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P Abstract 4

The alternative way to create sub-smoothing domains within an element for smoothed
finite element analysis was proposed in this research. Three sub-cell smoothing domains were
established continuously with the utilization of symmetrical pattern over the entire problem
domain. Strain gradient technique is the most important key to distribute strain field smoothly
within smoothing domain. Two-dimensional plane stress problem employed for this research
was a cantilever beam subjected to parabola shear force with a maximum magnitude of 1000
unit at free end. Two control parameters were used. The first one is meshing ranging from
coarse mesh 16x4 to finer mesh 48x12 as the same 4:1 ratio of horizontal to vertical dimension
of beam. The latter is « (a, = a,,) measured as fracture of an element side. The values of a were
0.2-0.3, 0.3-0.4 and 0.4-0.5 respectively. Numerically evaluated normal and shear stresses over
the cross-section area at the middle span and displacement at free end were compared to the
exact solutions accordingly. Obviously, the free end displacement accuracy strongly influenced
by the second control parameter. The normal stresses gy, at @ equal to 0.3-0.4 and 0.4-0.5
compared to the exact solutions were found to be at the same accuracy while shear stresses

0., were found to be dependent on mesh size than the value of a.
tKeywords-:;

Smoothed finite element; Sub-cell smoothing domains; Strain gradient; Two-dimensional

plane stress; Cantilever beam
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A9 1 ANLAUANAN

n

Oy E05UlATIANTNEANSY

Mesh 16x4 Mesh 24x6 Mesh 32x8
node node node
a a a
1 2 3 4 5 1 2 3 4 5 ] 7 1 2 3 4 5 6 7 8 9
0.2-0.3 -874.83 -472.79 323 47707 875.56 |0.2-0.3 -920.09 -653.91 -328.83 188 32443 654.23 92529 (0.2-0.3 -943.76 -74581 -495.13 -244.80 -2.20 247.53 500.94 74080 937.97
0.3-0.4 -890.39 -496.60 -0.23 497.84 876.07 |0.3-0.4 -932.82 -660.99 -330.14 -4.47 327.23 663.29 928.34 |0.3-0.4 -940.80 -747.95 -501.10 -252.01 0.70 253.67 502.38 744.04 945.35
0.4-0.5 -887.19 -499.09 0.22 496.51 887.26 |0.4-0.5 -925.45 -668.94 -332.70 -0.85 330.84 666.06 923.24 |0.4-0.5 -943.80 -746.51 -496.99 -250.71 -4.36 247.82 501.10 749.77 945.14
Exact -1000.00 -500.00 0.00 500.00 1000.00| Exact -1000.00 -666.67 -333.33 0.00 333.33 666.67 1000.00| Exact -1000.00 -750.00 -500.00 -250.00 0.00 250.00 500.00 750.00 1000.00
Mesh 40x10 Mesh 48x12
node node
a a
1 2 3 4 5 6 7 8 9 10 1 1 2 3 4 5 6 7 8 9 10 1 12 13
0.2-0.3 -959.28 -789.18 -597.61 -395.64 -197.61 1.80 196.09 397.57 592.08 791.52 968.94 |0.2-0.3 -970.10 -820.89 -669.83 -493.36 -332.99 -16341 025 163.66 328.34 497.70 663.46 829.16 96125
0.3-0.4 -950.38 -796.58 -598.57 -396.96 -195.79 2.92 201.83 399.13 598.36 800.00 954.12 |0.3-0.4 -965.70 -833.43 -662.44 -496.25 -331.93 -162.15 2.30 168.21 331.58 497.48 663.48 835.56 957.73
0.4-0.5 -957.89 -797.69 -601.99 -400.56 -198.94 0.50 198.37 398.17 598.14 799.06 956.32 |0.4-0.5 -964.38 -836.20 -665.12 -500.95 -333.29 -165.45 -0.42 166.88 334.32 500.75 667.63 831.56 961.53
Exact -1000.00 -800.00 -600.00 -400.00 -200.00 0.00 200.00 400.00 600.00 800.00 1000.00 Exact -1000.00 -833.33 -666.67 -500.00 -333.33 -166.67 0.00 166.67 333.33 500.00 666.67 833.33 1000.00
= ' Y QII | i
FNINN 2 ANANHLAULRDY Oy NHANANVIBTUINAING
Mesh 16x4 Mesh 24x6 Mesh 32x8
node node node
a a a
1 2 3 4 5 1 2 3 4 5 6 7 1 2 3 4 5 6 7 8 9
0.2-0.3 -51.08 -82.16 -113.40 -80.05 -49.73|0.2-0.3 -38.27 -64.17 -102.72 -119.26 -103.67 -62.11 -37.45(0.2-0.3 -29.36 -52.82 -91.01 -113.36 -120.73 -114.87 -88.66 -52.75 -29.87
0.3-0.4 -49.65 -79.81 -115.23 -83.71 -48.94|0.3-0.4 -37.02 -63.62 -105.68 -118.91 -106.43 -63.26 -36.82|0.3-0.4 -27.56 -51.30 -90.47 -115.48 -121.48 -114.78 -89.54 -53.08 -27.94
0.4-0.5 -46.95 -84.79 -112.01 -84.90 -47.59|0.4-0.5 -36.10 -62.75 -106.89 -119.68 -106.85 -63.24 -36.23 [0.4-0.5 -27.19 -53.46 -92.27 -114.55 -121.90 -114.59 -90.64 -51.65 -26.40
Exact 0.00 -93.75 -125.00 -93.75 0.00 | Exact 0.00 -69.44 -111.11 -125.00 -111.11 -69.44 0.00 | Exact 0.00 -54.69 -93.75 -117.19 -125.00 -117.19 -93.75 -54.69 0.00
Mesh 40x10 Mesh 48x12
node node
a a
1 2 3 4 5 6 7 8 9 10 " 1 2 3 4 5 6 7 8 9 10 1 12 13
0.2-0.3 -20.19 -43.25 -79.82 -103.52 -116.68 -123.79 -118.22 -104.40 -77.86 4281 -23.78(0.2-0.3 -20.95 -39.80 -67.44 -91.50 -109.47 -119.82 -123.68 -119.52 -108.45 -92.37 -66.85 -37.54 -22.11
03-04 -21.36 -43.31 -79.34 -103.08 -117.39 -122.35 -118.90 -102.13 -76.50 -44.02 -24.99 [0.3-0.4 -18.74 -36.72 -67.99 -93.08 -110.35 -119.99 -123.15 -120.06 -109.96 -92.69 -67.79 -36.35 -20.28
0.4-05 -22.30 -43.87 -77.52 -102.64 -118.80 -122.85 -119.02 -103.38 -78.50 -42.57 -23.04 |0.4-0.5 -18.10 -37.02 -68.18 -91.61 -110.59 -120.72 -124.37 -119.16 -109.64 -92.49 -67.88 -36.99 -19.64
Exact 0.00 -45.00 -80.00 -105.00 -120.00 -125.00 -120.00 -105.00 -80.00 -45.00 0.00 |Exact 000 -38.19 -69.44 -93.75 -111.11 -121.53 -125.00 -121.53 -111.11 -93.75 -69.44 -38.19 0.00
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