนของการวิเคราะหคาของความเคน

ตั้งฉากในแนวราบ σxx นั้น จะทําการวิเคราะหโดยใช

ขนาดของโครงตาขายและคา α เปนตัวควบคุม

เหมือนกับการวิเคราะหคาการโกงตัวท่ีปลายคาน คือ

จะแบงโครงตาขายออกเปน 5 กลุม ในแตละกลุมจะ

แบง 𝛼𝛼𝛼𝛼 ออกเปน 3 ชวง และนําคาท่ีไดไปเทียบกับผล

เฉลยแมนตรงตอไป สําหรับความเคนตั้งฉากในแนวด่ิง

นั้นมีคาเทากับศูนย 

จากตารางท่ี 1 พบวา จํานวนจุดตอของหนาตัด

คาน ณ ตําแหนงก่ึงกลางความยาว (L/2) มีจํานวนไม

เทากันขึ้นอยู กับจํานวนของการแบงโครงตาขาย 

เพื่อความสะดวก ผูเขียนจะใชจุดตอ 2 จุด (หมายเลข

อางอิงของจุดตอ มาจากตารางท่ี 1) ซ่ึงอยูถัดจาก

ตําแหนงผิวบนและผิวลางเขามาตามลําดับสําหรับ

การเปรียบเทียบกับคาของความเคนตั้งฉากท่ีไดจาก

ทฤษฎี กลาวคือ จุดตอ 2, 4 (โครงตาขาย 16x4) 

จุดตอ 2, 6 (โครงตาขาย 24x6) จุดตอ 2, 8 (โครงตา

ขาย 32x8) จุดตอ 2, 10 (โครงตาขาย 40x10) และ 

จ ุดต อ 2, 12 ( โครงตาขาย 48x12) ตามลําด ับ 

ความแตกตางของคาเฉลี่ยท่ีไดจากการวิเคราะหดวย

วิธีสมูทไฟไนทเอลิเมนตเม่ือเทียบกับคาท่ีไดจากทฤษฎี

ของจุดตอตาง ๆ เหลานั้น ในกรณีท่ี α มีคาอยูระหวาง 

0.2-0.3 พบวามีคาเปนรอยละ 8.75, 3.88, 2.23, 1.62 

และ 1.41 สําหรับโครงตาขายท่ีมีขนาดเพ่ิมข้ึนจาก 

16x4 ถึง 48x12 ในกรณีของ 𝛼𝛼𝛼𝛼 มีคาอยูระหวาง 0.3-

0.4 พบวามีคาเปนรอยละ 6.13, 3.01, 1.93, 1.45 

และ 1.24 สําหรับโครงตาขายท่ีมีขนาดเพ่ิมข้ึนจาก 

16x4 ถึง 48x12 และในกรณีของ α มีคาอยูระหวาง 

0.4-0.5 พบวามีคาเปนรอยละ 5.86, 2.75, 1.70, 1.16 

และ 0.82 สําหรับโครงตาขายท่ีมีขนาดเพ่ิมข้ึนจาก 

16x4 ถึง 48x12 ตามลําดับ  

คาตาง ๆ ในตารางท่ี 1 สามารถนําไปวาดกราฟ

ความเคนตั้งฉาก ณ ตําแหนงจุดตอตาง ๆ แยกตาม

จํานวนของโครงตาขายท่ีสรางข้ึนมาบนกราฟเดียวกัน

กับคาท่ีคํานวณไดทางทฤษฎีแสดงไดดังภาพท่ี 12 สวน

ภาพท่ี 13 แสดงถึงรอยละความแตกตางระหวางคา

ดังกลาวท่ีแปรผันไปตามขนาดของโครงตาขายซ่ึง

พบวา คาของ 𝛼𝛼𝛼𝛼 ในชวงของโครงตาขายหยาบ สงผล

ตอรอยละความแตกตางอยางชัดเจน จนกระท่ังไมมี

ความแตกตางอยางมีนัยสําคัญเม่ือเพ่ิมขนาดของโครง

ตาขายใหละเอียดข้ึน 
 

4.3 ความเคนเฉือน (Shear Stress) 

ในสวนของการวิเคราะหคาของความเคนเฉือน 

𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥𝑦𝑦𝑦𝑦 นั้น จะใชการวิเคราะหในลักษณะเดียวกันกับการ

วิเคราะหความเคนตั้งฉากท่ีผานมา ผลการวิเคราะห

เชิงตัวเลขกับคาท่ีคํานวณไดทางทฤษฎีสามารถแสดง

ไดดังตารางท่ี 2 ภาพท่ี 14 และ ภาพท่ี 15 ตามลําดับ 

จากตารางท่ี 2 พบวา ความแตกตางของ

คาเฉลี่ยที่ไดจากการวิเคราะหดวยวิธีสมูทไฟไนท
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 นั้น จะทำ�การวิเคราะห์ โดย

ใช้ขนาดของโครงตาข่ายและค่า 
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สมการท่ี 17 เปนเพียงการอินทิเกรตตลอด

ความยาวของดานท่ีอยูบนโดเมนสมํ่าเสมอ ซ่ึงถูกสมมติ

วาตัวแปรของการเปลี่ยนตําแหนงเปนเสนตรง เม่ือใช

กฎการอินทิเกรตของเกาส จํานวนของจุดท่ีตองการ

คือ 1 จุด ซ่ึงโดยท่ัวไปมักจะใชจุด ณ ตําแหนงก่ึงกลาง

ของดานนั้น ๆ เมื่อเปนเชนนี้สามารถเปลี่ยนจาก

เครื่องหมายอินทิเกรตเปนเครื่องหมายผลรวมไดเปน 
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3. การโมเดลและวิเคราะหเชิงตัวเลข (Numerical 

Modeling and Simulation) 
 

3 .1  โด เมนส มํ่า เสมอแบบ 3 สวนยอย 

(Three Arbitrary Smoothing Domains) 

การแบงโดเมนสมํ่าเสมอยอยสําหรับงานวิจัยนี้ 

เริ่มตนจากทําการแบงโดเมนใหญของปญหาออกเปน

เอลิ เมนตหลักโดยใช เอลิ เมนตรูปทรงสี่ เหลี่ ยม 

(Quadrilateral element) จากนั ้นจึงทําการแบง

เอล ิเมนตหลักดังกลาวออกเปนโดเมนสมํ่าเสมอ

จํานวน 3 สวนยอย โดยการสุมตําแหนงบนดานท้ังสาม

สอดคลองกับคา 𝛼𝛼𝛼𝛼 ท่ีกําหนดไว ภาพท่ี 6 เปนการสราง 

smoothing domain ในลักษณะแบบอิสระ จะพบวา

ลักษณะรูปรางของโดเมนสมํ่าเสมอยอยท่ีไดจะมีลักษณะ

เปนรูปสี่เหลี่ยมท่ีมีขนาดและรูปรางแตกตางกันอยาง

ไมมีทิศทางและสังเกตไดอยางชัดเจนวาการกระจายตัว

ของโดเมนเปนไปอยางไรการควบคุม ซ่ึงจะสงผลให

การคํานวณหาคาผลลัพธของการวิจัยมีความไม

แนนอน แตกตางกันไปทุกครั้งท่ีมีการสุมเลือกคาของ 

𝛼𝛼𝛼𝛼 ใหม การสรางโดเมนยอยสมํ่าเสมอแบบนี้จึงไม

สามารถนําไปใชได 

 
 

ภาพท่ี 6 การสรางโดเมนยอยสมํ่าเสมอแบบอิสระ 
 

ถึงแมวารูปแบบของการสรางโดเมนสมํ่าเสมอยอย 

3 โดเมน สามารถมีได 4 รูปแบบดวยกัน ดังแสดงใน

ภาพท่ี 7 แตก็เปนเพียงลักษณะของการหมุนเอลิเมนต

ไปในทิศทางทวนเข็มหรือตามเข็มนาฬิกาเทานั้น 

โดเมนสมํ่าเสมอยอยแบบ 3 โดเมนดังกลาวนี้ เม่ือมี

การนําไปประยุกตใชโดยอาศัยคุณสมบัติของการ

กระจายตัวและความสมมาตรแลว จึ ง มีรูปราง

เหมือนกันทุกประการดังแสดงในภาพท่ี 8  
 

 
 

ภาพท่ี 7 โดเมนยอยสมํ่าเสมอ 

 
 

 
 

ภาพท่ี 8 โดเมนสมํ่าเสมอยอย 3 สวนท่ีเปนไปได 

 เป็นตัวควบคุม

เหมือนกับการวิเคราะห์ค่าการโก่งตัวที่ปลายคาน คือ

จะแบ่งโครงตาข่ายออกเป็น 5 กลุ่ม ในแต่ละกลุ่ม

จะแบ่ง 
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สมการท่ี 17 เปนเพียงการอินทิเกรตตลอด

ความยาวของดานท่ีอยูบนโดเมนสมํ่าเสมอ ซ่ึงถูกสมมติ

วาตัวแปรของการเปลี่ยนตําแหนงเปนเสนตรง เม่ือใช

กฎการอินทิเกรตของเกาส จํานวนของจุดท่ีตองการ

คือ 1 จุด ซ่ึงโดยท่ัวไปมักจะใชจุด ณ ตําแหนงก่ึงกลาง

ของดานนั้น ๆ เมื่อเปนเชนนี้สามารถเปลี่ยนจาก

เครื่องหมายอินทิเกรตเปนเครื่องหมายผลรวมไดเปน 

𝑏𝑏𝑏𝑏�𝑖𝑖𝑖𝑖 =
1
𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠

�𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗 𝑁𝑁𝑁𝑁�𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗𝐺𝐺𝐺𝐺�𝐿𝐿𝐿𝐿𝑗𝑗𝑗𝑗 ,   𝑖𝑖𝑖𝑖 = 𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦

𝑛𝑛𝑛𝑛Γ
𝑠𝑠𝑠𝑠

𝑗𝑗𝑗𝑗=1

   (18) 

 

3. การโมเดลและวิเคราะหเชิงตัวเลข (Numerical 

Modeling and Simulation) 
 

3 .1  โด เมนส มํ่า เสมอแบบ 3 สวนยอย 

(Three Arbitrary Smoothing Domains) 

การแบงโดเมนสมํ่าเสมอยอยสําหรับงานวิจัยนี้ 

เริ่มตนจากทําการแบงโดเมนใหญของปญหาออกเปน

เอลิ เมนตหลักโดยใช เอลิ เมนตรูปทรงสี่ เหลี่ ยม 

(Quadrilateral element) จากนั ้นจึงทําการแบง

เอล ิเมนตหลักดังกลาวออกเปนโดเมนสมํ่าเสมอ

จํานวน 3 สวนยอย โดยการสุมตําแหนงบนดานท้ังสาม

สอดคลองกับคา 𝛼𝛼𝛼𝛼 ท่ีกําหนดไว ภาพท่ี 6 เปนการสราง 

smoothing domain ในลักษณะแบบอิสระ จะพบวา

ลักษณะรูปรางของโดเมนสมํ่าเสมอยอยท่ีไดจะมีลักษณะ

เปนรูปสี่เหลี่ยมท่ีมีขนาดและรูปรางแตกตางกันอยาง

ไมมีทิศทางและสังเกตไดอยางชัดเจนวาการกระจายตัว

ของโดเมนเปนไปอยางไรการควบคุม ซ่ึงจะสงผลให

การคํานวณหาคาผลลัพธของการวิจัยมีความไม

แนนอน แตกตางกันไปทุกครั้งท่ีมีการสุมเลือกคาของ 

𝛼𝛼𝛼𝛼 ใหม การสรางโดเมนยอยสมํ่าเสมอแบบนี้จึงไม
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ภาพท่ี 8 โดเมนสมํ่าเสมอยอย 3 สวนท่ีเปนไปได 

 ออกเป็น 3 ช่วง และนำ�ค่าที่ได้ไปเทียบ

กับผลเฉลยแม่นตรงต่อไป สำ�หรับความเค้นตั้งฉาก

ในแนวดิ่งนั้นมีค่าเท่ากับศูนย์

	 	 	 จากตารางที่ 1 พบว่า จำ�นวนจุดต่อของ

หน้าตัดคาน ณ ตำ�แหน่งกึ่งกลางความยาว (L/2)

มีจำ�นวนไม่เท่ากันขึ้นอยู่กับจำ�นวนของการแบ่ง

โครงตาข่าย เพื่อความสะดวก ผู้เขียนจะใช้จุดต่อ

2 จุด (หมายเลขอ้างอิงของจุดต่อ มาจากตารางที่ 1)

ซ่ึงอยู่ถดัจากตำ�แหนง่ผวิบนและผวิลา่งเขา้มาตามลำ�ดบั

สำ�หรับการเปรียบเทียบกับค่าของความเค้นตั้งฉาก

ท่ีได้จากทฤษฎี กล่าวคือ จุดต่อ 2, 4 (โครงตาข่าย 

16x4) จุดต่อ 2, 6 (โครงตาข่าย 24x6) จุดต่อ 2, 8 

(โครงตาขา่ย 32x8) จดุตอ่ 2, 10 (โครงตาขา่ย 40x10) 

และ จุดต่อ 2, 12 (โครงตาข่าย 48x12) ตามลำ�ดับ 

ความแตกต่างของค่าเฉลี่ยที่ได้จากการวิเคราะห์ด้วย

วิธีสมูทไฟไนท์เอลิเมนต์เมื่อเทียบกับค่าที่ได้จากทฤษฎี

ของจดุตอ่ตา่งๆ เหลา่น้ัน ในกรณทีี ่
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3. การโมเดลและวิเคราะหเชิงตัวเลข (Numerical 

Modeling and Simulation) 
 

3 .1  โด เมนส มํ่า เสมอแบบ 3 สวนยอย 

(Three Arbitrary Smoothing Domains) 

การแบงโดเมนสมํ่าเสมอยอยสําหรับงานวิจัยนี้ 

เริ่มตนจากทําการแบงโดเมนใหญของปญหาออกเปน

เอลิ เมนตหลักโดยใช เอลิ เมนตรูปทรงสี่ เหลี่ ยม 

(Quadrilateral element) จากนั ้นจึงทําการแบง

เอล ิเมนตหลักดังกลาวออกเปนโดเมนสมํ่าเสมอ

จํานวน 3 สวนยอย โดยการสุมตําแหนงบนดานท้ังสาม

สอดคลองกับคา 𝛼𝛼𝛼𝛼 ท่ีกําหนดไว ภาพท่ี 6 เปนการสราง 

smoothing domain ในลักษณะแบบอิสระ จะพบวา

ลักษณะรูปรางของโดเมนสมํ่าเสมอยอยท่ีไดจะมีลักษณะ

เปนรูปสี่เหลี่ยมท่ีมีขนาดและรูปรางแตกตางกันอยาง

ไมมีทิศทางและสังเกตไดอยางชัดเจนวาการกระจายตัว

ของโดเมนเปนไปอยางไรการควบคุม ซ่ึงจะสงผลให

การคํานวณหาคาผลลัพธของการวิจัยมีความไม

แนนอน แตกตางกันไปทุกครั้งท่ีมีการสุมเลือกคาของ 

𝛼𝛼𝛼𝛼 ใหม การสรางโดเมนยอยสมํ่าเสมอแบบนี้จึงไม

สามารถนําไปใชได 

 
 

ภาพท่ี 6 การสรางโดเมนยอยสมํ่าเสมอแบบอิสระ 
 

ถึงแมวารูปแบบของการสรางโดเมนสมํ่าเสมอยอย 

3 โดเมน สามารถมีได 4 รูปแบบดวยกัน ดังแสดงใน

ภาพท่ี 7 แตก็เปนเพียงลักษณะของการหมุนเอลิเมนต

ไปในทิศทางทวนเข็มหรือตามเข็มนาฬิกาเทานั้น 

โดเมนสมํ่าเสมอยอยแบบ 3 โดเมนดังกลาวนี้ เม่ือมี

การนําไปประยุกตใชโดยอาศัยคุณสมบัติของการ

กระจายตัวและความสมมาตรแลว จึ ง มีรูปราง

เหมือนกันทุกประการดังแสดงในภาพท่ี 8  
 

 
 

ภาพท่ี 7 โดเมนยอยสมํ่าเสมอ 

 
 

 
 

ภาพท่ี 8 โดเมนสมํ่าเสมอยอย 3 สวนท่ีเปนไปได 

 มคีา่อยูร่ะหวา่ง 

0.2-0.3 พบว่ามีค่าเป็นร้อยละ 8.75, 3.88, 2.23, 1.62 

และ 1.41 สำ�หรับโครงตาข่ายที่มีขนาดเพิ่มขึ้นจาก

16x4 ถึง 48x12 ในกรณีของ 

เม่ือ 

𝑏𝑏𝑏𝑏�𝑖𝑖𝑖𝑖 =
1
𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠

� 𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖(𝑥𝑥𝑥𝑥)𝑁𝑁𝑁𝑁(𝑥𝑥𝑥𝑥)𝑑𝑑𝑑𝑑Γ,   𝑖𝑖𝑖𝑖 = 𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦
Γ

   (17) 

 

สมการท่ี 17 เปนเพียงการอินทิเกรตตลอด

ความยาวของดานท่ีอยูบนโดเมนสมํ่าเสมอ ซ่ึงถูกสมมติ

วาตัวแปรของการเปลี่ยนตําแหนงเปนเสนตรง เม่ือใช

กฎการอินทิเกรตของเกาส จํานวนของจุดท่ีตองการ

คือ 1 จุด ซ่ึงโดยท่ัวไปมักจะใชจุด ณ ตําแหนงก่ึงกลาง

ของดานนั้น ๆ เมื่อเปนเชนนี้สามารถเปลี่ยนจาก

เครื่องหมายอินทิเกรตเปนเครื่องหมายผลรวมไดเปน 

𝑏𝑏𝑏𝑏�𝑖𝑖𝑖𝑖 =
1
𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠

�𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗 𝑁𝑁𝑁𝑁�𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗𝐺𝐺𝐺𝐺�𝐿𝐿𝐿𝐿𝑗𝑗𝑗𝑗 ,   𝑖𝑖𝑖𝑖 = 𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦

𝑛𝑛𝑛𝑛Γ
𝑠𝑠𝑠𝑠

𝑗𝑗𝑗𝑗=1

   (18) 

 

3. การโมเดลและวิเคราะหเชิงตัวเลข (Numerical 

Modeling and Simulation) 
 

3 .1  โด เมนส มํ่า เสมอแบบ 3 สวนยอย 

(Three Arbitrary Smoothing Domains) 

การแบงโดเมนสมํ่าเสมอยอยสําหรับงานวิจัยนี้ 

เริ่มตนจากทําการแบงโดเมนใหญของปญหาออกเปน

เอลิ เมนตหลักโดยใช เอลิ เมนตรูปทรงสี่ เหลี่ ยม 

(Quadrilateral element) จากนั ้นจึงทําการแบง

เอล ิเมนตหลักดังกลาวออกเปนโดเมนสมํ่าเสมอ

จํานวน 3 สวนยอย โดยการสุมตําแหนงบนดานท้ังสาม

สอดคลองกับคา 𝛼𝛼𝛼𝛼 ท่ีกําหนดไว ภาพท่ี 6 เปนการสราง 

smoothing domain ในลักษณะแบบอิสระ จะพบวา

ลักษณะรูปรางของโดเมนสมํ่าเสมอยอยท่ีไดจะมีลักษณะ

เปนรูปสี่เหลี่ยมท่ีมีขนาดและรูปรางแตกตางกันอยาง

ไมมีทิศทางและสังเกตไดอยางชัดเจนวาการกระจายตัว

ของโดเมนเปนไปอยางไรการควบคุม ซ่ึงจะสงผลให

การคํานวณหาคาผลลัพธของการวิจัยมีความไม

แนนอน แตกตางกันไปทุกครั้งท่ีมีการสุมเลือกคาของ 

𝛼𝛼𝛼𝛼 ใหม การสรางโดเมนยอยสมํ่าเสมอแบบนี้จึงไม

สามารถนําไปใชได 

 
 

ภาพท่ี 6 การสรางโดเมนยอยสมํ่าเสมอแบบอิสระ 
 

ถึงแมวารูปแบบของการสรางโดเมนสมํ่าเสมอยอย 

3 โดเมน สามารถมีได 4 รูปแบบดวยกัน ดังแสดงใน

ภาพท่ี 7 แตก็เปนเพียงลักษณะของการหมุนเอลิเมนต

ไปในทิศทางทวนเข็มหรือตามเข็มนาฬิกาเทานั้น 

โดเมนสมํ่าเสมอยอยแบบ 3 โดเมนดังกลาวนี้ เม่ือมี

การนําไปประยุกตใชโดยอาศัยคุณสมบัติของการ

กระจายตัวและความสมมาตรแลว จึ ง มีรูปราง

เหมือนกันทุกประการดังแสดงในภาพท่ี 8  
 

 
 

ภาพท่ี 7 โดเมนยอยสมํ่าเสมอ 

 
 

 
 

ภาพท่ี 8 โดเมนสมํ่าเสมอยอย 3 สวนท่ีเปนไปได 

 มีค่าอยู่ระหว่าง 

0.3-0.4 พบว่ามีค่าเป็นร้อยละ 6.13, 3.01, 1.93, 1.45

และ 1.24 สำ�หรับโครงตาข่ายที่มีขนาดเพิ่มขึ้นจาก 

16x4 ถึง 48x12 และในกรณีของ 

เม่ือ 

𝑏𝑏𝑏𝑏�𝑖𝑖𝑖𝑖 =
1
𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠

� 𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖(𝑥𝑥𝑥𝑥)𝑁𝑁𝑁𝑁(𝑥𝑥𝑥𝑥)𝑑𝑑𝑑𝑑Γ,   𝑖𝑖𝑖𝑖 = 𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦
Γ

   (17) 

 

สมการท่ี 17 เปนเพียงการอินทิเกรตตลอด

ความยาวของดานท่ีอยูบนโดเมนสมํ่าเสมอ ซ่ึงถูกสมมติ

วาตัวแปรของการเปลี่ยนตําแหนงเปนเสนตรง เม่ือใช

กฎการอินทิเกรตของเกาส จํานวนของจุดท่ีตองการ

คือ 1 จุด ซ่ึงโดยท่ัวไปมักจะใชจุด ณ ตําแหนงก่ึงกลาง

ของดานนั้น ๆ เมื่อเปนเชนนี้สามารถเปลี่ยนจาก

เครื่องหมายอินทิเกรตเปนเครื่องหมายผลรวมไดเปน 

𝑏𝑏𝑏𝑏�𝑖𝑖𝑖𝑖 =
1
𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠

�𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗 𝑁𝑁𝑁𝑁�𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗𝐺𝐺𝐺𝐺�𝐿𝐿𝐿𝐿𝑗𝑗𝑗𝑗 ,   𝑖𝑖𝑖𝑖 = 𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦

𝑛𝑛𝑛𝑛Γ
𝑠𝑠𝑠𝑠

𝑗𝑗𝑗𝑗=1

   (18) 

 

3. การโมเดลและวิเคราะหเชิงตัวเลข (Numerical 

Modeling and Simulation) 
 

3 .1  โด เมนส มํ่า เสมอแบบ 3 สวนยอย 

(Three Arbitrary Smoothing Domains) 

การแบงโดเมนสมํ่าเสมอยอยสําหรับงานวิจัยนี้ 

เริ่มตนจากทําการแบงโดเมนใหญของปญหาออกเปน

เอลิ เมนตหลักโดยใช เอลิ เมนตรูปทรงสี่ เหลี่ ยม 

(Quadrilateral element) จากนั ้นจึงทําการแบง

เอล ิเมนตหลักดังกลาวออกเปนโดเมนสมํ่าเสมอ

จํานวน 3 สวนยอย โดยการสุมตําแหนงบนดานท้ังสาม

สอดคลองกับคา 𝛼𝛼𝛼𝛼 ท่ีกําหนดไว ภาพท่ี 6 เปนการสราง 

smoothing domain ในลักษณะแบบอิสระ จะพบวา

ลักษณะรูปรางของโดเมนสมํ่าเสมอยอยท่ีไดจะมีลักษณะ

เปนรูปสี่เหลี่ยมท่ีมีขนาดและรูปรางแตกตางกันอยาง

ไมมีทิศทางและสังเกตไดอยางชัดเจนวาการกระจายตัว

ของโดเมนเปนไปอยางไรการควบคุม ซ่ึงจะสงผลให

การคํานวณหาคาผลลัพธของการวิจัยมีความไม

แนนอน แตกตางกันไปทุกครั้งท่ีมีการสุมเลือกคาของ 

𝛼𝛼𝛼𝛼 ใหม การสรางโดเมนยอยสมํ่าเสมอแบบนี้จึงไม

สามารถนําไปใชได 

 
 

ภาพท่ี 6 การสรางโดเมนยอยสมํ่าเสมอแบบอิสระ 
 

ถึงแมวารูปแบบของการสรางโดเมนสมํ่าเสมอยอย 

3 โดเมน สามารถมีได 4 รูปแบบดวยกัน ดังแสดงใน

ภาพท่ี 7 แตก็เปนเพียงลักษณะของการหมุนเอลิเมนต

ไปในทิศทางทวนเข็มหรือตามเข็มนาฬิกาเทานั้น 

โดเมนสมํ่าเสมอยอยแบบ 3 โดเมนดังกลาวนี้ เม่ือมี

การนําไปประยุกตใชโดยอาศัยคุณสมบัติของการ

กระจายตัวและความสมมาตรแลว จึ ง มีรูปราง

เหมือนกันทุกประการดังแสดงในภาพท่ี 8  
 

 
 

ภาพท่ี 7 โดเมนยอยสมํ่าเสมอ 

 
 

 
 

ภาพท่ี 8 โดเมนสมํ่าเสมอยอย 3 สวนท่ีเปนไปได 

 มีค่าอยู่ระหว่าง 

0.4-0.5 พบว่ามีค่าเป็นร้อยละ 5.86, 2.75, 1.70, 1.16 

และ 0.82 สำ�หรับโครงตาข่ายที่มีขนาดเพิ่มขึ้นจาก 

16x4 ถึง 48x12 ตามลำ�ดับ

	 	 	 ค่าต่างๆ ในตารางที่ 1 สามารถนำ�ไป

วาดกราฟความเค้นตั้งฉาก ณ ตำ�แหน่งจุดต่อต่างๆ 

แยกตามจำ�นวนของโครงตาข่ายที่สร้างขึ้นมาบน

กราฟเดียวกันกับค่าที่คำ�นวณได้ทางทฤษฎีแสดงได้

ดังภาพที่ 12 ส่วนภาพที่ 13 แสดงถึงร้อยละความ

แตกต่างระหว่างค่าดังกล่าวที่แปรผันไปตามขนาด

ของโครงตาข่ายซึ่งพบว่า ค่าของ 

เม่ือ 

𝑏𝑏𝑏𝑏�𝑖𝑖𝑖𝑖 =
1
𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠

� 𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖(𝑥𝑥𝑥𝑥)𝑁𝑁𝑁𝑁(𝑥𝑥𝑥𝑥)𝑑𝑑𝑑𝑑Γ,   𝑖𝑖𝑖𝑖 = 𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦
Γ

   (17) 

 

สมการท่ี 17 เปนเพียงการอินทิเกรตตลอด

ความยาวของดานท่ีอยูบนโดเมนสมํ่าเสมอ ซ่ึงถูกสมมติ

วาตัวแปรของการเปลี่ยนตําแหนงเปนเสนตรง เม่ือใช

กฎการอินทิเกรตของเกาส จํานวนของจุดท่ีตองการ

คือ 1 จุด ซ่ึงโดยท่ัวไปมักจะใชจุด ณ ตําแหนงก่ึงกลาง

ของดานนั้น ๆ เมื่อเปนเชนนี้สามารถเปลี่ยนจาก

เครื่องหมายอินทิเกรตเปนเครื่องหมายผลรวมไดเปน 

𝑏𝑏𝑏𝑏�𝑖𝑖𝑖𝑖 =
1
𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠

�𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗 𝑁𝑁𝑁𝑁�𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗𝐺𝐺𝐺𝐺�𝐿𝐿𝐿𝐿𝑗𝑗𝑗𝑗 ,   𝑖𝑖𝑖𝑖 = 𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦

𝑛𝑛𝑛𝑛Γ
𝑠𝑠𝑠𝑠

𝑗𝑗𝑗𝑗=1

   (18) 

 

3. การโมเดลและวิเคราะหเชิงตัวเลข (Numerical 

Modeling and Simulation) 
 

3 .1  โด เมนส มํ่า เสมอแบบ 3 สวนยอย 

(Three Arbitrary Smoothing Domains) 

การแบงโดเมนสมํ่าเสมอยอยสําหรับงานวิจัยนี้ 

เริ่มตนจากทําการแบงโดเมนใหญของปญหาออกเปน

เอลิ เมนตหลักโดยใช เอลิ เมนตรูปทรงสี่ เหลี่ ยม 

(Quadrilateral element) จากนั ้นจึงทําการแบง

เอล ิเมนตหลักดังกลาวออกเปนโดเมนสมํ่าเสมอ

จํานวน 3 สวนยอย โดยการสุมตําแหนงบนดานท้ังสาม

สอดคลองกับคา 𝛼𝛼𝛼𝛼 ท่ีกําหนดไว ภาพท่ี 6 เปนการสราง 

smoothing domain ในลักษณะแบบอิสระ จะพบวา

ลักษณะรูปรางของโดเมนสมํ่าเสมอยอยท่ีไดจะมีลักษณะ

เปนรูปสี่เหลี่ยมท่ีมีขนาดและรูปรางแตกตางกันอยาง

ไมมีทิศทางและสังเกตไดอยางชัดเจนวาการกระจายตัว

ของโดเมนเปนไปอยางไรการควบคุม ซ่ึงจะสงผลให

การคํานวณหาคาผลลัพธของการวิจัยมีความไม

แนนอน แตกตางกันไปทุกครั้งท่ีมีการสุมเลือกคาของ 

𝛼𝛼𝛼𝛼 ใหม การสรางโดเมนยอยสมํ่าเสมอแบบนี้จึงไม

สามารถนําไปใชได 

 
 

ภาพท่ี 6 การสรางโดเมนยอยสมํ่าเสมอแบบอิสระ 
 

ถึงแมวารูปแบบของการสรางโดเมนสมํ่าเสมอยอย 

3 โดเมน สามารถมีได 4 รูปแบบดวยกัน ดังแสดงใน

ภาพท่ี 7 แตก็เปนเพียงลักษณะของการหมุนเอลิเมนต

ไปในทิศทางทวนเข็มหรือตามเข็มนาฬิกาเทานั้น 

โดเมนสมํ่าเสมอยอยแบบ 3 โดเมนดังกลาวนี้ เม่ือมี

การนําไปประยุกตใชโดยอาศัยคุณสมบัติของการ

กระจายตัวและความสมมาตรแลว จึ ง มีรูปราง

เหมือนกันทุกประการดังแสดงในภาพท่ี 8  
 

 
 

ภาพท่ี 7 โดเมนยอยสมํ่าเสมอ 

 
 

 
 

ภาพท่ี 8 โดเมนสมํ่าเสมอยอย 3 สวนท่ีเปนไปได 

 ในช่วงของ

โครงตาข่ายหยาบ ส่งผลต่อร้อยละความแตกต่าง

อย่างชัดเจน จนกระทั่งไม่มีความแตกต่างอย่าง

มนียัสำ�คญัเมื่อเพิม่ขนาดของโครงตาขา่ยใหล้ะเอยีดขึน้

		  4.3	 ความเค้นเฉือน (Shear Stress)

	 	 	 ในส่วนของการวิเคราะห์ค่าของความ

เค้นเฉือน 

 

 

แตท่ีจํานวน Mesh เทากับ 48x12 คาท่ีไดคือ -8.8537x10-3 

ซ่ึงมีคาตางจากผลเฉลยแมนตรงเพียง 4.63x10-1 หรือ

รอยละ 0.52 เทานั้น และในกรณีของคา α ก็แสดงผล

ไปในทิศทางเดียวกัน กลาวคือคา 𝛼𝛼𝛼𝛼 ยิ่งมีคาเขาใกล 

0.5 ผลลัพธท่ีไดก็จะยิ่งมีคาใกลเคียงกับผลเฉลยแมน

ตรงมากข้ึน 
 

4.2 ความเคนตั้งฉาก (Normal Stress) 

ในสวนของการวิเคราะหคาของความเคน

ตั้งฉากในแนวราบ σxx นั้น จะทําการวิเคราะหโดยใช

ขนาดของโครงตาขายและคา α เปนตัวควบคุม

เหมือนกับการวิเคราะหคาการโกงตัวท่ีปลายคาน คือ

จะแบงโครงตาขายออกเปน 5 กลุม ในแตละกลุมจะ

แบง 𝛼𝛼𝛼𝛼 ออกเปน 3 ชวง และนําคาท่ีไดไปเทียบกับผล

เฉลยแมนตรงตอไป สําหรับความเคนตั้งฉากในแนวดิ่ง

นั้นมีคาเทากับศูนย 

จากตารางท่ี 1 พบวา จํานวนจุดตอของหนาตัด

คาน ณ ตําแหนงก่ึงกลางความยาว (L/2) มีจํานวนไม

เทากันขึ้นอยู กับจํานวนของการแบงโครงตาขาย 

เพื่อความสะดวก ผูเขียนจะใชจุดตอ 2 จุด (หมายเลข

อางอิงของจุดตอ มาจากตารางท่ี 1) ซ่ึงอยูถัดจาก

ตําแหนงผิวบนและผิวลางเขามาตามลําดับสําหรับ

การเปรียบเทียบกับคาของความเคนตั้งฉากท่ีไดจาก

ทฤษฎี กลาวคือ จุดตอ 2, 4 (โครงตาขาย 16x4) 

จุดตอ 2, 6 (โครงตาขาย 24x6) จุดตอ 2, 8 (โครงตา

ขาย 32x8) จุดตอ 2, 10 (โครงตาขาย 40x10) และ 

จ ุดต อ 2, 12 ( โครงตาขาย 48x12) ตามลําด ับ 

ความแตกตางของคาเฉลี่ยท่ีไดจากการวิเคราะหดวย

วิธีสมูทไฟไนทเอลิเมนตเม่ือเทียบกับคาท่ีไดจากทฤษฎี

ของจุดตอตาง ๆ เหลานั้น ในกรณีท่ี α มีคาอยูระหวาง 

0.2-0.3 พบวามีคาเปนรอยละ 8.75, 3.88, 2.23, 1.62 

และ 1.41 สําหรับโครงตาขายท่ีมีขนาดเพ่ิมข้ึนจาก 

16x4 ถึง 48x12 ในกรณีของ 𝛼𝛼𝛼𝛼 มีคาอยูระหวาง 0.3-

0.4 พบวามีคาเปนรอยละ 6.13, 3.01, 1.93, 1.45 

และ 1.24 สําหรับโครงตาขายท่ีมีขนาดเพ่ิมข้ึนจาก 

16x4 ถึง 48x12 และในกรณีของ α มีคาอยูระหวาง 

0.4-0.5 พบวามีคาเปนรอยละ 5.86, 2.75, 1.70, 1.16 

และ 0.82 สําหรับโครงตาขายท่ีมีขนาดเพ่ิมข้ึนจาก 

16x4 ถึง 48x12 ตามลําดับ  

คาตาง ๆ ในตารางท่ี 1 สามารถนําไปวาดกราฟ

ความเคนตั้งฉาก ณ ตําแหนงจุดตอตาง ๆ แยกตาม

จํานวนของโครงตาขายท่ีสรางข้ึนมาบนกราฟเดียวกัน

กับคาท่ีคํานวณไดทางทฤษฎีแสดงไดดังภาพท่ี 12 สวน

ภาพท่ี 13 แสดงถึงรอยละความแตกตางระหวางคา

ดังกลาวท่ีแปรผันไปตามขนาดของโครงตาขายซ่ึง

พบวา คาของ 𝛼𝛼𝛼𝛼 ในชวงของโครงตาขายหยาบ สงผล

ตอรอยละความแตกตางอยางชัดเจน จนกระท่ังไมมี

ความแตกตางอยางมีนัยสําคัญเม่ือเพ่ิมขนาดของโครง

ตาขายใหละเอียดข้ึน 
 

4.3 ความเคนเฉือน (Shear Stress) 

ในสวนของการวิเคราะหคาของความเคนเฉือน 

𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥𝑦𝑦𝑦𝑦 นั้น จะใชการวิเคราะหในลักษณะเดียวกันกับการ

วิเคราะหความเคนตั้งฉากท่ีผานมา ผลการวิเคราะห

เชิงตัวเลขกับคาท่ีคํานวณไดทางทฤษฎีสามารถแสดง

ไดดังตารางท่ี 2 ภาพท่ี 14 และ ภาพท่ี 15 ตามลําดับ 

จากตารางท่ี 2 พบวา ความแตกตางของ

คาเฉลี่ยที่ไดจากการวิเคราะหดวยวิธีสมูทไฟไนท

เอลิเมนตเปรียบเทียบกับคาท่ีไดจากทฤษฎีของจุดตอ

ตาง ๆ ซ่ึงอาศัยหลักการเดียวกันกับความเคนตั้งฉาก

ในหัวขอท่ีผานมา ในกรณีของ α มีคาอยูระหวาง 0.2-

0.3 พบวามีคาเปนรอยละ 12.08, 7.40, 3.43, 2.09 

และ 2.24 สําหรับโครงตาขายท่ีมีขนาดเพ่ิมข้ึนจาก 

16x4 ถึง 48x12 ในกรณีของ α มีคาอยูระหวาง 0.3-

0.4 พบวามีคาเปนรอยละ 11.13, 6.25, 3.35, 2.32 

และ 1.88 สําหรับโครงตาขายท่ีมีขนาดเพ่ิมข้ึนจาก 

16x4 ถึง 48x12 และในกรณีของ 𝛼𝛼𝛼𝛼 มีคาอยูระหวาง 

0.4-0.5 พบวามีคาเปนรอยละ 9.80, 6.09, 2.80, 2.25 

และ 1.71 สําหรับโครงตาขายท่ีมีขนาดเพ่ิมข้ึนจาก 

16x4 ถึง 48x12 ตามลําดับ คาตาง ๆ ในตารางท่ี 2 

 นั้น จะใช้การวิเคราะห์ ในลักษณะ

เดียวกันกับการวิเคราะห์ความเค้นตั้งฉากที่ผ่านมา

ผลการวิเคราะห์เชิงตัวเลขกับค่าที่คำ�นวณได้

ทางทฤษฎีสามารถแสดงได้ดังตารางที่ 2 ภาพที่ 14 

และ ภาพที่ 15 ตามลำ�ดับ

	 	 	 จากตารางที่ 2 พบว่า ความแตกต่าง

ของค่าเฉลี่ยที่ได้จากการวิเคราะห์ด้วยวิธีสมูทไฟไนท์

เอลิเมนต์เปรียบเทียบกับค่าที่ได้จากทฤษฎีของจุดต่อ

ต่างๆ ซึ่งอาศัยหลักการเดียวกันกับความเค้นตั้งฉาก

ในหัวข้อที่ผ่านมา ในกรณีของ 

เม่ือ 

𝑏𝑏𝑏𝑏�𝑖𝑖𝑖𝑖 =
1
𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠

� 𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖(𝑥𝑥𝑥𝑥)𝑁𝑁𝑁𝑁(𝑥𝑥𝑥𝑥)𝑑𝑑𝑑𝑑Γ,   𝑖𝑖𝑖𝑖 = 𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦
Γ

   (17) 

 

สมการท่ี 17 เปนเพียงการอินทิเกรตตลอด

ความยาวของดานท่ีอยูบนโดเมนสมํ่าเสมอ ซ่ึงถูกสมมติ

วาตัวแปรของการเปลี่ยนตําแหนงเปนเสนตรง เม่ือใช

กฎการอินทิเกรตของเกาส จํานวนของจุดท่ีตองการ

คือ 1 จุด ซ่ึงโดยท่ัวไปมักจะใชจุด ณ ตําแหนงก่ึงกลาง

ของดานนั้น ๆ เมื่อเปนเชนนี้สามารถเปลี่ยนจาก

เครื่องหมายอินทิเกรตเปนเครื่องหมายผลรวมไดเปน 

𝑏𝑏𝑏𝑏�𝑖𝑖𝑖𝑖 =
1
𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠

�𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗 𝑁𝑁𝑁𝑁�𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗𝐺𝐺𝐺𝐺�𝐿𝐿𝐿𝐿𝑗𝑗𝑗𝑗 ,   𝑖𝑖𝑖𝑖 = 𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦

𝑛𝑛𝑛𝑛Γ
𝑠𝑠𝑠𝑠

𝑗𝑗𝑗𝑗=1

   (18) 

 

3. การโมเดลและวิเคราะหเชิงตัวเลข (Numerical 

Modeling and Simulation) 
 

3 .1  โด เมนส มํ่า เสมอแบบ 3 สวนยอย 

(Three Arbitrary Smoothing Domains) 

การแบงโดเมนสมํ่าเสมอยอยสําหรับงานวิจัยนี้ 

เริ่มตนจากทําการแบงโดเมนใหญของปญหาออกเปน

เอลิ เมนตหลักโดยใช เอลิ เมนตรูปทรงสี่ เหลี่ ยม 

(Quadrilateral element) จากนั ้นจึงทําการแบง

เอล ิเมนตหลักดังกลาวออกเปนโดเมนสมํ่าเสมอ

จํานวน 3 สวนยอย โดยการสุมตําแหนงบนดานท้ังสาม

สอดคลองกับคา 𝛼𝛼𝛼𝛼 ท่ีกําหนดไว ภาพท่ี 6 เปนการสราง 

smoothing domain ในลักษณะแบบอิสระ จะพบวา

ลักษณะรูปรางของโดเมนสมํ่าเสมอยอยท่ีไดจะมีลักษณะ

เปนรูปสี่เหลี่ยมท่ีมีขนาดและรูปรางแตกตางกันอยาง

ไมมีทิศทางและสังเกตไดอยางชัดเจนวาการกระจายตัว

ของโดเมนเปนไปอยางไรการควบคุม ซ่ึงจะสงผลให

การคํานวณหาคาผลลัพธของการวิจัยมีความไม

แนนอน แตกตางกันไปทุกครั้งท่ีมีการสุมเลือกคาของ 

𝛼𝛼𝛼𝛼 ใหม การสรางโดเมนยอยสมํ่าเสมอแบบนี้จึงไม

สามารถนําไปใชได 

 
 

ภาพท่ี 6 การสรางโดเมนยอยสมํ่าเสมอแบบอิสระ 
 

ถึงแมวารูปแบบของการสรางโดเมนสมํ่าเสมอยอย 

3 โดเมน สามารถมีได 4 รูปแบบดวยกัน ดังแสดงใน

ภาพท่ี 7 แตก็เปนเพียงลักษณะของการหมุนเอลิเมนต

ไปในทิศทางทวนเข็มหรือตามเข็มนาฬิกาเทานั้น 

โดเมนสมํ่าเสมอยอยแบบ 3 โดเมนดังกลาวนี้ เม่ือมี

การนําไปประยุกตใชโดยอาศัยคุณสมบัติของการ

กระจายตัวและความสมมาตรแลว จึ ง มีรูปราง

เหมือนกันทุกประการดังแสดงในภาพท่ี 8  
 

 
 

ภาพท่ี 7 โดเมนยอยสมํ่าเสมอ 

 
 

 
 

ภาพท่ี 8 โดเมนสมํ่าเสมอยอย 3 สวนท่ีเปนไปได 

 มีค่าอยู่ระหว่าง



สมูทไฟไนท์เอลิเมนต์ด้วยการสร้างโดเมนสม่ำ�เสมอ 3 ส่วน
จากเอลิเมนต์ทรงสี่เหลี่ยม สำ�หรับปัญหาความเค้นในระนาบ 2 มิติ
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0.2-0.3 พบวา่มคีา่เปน็ร้อยละ 12.08, 7.40, 3.43, 2.09 

และ 2.24 สำ�หรับโครงตาข่ายท่ีมีขนาดเพ่ิมขึ้นจาก

16x4 ถึง 48x12 ในกรณีของ 

เม่ือ 

𝑏𝑏𝑏𝑏�𝑖𝑖𝑖𝑖 =
1
𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠

� 𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖(𝑥𝑥𝑥𝑥)𝑁𝑁𝑁𝑁(𝑥𝑥𝑥𝑥)𝑑𝑑𝑑𝑑Γ,   𝑖𝑖𝑖𝑖 = 𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦
Γ

   (17) 

 

สมการท่ี 17 เปนเพียงการอินทิเกรตตลอด

ความยาวของดานท่ีอยูบนโดเมนสมํ่าเสมอ ซ่ึงถูกสมมติ

วาตัวแปรของการเปลี่ยนตําแหนงเปนเสนตรง เม่ือใช

กฎการอินทิเกรตของเกาส จํานวนของจุดท่ีตองการ

คือ 1 จุด ซ่ึงโดยท่ัวไปมักจะใชจุด ณ ตําแหนงก่ึงกลาง

ของดานนั้น ๆ เมื่อเปนเชนนี้สามารถเปลี่ยนจาก

เครื่องหมายอินทิเกรตเปนเครื่องหมายผลรวมไดเปน 

𝑏𝑏𝑏𝑏�𝑖𝑖𝑖𝑖 =
1
𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠

�𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗 𝑁𝑁𝑁𝑁�𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗𝐺𝐺𝐺𝐺�𝐿𝐿𝐿𝐿𝑗𝑗𝑗𝑗 ,   𝑖𝑖𝑖𝑖 = 𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦

𝑛𝑛𝑛𝑛Γ
𝑠𝑠𝑠𝑠

𝑗𝑗𝑗𝑗=1

   (18) 

 

3. การโมเดลและวิเคราะหเชิงตัวเลข (Numerical 

Modeling and Simulation) 
 

3 .1  โด เมนส มํ่า เสมอแบบ 3 สวนยอย 

(Three Arbitrary Smoothing Domains) 

การแบงโดเมนสมํ่าเสมอยอยสําหรับงานวิจัยนี้ 

เริ่มตนจากทําการแบงโดเมนใหญของปญหาออกเปน

เอลิ เมนตหลักโดยใช เอลิ เมนตรูปทรงสี่ เหลี่ ยม 

(Quadrilateral element) จากนั ้นจึงทําการแบง

เอล ิเมนตหลักดังกลาวออกเปนโดเมนสมํ่าเสมอ

จํานวน 3 สวนยอย โดยการสุมตําแหนงบนดานท้ังสาม

สอดคลองกับคา 𝛼𝛼𝛼𝛼 ท่ีกําหนดไว ภาพท่ี 6 เปนการสราง 

smoothing domain ในลักษณะแบบอิสระ จะพบวา

ลักษณะรูปรางของโดเมนสมํ่าเสมอยอยท่ีไดจะมีลักษณะ

เปนรูปสี่เหลี่ยมท่ีมีขนาดและรูปรางแตกตางกันอยาง

ไมมีทิศทางและสังเกตไดอยางชัดเจนวาการกระจายตัว

ของโดเมนเปนไปอยางไรการควบคุม ซ่ึงจะสงผลให

การคํานวณหาคาผลลัพธของการวิจัยมีความไม

แนนอน แตกตางกันไปทุกครั้งท่ีมีการสุมเลือกคาของ 

𝛼𝛼𝛼𝛼 ใหม การสรางโดเมนยอยสมํ่าเสมอแบบนี้จึงไม

สามารถนําไปใชได 

 
 

ภาพท่ี 6 การสรางโดเมนยอยสมํ่าเสมอแบบอิสระ 
 

ถึงแมวารูปแบบของการสรางโดเมนสมํ่าเสมอยอย 

3 โดเมน สามารถมีได 4 รูปแบบดวยกัน ดังแสดงใน

ภาพท่ี 7 แตก็เปนเพียงลักษณะของการหมุนเอลิเมนต

ไปในทิศทางทวนเข็มหรือตามเข็มนาฬิกาเทานั้น 

โดเมนสมํ่าเสมอยอยแบบ 3 โดเมนดังกลาวนี้ เม่ือมี

การนําไปประยุกตใชโดยอาศัยคุณสมบัติของการ

กระจายตัวและความสมมาตรแลว จึ ง มีรูปราง

เหมือนกันทุกประการดังแสดงในภาพท่ี 8  
 

 
 

ภาพท่ี 7 โดเมนยอยสมํ่าเสมอ 

 
 

 
 

ภาพท่ี 8 โดเมนสมํ่าเสมอยอย 3 สวนท่ีเปนไปได 

 มีค่าอยู่ระหว่าง 0.3-

0.4 พบว่ามีค่าเป็นร้อยละ 11.13, 6.25, 3.35, 2.32 

และ 1.88 สำ�หรับโครงตาข่ายท่ีมีขนาดเพ่ิมขึ้นจาก 

16x4 ถึง 48x12 และในกรณีของ 

เม่ือ 

𝑏𝑏𝑏𝑏�𝑖𝑖𝑖𝑖 =
1
𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠

� 𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖(𝑥𝑥𝑥𝑥)𝑁𝑁𝑁𝑁(𝑥𝑥𝑥𝑥)𝑑𝑑𝑑𝑑Γ,   𝑖𝑖𝑖𝑖 = 𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦
Γ

   (17) 

 

สมการท่ี 17 เปนเพียงการอินทิเกรตตลอด

ความยาวของดานท่ีอยูบนโดเมนสมํ่าเสมอ ซ่ึงถูกสมมติ

วาตัวแปรของการเปลี่ยนตําแหนงเปนเสนตรง เม่ือใช

กฎการอินทิเกรตของเกาส จํานวนของจุดท่ีตองการ

คือ 1 จุด ซ่ึงโดยท่ัวไปมักจะใชจุด ณ ตําแหนงก่ึงกลาง

ของดานนั้น ๆ เมื่อเปนเชนนี้สามารถเปลี่ยนจาก

เครื่องหมายอินทิเกรตเปนเครื่องหมายผลรวมไดเปน 

𝑏𝑏𝑏𝑏�𝑖𝑖𝑖𝑖 =
1
𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠

�𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗 𝑁𝑁𝑁𝑁�𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗𝐺𝐺𝐺𝐺�𝐿𝐿𝐿𝐿𝑗𝑗𝑗𝑗 ,   𝑖𝑖𝑖𝑖 = 𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦

𝑛𝑛𝑛𝑛Γ
𝑠𝑠𝑠𝑠

𝑗𝑗𝑗𝑗=1

   (18) 

 

3. การโมเดลและวิเคราะหเชิงตัวเลข (Numerical 

Modeling and Simulation) 
 

3 .1  โด เมนส มํ่า เสมอแบบ 3 สวนยอย 

(Three Arbitrary Smoothing Domains) 

การแบงโดเมนสมํ่าเสมอยอยสําหรับงานวิจัยนี้ 

เริ่มตนจากทําการแบงโดเมนใหญของปญหาออกเปน

เอลิ เมนตหลักโดยใช เอลิ เมนตรูปทรงสี่ เหลี่ ยม 

(Quadrilateral element) จากนั ้นจึงทําการแบง

เอล ิเมนตหลักดังกลาวออกเปนโดเมนสมํ่าเสมอ

จํานวน 3 สวนยอย โดยการสุมตําแหนงบนดานท้ังสาม

สอดคลองกับคา 𝛼𝛼𝛼𝛼 ท่ีกําหนดไว ภาพท่ี 6 เปนการสราง 

smoothing domain ในลักษณะแบบอิสระ จะพบวา

ลักษณะรูปรางของโดเมนสมํ่าเสมอยอยท่ีไดจะมีลักษณะ

เปนรูปสี่เหลี่ยมท่ีมีขนาดและรูปรางแตกตางกันอยาง

ไมมีทิศทางและสังเกตไดอยางชัดเจนวาการกระจายตัว

ของโดเมนเปนไปอยางไรการควบคุม ซ่ึงจะสงผลให

การคํานวณหาคาผลลัพธของการวิจัยมีความไม

แนนอน แตกตางกันไปทุกครั้งท่ีมีการสุมเลือกคาของ 

𝛼𝛼𝛼𝛼 ใหม การสรางโดเมนยอยสมํ่าเสมอแบบนี้จึงไม

สามารถนําไปใชได 

 
 

ภาพท่ี 6 การสรางโดเมนยอยสมํ่าเสมอแบบอิสระ 
 

ถึงแมวารูปแบบของการสรางโดเมนสมํ่าเสมอยอย 

3 โดเมน สามารถมีได 4 รูปแบบดวยกัน ดังแสดงใน

ภาพท่ี 7 แตก็เปนเพียงลักษณะของการหมุนเอลิเมนต

ไปในทิศทางทวนเข็มหรือตามเข็มนาฬิกาเทานั้น 

โดเมนสมํ่าเสมอยอยแบบ 3 โดเมนดังกลาวนี้ เม่ือมี

การนําไปประยุกตใชโดยอาศัยคุณสมบัติของการ

กระจายตัวและความสมมาตรแลว จึ ง มีรูปราง

เหมือนกันทุกประการดังแสดงในภาพท่ี 8  
 

 
 

ภาพท่ี 7 โดเมนยอยสมํ่าเสมอ 

 
 

 
 

ภาพท่ี 8 โดเมนสมํ่าเสมอยอย 3 สวนท่ีเปนไปได 

 มีค่าอยู่ระหว่าง 

0.4-0.5 พบว่ามีค่าเป็นร้อยละ 9.80, 6.09, 2.80, 2.25 

และ 1.71 สำ�หรับโครงตาข่ายท่ีมีขนาดเพ่ิมขึ้นจาก

16x4 ถึง 48x12 ตามลำ�ดับ ค่าต่างๆ ในตารางที่ 2 

สามารถนำ�ไปวาดกราฟความเค้นเฉือน ณ ตำ�แหน่ง

จุดต่อต่างๆ แยกตามจำ�นวนของโครงตาข่ายที่สร้าง

ขึ้นมาบนกราฟเดียวกันกับค่าท่ีคำ�นวณได้ทางทฤษฎี

แสดงไดด้งัภาพที ่14 เชน่เดยีวกบัในกรณขีองความเคน้

ตั้งฉาก ภาพที่ 15 แสดงถึงร้อยละความแตกต่าง

ระหว่างค่าดังกล่าวที่แปรผันไปตามขนาดของ

โครงตาข่าย ซึ่งพบว่าการเพิ่มขนาดของโครงตาข่าย

ให้มีความละเอียดมากขึ้นส่งผลต่อความแม่นยำ�ใน
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เอล ิเมนตหลักดังกลาวออกเปนโดเมนสมํ่าเสมอ

จํานวน 3 สวนยอย โดยการสุมตําแหนงบนดานท้ังสาม

สอดคลองกับคา 𝛼𝛼𝛼𝛼 ท่ีกําหนดไว ภาพท่ี 6 เปนการสราง 

smoothing domain ในลักษณะแบบอิสระ จะพบวา

ลักษณะรูปรางของโดเมนสมํ่าเสมอยอยท่ีไดจะมีลักษณะ
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𝛼𝛼𝛼𝛼 ใหม การสรางโดเมนยอยสมํ่าเสมอแบบนี้จึงไม

สามารถนําไปใชได 
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ภาพท่ี 7 แตก็เปนเพียงลักษณะของการหมุนเอลิเมนต
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กระจายตัวและความสมมาตรแลว จึ ง มีรูปราง

เหมือนกันทุกประการดังแสดงในภาพท่ี 8  
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 และขนาด

โครงตาข่ายที่น้อยลงมา แต่ยังคงให้ค่าความแม่นยำ�

ของผลลัพธ์ ในระดับที่ยอมรับได้ อันจะช่วยเพิ่ม

ประสิทธิภาพของการคำ�นวณให้ดีขึ้น
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ตารางที่ 1 	ความเค้นตั้งฉาก 

 

 

สามารถนําไปวาดกราฟความเคนเฉือน ณ ตําแหนงจุด

ตอตาง ๆ แยกตามจํานวนของโครงตาขายท่ีสราง

ข้ึนมาบนกราฟเดียวกันกับคาท่ีคํานวณไดทางทฤษฎี

แสดงไดดังภาพท่ี 14 เชนเดียวกับในกรณีของความ

เคนตั้งฉาก ภาพท่ี 15 แสดงถึงรอยละความแตกตาง

ระหวางคาดังกลาวที่แปรผันไปตามขนาดของโครง

ตาขาย ซ่ึงพบวาการเพ่ิมขนาดของโครงตาขายให

มีความละเอียดมากขึ้นสงผลตอความแมนยําใน

การคํานวณมากกวาการเพ่ิมคาของ 𝛼𝛼𝛼𝛼 
 

5. อภิปรายผลและสรุป (Discussion and Conclusion) 

ผลท่ีไดจากการวิเคราะหสมูทไฟไนทเอลิเมนต

ดวยการสรางโดเมนสมํ่าเสมอยอยทรงสี่เหลี่ยมแบบ 3 

สวนภายในเอลิเมนตหลักซ่ึงอาศัยหลักความสมมาตร

ของ Unit cell เขามาชวยเพ่ือใหเกิดความตอเนื่อง
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ภาพที่ 12 

 

 

สามารถนําไปวาดกราฟความเคนเฉือน ณ ตําแหนงจุด

ตอตาง ๆ แยกตามจํานวนของโครงตาขายท่ีสราง

ข้ึนมาบนกราฟเดียวกันกับคาท่ีคํานวณไดทางทฤษฎี

แสดงไดดังภาพท่ี 14 เชนเดียวกับในกรณีของความ

เคนตั้งฉาก ภาพท่ี 15 แสดงถึงรอยละความแตกตาง

ระหวางคาดังกลาวที่แปรผันไปตามขนาดของโครง

ตาขาย ซ่ึงพบวาการเพ่ิมขนาดของโครงตาขายให

มีความละเอียดมากขึ้นสงผลตอความแมนยําใน

การคํานวณมากกวาการเพ่ิมคาของ 𝛼𝛼𝛼𝛼 
 

5. อภิปรายผลและสรุป (Discussion and Conclusion) 

ผลท่ีไดจากการวิเคราะหสมูทไฟไนทเอลิเมนต

ดวยการสรางโดเมนสมํ่าเสมอยอยทรงสี่เหลี่ยมแบบ 3 

สวนภายในเอลิเมนตหลักซ่ึงอาศัยหลักความสมมาตร

ของ Unit cell เขามาชวยเพ่ือใหเกิดความตอเนื่อง

ของโดเมนสมํ่าเสมอท่ีสรางข้ึนตลอดท่ัวท้ังโดเมนของ

ปญหาความเคนในระนาบ 2 มิติ ของคานซ่ึงรับแรง

เฉือนในรูปฟงกชันพาราโบลาท่ีปลายอิสระนี้ มีลักษณะ

การลูเขาหาผลเฉลยแมนตรงหรือคาท่ีคํานวณไดจาก

ทฤษฎีในสองรูปแบบดวยกัน โดยมีความแตกตางเพียง

รอยละ 1-2 สําหรับความเคนท้ังสองแบบ กลาวคือ 

แบบท่ีหนึ่งคือขนาดของโครงตาขาย เม่ือมีการเพ่ิม

จํานวนของโครงตาขายใหมากข้ึน ซ่ึงเปนท่ีคาดการณ

ได สําหรับการคํานวณเชิงตัวเลขท่ีวา ยิ่งความละเอียด

ของโครงตาขายมากข้ึน ความแมนยําของผลลัพธท่ีได

ก็สูงตามไปดวย หากแตตองแลกมาดวยการประมวล

ทางคอมพิวเตอรท่ีนานข้ึนและใชทรัพยากรของเครื่อง

ที่มากขึ้น สําหรับรูปแบบที่สองซึ่งเปนคาของ α นั้น 

ก็เปนไปในทิศทางเดียวกัน ความแมนยําของผลลัพธ

ที่ไดแปรผันโดยตรงกับคา 𝛼𝛼𝛼𝛼 ท่ีเขาใกล 0.5 เนื่องจาก

งานวิจัยในครั้งนี้ มีการประยุกตใชหลักความสมมาตร

ของ Unit cell เพ่ือกระจายรูปแบบความตอเนื่องของ

โดเมนสมํ่าเสมอตลอดท่ัวท้ังขอบเขตของปญหาท่ีกําลัง

พิจารณารวมดวยความไมตอเนื่องของขอบเขตของ

ปญหา (Discontinuity) หรือปญหากลศาสตรการแตกหัก 

(Fracture Mechanics) ซ่ึงมักจะพบการเปลี่ยนแปลง

ความเคนสูง (Stress Concentration) ณ บริเวณปลาย

รอยแตก (Crack tips) ดังนั้น โดยการพิจารณาใชท้ัง

คา 𝛼𝛼𝛼𝛼 และจํานวนของโครงตาขายท่ีเหมาะสมรวมกับ

การจัดรูปแบบสมมาตรในบริเวณดังกลาวเพ่ือใหเกิด

ความแมนยําในการคํานวณสูง ในขณะท่ีบริเวณท่ีไกล

ออกไป ซ่ึงไดรับอิทธิพลจากการเปลี่ยนแปลงความเคนสูง

ดังกลาวนอยนั้น อาจพิจารณาใชคา 𝛼𝛼𝛼𝛼 และขนาดโครง

ตาขายท่ีนอยลงมา แตยังคงใหคาความแมนยําของ

ผลล ัพ ธ ใ น ร ะด ับ ที ่ย อม ร ับ ไ ด  อ ัน จ ะช ว ย เ พิ ่ม

ประสิทธิภาพของการคํานวณใหดีข้ึน 

 

 

ตารางท่ี 1 ความเคนตั้งฉาก 𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 สําหรับโครงตาขายตาง ๆ  

ตารางท่ี 2 คาความเคนเฉือน 𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥𝑦𝑦𝑦𝑦 ท่ีโครงตาขายขนาดตาง ๆ  
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ภาพที่ 13 

 

 

สามารถนําไปวาดกราฟความเคนเฉือน ณ ตําแหนงจุด

ตอตาง ๆ แยกตามจํานวนของโครงตาขายท่ีสราง

ข้ึนมาบนกราฟเดียวกันกับคาท่ีคํานวณไดทางทฤษฎี

แสดงไดดังภาพท่ี 14 เชนเดียวกับในกรณีของความ

เคนตั้งฉาก ภาพท่ี 15 แสดงถึงรอยละความแตกตาง

ระหวางคาดังกลาวที่แปรผันไปตามขนาดของโครง

ตาขาย ซ่ึงพบวาการเพ่ิมขนาดของโครงตาขายให

มีความละเอียดมากขึ้นสงผลตอความแมนยําใน

การคํานวณมากกวาการเพ่ิมคาของ 𝛼𝛼𝛼𝛼 
 

5. อภิปรายผลและสรุป (Discussion and Conclusion) 

ผลท่ีไดจากการวิเคราะหสมูทไฟไนทเอลิเมนต

ดวยการสรางโดเมนสมํ่าเสมอยอยทรงสี่เหลี่ยมแบบ 3 

สวนภายในเอลิเมนตหลักซ่ึงอาศัยหลักความสมมาตร

ของ Unit cell เขามาชวยเพ่ือใหเกิดความตอเนื่อง

ของโดเมนสมํ่าเสมอท่ีสรางข้ึนตลอดท่ัวท้ังโดเมนของ

ปญหาความเคนในระนาบ 2 มิติ ของคานซ่ึงรับแรง

เฉือนในรูปฟงกชันพาราโบลาท่ีปลายอิสระนี้ มีลักษณะ

การลูเขาหาผลเฉลยแมนตรงหรือคาท่ีคํานวณไดจาก

ทฤษฎีในสองรูปแบบดวยกัน โดยมีความแตกตางเพียง

รอยละ 1-2 สําหรับความเคนท้ังสองแบบ กลาวคือ 

แบบท่ีหนึ่งคือขนาดของโครงตาขาย เม่ือมีการเพ่ิม

จํานวนของโครงตาขายใหมากข้ึน ซ่ึงเปนท่ีคาดการณ

ได สําหรับการคํานวณเชิงตัวเลขท่ีวา ยิ่งความละเอียด

ของโครงตาขายมากข้ึน ความแมนยําของผลลัพธท่ีได

ก็สูงตามไปดวย หากแตตองแลกมาดวยการประมวล

ทางคอมพิวเตอรท่ีนานข้ึนและใชทรัพยากรของเครื่อง

ที่มากขึ้น สําหรับรูปแบบที่สองซึ่งเปนคาของ α นั้น 

ก็เปนไปในทิศทางเดียวกัน ความแมนยําของผลลัพธ

ที่ไดแปรผันโดยตรงกับคา 𝛼𝛼𝛼𝛼 ท่ีเขาใกล 0.5 เนื่องจาก

งานวิจัยในครั้งนี้ มีการประยุกตใชหลักความสมมาตร

ของ Unit cell เพ่ือกระจายรูปแบบความตอเนื่องของ

โดเมนสมํ่าเสมอตลอดท่ัวท้ังขอบเขตของปญหาท่ีกําลัง

พิจารณารวมดวยความไมตอเนื่องของขอบเขตของ

ปญหา (Discontinuity) หรือปญหากลศาสตรการแตกหัก 

(Fracture Mechanics) ซ่ึงมักจะพบการเปลี่ยนแปลง

ความเคนสูง (Stress Concentration) ณ บริเวณปลาย

รอยแตก (Crack tips) ดังนั้น โดยการพิจารณาใชท้ัง

คา 𝛼𝛼𝛼𝛼 และจํานวนของโครงตาขายท่ีเหมาะสมรวมกับ

การจัดรูปแบบสมมาตรในบริเวณดังกลาวเพ่ือใหเกิด

ความแมนยําในการคํานวณสูง ในขณะท่ีบริเวณท่ีไกล

ออกไป ซ่ึงไดรับอิทธิพลจากการเปลี่ยนแปลงความเคนสูง

ดังกลาวนอยนั้น อาจพิจารณาใชคา 𝛼𝛼𝛼𝛼 และขนาดโครง

ตาขายท่ีนอยลงมา แตยังคงใหคาความแมนยําของ

ผลล ัพ ธ ใ น ร ะด ับ ที ่ย อม ร ับ ไ ด  อ ัน จ ะช ว ย เ พิ ่ม

ประสิทธิภาพของการคํานวณใหดีข้ึน 

 

 

ตารางท่ี 1 ความเคนตั้งฉาก 𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 สําหรับโครงตาขายตาง ๆ  

ตารางท่ี 2 คาความเคนเฉือน 𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥𝑦𝑦𝑦𝑦 ท่ีโครงตาขายขนาดตาง ๆ   vs. Exact solutions

ภาพที่ 14 ความแตกต่างของ 

 

 

สามารถนําไปวาดกราฟความเคนเฉือน ณ ตําแหนงจุด

ตอตาง ๆ แยกตามจํานวนของโครงตาขายท่ีสราง

ข้ึนมาบนกราฟเดียวกันกับคาท่ีคํานวณไดทางทฤษฎี

แสดงไดดังภาพท่ี 14 เชนเดียวกับในกรณีของความ

เคนตั้งฉาก ภาพท่ี 15 แสดงถึงรอยละความแตกตาง

ระหวางคาดังกลาวที่แปรผันไปตามขนาดของโครง

ตาขาย ซ่ึงพบวาการเพ่ิมขนาดของโครงตาขายให

มีความละเอียดมากขึ้นสงผลตอความแมนยําใน

การคํานวณมากกวาการเพ่ิมคาของ 𝛼𝛼𝛼𝛼 
 

5. อภิปรายผลและสรุป (Discussion and Conclusion) 

ผลท่ีไดจากการวิเคราะหสมูทไฟไนทเอลิเมนต

ดวยการสรางโดเมนสมํ่าเสมอยอยทรงสี่เหลี่ยมแบบ 3 

สวนภายในเอลิเมนตหลักซ่ึงอาศัยหลักความสมมาตร

ของ Unit cell เขามาชวยเพ่ือใหเกิดความตอเนื่อง

ของโดเมนสมํ่าเสมอท่ีสรางข้ึนตลอดท่ัวท้ังโดเมนของ

ปญหาความเคนในระนาบ 2 มิติ ของคานซ่ึงรับแรง

เฉือนในรูปฟงกชันพาราโบลาท่ีปลายอิสระนี้ มีลักษณะ

การลูเขาหาผลเฉลยแมนตรงหรือคาท่ีคํานวณไดจาก

ทฤษฎีในสองรูปแบบดวยกัน โดยมีความแตกตางเพียง

รอยละ 1-2 สําหรับความเคนท้ังสองแบบ กลาวคือ 

แบบท่ีหนึ่งคือขนาดของโครงตาขาย เม่ือมีการเพ่ิม

จํานวนของโครงตาขายใหมากข้ึน ซ่ึงเปนท่ีคาดการณ

ได สําหรับการคํานวณเชิงตัวเลขท่ีวา ยิ่งความละเอียด

ของโครงตาขายมากข้ึน ความแมนยําของผลลัพธท่ีได

ก็สูงตามไปดวย หากแตตองแลกมาดวยการประมวล

ทางคอมพิวเตอรท่ีนานข้ึนและใชทรัพยากรของเครื่อง

ที่มากขึ้น สําหรับรูปแบบที่สองซึ่งเปนคาของ α นั้น 

ก็เปนไปในทิศทางเดียวกัน ความแมนยําของผลลัพธ

ที่ไดแปรผันโดยตรงกับคา 𝛼𝛼𝛼𝛼 ท่ีเขาใกล 0.5 เนื่องจาก

งานวิจัยในครั้งนี้ มีการประยุกตใชหลักความสมมาตร

ของ Unit cell เพ่ือกระจายรูปแบบความตอเนื่องของ

โดเมนสมํ่าเสมอตลอดท่ัวท้ังขอบเขตของปญหาท่ีกําลัง

พิจารณารวมดวยความไมตอเนื่องของขอบเขตของ

ปญหา (Discontinuity) หรือปญหากลศาสตรการแตกหัก 

(Fracture Mechanics) ซ่ึงมักจะพบการเปลี่ยนแปลง
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