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ABSTRACT

		  Existing control techniques in the engineering literature are diverse. This paper attempts to 

classify control techniques of which the author is aware from his literature review and experience 

with industrial control projects. Due to the vast number of techniques, most of the presentations 

will be brief; however, the reader will be pointed toward further excellent references. This paper 

should act as a starting point for readers, who may or may not have already become familiar 

with control theory, but are eager to see an overview of the control techniques, in order to 

choose techniques that suit their needs and to study them deeper. The work is divided into 

Part 1 and Part 2. In Part 1, techniques that have been discussed are those of basic control, 

adaptive control, and robust control. In this Part 2, techniques that will be discussed are those 

of nonlinear control, optimal control, and control supplements. The reader who is interested in 

the field of control and would like to know more details, is referred to an informative control 

handbook [1] and references therein.
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1.	 NONLINEAR CONTROL

		  In fact, all a actual systems are nonlinear. 

However, the nonlinear model is usually too 

complicated for controller design. Therefore, 

control engineers have designed controllers 

from a linear model, which is viewed as an 

estimate of the nonlinear system. The linear 

control theory is simple and well understood.

		  In this section, we gather some techniques 

that devise control law straight from the nonlinear 

model. Nonlinear control theory is still an active 

and open research area.

		  1.1	 Lyapunov Redesign

				    The Lyapunov’s stability theories, 

considered to be a backbone of the nonlinear 

control theory, can be stated in a simple form, 
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as follows. Suppose a nonlinear plant model 

to be controlled is given by

x. = f (x,u). 

			   Let V be a positive energy-like function

that contains all the state variables of x. = f 
(x,u). If we can find a controller u that results 

in  V
.

 < 0, the energy-like function V and hence 

the state variables will reduce to zero. If the 

state variables are tracking errors, u is then a 
tracking controller that will drive the tracking 

error to zero.

			   The Lyapunov redesign method uses the 

Lyapunov function of the nominal system  x. =  f 
(x,u). to design an additional control component 

for uncertain systems, making the new controller 

robust. An example of an uncertain system is

 	 x. = F (x) + G (x)[u + δ (t, x, u)],	 (1)

			   where F and G are known functions 

and δ (t, x, u) is an unknown function with 

known bounds that lumps together various 

uncertain terms due to model uncertainty and 

disturbances.

		  1.2	 Nonlinear Damping

				    Nonlinear damping is an additional 

controller term that can be viewed as providing 

additional damping to the system, making 

the system robust against broader classes of 

uncertainty and disturbances. The nonlinear 

damping term is widely used in the control 

community and works by dissipating energy from

the system, making it more stable. One example 

of using the nonlinear damping term is as follows. 

Consider the uncertain system (1) with 

δ (t, x, u) = Γ(t, x) δ
0
 (t, x, u), 

where Γ is precisely known but δ
0
 and its bound 

are unknown. It can be proved that a controller 

u = ψ (t, x) + v, 

where ψ is designed for the nominal system and 

v is the additional nonlinear damping term, can 

achieve uniform boundedness of the solution 

of (1). The additional nonlinear damping term 

is given by

				    v 	=	-kw||Γ(t, x)||2

2
, k > 0, 

where 		wT
	=	[∂V | ∂x]G. 

		  1.3	 Backstepping

				    The backstepping technique breaks 

the design problem for the full system into a 

sequence of design problems for lower-order 

subsystems. Virtual control is designed for each 

subsystem with the objective of reducing the 

error between the local state of the subsystem 

and its desired value. Backstepping is useful 

for our control strategy, since it allows control 

effort to be inserted into each subsystem. 

Therefore, uncertainties are allowed to exist at 

each subsystem.

			   Figure 1 depicts an example of backstepping 

control for a 3
rd
-order system where all functions 

are known and all states are available. Suppose 

the objective is to make  x1 track  x1d as closely 

as possible. We let  zi = xi - xid, i = 1, 2, 3 
be the error at each subsystem. The virtual 

control inputs are given by

	  		  z2d = G
-1
1 (-F1 + x1d

.

 - k1z1),

			   z3d = G
-1
2 (-F2 + x2d

.

 - k2z2 - G1z1), 

and the actual control is given by

	  		  u = G
-1
3 (-F3 + x3d

.
- k3z3 - G2z2). 

By using the Lyapunov candidate V = 0.5 (z2
1  

+ z2
2 + z2

3), it can be shown that all the errors 

approach zero asymptotically.
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Figure 1 : Diagram of a Backstepping Control

		  1.4	 Sliding Mode Control

				    Sliding mode control is a robust 

control that has fast action to counteract 

disturbances. There are two phases: reaching 

and sliding phases. In the reaching phase, initial 

state trajectories are controlled to move toward 

a sliding surface and, once on the surface, to 

maintain it there. The sliding surface is designed 

such that any trajectories, when on the surface, 

move toward the origin. Figure 2 depicts a phase 

portrait under the sliding mode control.

			   The controller during the reaching phase 

is normally a fast-acting control law of the form  

u = -β(x) sgn (s), where β(x) satisfies some 

properties, sgn represents the signum function, 

and s is the sliding surface. This control law 

moves any initial trajectories toward the surface  

s = 0  and keeps them on the surface thereafter. 

The surface s = 0 is designed such that any 
trajectories on it move toward the origin.

2

uncertain terms due to model uncertainty and 
disturbances.

1.2 Nonlinear Damping
Nonlinear damping is an additional 

controller term that can be viewed as 
providing additional damping to the system, 
making the system robust against broader 
classes of uncertainty and disturbances. The 
nonlinear damping term is widely used in the 
control community and works by dissipating 
energy from the system, making it more 
stable. One example of using the nonlinear 
damping term is as follows. Consider the 
uncertain system (1) with 

( ) ( ) ( )0, , , , , ,t x u t x t x uδ δ= Γ

where Γ is precisely known but 0δ and its 
bound are unknown. It can be proved that a 
controller 

( ), ,u t x vψ= +

where ψ is designed for the nominal system 
and v is the additional nonlinear damping 
term, can achieve uniform boundedness of the 
solution of (1). The additional nonlinear 
damping term is given by

( ) 2

2
, , 0,v kw t x k= − Γ >

where [ ]/ .Tw V x G= ∂ ∂

1.3 Backstepping
The backstepping technique breaks 

the design problem for the full system into a 
sequence of design problems for lower-order 
subsystems. Virtual control is designed for 
each subsystem with the objective of reducing
the error between the local state of the 
subsystem and its desired value. 
Backstepping is useful for our control 
strategy, since it allows control effort to be 
inserted into each subsystem. Therefore, 
uncertainties are allowed to exist at each 
subsystem.

Figure 1 depicts an example of 
backstepping control for a 3rd-order system 
where all functions are known and all states 
are available. Suppose the objective is to 
make 1x track 1dx as closely as possible. We 
let , 1,2,3i i idz x x i= − = be the error at each 
subsystem. The virtual control inputs are 
given by

( )
( )

1
2 1 1 1 1 1

1
3 2 2 2 2 2 1 1

,

,
d d

d d

x G F x k z

x G F x k z G z

−

−

= − + −

= − + − −





and the actual control is given by

( )1
3 3 3 3 3 2 2 .du G F x k z G z−= − + − −

By using the Lyapunov candidate 
( )2 2 2

1 2 30.5 ,V z z z= + + it can be shown that all 
the errors approach zero asymptotically.
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Figure 1: Diagram of a Backstepping Control

1.4 Sliding Mode Control
Sliding mode control is a robust 

control that has fast action to counteract 
disturbances. There are two phases: reaching 

and sliding phases. In the reaching phase, 
initial state trajectories are controlled to move 
toward a sliding surface and, once on the 
surface, to maintain it there. The sliding 

			   In tracking problems, the trajectories  

x can be set as the tracking error. Hence, the 

sliding mode control is able to achieve zero error 

once the trajectories are driven to the origin. The 

controller is robust against model uncertainty 

and disturbances, because designing the sliding 

surface does not require the plant model and 

the fast-acting control law can be designed to 

overcome the effects of the disturbances.

			   There are several ways to reduce control 

chattering from the discontinuous signum function 

in the control law. The most convenient way 

is to replace the signum function by a smooth 

version of it, for example, by an inverse tangent 

function.

		  1.5	 Passivity-Based Control

A MIMO system 

x.  = f (x,u), y = h(x) 
is passive if there exists a continuously 

differentiable positive semi-definite function                       

V ≥ 0 such that uT y ≥ V
.

. A passive system 

has a stable origin. All we need to asymptotically 

stabilize the origin is to inject damping u = -φ(y) 
into the system, so that the energy will dissipate 

whenever x(t) is not identically zero.
			   For a non-passive system, the controller 

contains two parts: one to transform the non-

passive system to a passive system, the other 

to inject damping into the system to achieve 

zero x(t). For example, a system

3

surface is designed such that any trajectories, 
when on the surface, move toward the origin. 
Figure 2 depicts a phase portrait under the 
sliding mode control.

The controller during the reaching 
phase is normally a fast-acting control law of 
the form ( ) ( )sgn ,u x sβ= − where ( )xβ
satisfies some properties, sgn represents the 
signum function, and s is the sliding surface. 
This control law moves any initial trajectories 
toward the surface 0s = and keeps them on 
the surface thereafter. The surface 0s = is 
designed such that any trajectories on it move 
toward the origin.

 

Figure 2: Typical Phase Portrait under
Sliding Mode Control

In tracking problems, the trajectories 
x can be set as the tracking error. Hence, the 
sliding mode control is able to achieve zero 
error once the trajectories are driven to the 
origin. The controller is robust against model 
uncertainty and disturbances, because 
designing the sliding surface does not require 
the plant model and the fast-acting control 
law can be designed to overcome the effects
of the disturbances.

There are several ways to reduce 
control chattering from the discontinuous 
signum function in the control law. The most 
convenient way is to replace the signum 
function by a smooth version of it, for 
example, by an inverse tangent function.

1.5 Passivity-Based Control
A MIMO system 

( ) ( ), ,x f x u y h x= =

is passive if there exists a continuously 
differentiable positive semi-definite function 

0V ≥ such that .Tu y V≥  A passive system 
has a stable origin. All we need to 
asymptotically stabilize the origin is to inject 
damping ( )u yφ= − into the system, so that 
the energy will dissipate whenever ( )x t is 
not identically zero.

For a non-passive system, the 
controller contains two parts: one to 
transform the non-passive system to a passive 
system, the other to inject damping into the 
system to achieve zero ( ).x t For example, a 
system

( ) ( ) ( ),x f x G x u y h x= + =

may use a control law ( ) ( )u x x vα β= +
with ( )v yφ= − to drive the state ( )x t to 
zero.

1.6 Singular Perturbation Control
Singular perturbation control is a 

controller designed from a so-called standard 
singular perturbation model

( )
( )

, , , ,

, , , ,

x f t x z

z g t x z

ε

ε ε

=

=





where ε is a small number, x is a state 
variable in the slow time scale, and z is a 
state variable in the fast time scale.

The singular perturbation method is 
suitable for systems that can be divided into 
fast and slow time scales. For example, an
actuator system such as a motor is usually 
operated faster than the plant, which is a 
system driven by the motor.

1.7 Linearization about Equilibrium 
Point

In general, controller design and 
analysis of linear systems are well-understood 

Figure 2 : Typical Phase Portrait under 

Sliding Mode Control
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x.  = f(x) + G (x)u, y = h(x) 
may use a control law u = α(x) + β(x)v with    

v = -φ(y) to drive the state x(t) to zero.
		  1.6	 Singular Perturbation Control

				    Singular perturbation control is a 

controller designed from a so-called standard 

singular perturbation model

				    x. 	=	f (t, x, z, ε),
				    ε z.  	=	g (t, x, z, ε), 
where ε is a small number, x is a state variable 
in the slow time scale, and z is a state variable 
in the fast time scale.

				    The singular perturbation method is 

suitable for systems that can be divided into fast 

and slow time scales. For example, an actuator 

system such as a motor is usually operated 

faster than the plant, which is a system driven 

by the motor.

		  1.7	 Linearization about Equilibrium 

Point

				    In general, controller design and 

analysis of linear systems are well-understood 

compared to those of nonlinear systems, since 

most practical systems operate only around a 

limited number of operating points. The nonlinear 

model can be linearized about these operating 

points using the first-order Taylor series. Hence, 

the nonlinear model becomes many linear 

models about several operating points. For each 

linear model, a linear control system can then 

be designed, and a gain scheduling algorithm 

can be used to switch among the controllers 

in a smooth or abrupt way.

A general nonlinear system

x.  = f(x, u) 

has its first-order Taylor series approximation 

about the origin as

x.  = Ax + Bu,

where

A = ∂f
∂x (x, u) 

x=0, u=0

 , B = ∂f
∂u(x, u) 

x=0, u=0

. 

This also applies to any operating point, since 

any point can be transferred to the origin by a 

change of variables.

			   Then, any control design techniques for 

linear systems can be applied. For example,    

a controller 

u = -Kx, K > 0 

results in the closed-loop system

x.  = (A - BK) x, 
whose poles can be placed by the state-feedback 

controller.

		  1.8	 Feedback Linearization

				    Instead of approximating about 

an operating point, feedback linearization is 

a technique that uses feedback and possibly 

a change of variables to transform nonlinear 

systems to linear systems. This linearization 

approach is exact, not approximated as in the 

previous linearization technique. However, the 

feedback linearization technique only applies 

to a special class of nonlinear systems.

				    There are two types of feedback 

linearization. The first is linearizing the mapping 

from input to state; and the second is linearizing 

the mapping from input to output.

				    1.8.1	Input-to-state linearization

A nonlinear plant model

	 x.  = Ax + By(x)[u - α(x)]	 (2)

can be feedback linearized by a controller

u = α(x) - β(x)v, 
where β(x) = y-1

 (x), to obtain a linear plant 
model

x.  = Ax + Bv. 
It can be shown that a broader nonlinear model 

in the form
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x.  = f(x) + G(x)u 

can be transformed to (2) using a change of 

variables z = T(x). The change of variables 

requires some assumptions to be met and in 

general is not applicable for some types of 

systems.

				    1.8.2	Input-to-output linearization

				    Input-to-output linearization uses 

feedback to achieve linear mapping from input 

to output. Suppose we want to control certain 

output variables. Linearizing the state equation, 

as was done in input-to-state linearization, does 

not necessarily linearize the output equation. 

For example, consider a system 

	 x1
.

 	=	a sin x2,

	 x2
.

 	=	-x2
1 + u,

	 y	=	x2. 

The change of variables and state-feedback 

control 

	 z1	 =	x1, z2 = a sin x2,

	 u 	=	x2
1 + 

1

a cos x2
v  

yield

	 z1
.
 	=	z2,

	 z2
.
 	=	v,

	 y	 =	sin-1 z2
a

⎞

⎠
⎟

⎛

⎝
⎟ . 

In the system above, the state equation is linear, 

but y is nonlinear, resulting in complications in 

solving the tracking control problem. 

Suppose, instead, we use

	 u 	=	x2
1 + v, 

we would get

	 x1
.

 	=	a sin x2,

	 x2
.

 	=	v,

	 y 	=	 x2, 

Note that the state variable  x1 does not connect 

to the output  y  but the input-output map from  

v to y is linear. This is called input-to-output 
linearization. 

				    When we design tracking control, 

we must make sure that the variable x1 is well 

behaved, that is, stable or bounded. A naive 

control design that does not consider x1 might 

end up with an ever-growing, unstable signal  

x1 (internal instability.)

				    In general, the input-to-output 

linearization technique can be applied to a 

nonlinear system in the form

	 x. 	=	f(x) + g(x)u,

	 y	 =	h(x) 
with some restrictions.

				    Nonlinear control can be studied 

from many excellent textbooks. For example, 

we have used [2]-[11].

2.	 OPTIMAL CONTROL

		  Given a plant model

x. = h(x, u, t), 
an optimal control determines a control input  u  

that causes the plant to satisfy some physical 

constraints and at the same time optimizes a 

certain performance criterion,

J = ∫ tf

t0
 f (x, u, t) dt, 

which can include, for example, control effort, 

state trajectories, or initial conditions.

		  2.1	 Time Optimal Control (TOC)

				    The objective of the time optimal 

control is to drive the system’s output from one 

point to another using the shortest time possible. 

For a simple second-order plant without spring 

and damping
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( ) ( )

( ) ( )

2
1 2 5 max

max

2
1 2 6 max

max

1 , ,
2

1 , ,
2

x t x t c for u u
au

x t x t c for u u
au

= + = +

= − + = −

where 5c and 6c are appropriate constants. 
The phase plot between 1e r x= − and 2x is
then given as shown in Figure 3. From the 
phase plot, we see that by appropriately 
switching u between max ,u± the trajectory 
will be driven to the origin.

e

2x

maxu u= +

maxu u= −

maxu u= −

maxu u= +

Figure 3: Phase Plot between e and 2x

Let ( ) ( ) maxsgn 2tf e e au e= be an equation 
representing the solid line in the phase plot. 
The control law is then given by 

( )( )max 2sgn ,tu u f e x= − and the closed-loop 
block diagram is shown in Figure 4.

( )tf 
a
s

1
s-

r + e u v y

-
+

Figure 4: Typical Closed-loop Time-optimal 
Control

2.2 Proximate Time Optimal 
Servomechanism (PTOS)

The previous closed-loop TOC has 
two drawbacks. First, even the smallest 
system process or measurement noise will 
cause control “chatter”, which wastes energy 
and can excite the high-frequency modes. 

Second, any error in the plant model will 
cause limit cycles to occur.

The two drawbacks can be eliminated 
by replacing the signum function with the 
saturation function with smooth slope. An 
example is 

( )2 2
max

max

,pk f e x
u u sat

u

  −  =
 
 
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( )
1, 1,
, 1 1,
1, 1,

if x
sat x x if x

if x

+ >
= − ≤ ≤
− < −

and

( ) ( )

1

2

max
max

2

, for ,

sgn 2 ,

for ,

l

p

l

k e e y
k

uf e e au e
k

e y

α

 ≤
  =  −   
 >

where 1k and 0 1α< < are designed 
parameters and max 1/ly u k= and 

2 12 / .k k aα= More details of the proof can 
be found in [12]. A closed-loop block 
diagram is given in Figure 5.
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a
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1
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r + e u v y

-
+

Figure 5: Typical Proximate Time-optimal 
Servomechanism

Details of standard time-optimal 
control can be found in [13] and [14].

2.3 LQR (Linear Quadratic Regulator)
Given the system equation

,x Ax Bu= +

the LQR method determines the matrix K of 
the optimal control input
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Details of standard time-optimal 
control can be found in [13] and [14].

2.3 LQR (Linear Quadratic Regulator)
Given the system equation

,x Ax Bu= +

the LQR method determines the matrix K of 
the optimal control input

	 y.. (t) = au(t), 	 (3)

it can be shown by solving the optimization 

problem that

	

5

1 1 2 2

2
1

2

, sin ,
1

cos

z x z a x

u x v
a x

= =

= +

yield

1 2

2

1 2

,
,

sin .

z z
z v

zy
a

−

=
=

 =  
 





In the system above, the state equation is 
linear, but y is nonlinear, resulting in 
complications in solving the tracking control 
problem. 

Suppose, instead, we use
2
1 ,u x v= +

we would get

1 2

2

2

sin ,
,
.

x a x
x v
y x

=
=
=





Note that the state variable 1x does not 
connect to the output ,y but the input-output 
map from v to y is linear. This is called 
input-to-output linearization. 

When we design tracking control, we 
must make sure that the variable 1x is well 
behaved, that is, stable or bounded. A naive 
control design that does not consider 1x
might end up with an ever-growing, unstable 
signal 1x (internal instability.)

In general, the input-to-output 
linearization technique can be applied to a
nonlinear system in the form

( ) ( )
( )

,x f x g x u

y h x

= +

=



with some restrictions.
Nonlinear control can be studied from 

many excellent textbooks. For example, we 
have used [2]-[11].

2 OPTIMAL CONTROL
Given a plant model

( ), , ,x h x u t=

an optimal control determines a control input 
u that causes the plant to satisfy some 
physical constraints and at the same time 
optimizes a certain performance criterion,

( )
0

, , ,ft

t
J f x u t dt= ∫

which can include, for example, control 
effort, state trajectories, or initial conditions.

2.1 Time Optimal Control (TOC)
The objective of the time optimal 

control is to drive the system’s output from 
one point to another using the shortest time 
possible.  For a simple second-order plant 
without spring and damping

( ) ( ) ,y t au t= (3)

it can be shown by solving the optimization 
problem that

( )
max

max

, 0,
2

, ,
2

tu for t
u t

tu for t t

∗

∗
∗

  
+ ∈  
  = 

 − ∈   

(4)

drives the output y from 0 to r in the 
shortest time possible, where 

max

4rt
au

∗ =

is the time to reach the target and maxu is the 
maximum allowable control effort.

The open-loop control law in the 
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2.2 Proximate Time Optimal 
Servomechanism (PTOS)

The previous closed-loop TOC has 
two drawbacks. First, even the smallest 
system process or measurement noise will 
cause control “chatter”, which wastes energy 
and can excite the high-frequency modes. 

Second, any error in the plant model will 
cause limit cycles to occur.

The two drawbacks can be eliminated 
by replacing the signum function with the 
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example is 
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Details of standard time-optimal 
control can be found in [13] and [14].

2.3 LQR (Linear Quadratic Regulator)
Given the system equation

,x Ax Bu= +

the LQR method determines the matrix K of 
the optimal control input
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The previous closed-loop TOC has 
two drawbacks. First, even the smallest 
system process or measurement noise will 
cause control “chatter”, which wastes energy 
and can excite the high-frequency modes. 

Second, any error in the plant model will 
cause limit cycles to occur.

The two drawbacks can be eliminated 
by replacing the signum function with the 
saturation function with smooth slope. An 
example is 
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2 12 / .k k aα= More details of the proof can 
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Details of standard time-optimal 
control can be found in [13] and [14].

2.3 LQR (Linear Quadratic Regulator)
Given the system equation
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the optimal control input
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drive x to zero or use small amount of control 

effort.
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with a state observer. It was proved that 
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input and output of the LQG controller differ 
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canceling the plant zeros, so it cannot be used 
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the optimal control input
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the optimal control input
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u Kx= −

to minimize the performance index

( )
0

,J x Qx u Ru dt
∞ ∗ ∗= +∫ (5)

where Q and R are positive-definite 
Hermitian matrices that give relative 
importance of reducing the states or reducing 
the control input used. To minimize ,J we 
substitute u Kx= − into (5) and set 

/ 0.J K∂ ∂ = It is then not difficult to show 
that 1 ,K R B P− ∗= where P satisfies the so-
called reduced-matrix Riccati equation 

1 0.A P PA PBR B P Q∗ − ∗+ − + = Detailed 
derivation can be found in chapter 12 of [15].

Minimizing J results in minimizing 
the states x and the control effort ,u making 
them close to zero, which is desirable if we 
want to drive x to zero or use small amount 
of control effort.

2.4 LQG/LTR (Linear Quadratic 
Gaussian/ Loop Transfer Recovery)

It can be said that LQG is an
LQR with a state observer. It was proved that 
although LQR and state observer both have
good stability margins, when combined to be 
LQG, there is no guaranteed stability margin. 
This is because the loop transfer functions at 
input and output of the LQG controller differ 
from those of LQR and state observer and 
have no guaranteed stability margin. The 
method to make the loop transfer of the LQG 
controller approach those of the LQR and the 
observer is called loop transfer recovery or 
LTR.

However, it is argued that the loop 
transfer recovery does not work in practice,
due to two main reasons. First, the method 
involves canceling the plant zeros, so it 
cannot be used with a non-minimum-phase 
plant. Second, the method requires infinity 
gains to completely recover the loop transfer 
function, so the high gains can cause 
instability with unmodeled dynamics.

Nevertheless, if the plant is minimum 
phase and the plant model is accurate, the 
LQG/LTR method still applies. One more 
note is that not having a guaranteed margin 
does not mean the closed-loop system does 
not have any stability margin. Therefore, we 
would still see many applications using the 
LQG/LTR method successfully.

Figure 6 shows a diagram of the LQG 
controller. The plant model is in the form

,
,

d

n

x Ax Bu w
y Cx Du w
= + +
= + +



where dw and nw are Gaussian white noises. 
The plant model is linear and can be with or 
without disturbance dw and noise .nw The 
LQR control using the estimated state is 

ˆ.u Kx= − The state observer used to estimate 
states can be a Kalman filter (with noise) or a 
Luenberger observer (without noise.) The 
observer will be discussed in a later section.

Plant

dw nw

State ObserverLQR

u y

x̂

Figure 6: Diagram of the LQG Controller

LQG/LTR is discussed in details in
[16].

2.5 Model Predictive Control (MPC)
Model predictive control 

computes a sequence of control input that 
minimizes the error between the predicted
output and the reference trajectory. The 
method is most suitable with chemical 
processes, where there is more computation 
time available between samples for the more 
complex control algorithm and there is a need 
to handle the time delay between applied 
input and resulting output. 

8

Time

Reference Trajectory

Current time

Prediction 
Horizon

Reference Trajectory

Time

Control 
Horizon

Control Input

Predicted 
Output

Previous
Output

Control Input

Figure 7: Diagram Illustrating the Model 
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Figure 7 depicts a diagram explaining 
the concept of the model predictive control. 
At the current time step ,k the output ( )y k
is measured. The control input sequence 

( ) ( ) ( ){ }, 1 , ..., uu k u k u k H+ + is then 
computed over the control horizon uH by 
minimizing the error between the predicted 
output and the reference trajectory computed 
over the prediction horizon .pH After the 
input sequence is computed, only the first 
element ( )u k is implemented at the next 
time step.

For systems with time delay, the 
current input ( )u k will affect the future 
output ( )dy k T+ only after a delay time .dT

In MPC, since ( )u k is computed to minimize 
the tracking error over the prediction horizon 

,pH if ,p dH T>> the effect of time delay is 
practically eliminated. 

In MPC, constraints such as bounds 
on input effort ,u bounds on input effort rate 

,u∆ and bounds on output ,y can also be 
specified by imposing these constraints on the 
optimization problem.

Model predictive control is discussed 
in [17].

2.6 Extremum Seeking
Extremum seeking is a gradient-based 

method to find a set of parameters that locally 
optimizes a cost function. What makes this 
technique interesting and practical is that the 
technique does not require plant model, as is 
a typical requirement in any gradient-based 
algorithm. Hence, it is convenient to apply 
this technique to complicated systems whose 
models are difficult to find.

An additive probing term ( )cos kω is 
used in the algorithm, so that the gradient of 
the cost function can be estimated without the 
plant model. More details can be found in 
[18].

One of the effective uses of this 
technique is to tune PID gains, as was 
presented in [19]. Figure 8 contains a diagram 
of this scheme.

( )r t

-
, ,p i dK K K

PID Controller Plant Cost Function
Computation

Extremum Seeking
Algorithm

( )∑ 

( )y t

( )( )J kθ( )kθ

Figure 8: Extremum-seeking PID Tuning Scheme
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the concept of the model predictive control.

At the current time step k, the output y(k)
is measured. The control input sequence  {u(k), 
u(k + 1),..., u(k + Hu)} is then computed over 

the control horizon Hu by minimizing the error 

between the predicted output and the reference 

trajectory computed over the prediction horizon  

Hp. After the input sequence is computed, only 

the first element u(k) is implemented at the 

next time step.

				    For systems with time delay, the 

current input u(k) will affect the future output 

y(k + Td) only after a delay time Td. In MPC, 

since  u(k) is computed to minimize the tracking 

error over the prediction horizon Hp, if Hp >> Td,  

the effect of time delay is practically eliminated. 

				    In MPC, constraints such as bounds 

on input effort u, bounds on input effort rate  

Δu, and bounds on output y, can also be 

specified by imposing these constraints on the 

optimization problem.

				    Model predictive control is discussed 

in [17]. 
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		  2.6	 Extremum Seeking

				    Extremum seeking is a gradient-based 

method to find a set of parameters that locally

optimizes a cost function. What makes this technique

interesting and practical is that the technique does

not require plant model, as is a typical requirement 

in any gradient-based algorithm. Hence, it is 

convenient to apply this technique to complicated 

systems whose models are difficult to find.

epoch. The process repeats until the cost 

function cannot be optimized further, then the 

optimum PID gains are obtained.  

3.	 SUPPLEMENTS

		  In this section, we present some techniques 

that help improve the quality of the control 

system already in place.

		  3.1	 Augmented Integrator

				    Adding an integrator is known to 

eliminate steady-state error. An integrator can 

be added in parallel to the existing controller, 

built into the existing controller structure, or 

augmented from the plant model. The first and 

second cases are obvious. In this section we 

discuss the augmented integrator.

				    An additive probing term cos (wk) 

is used in the algorithm, so that the gradient of 

the cost function can be estimated without the 

plant model. More details can be found in  [18].

				    One of the effective uses of this 

technique is to tune PID gains, as was presented 

in [19]. Figure 8 contains a diagram of this 

scheme.

Figure 8 : Extremum-seeking PID Tuning Scheme

The cost function is given by
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The cost function is given by

( ) ( )
0

2

0

1 , ,
T

t
J e t dt

T t
θ θ=

− ∫

where [ ]0 ,t T is the time interval to compute 
the cost function, e r y= − is the tracking 
error, t is the current time, and 

, ,
T

p i dK K Kθ  =   is the PID gains to be 
adjusted.

k represents an epoch. In the thk -
epoch, a step reference r is given to the 
system to obtain the output .y Then, the cost 
function ( )J θ is computed over the time 
interval [ ]0 ,t T , which normally includes 
transient and steady-state periods. Afterward, 
the cost function of the thk -epoch, ( )( )J kθ
is sent to the extremum-seeking algorithm to 
compute ( )

,
, ,

T

p i dk K K Kθ  =   which will be 
used in the next 1thk + epoch. The process 
repeats until the cost function cannot be 
optimized further, then the optimum PID 
gains are obtained.  

3 SUPPLEMENTS
In this section, we present some 

techniques that help improve the quality of 
the control system already in place.

3.1 Augmented Integrator
Adding an integrator is known to 

eliminate steady-state error. An integrator can 
be added in parallel to the existing controller, 
built into the existing controller structure, or 
augmented from the plant model. The first 
and second cases are obvious. In this section 
we discuss the augmented integrator.

Suppose we have a state-space model 
representing a plant to be controlled

( )
( )

1 1

2 2

, ,

, ,

x f x u

x f x u

=

=





where in the tracking problem 1x usually 
represents the tracking error. We can augment 
an integrator to the system by adding another 
state variable as

( )
( )

0 1

1 1

2 2

,
, ,

, .

x x
x f x u

x f x u

=

=

=







By designing the control input u to 
asymptotically stabilize the system, that is, all 
states approach zeros in finite time, 0 ,x
which is the integral of the tracking error,
also approaches zero in a sense analogous to 
having an integrator in the system.

3.2 Observer
Not all states are measured in practice 

due to cost limitations, lack of space, or no 
available sensor technology. For example, we 
may install an optical encoder to measure the
position signal but not the velocity sensor. An 
observer is designed to estimate the missing 
states from signals we know, which are 
measured output y and control effort .u
There are three broad types of the observer.
• Luenberger observer

Luenberger observer is a standard 
observer for linear systems. Consider a linear 
state-space plant model

,
.

x Ax Bu
y Cx
= +
=



The Luenberger observer is given by

( )ˆ ˆ ˆ ,x Ax Bu L y Cx= + + −

where x̂ is the estimated state and L is the 
constant gain to be designed. It can be shown 
that, if we let ˆe x x= − be the estimated error, 
we would get ( ) .e A LC e= − Therefore, L
can be easily designed to place the closed-
loop pole to achieve zero estimated error.
• Kalman filter

Kalman filter is a powerful technique 
to estimate the states of the system when 
there is plant-input disturbance and the output 
measurement is crippled with noise. 

Consider the discrete plant model
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t is the current time, and θ = [Kp, Ki, Kd]
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the PID gains to be adjusted.
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-epoch, a step reference r is given to the system to

obtain the output y. Then, the cost function  J (θ)

is computed over the time interval [t
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, T], which 

normally includes transient and steady-state 

periods. Afterward, the cost function of the  
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Figure 7: Diagram Illustrating the Model 
Predictive Control Concept

Figure 7 depicts a diagram explaining 
the concept of the model predictive control. 
At the current time step ,k the output ( )y k
is measured. The control input sequence 

( ) ( ) ( ){ }, 1 , ..., uu k u k u k H+ + is then 
computed over the control horizon uH by 
minimizing the error between the predicted 
output and the reference trajectory computed 
over the prediction horizon .pH After the 
input sequence is computed, only the first 
element ( )u k is implemented at the next 
time step.

For systems with time delay, the 
current input ( )u k will affect the future 
output ( )dy k T+ only after a delay time .dT

In MPC, since ( )u k is computed to minimize 
the tracking error over the prediction horizon 

,pH if ,p dH T>> the effect of time delay is 
practically eliminated. 

In MPC, constraints such as bounds 
on input effort ,u bounds on input effort rate 

,u∆ and bounds on output ,y can also be 
specified by imposing these constraints on the 
optimization problem.

Model predictive control is discussed 
in [17].

2.6 Extremum Seeking
Extremum seeking is a gradient-based 

method to find a set of parameters that locally 
optimizes a cost function. What makes this 
technique interesting and practical is that the 
technique does not require plant model, as is 
a typical requirement in any gradient-based 
algorithm. Hence, it is convenient to apply 
this technique to complicated systems whose 
models are difficult to find.

An additive probing term ( )cos kω is 
used in the algorithm, so that the gradient of 
the cost function can be estimated without the 
plant model. More details can be found in 
[18].

One of the effective uses of this 
technique is to tune PID gains, as was 
presented in [19]. Figure 8 contains a diagram 
of this scheme.

( )r t

-
, ,p i dK K K

PID Controller Plant Cost Function
Computation

Extremum Seeking
Algorithm

( )∑ 

( )y t

( )( )J kθ( )kθ

Figure 8: Extremum-seeking PID Tuning Scheme
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model representing a plant to be controlled
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where in the tracking problem x1 usually 

represents the tracking error. We can augment 

an integrator to the system by adding another 

state variable as
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By designing the control input u to asymptotically 

stabilize the system, that is, all states approach 

zeros in finite time, x0, which is the integral of 

the tracking error, also approaches zero in a 

sense analogous to having an integrator in the 

system.

		  3.2	 Observer

				    Not all states are measured in practice 

due to cost limitations, lack of space, or no 

available sensor technology. For example, we 

may install an optical encoder to measure the 

position signal but not the velocity sensor. An 

observer is designed to estimate the missing 

states from signals we know, which are measured 

output  y  and control effort u. There are three 

broad types of the observer.

				    3.2.1	Luenberger observer

				    Luenberger observer is a standard 

observer for linear systems. Consider a linear 

state-space plant model
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The Luenberger observer is given by
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where [ ]0 ,t T is the time interval to compute 
the cost function, e r y= − is the tracking 
error, t is the current time, and 
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p i dK K Kθ  =   is the PID gains to be 
adjusted.

k represents an epoch. In the thk -
epoch, a step reference r is given to the 
system to obtain the output .y Then, the cost 
function ( )J θ is computed over the time 
interval [ ]0 ,t T , which normally includes 
transient and steady-state periods. Afterward, 
the cost function of the thk -epoch, ( )( )J kθ
is sent to the extremum-seeking algorithm to 
compute ( )

,
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p i dk K K Kθ  =   which will be 
used in the next 1thk + epoch. The process 
repeats until the cost function cannot be 
optimized further, then the optimum PID 
gains are obtained.  

3 SUPPLEMENTS
In this section, we present some 

techniques that help improve the quality of 
the control system already in place.

3.1 Augmented Integrator
Adding an integrator is known to 

eliminate steady-state error. An integrator can 
be added in parallel to the existing controller, 
built into the existing controller structure, or 
augmented from the plant model. The first 
and second cases are obvious. In this section 
we discuss the augmented integrator.

Suppose we have a state-space model 
representing a plant to be controlled
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where in the tracking problem 1x usually 
represents the tracking error. We can augment 
an integrator to the system by adding another 
state variable as
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By designing the control input u to 
asymptotically stabilize the system, that is, all 
states approach zeros in finite time, 0 ,x
which is the integral of the tracking error,
also approaches zero in a sense analogous to 
having an integrator in the system.

3.2 Observer
Not all states are measured in practice 

due to cost limitations, lack of space, or no 
available sensor technology. For example, we 
may install an optical encoder to measure the
position signal but not the velocity sensor. An 
observer is designed to estimate the missing 
states from signals we know, which are 
measured output y and control effort .u
There are three broad types of the observer.
• Luenberger observer

Luenberger observer is a standard 
observer for linear systems. Consider a linear 
state-space plant model

,
.

x Ax Bu
y Cx
= +
=



The Luenberger observer is given by

( )ˆ ˆ ˆ ,x Ax Bu L y Cx= + + −

where x̂ is the estimated state and L is the 
constant gain to be designed. It can be shown 
that, if we let ˆe x x= − be the estimated error, 
we would get ( ) .e A LC e= − Therefore, L
can be easily designed to place the closed-
loop pole to achieve zero estimated error.
• Kalman filter

Kalman filter is a powerful technique 
to estimate the states of the system when 
there is plant-input disturbance and the output 
measurement is crippled with noise. 

Consider the discrete plant model
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used in the next 1thk + epoch. The process 
repeats until the cost function cannot be 
optimized further, then the optimum PID 
gains are obtained.  

3 SUPPLEMENTS
In this section, we present some 

techniques that help improve the quality of 
the control system already in place.

3.1 Augmented Integrator
Adding an integrator is known to 

eliminate steady-state error. An integrator can 
be added in parallel to the existing controller, 
built into the existing controller structure, or 
augmented from the plant model. The first 
and second cases are obvious. In this section 
we discuss the augmented integrator.

Suppose we have a state-space model 
representing a plant to be controlled
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represents the tracking error. We can augment 
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By designing the control input u to 
asymptotically stabilize the system, that is, all 
states approach zeros in finite time, 0 ,x
which is the integral of the tracking error,
also approaches zero in a sense analogous to 
having an integrator in the system.

3.2 Observer
Not all states are measured in practice 

due to cost limitations, lack of space, or no 
available sensor technology. For example, we 
may install an optical encoder to measure the
position signal but not the velocity sensor. An 
observer is designed to estimate the missing 
states from signals we know, which are 
measured output y and control effort .u
There are three broad types of the observer.
• Luenberger observer

Luenberger observer is a standard 
observer for linear systems. Consider a linear 
state-space plant model

,
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= +
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The Luenberger observer is given by

( )ˆ ˆ ˆ ,x Ax Bu L y Cx= + + −

where x̂ is the estimated state and L is the 
constant gain to be designed. It can be shown 
that, if we let ˆe x x= − be the estimated error, 
we would get ( ) .e A LC e= − Therefore, L
can be easily designed to place the closed-
loop pole to achieve zero estimated error.
• Kalman filter

Kalman filter is a powerful technique 
to estimate the states of the system when 
there is plant-input disturbance and the output 
measurement is crippled with noise. 

Consider the discrete plant model
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optimized further, then the optimum PID 
gains are obtained.  
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the control system already in place.
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Adding an integrator is known to 

eliminate steady-state error. An integrator can 
be added in parallel to the existing controller, 
built into the existing controller structure, or 
augmented from the plant model. The first 
and second cases are obvious. In this section 
we discuss the augmented integrator.

Suppose we have a state-space model 
representing a plant to be controlled

( )
( )

1 1

2 2

, ,

, ,

x f x u

x f x u

=

=





where in the tracking problem 1x usually 
represents the tracking error. We can augment 
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By designing the control input u to 
asymptotically stabilize the system, that is, all 
states approach zeros in finite time, 0 ,x
which is the integral of the tracking error,
also approaches zero in a sense analogous to 
having an integrator in the system.

3.2 Observer
Not all states are measured in practice 

due to cost limitations, lack of space, or no 
available sensor technology. For example, we 
may install an optical encoder to measure the
position signal but not the velocity sensor. An 
observer is designed to estimate the missing 
states from signals we know, which are 
measured output y and control effort .u
There are three broad types of the observer.
• Luenberger observer

Luenberger observer is a standard 
observer for linear systems. Consider a linear 
state-space plant model
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The Luenberger observer is given by

( )ˆ ˆ ˆ ,x Ax Bu L y Cx= + + −

where x̂ is the estimated state and L is the 
constant gain to be designed. It can be shown 
that, if we let ˆe x x= − be the estimated error, 
we would get ( ) .e A LC e= − Therefore, L
can be easily designed to place the closed-
loop pole to achieve zero estimated error.
• Kalman filter

Kalman filter is a powerful technique 
to estimate the states of the system when 
there is plant-input disturbance and the output 
measurement is crippled with noise. 

Consider the discrete plant model

 be the estimated error, 

we would get 

9

The cost function is given by

( ) ( )
0

2

0

1 , ,
T

t
J e t dt

T t
θ θ=

− ∫

where [ ]0 ,t T is the time interval to compute 
the cost function, e r y= − is the tracking 
error, t is the current time, and 

, ,
T

p i dK K Kθ  =   is the PID gains to be 
adjusted.

k represents an epoch. In the thk -
epoch, a step reference r is given to the 
system to obtain the output .y Then, the cost 
function ( )J θ is computed over the time 
interval [ ]0 ,t T , which normally includes 
transient and steady-state periods. Afterward, 
the cost function of the thk -epoch, ( )( )J kθ
is sent to the extremum-seeking algorithm to 
compute ( )

,
, ,

T

p i dk K K Kθ  =   which will be 
used in the next 1thk + epoch. The process 
repeats until the cost function cannot be 
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the control system already in place.
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Adding an integrator is known to 
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be added in parallel to the existing controller, 
built into the existing controller structure, or 
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and second cases are obvious. In this section 
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By designing the control input u to 
asymptotically stabilize the system, that is, all 
states approach zeros in finite time, 0 ,x
which is the integral of the tracking error,
also approaches zero in a sense analogous to 
having an integrator in the system.

3.2 Observer
Not all states are measured in practice 

due to cost limitations, lack of space, or no 
available sensor technology. For example, we 
may install an optical encoder to measure the
position signal but not the velocity sensor. An 
observer is designed to estimate the missing 
states from signals we know, which are 
measured output y and control effort .u
There are three broad types of the observer.
• Luenberger observer

Luenberger observer is a standard 
observer for linear systems. Consider a linear 
state-space plant model
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The Luenberger observer is given by
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where x̂ is the estimated state and L is the 
constant gain to be designed. It can be shown 
that, if we let ˆe x x= − be the estimated error, 
we would get ( ) .e A LC e= − Therefore, L
can be easily designed to place the closed-
loop pole to achieve zero estimated error.
• Kalman filter

Kalman filter is a powerful technique 
to estimate the states of the system when 
there is plant-input disturbance and the output 
measurement is crippled with noise. 

Consider the discrete plant model
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where w  and v  are some Gaussian white 
noises. The available signals to us are the 
control input u  and the measured output .vy  
Note that the noise w  is applied at the plant 
input, and the noise v  is sensor noise, which 
makes the measured output vy  differ from the 
actual output .y  Since we want to control the 
actual output y  and not the measured output 

,vy  we use a Kalman filter to estimate the 
actual output y  using u  and .vy  
 There are two stages in the Kalman 
filter algorithm. First, the measurement 
update stage is when the state estimate is 
updated for the current time step n  using the 
measured output just received at the current 
time step [ ].vy n  The algorithm is given by 
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where the innovation gain M  is chosen to 
minimize the steady-state covariance of the 
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For notation, [ ]ˆ | 1x n n −  is the estimate of 
[ ]x n  given past measurements up to 
[ ]1 ,vy n −  and [ ]ˆ |x n n  is the updated 

estimate based on the last measurement 
[ ].vy n  Second, the time update stage is when 

the control input at the current time step n  is 
used to compute the estimated state of the 
next time step 1.n +  The algorithm is given 
by 
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We can combine the time and measurement 
update equations into one state-space model 
(called the Kalman filter) 
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This filter generates an optimal estimate 
[ ]ˆ |y n n  of [ ].y n  Note that the filter state is 
[ ]ˆ | 1 .x n n −  

 The Kalman filter above is called a 
steady-state Kalman filter. When the plant is 
time-varying or is with non-stationary noise 
covariance, we can use a generalization of the 
steady-state Kalman filter called time-varying 
Kalman filter. The time-varying Kalman filter 
is given as follows. Consider the discrete 
plant model 
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 Details of the Kalman filter can be 
found in [20]. 
• High-gain observer 
 High-gain observer applies to various 
broader types of nonlinear systems. As an 
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where [ ]1 2, .Tx x x=
Suppose ( )u xγ= is a state feedback 

control law that stabilizes the origin 0x = of 
the closed-loop system
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The high-gain observer is given by
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where ( )0 ,x uφ is the nominal model of the 
nonlinear function ( ), .x uφ

Let 
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x x x
−   
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be the estimation error. We have 

1 1 1 2 ,x h x x= − +  

( )2 2 1 , ,x h x x xδ= − +  

where ( ) ( )( ) ( )( )0ˆ ˆ ˆ, , , .x x x x x xδ φ γ φ γ= −

We want to design the observer gain 
[ ]1 2, TH h h= so that ( )lim 0.t x t→∞ = Without 

the disturbance term ,δ asymptotic error 
convergence is achieved by designing H
such that

1
0

2

1
0

h
A

h
− 

=  − 

is Hurwitz, which is when 1h and 2h are any 
positive constants.

With the disturbance term ,δ the 
observer gain H can be designed with an 
additional goal of rejecting the effect of δ on

.x
Details of the high-gain observer can 

be found in [2].

3.3 Output Feedback
If all state variables are measured and 

used in the control law, the controller is 
called a state-feedback controller, but if some 
state variables are not measured and their 
estimates from the state observer are used in 
the control law, the controller is called an 
output-feedback controller. There are two 
categories.
• Full-order

This is when all state variables, 
including the measured output, are estimated, 
and only the estimated state variables are 
used in the control law. To make this point 
clear, consider a plant model given by

( )
( )

1 1

2 2

1

, ,

, ,
,

x f x u

x f x u
y x

=

=

=





where y is the measured output. A state 
observer uses the control input u and the 
measured output y to obtain estimated state 
variables 1̂x and 2ˆ .x In full-order output 
feedback, a control law ( )1 2ˆ ˆ,u f x x= is 
devised in terms of the estimated state 
variables.
• Reduced-order

Instead of using 1̂x in the control law, 
we may use its actual value y resulting in a 
reduced-order output feedback control law 

( )2ˆ, .u f y x= One advantage of the reduced-
order control over the full-order control is 
that it has lower order and hence consumes
less computing time when implemented.

Details on the output feedback control
for linear systems can be found in any 
standard textbooks that discuss state-space 
model, for example, [15]. The output 
feedback control for non-linear systems can 
be found, for example, in [2].

3.4 Signal Shaping
Signal shaping shapes signal so that 

its spectrum energy around the system’s 
natural frequencies is reduced to avoid 
resonance. There are two signal shaping 
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				    Suppose u = γ (x) is a state feedback 
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observer gain H can be designed with an 
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Details of the high-gain observer can 

be found in [2].

3.3 Output Feedback
If all state variables are measured and 

used in the control law, the controller is 
called a state-feedback controller, but if some 
state variables are not measured and their 
estimates from the state observer are used in 
the control law, the controller is called an 
output-feedback controller. There are two 
categories.
• Full-order

This is when all state variables, 
including the measured output, are estimated, 
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used in the control law. To make this point 
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measured output y to obtain estimated state 
variables 1̂x and 2ˆ .x In full-order output 
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• Reduced-order
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we may use its actual value y resulting in a 
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( )2ˆ, .u f y x= One advantage of the reduced-
order control over the full-order control is 
that it has lower order and hence consumes
less computing time when implemented.

Details on the output feedback control
for linear systems can be found in any 
standard textbooks that discuss state-space 
model, for example, [15]. The output 
feedback control for non-linear systems can 
be found, for example, in [2].
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Its Bode’s magnitude plot reveals that there is 
a trough around frequencies near .nω The 
depth is determined by .Q The notch filter is 
used to multiply directly with the system to 
reduce its gain around the natural frequency. 
Multiple notch filters can be used when there 
are more-than-one natural frequencies.

Details of the input shaping and the 
command shaping techniques can be found in 
the various publications posted at
http://www.crvlab.eng.ku.ac.th/.

3.5 Composite Control
The idea is to combine two or more 

controllers in a control law. For example, in 
step reference tracking, the first controller to 
be used may possess low damping for fast 
movement. However, when the controlled 
output approaches the reference, another 
controller with higher damping is used to 
break the system to reduce overshoot. Figure 
9 depicts this scenario. In the literature, if the 

switching between controllers is gradual, the 
controller is called composite control, but if 
the switching is abrupt, the controller is called 
mode switching control.

Low-damping controller

High-damping controller

t

y

Figure 9: Diagram of a Composite Control

The idea of composite and switching 
controls first came to the author from [21].

3.6 Repetitive Control (RC) and Iterative 
Learning Control (ILC)

For a system that is required to track 
the same reference input many times, such as 
a robot manipulator, or to reject periodic 
disturbance, such as repetitive runout 
rejection in a hard disk drive’s head 
positioning, RC or ILC can be used to 
improve the controller’s performance by 
learning from the previous movement of the 
system.

Suppose a reference input ( )dy t
repeats every t T= seconds, that is, 

( ) ( )0 .d dy T y= Let ( )k tτ be the control 
input to the system during the thk cycle, 
which produces an output ( ) , 0 .ky t t T≤ ≤
The input/output pair ( ) ( ),k kt y tτ   is stored 
and used to improve tracking of the next 

1thk + cycle. The learning control problem is 
to determine a recursive control

( ) ( ) ( )( )1 , , 0 ,k k kt F t y t t Tτ τ+ = ∆ ≤ ≤

where ( ) ( ) ( ) ,k k dy t y t y t∆ = − such that 
0ky∆ → as .k →∞

Several approaches have been used to 
generate a suitable learning law .F A PID-
type learning law takes the form
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techniques, the so-called input shaping and 
command shaping. 

Input shaping convolves the reference 
input with a sequence of pre-designed 
impulses. The resulting shaped reference 
input has practically reduced spectrum energy 
around the designed natural frequencies. The 
shaped reference input is normally shaped 
around the closed-loop system’s natural 
frequencies to avoid exciting them. As a 
result, we obtain a smoother output.

Command shaping reconstructs the 
reference input from some basis functions, 
such as ramped sinusoidal function or versine 
function. The new reference input has its 
spectrum energy reduced around the system’s 
natural frequencies to avoid resonance.

Another shaping, but usually 
performed on the system itself, is the use of a
notch filter. A notch filter is in the form

( )
2 2

2 2
.n

n
n

n

sG s
s s

Q

ω
ω ω

+
=

+ +

Its Bode’s magnitude plot reveals that there is 
a trough around frequencies near .nω The 
depth is determined by .Q The notch filter is 
used to multiply directly with the system to 
reduce its gain around the natural frequency. 
Multiple notch filters can be used when there 
are more-than-one natural frequencies.

Details of the input shaping and the 
command shaping techniques can be found in 
the various publications posted at
http://www.crvlab.eng.ku.ac.th/.

3.5 Composite Control
The idea is to combine two or more 

controllers in a control law. For example, in 
step reference tracking, the first controller to 
be used may possess low damping for fast 
movement. However, when the controlled 
output approaches the reference, another 
controller with higher damping is used to 
break the system to reduce overshoot. Figure 
9 depicts this scenario. In the literature, if the 

switching between controllers is gradual, the 
controller is called composite control, but if 
the switching is abrupt, the controller is called 
mode switching control.

Low-damping controller

High-damping controller

t

y
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The idea of composite and switching 
controls first came to the author from [21].

3.6 Repetitive Control (RC) and Iterative 
Learning Control (ILC)

For a system that is required to track 
the same reference input many times, such as 
a robot manipulator, or to reject periodic 
disturbance, such as repetitive runout 
rejection in a hard disk drive’s head 
positioning, RC or ILC can be used to 
improve the controller’s performance by 
learning from the previous movement of the 
system.

Suppose a reference input ( )dy t
repeats every t T= seconds, that is, 

( ) ( )0 .d dy T y= Let ( )k tτ be the control 
input to the system during the thk cycle, 
which produces an output ( ) , 0 .ky t t T≤ ≤
The input/output pair ( ) ( ),k kt y tτ   is stored 
and used to improve tracking of the next 

1thk + cycle. The learning control problem is 
to determine a recursive control

( ) ( ) ( )( )1 , , 0 ,k k kt F t y t t Tτ τ+ = ∆ ≤ ≤

where ( ) ( ) ( ) ,k k dy t y t y t∆ = − such that 
0ky∆ → as .k →∞

Several approaches have been used to 
generate a suitable learning law .F A PID-
type learning law takes the form
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The RC and ILC controls are 
attractive because no plant model is required 
and they can be used to improve any control 
law already in use for tracking of the 
repetitive reference. More details of the RC 
and ILC can be found in [22].

3.7 Digital Control and Controller 
Implementation

Nature creates analog signals (in
continuous time), but we perceive these 
signals as digital signals (in discrete time.) In 
fact, it is believed that the human brain has a 
very fast sampling period. The 
implementation of the controller is also done 
in discrete time with signals sampling with a 
certain period.

Digital control designs the controller 
directly in discrete-time domain, resulting in 
either transfer function in a z-operator or a
discrete-time state-space model. However, 
most of the controller design techniques 
available in the literature are performed in 
continuous time. This is probably because 
traditional mathematics has always assumed 
continuous function, and some theories exist 
only in continuous time and do not have any 
meaning in discrete time.

Although we can almost always find a 
discrete-time counterpart of the continuous-
time control, it may be more convenient to, 
instead of designing a digital control anew, 
approximate the existing continuous-time 
controller. The continuous-time controller is 
mostly given in a transfer function in s-
operator (for example, QFT) or continuous-
time state-space model (for example, adaptive 
control algorithm.)

For the transfer function in s-operator, 
we can simply let ( )1 / ,s z T= − for forward 
difference or Euler’s method, 

( ) ( )1 / ,s z zT= − for the backward difference 

method, ( ) ( )2 1 / 1 ,s z T z= − +       for 
Tustin’s approximation method, or 

( )
1

1

1 ,
tan / 2 1

zs
h z

ω
ω

−
= ⋅

+

for Tustin with prewarping method, where z
is the z-transform operator and T is the 
chosen sampling period. The resulting 
transfer function in z-operator differs slightly 
from the original transfer function in s-
operator, usually in some high-frequency 
ranges. By prewarping, more accuracy is 
obtained at 1.ω ω=

The resulting transfer function in z-
operator can then be implemented using the 
time-shifting theorem 

( )( ) ( ).nZ x t nT z X z−− =

For example, a controller 
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results in 
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1.63 0.6562 2

u t e t T e t T

u t T u t T

= − − −

+ − − −

after cross multiplication and inverse 
transformation with the time-shifting 
theorem.

For the continuous-time state-space 
model, the approximation might not be as 
simple. However, numerical approximation of 
the derivative of the state usually suffices. For 
example, in Euler’s method,

( ) ( ) ,
x t T x t

x
T

+ −
≈

which is readily implementable.
Many excellent textbooks discuss 

digital control. We have used [23] and [24].
The controller implementation is covered in
[25].
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which is readily implementable.
Many excellent textbooks discuss 

digital control. We have used [23] and [24].
The controller implementation is covered in
[25].
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3.7 Digital Control and Controller 
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signals as digital signals (in discrete time.) In 
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