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ABSTRACT £

Existing control techniques in the engineering literature are diverse. This paper attempts to
classify control techniques of which the author is aware from his literature review and experience
with industrial control projects. Due to the vast number of techniques, most of the presentations
will be brief; however, the reader will be pointed toward further excellent references. This paper
should act as a starting point for readers, who may or may not have already become familiar
with control theory, but are eager to see an overview of the control techniques, in order to
choose techniques that suit their needs and to study them deeper. The work is divided into
Part 1 and Part 2. In Part 1, techniques that have been discussed are those of basic control,
adaptive control, and robust control. In this Part 2, techniques that will be discussed are those
of nonlinear control, optimal control, and control supplements. The reader who is interested in
the field of control and would like to know more details, is referred to an informative control
handbook [1] and references therein.
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1. NONLINEAR CONTROL OQO In this section, we gather some techniques

. that devise control law straight from the nonlinear
In fact, all a actual systems are nonlinear.

) ) model. Nonlinear control theory is still an active
However, the nonlinear model is usually too

) ) and open research area.
complicated for controller design. Therefore,

control engineers have designed controllers 1.1 Lyapunov Redesign
from a linear model, which is viewed as an The Lyapunov’s stability theories,

estimate of the nonlinear system. The linear considered to be a backbone of the nonlinear

control theory is simple and well understood. control theory, can be stated in a simple form,
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as follows. Suppose a nonlinear plant model
to be controlled is given by
X=f 0w

Let V' be a positive energy-like function
that contains all the state variables of x=f
(x,u). If we can find a controller u that results
in ¥ <0, the energy-like function ¥ and hence
the state variables will reduce to zero. If the
state variables are tracking errors, u is then a
tracking controller that will drive the tracking
error to zero.

The Lyapunov redesign method uses the
Lyapunov function of the nominal system x= f
(x,u). to design an additional control component
for uncertain systems, making the new controller
robust. An example of an uncertain system is

X=FX)+GXu+otx uw, 1)

where F' and G are known functions
and O (¢, x, u) is an unknown function with
known bounds that lumps together various
uncertain terms due to model uncertainty and
disturbances.

1.2 Nonlinear Damping

Nonlinear damping is an additional
controller term that can be viewed as providing
additional damping to the system, making
the system robust against broader classes of
uncertainty and disturbances. The nonlinear
damping term is widely used in the control
community and works by dissipating energy from
the system, making it more stable. One example
of using the nonlinear damping term is as follows.
Consider the uncertain system (1) with

ot x, u) =T x) 8, (t x, u),
where I is precisely known but (30 and its bound

are unknown. It can be proved that a controller

u=1I(x+v,
where 1) is designed for the nominal system and
v is the additional nonlinear damping term, can
achieve uniform boundedness of the solution
of (1). The additional nonlinear damping term
is given by

2
= -kw||T(t, x)\|2,k>o,

where  w! = [0V 0x]G.

1.3 Backstepping

The backstepping technique breaks
the design problem for the full system into a
sequence of design problems for lower-order
subsystems. Virtual control is designed for each
subsystem with the objective of reducing the
error between the local state of the subsystem
and its desired value. Backstepping is useful
for our control strategy, since it allows control
effort to be inserted into each subsystem.
Therefore, uncertainties are allowed to exist at
each subsystem.

Figure 1 depicts an example of backstepping
control for a 3-order system where all functions
are known and all states are available. Suppose
the objective is to make x, track x, ,as closely
as possible. We let z,=x,-x,,1=1,2,3
be the error at each subsystem. The virtual
control inputs are given by

4= Gil('Fl + Xy - kz)),

-1 .
Zyy= Gy (Fy+ Xy - kyz, -

Gz).
and the actual control is given by
-1 .
U= G3 (-Fy+ Xy, - k323 -G,z,).
By using the Lyapunov candidate V' = 0.5 (Z?
2

+2z) + Zi), it can be shown that all the errors

approach zero asymptotically.
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Figure 1 : Diagram of a Backstepping Control

1.4 Sliding Mode Control

Sliding mode control is a robust
control that has fast action to counteract
disturbances. There are two phases: reaching
and sliding phases. In the reaching phase, initial
state trajectories are controlled to move toward
a sliding surface and, once on the surface, to
maintain it there. The sliding surface is designed
such that any trajectories, when on the surface,
move toward the origin. Figure 2 depicts a phase
portrait under the sliding mode control.

The controller during the reaching phase
is normally a fast-acting control law of the form
u = -Bx) sgn (s), where P(x) satisfies some
properties, Sgn represents the signum function,
and s is the sliding surface. This control law
moves any initial trajectories toward the surface
s =0 and keeps them on the surface thereafter.
The surface s = 0 is designed such that any

trajectories on it move toward the origin.

s=0
%

Figure 2 : Typical Phase Portrait under
Sliding Mode Control

In tracking problems, the trajectories
X can be set as the tracking error. Hence, the
sliding mode control is able to achieve zero error
once the trajectories are driven to the origin. The
controller is robust against model uncertainty
and disturbances, because designing the sliding
surface does not require the plant model and
the fast-acting control law can be designed to
overcome the effects of the disturbances.

There are several ways to reduce control
chattering from the discontinuous signum function
in the control law. The most convenient way
is to replace the signum function by a smooth
version of it, for example, by an inverse tangent
function.

1.5 Passivity-Based Control

A MIMO system

X =fxu),y=nhx)
is passive if there exists a continuously
differentiable positive semi-definite function
V' = 0 such that uTy =V. A passive system
has a stable origin. All we need to asymptotically
stabilize the origin is to inject damping u = -¢(y)
into the system, so that the energy will dissipate
whenever x(f) is not identically zero.

For a non-passive system, the controller
contains two parts: one to transform the non-
passive system to a passive system, the other
to inject damping into the system to achieve

zero x(f). For example, a system
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X =fx) + GWu, y = hx)
may use a control law u = a(x) + B(x)v with
v = -@(y) to drive the state x(#) to zero.
1.6 Singular Perturbation Control

Singular perturbation control is a
controller designed from a so-called standard
singular perturbation model

X =f(xz ¢,
€z =gt x, z &),
where € is a small number, x is a state variable
in the slow time scale, and z is a state variable
in the fast time scale.

The singular perturbation method is
suitable for systems that can be divided into fast
and slow time scales. For example, an actuator
system such as a motor is usually operated
faster than the plant, which is a system driven
by the motor.

1.7 Linearization about Equilibrium

Point

In general, controller design and
analysis of linear systems are well-understood
compared to those of nonlinear systems, since
most practical systems operate only around a
limited number of operating points. The nonlinear
model can be linearized about these operating
points using the first-order Taylor series. Hence,
the nonlinear model becomes many linear
models about several operating points. For each
linear model, a linear control system can then
be designed, and a gain scheduling algorithm
can be used to switch among the controllers
in a smooth or abrupt way.

A general nonlinear system
X = flx, u)
has its first-order Taylor series approximation
about the origin as
X = Ax + Bu,

where

of af
A B % (x’ u) X=0, U=0 ’ B - %(x' u) X=0, U=0

This also applies to any operating point, since
any point can be transferred to the origin by a
change of variables.

Then, any control design techniques for

linear systems can be applied. For example,

a controller
=-Kx, K>0
results in the closed-loop system
X =4 - BK) x,

whose poles can be placed by the state-feedback
controller.
1.8 Feedback Linearization

Instead of approximating about
an operating point, feedback linearization is
a technique that uses feedback and possibly
a change of variables to transform nonlinear
systems to linear systems. This linearization
approach is exact, not approximated as in the
previous linearization technique. However, the
feedback linearization technique only applies
to a special class of nonlinear systems.

There are two types of feedback
linearization. The first is linearizing the mapping
from input to state; and the second is linearizing
the mapping from input to output.

1.8.1 Input-to-state linearization

A nonlinear plant model

X = Ax + By(x)[u - a(x)] 2)
can be feedback linearized by a controller

u = ax) - B,

' (x), to obtain a linear plant

where B(x) =y
model

X =Ax + Bv.
It can be shown that a broader nonlinear model

in the form



Automatic Control Techniques Review: Part 2 87

X =fix) + GX)u

can be transformed to (2) using a change of
variables z = T(x). The change of variables
requires some assumptions to be met and in
general is not applicable for some types of
systems.

1.8.2 Input-to-output linearization

Input-to-output linearization uses
feedback to achieve linear mapping from input
to output. Suppose we want to control certain
output variables. Linearizing the state equation,
as was done in input-to-state linearization, does
not necessarily linearize the output equation.
For example, consider a system

xl = a S Xy
2

X, =-x|+u,
Y =X,
The change of variables and state-feedback
control
zZ, =X, 2, =1a SIn X,
u=x+
I acosx,
yield
Zl =Zz,
Z, =V,

2
y =sin’! (%)
In the system above, the state equation is linear,
but y is nonlinear, resulting in complications in
solving the tracking control problem.

Suppose, instead, we use

u = xf +V,

we would get

Note that the state variable x, does not connect
to the output ¥ but the input-output map from
v to y is linear. This is called input-to-output
linearization.

When we design tracking control,
we must make sure that the variable x, is well
behaved, that is, stable or bounded. A naive
control design that does not consider x; might
end up with an ever-growing, unstable signal
X, (internal instability.)

In general, the input-to-output
linearization technique can be applied to a
nonlinear system in the form

x = flx) + gu,
Y = hx)
with some restrictions.

Nonlinear control can be studied

from many excellent textbooks. For example,

we have used [2]-[11].

2. OPTIMAL CONTROL ‘O‘o
o]

Given a plant model
x = hx, u, 0,
an optimal control determines a control input u
that causes the plant to satisfy some physical
constraints and at the same time optimizes a
certain performance criterion,
J=Jf e u 0 dt,

which can include, for example, control effort,
state trajectories, or initial conditions.

2.1 Time Optimal Control (TOC)

The objective of the time optimal
control is to drive the system’s output from one
point to another using the shortest time possible.
For a simple second-order plant without spring

and damping
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V(0 = au(?), @)
it can be shown by solving the optimization

problem that

+u, .., forte (0, %:|

v
—U_ ., forte(z,t}

drives the output y from 0 to 7 in the shortest

u(t)=

(4)

time possible, where

. 4r
au

max

is the time to reach the target and u__is the
maximum allowable control effort.

The open-loop control law in the
previous paragraph suffers from model uncertainty
and disturbances. To receive the benefits of
closed-loop control, the following closed-loop
TOC is proposed. For the plant (3) and control
law (4), by eliminating ¢ in their state-space

model, we obtain

1
X, (t) = Yo x§ (t)+ cs, foru=+u_,_,
max
X, (t) =— S x22 (t)+ Ce, foru=-u_,_,
max

where ¢ and ¢, are appropriate constants. The
phase plot between e = r - x, and Xx, is then
given as shown in Figure 3. From the phase
plot, we see that by appropriately switching u
between +u_ . the trajectory will be driven to

the origin.

Xy U= Uy

N\u:+u

max

Figure 3 : Phase Plot between e and x,

Let f;(e)=sgn(e)2au,, || be an equa-

tion representing the solid line in the phase
plot. The control law is then given by
u=u_, sgn(ft (e) - X, ) and the closed-loop

block diagram is shown in Figure 4.

Figure 4 : Typical Closed-loop

Time-optimal Control

22 Proximate Time Optimal

Servomechanism (PTOS)

The previous closed-loop TOC has
two drawbacks. First, even the smallest system
process or measurement noise will cause control
“chatter”, which wastes energy and can excite
the high-frequency modes. Second, any error in
the plant model will cause limit cycles to occur.

The two drawbacks can be eliminated by
replacing the signum function with the saturation

function with smooth slope. An example is

sat k2 [fp (e) _ xz}

max 4

u

max
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where
+1, if x>1,
sat(x): x, if —1<x<1,
-1, if x<-1,
and

Z—le, for|e| <y,
fp(e): sgn(e)[ 2aumaxa|e|—b%"‘},

2

for|e| >y,

where k; and 0 < & <1 are designed parameters
and y,=u_. /k and k,=./2k /ac. More
details of the proof can be found in [12].

A closed-loop block diagram is given in Figure 5.

R Aait

Figure 5 : Typical Proximate Time-optimal

Servomechanism

Details of standard time-optimal control
can be found in [13] and [14].
2.3 LQR (Linear Quadratic Regulator)
Given the system equation
X =Ax + Vu,
the LQR method determines the matrix K of
the optimal control input
u=-Kx
to minimize the performance index
J=[, &*Ox + u*Ru) dt, (5)
where Q and R are positive-definite Hermitian

matrices that give relative importance of reducing

89

the states or reducing the control input used.
To minimize J, we substitute u = -Kx into (5)
and set dJ / dK = 0. It is then not difficult to
show that K = R'! B* P, where P satisfies the
so-called reduced-matrix Riccati equation
A* P + PA - PBR' B* P + Q = 0. Detailed
derivation can be found in chapter 12 of [15].

Minimizing J results in minimizing the
states x and the control effort 1, making them
close to zero, which is desirable if we want to
drive x to zero or use small amount of control
effort.

2.4 LQG/LTR (Linear Quadratic Gaussian/

Loop Transfer Recovery)

It can be said that LQG is an LQR
with a state observer. It was proved that
although LQR and state observer both have
good stability margins, when combined to be
LQG, there is no guaranteed stability margin.
This is because the loop transfer functions at
input and output of the LQG controller differ
from those of LQR and state observer and have
no guaranteed stability margin. The method to
make the loop transfer of the LQG controller
approach those of the LQR and the observer
is called loop transfer recovery or LTR.

However, it is argued that the loop
transfer recovery does not work in practice, due
to two main reasons. First, the method involves
canceling the plant zeros, so it cannot be used
with a non-minimum-phase plant. Second, the
method requires infinity gains to completely
recover the loop transfer function, so the high
gains can cause instability with unmodeled

dynamics.
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Nevertheless, if the plant is minimum
phase and the plant model is accurate, the
LQG/LTR method still applies. One more note
is that not having a guaranteed margin does
not mean the closed-loop system does not
have any stability margin. Therefore, we would
still see many applications using the LQG/LTR
method successfully.

Figure 6 shows a diagram of the
LQG controller. The plant model is in the form

X =Ax + Bu, +w,

y=Cx+Du, +w,
where w, and w, are Gaussian white noises.
The plant model is linear and can be with or
without disturbance w, and noise w,. The LQR
control using the estimated state is u = -KX..
The state observer used to estimate states can
be a Kalman filter (with noise) or a Luenberger
observer (without noise.) The observer will be

discussed in a later section.

LQR State Observer

Figure 6 : Diagram of the LQG Controller

LQG/LTR is discussed in details in [16].
2.5 Model Predictive Control (MPC)
Model predictive control computes
a sequence of control input that minimizes the
error between the predicted output and the
reference trajectory. The method is most suitable
with chemical processes, where there is more
computation time available between samples for

the more complex control algorithm and there

is a need to handle the time delay between

applied input and resulting output.
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Figure 7 : Diagram lllustrating the Model

Predictive Control Concept

Figure 7 depicts a diagram explaining
the concept of the model predictive control.
At the current time step £, the output y(k)
is measured. The control input sequence {u(k),
ulk + 1)..., utk + H)} is then computed over
the control horizon Hu by minimizing the error
between the predicted output and the reference
trajectory computed over the prediction horizon
Hp. After the input sequence is computed, only
the first element u(k) is implemented at the
next time step.

For systems with time delay, the
current input u(k) will affect the future output
Yk + T) only after a delay time 7, In MPC,
since u(k) is computed to minimize the tracking
error over the prediction horizon Hp, if Hp >T,
the effect of time delay is practically eliminated.

In MPC, constraints such as bounds
on input effort u#, bounds on input effort rate
Au, and bounds on output y, can also be
specified by imposing these constraints on the
optimization problem.

Model predictive control is discussed
in [17].
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2.6 Extremum Seeking

Extremum seeking is a gradient-based
method to find a set of parameters that locally
optimizes a cost function. What makes this technique
interesting and practical is that the technique does
not require plant model, as is a typical requirement
in any gradient-based algorithm. Hence, it is
convenient to apply this technique to complicated

systems whose models are difficult to find.

An additive probing term cos (wk)
is used in the algorithm, so that the gradient of
the cost function can be estimated without the
plant model. More details can be found in [18].

One of the effective uses of this
technique is to tune PID gains, as was presented

in [19]. Figure 8 contains a diagram of this

scheme.
(k) Extremum Seeking J(0(k))
Algorithm
F- - T T T T T T, T T[T T TTTTTTTTTTT T TSI T T T T T T T 1‘
r(t) »(1) }
PID Controller Plant Cost Function | |
K, R\K, Computation !
|
|
|
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |

Figure 8 : Extremum-seeking PID Tuning Scheme

The cost function is given by

J(0)=—L["&(1,0) d,
T—t,"n

where [to, T is the time interval to compute the
cost function, e = r - y is the tracking error,
t is the current time, and 6 = [Kp, K, Kd]T is
the PID gains to be adjusted.

k represents an epoch. In the k"
-epoch, a step reference r is given to the system to
obtain the output y. Then, the cost function J (6)
is computed over the time interval [£, 7], which
normally includes transient and steady-state
periods. Afterward, the cost function of the
k"-epoch, J (0 (k) is sent to the extremum-
seeking algorithm to compute 0 (k) = [Kp, K,
K )" which will be used in the next k + 17

epoch. The process repeats until the cost
function cannot be optimized further, then the

optimum PID gains are obtained.

3. SUPPLEMENTS QQ
o

In this section, we present some techniques
that help improve the quality of the control
system already in place.

3.1 Augmented Integrator

Adding an integrator is known to
eliminate steady-state error. An integrator can
be added in parallel to the existing controller,
built into the existing controller structure, or
augmented from the plant model. The first and
second cases are obvious. In this section we

discuss the augmented integrator.
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Suppose we have a state-space
model representing a plant to be controlled
X, =f(x ),
X, = f,(x, u),
where in the tracking problem Xx, usually
represents the tracking error. We can augment
an integrator to the system by adding another
state variable as
X, =X,
X, =[x, u),
X, = f,(x, u),
By designing the control input u to asymptotically
stabilize the system, that is, all states approach
zeros in finite time, X, which is the integral of
the tracking error, also approaches zero in a
sense analogous to having an integrator in the
system.
3.2 Observer
Not all states are measured in practice
due to cost limitations, lack of space, or no
available sensor technology. For example, we
may install an optical encoder to measure the
position signal but not the velocity sensor. An
observer is designed to estimate the missing
states from signals we know, which are measured
output y and control effort u. There are three
broad types of the observer.
3.2.1 Luenberger observer
Luenberger observer is a standard
observer for linear systems. Consider a linear
state-space plant model

X = Ax + Bu,

y = Cx.

The Luenberger observer is given by
x=A%+Bu+L(y-C%),

where X is the estimated state and L is the
constant gain to be designed. It can be shown
that, if we let e = x—X be the estimated error,
we would get € = (A —LC)e. Therefore, L can
be easily designed to place the closed-loop
pole to achieve zero estimated error.

3.2.2 Kalman filter

Kalman filter is a powerful technique
to estimate the states of the system when
there is plant-input disturbance and the output
measurement is crippled with noise.

Consider the discrete plant model

x[n+1] = Ax[n]+B(u[n]+w[n]),
y[n]=Cx]n],
v, [n] = Cx[n] + v[n],

where w and v are some Gaussian white noises.
The available signals to us are the control input u
and the measured output y . Note that the noise
w is applied at the plant input, and the noise
Vv is sensor noise, which makes the measured
output y differ from the actual output y. Since
we want to control the actual output y and not
the measured output y . we use a Kalman filter
to estimate the actual output y using u and .

There are two stages in the Kalman
filter algorithm. First, the measurement update
stage is when the state estimate is updated
for the current time step n using the measured
output just received at the current time step

Y, [n]. The algorithm is given by
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fc[n|n]:fc[n|n—1]
+M(yv[n]—C)2[n\n—l]),

where the innovation gain M is chosen to
minimize the steady-state covariance of the

estimation error given the noise covariances
E(w[n] w[n]T) =0 E(v[n]v[n]T) =R

For notation, fc[n|n—1] is the estimate of
x[n] given past measurements up to y, [n —l],
and fc[nln] is the updated estimate based
on the last measurement yv[n]. Second, the
time update stage is when the control input at
the current time step n is used to compute the
estimated state of the next time step n + 1. The

algorithm is given by
i[n+1|n]=Afc[n|n]+Bu[n].

We can combine the time and measurement
update equations into one state-space model

(called the Kalman filter)

i[n+1|n]=A(I-MC)x[n|n—1]

]
5 AM]LV[ J

f/[n | n] = C(I—MC))?[n | n—l]
+CMy, [n].

This filter generates an optimal estimate j/[n | n]
of y[n] Note that the filter state is X[n|n—1].

The Kalman filter above is called
a steady-state Kalman filter. When the plant

is time-varying or is with non-stationary noise
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covariance, we can use a generalization of the
steady-state Kalman filter called time-varying
Kalman filter. The time-varying Kalman filter is

given as follows. Consider the discrete plant

model
x[n+1]:Ax[n]+Bu[n]+Gw[n],
y[n]=Cx[n],
v, [n]=Cx[n]+v[n]

The measurement update stage is given by
#[n|n]=2[n|n-1]
+M [n](y,[n]-C&[n|n—-1]),
= P[n|n-1]C
(R[n]+CP[n|n-1]C")",
Pln|n]=(I-M[n]C)P[n|n-1].

M|n]

The time update stage is given by

fc[n+1|n]:A)2[n|n]+Bu[n],
P[n+1|n]:AP[n|n]AT +GQ[n]GT,

where
O[n]=E(w[n]w[n]).
R[n]=E(v[n]v[n]").
Details of the Kalman filter can be
found in [20].

3.2.3 High-gain observer

High-gain observer applies to various
broader types of nonlinear systems. As an
example, consider a second-order nonlinear

system
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X =Xy,
xz :¢(x7u)a
Y=X,

where x =[x, x,]".
Suppose u = ¥ (x) is a state feedback
control law that stabilizes the origin x = 0 of

the closed-loop system

X, =X,,
X, = ¢(x, }/(x)).
The high-gain observer is given by

X =X, +h|(y_)21)’
X, =4, (ﬁ,u)+h2(y—)?l),
where (po(x, u) is the nominal model of the

nonlinear function ¢ (x, u).

Let

- | X% X =X
X = ~ = R
X, Xy =X,

be the estimation error. We have

X, =—hx +Xx,,
X, =—h% +6(x, %),
where &(x, X) = ¢(x, 7()%))—¢0 (fc, 7()%))
We want to design the observer gain
H=[h,h, ]T sothat ,,, ¥(¢)=0 Without the

disturbance term 0, asymptotic error convergence

is achieved by designing H such that

is Hurwitz, which is when /4, and £, are any

positive constants.

With the disturbance term 0, the
observer gain H can be designed with an
additional goal of rejecting the effect of d on X.

Details of the high-gain observer can
be found in [2].

3.3 Output Feedback

If all state variables are measured and
used in the control law, the controller is called
a state-feedback controller, but if some state
variables are not measured and their estimates
from the state observer are used in the control
law, the controller is called an output-feedback
controller. There are two categories.

3.3.1 Full-order

This is when all state variables,
including the measured output, are estimated,
and only the estimated state variables are used
in the control law. To make this point clear,

consider a plant model given by

X, :fl(x,u),
X, :fz(x,u),
Y =X,

where y is the measured output. A state observer
uses the control input ¥ and the measured
output y to obtain estimated state variables X,
and X,. In full-order output feedback, a control
law u = f (%, %,) is devised in terms of the
estimated state variables.

3.3.2 Reduced-order

Instead of using X, in the control
EMBED

Equation.DSMT4 resulting in a reduced-order

law, we may use its actual value

output feedback control law u = f(,%,).

One advantage of the reduced-order control
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over the full-order control is that it has lower
order and hence consumes less computing time
when implemented.

Details on the output feedback control
for linear systems can be found in any standard
textbooks that discuss state-space model, for
example, [15]. The output feedback control for
non-linear systems can be found, for example,
in [2].

3.4 Signal Shaping

Signal shaping shapes signal so that
its spectrum energy around the system’s natural
frequencies is reduced to avoid resonance.
There are two signal shaping techniques, the
so-called input shaping and command shaping.

Input shaping convolves the reference
input with a sequence of pre-designed impulses.
The resulting shaped reference input has
practically reduced spectrum energy around
the designed natural frequencies. The shaped
reference input is normally shaped around the
closed-loop system’s natural frequencies to
avoid exciting them. As a result, we obtain a
smoother output.

Command shaping reconstructs the
reference input from some basis functions, such
as ramped sinusoidal function or versine function.
The new reference input has its spectrum energy
reduced around the system’s natural frequencies
to avoid resonance.

Another shaping, but usually performed
on the system itself, is the use of a notch filter.

A notch filter is in the form
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S t+w
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2 @, 2
ST+ s+ @)

Its Bode’s magnitude plot reveals that there
is a trough around frequencies near @, . The
depth is determined by Q. The notch filter is
used to multiply directly with the system to
reduce its gain around the natural frequency.
Multiple notch filters can be used when there
are more-than-one natural frequencies.

Details of the input shaping and the
command shaping techniques can be found in
the various publications posted at http://www.
crvlab.eng.ku.ac.th/.

3.5 Composite Control

The idea is to combine two or
more controllers in a control law. For example,
in step reference tracking, the first controller to
be used may possess low damping for fast
movement. However, when the controlled output
approaches the reference, another controller with
higher damping is used to break the system
to reduce overshoot. Figure 9 depicts this
scenario. In the literature, if the switching between
controllers is gradual, the controller is called
composite control, but if the switching is abrupt,

the controller is called mode switching control.

y

\ High-damping controller

S~ Low-damping controller

Figure 9 : Diagram of a Composite Control
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The idea of composite and switching

controls first came to the author from [21].
3.6 Repetitive Control (RC) and Ilterative

Learning Control (ILC)

For a system that is required to track
the same reference input many times, such
as a robot manipulator, or to reject periodic
disturbance, such as repetitive runout rejection
in a hard disk drive’s head positioning, RC or
ILC can be used to improve the controller’s
performance by learning from the previous
movement of the system.

Suppose a reference input y, 03]
repeats every ¢ = T seconds, that is, y ,(7) =
Y, (0). Let T, () be the control input to the
system during the Kk cycle, which produces
an output y, (#), 0 < ¢t < T. The input/output
pair [rk (t),yk ()] is stored and used to improve
tracking of the next k + 1% cycle. The learning

control problem is to determine a recursive control

T,

v (0 =Flr @), Ay, 0),0=t=<T,

where Ayk(t) = yk(t) - yd(t), such that ||Ayk||
—0as k — oo.

Several approaches have been used
to generate a suitable learning law F. A PID-

type learning law takes the form
T (t)=7.(2)- k,Ay, (¢)

_kiJ.Ayk (t) dt =k,

dAy, (t)

dt

The RC and ILC controls are attractive
because no plant model is required and they
can be used to improve any control law already
in use for tracking of the repetitive reference.
More details of the RC and ILC can be found
in [22].

3.7 Digital Control and Controller

Implementation

Nature creates analog signals (in
continuous time), but we perceive these signals
as digital signals (in discrete time.) In fact, it is
believed that the human brain has a very fast
sampling period. The implementation of the
controller is also done in discrete time with
signals sampling with a certain period.

Digital control designs the controller
directly in discrete-time domain, resulting in
either transfer function in a z-operator or a
discrete-time state-space model. However, most
of the controller design techniques available in
the literature are performed in continuous time.
This is probably because traditional mathematics
has always assumed continuous function, and
some theories exist only in continuous time and
do not have any meaning in discrete time.

Although we can almost always find
a discrete-time counterpart of the continuous-

time control, it may be more convenient to,instead
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of designing a digital control anew, approximate
the existing continuous-time controller.
The continuous-time controller is mostly given
in a transfer function in s-operator (for example,
QFT) or continuous-time state-space model (for
example, adaptive control algorithm.)

For the transfer function in s-operator,
we can simply let s = (z-1) / T, for forward
difference or Euler’s method, s = (z-1) /
D),
5= [2(2 - 1)] / [T(z + 1)] , for Tustin’s appro-

ximation method, or

for the backward difference method,

@, z—1
s = e
tan(wh/2) z+1

for Tustin with prewarping method, where z is
the z-transform operator and 7' is the chosen
sampling period. The resulting transfer function
in z-operator differs slightly from the original
transfer function in s-operator, usually in some
high-frequency ranges. By prewarping, more
accuracy is obtained at @ = ,.

The resulting transfer function in
z-operator can then be implemented using the

time-shifting theorem
Z(x(t—nT)) = zf"X(z).
For example, a controller

G(z) = 34692 =543
z* ~1.63z+0.6562

_ 5.469z7'-543z7 U(z)

T 1-1.63z7" 40656227 E(z)

results in

u(t)=5.469(t—T)~5.43¢(1—2T)
+1.63u (¢~ T)—0.6562u (1 —2T)

after cross multiplication and inverse transformation
with the time-shifting theorem.

For the continuous-time state-space
model, the approximation might not be as
simple. However, numerical approximation of
the derivative of the state usually suffices. For

example, in Euler’'s method,

which is readily implementable.
Many excellent textbooks discuss
digital control. We have used [23] and [24].

The controller implementation is covered in [25].
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