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ABSTRACT
Based on practical design of medium to high-rise of RC building frames, the larger size of
column compared to beam is common. This approach uses to ensure that column can
sustain larger loads both for gravity and lateral directions. The larger depth of column with
a few percentage of reinforcement, together by permanent axial compression force is
enough to produce the high column flexural capacity and consequently increases the
column-to-beam flexural strength ratio which is considered for capacity design concept. In
addition, the larger depth of column may lead high joint shear strength and substantially
increases the anchorage length which is necessary for preventing deterioration of bond
during cyclic excitation. However, if the relative stiffness of column compared to the beam
is too large, the expected mode of failure from beam-sway mechanism may be alternated
to unexpected cantilever action mode which is uncommon in practical design. In this paper
a study of two subassemblages representing interior frame at the bottom story compared
to typical cruciform beam-column joint under reversed cyclic loaded is presented
experimentally. The dimensions of beam-column joint for both specimens were designed
identically except the column of one specimen was extended from the joint and fixed at
strong foundation. The stiffness of column is designed relatively larger than the stiffness of
beams. Even though the beam hingings were detected for both specimens but the global
behaviors were significantly different. Behavior of cruciform beam-column joint was
controlled by beams flexural strength while behavior of beam-column joint with column was
controlled mainly by column flexural strength. It can be understood that the behavior of

specimen with larger column compared to beams was dominated by cantilever action
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rather than conventional beam-sway mechanism. In this paper, a simple index to check
whenever the fame is dominated by cantilever action or by beam-sway action is proposed
to classify the behavior beam-column joints.
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1. INTRODUCTION

Under seismic excitation, columns especially in RC building frames can be vulnerable
elements. The failure of column and column-sway mechanism may result in catastrophic
soft story failures. To evade the sudden collapse mechanism, columns should be designed
and detailed carefully. The plastic hinges shall be controlled to appear at beam ends close
to column faces while columns above and below a beam-column joint should preferably
remain elastic. These mechanisms can be achieved with the procedure so called “Capacity
Design Philosophy” [1]. Based on this approach, to ensure that the desired weak beam-
strong column develops, column-to-beam flexural strength ratio is required to have a
substantial margin thus proscribing column-sway mechanisms. This design philosophy
complies perfectly with traditional design of medium-to-high building frames because those
structures normally have large column tributary area i.e. the size of columns is
comparatively large while the beam size normally keep constant [2]. The larger size of
column is also effective to provide better anchorage length to the beams bars which are
passing through connection and avoidance the local failure due to the bond deterioration.
Consequently, joint shear capacity is also increased automatically. However, there is no
guarantee that column hinging is permanently removed. Since the test results of beam-
column joint incorporating with monotonic slab showed that effective flexural strength of
beams is significantly increased, hence resulting into reduced column-to-beam flexural
strength ratio [3]. It is obviously understood that biaxial strength of column, mostly for
rectangular shapes, is less compared to uniaxial strength and thus the reducing of column-
to-beam flexural strength ratio may be induced the unconservative design of columns [4].
Therefore, various codes of practice recommend the minimum column-to-beam flexural
strength ratio or overstrength factor is equal or greater than 1.0. ACI [5] suggests 1.2 for

this factor while EN8 [6] and NZS [7] use 1.3 and 1.4, respectively.
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However, if the relative stiffness of columns compared to beams is too high, the
other unexpected failure mechanism so called “cantilever action” may be introduced
especially in the first few floors of building frame [8]. A typical moment pattern for the
case of beam-sway mechanism and cantilever action is shown in the Figure 1. Under
occupation of cantilever action, beam hinging action do not have significant effect on
behavior of buildings, therefore general capacity design procedures which normally
assigned the beam as fuse of structure may not be applied directly because the
weak link is already changed from beam to column base. It should be noted that
even though the high values of overstrength factor (@ = ZMnC /ZMnb) are
imposed while no any adjusting on relative stiffness, the column hinging still probably
appear. Design shear force in those column based on a simple knowledge of beam-
sway mechanism have to revise because the plastic hinges at beam ends do not
mainly dominate. In addition, analytical theory based on general -cruciform
configuration of beam-column joint is not enough to understand this kind of action.
Moreover, prior experimental dada did not provide sufficient information on the
interaction behaviour of RC beam-column joint and column that was fixed at base,
especially for large column stiffness compared to beams [9, 10].

In this paper experimental program was conducted to evaluate the seismic
behaviour of beam-column joint specimen dominated by cantilever action compared
to conventional cruciform specimen. The difference between beam-sway mechanism
and cantilever action is discussed. The design recommendations for column and
beam-column dominated by this action are also emphasized. Moreover, the criteria
for differencing these failure mechanisms based on simple mathematical equations

are proposed.
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Figure 1 failure mechanisms of RC frame

2. EXPERIMENTAL PROGRAMME

Two half scale reinforced concrete beam-column joints were cast in order to
investigate the distinguished behaviors between specimen with and without column
extended from the joint. The first specimen was cruciform-shaped beam-column joint with
the beam and column extended from joint faces to the member mid-length, where the
inflection point is traditionally assumed to occur. This specimen is denoted as JL. The
remaining specimen, namely CJL, had identical cross section and reinforcement details as
the first specimen except the bottom column was extended and fixed at the base. These
specimens are supposed to represent a part of building frame from the base to the mid-
height of the second story (Figure 1 (b)); i.e., it fully includes the first floor of the building.
Figure 2 shows the reinforcement and geometrical details of specimen CJL. It shall be
noted that the entire length of lower column for CJL which measured from the bottom face
of the joint to the fixed foundation is two times larger than the length of lower column for
JL which measured from the bottom face of the joint to artificial pinned support.

The reinforcing details and structural geometry of tested specimens in this research
were constructed based on collected data from surveying of structural drawing of existing
buildings in Bangkok [2].The study focused on RC building frames having 5-21 stories. The
building occupancy type included university, school, apartment, governmental office and

hospital. The prototype buildings were designed for gravity loads based on the non-seismic
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provisions of the ACI318 code. These types of buildings were typically found in low to
moderate region such as Thailand, Malaysia and Singapore. After the structural drawings
were analyzed, there was classified into three categories based on tributary area namely
small, medium and large. The tested specimens were selected from large column tributary
area category in which the size of column is comparatively larger than beams. The
outstanding of specimen constructed from existing structures is that the behavior of those

specimens can exactly represent close to real behavior of structures.
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Figure 2 Configuration of CJL specimen (Unit in mm.)

The size of column in direction of loading was 300x400 mm. while beams dimension
was 200x300 mm. Longitudinal reinforcement in beams and columns of both specimens
i.e. JL and CJL were comprises of 12 mm. diameter deformed bars with 495 MPa actual
yield strength whereas plain round steel bars of 3 mm. diameter and 385 MPa measured
yield strength were using for transverse reinforcement. The normal weight of concrete of
the specimen at the state of testing had average compressive cylinder strength of 26.40
MPa and 23.82 for columns and beams, respectively. Both specimens were cast in vertical

direction similar to the actual practice.
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The test set-up and boundary conditions are presented in Figure 3. The lateral
displacement was applied at the top of the column through a 500 kN hydraulic actuator.
The ends of beam were supported by rollers that allowed free horizontal movement to
simulate lateral drift. The axial load of 12.5% of column axial capacity was applied to the
column by means of vertical prestressing. The column was pushed forward and pulled
backward in a reversed cyclic pattern with the target lateral drifts of 0.25%, 0.50%, 0.75%
as shown in Figure 4. The target loop was repeated twice for each drift level. The load was
continued until and beyond the peak load to trace the post-peak behavior. The tests were
stopped when the load carrying capacity drop less than 80% of maximum load [11]. The
strains of reinforcements during the test were measured by strain gauges attached on the
reinforcement surfaces. Beams and columns rotation, shear deformation of the joint were

measured by LVDTs located at specified location as shown in Figure 5.
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Figure 3 Schematic test set-up of CJL



2]

A

Lateral drift %
hadbdbbrormvwsaon
| e
|
—-— ]

‘/
‘/
[ —

2 4 6 8 10 12 14 16 18 20 22 24
Cyclic number

Figure 4 Displacement history of specimens

Figure 5 Instrumentation of specimen

3. TEST RESULTS AND DISCUSSIONS
3.1 Cracks development and hysteretic response

Figure 6 (a) and Figure 8 (a) show the crack patterns observed at the final stage of
loading and hysteresis loops recorded during the test for both specimens.

For specimen JL, beam flexural cracks were observed at 0-0.25% drift. The behavior
of specimen remained elastic until 1.00% drift (Figure 8 (a)). This agrees with the
development of beam bars yielding at drift close to 1.00% (Figure 7 (a)). The cracks grew

in size and number as drift increased. During the loading cycles, bond splitting cracks
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appeared along the longitudinal beam reinforcements, and the small diagonal tension
cracking developed in the joint core at 1.25% drift. The column shear force gains up
slightly while the story drifts increase rapidly. The beam maintained the yielding load until
4.50% drift when concrete at the compression fibers severely crushed and spalled off,
exposing beam bars as shown in Figure 6 (a). The maximum shear force i.e. 91.91 kN
was found at 4.50% drift. During the test, moreover, no cracks were observed at column
bar lap splice region above the joint. Although diagonal tension cracks were found at the
joint zone but the hysteresis loops was large. It reveals that the specimen failed by flexural
failure from beam hinging at column faces and, moreover, specimen also presented high
ductile behavior with ductility up to 4.50%. According to the columns above and below the
joint performed elastic behavior while the serious beam hingings were developed therefore
the failure can be classified as strong column weak beam or beam-sway mechanism which
is preferable in design of RC building under earthquake loading.

For specimen CJL, the initial cracks were observed during the drift 0.0 to 0.25%. The
behavior of specimen was elastic until 1.00% drift as observed in Figure 8 (b). After both
beam bars yielding at 1.00% drift (Figure 7 (b)). The flexural cracks grew in size and
number. The strain of longitudinal beam bars was observed to decrease rapidly (Figure 7
(b)) while the column shear force was developed continuously (Figure 7 (b) and Figure 8
(b)). At the same drift, the flexural cracks propagated around the upper and lower parts of
beams close to column faces. The cracks at beam ends continued to concentrate and
wider in width. The splitting cracks, moreover, along the bottom reinforcements of beams
were clearly found at 3.00% drift. Up to 3.00% drift, concrete at bottom fiber of beams
started to crush. The substantial damage of concrete at bottom fibers of beams were took
place and spalled off, exposing beam bars. It can be seen that the vertical flexure cracks
were largely developed at the location of the first stirrup which was closely placed from the
column faces. These vertical flexure cracks jointed from the top and bottom fibers of
beams at 2.00% drift. The initial flexural cracks in column were found at distance equal to
effective depth of column, 300 mm, at 0.50% drift. The yielding of main reinforcements in
column base was also recorded at 1.75% drift (Figure 7 (c)). The flexural cracks in column
extended and uniformly distributed along the plastic hinge zone, around 1.5 time of column
section measured from the base at 1.50% drift are shown in Figure 6 (b). At 4.00% drift,

the spalling of concrete cover at column base was found and spalling was found to be
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increased with higher drift ratio. The cracks were found to extend towards the center of
column but no significant damage appeared until the specimen reached the failure. The
specimen CJL attained the peak load of 177.79 kN. at 3.00% drift as shown in Figure 8
(b). The maximum column shear force complies with crushing of concrete at bottom
section of column and maximum strain of column longitudinal bars measured at column
base is shown in Figure 7(c). It should be notified that at drift beyond 3.50%, bare bars at
both sides of column faces were buckled and specimen lost strength abruptly. After the
specimen reached the maximum load and loading starting to drop, specimen also
continuously received the load until 4.00% drift with the same time of the broken of bottom
longitudinal of beam bars. The testing was stop at 4.50% drift when the concrete at column
base section was crushed heavily. The specimen failed together due to flexure of the
beam ends and hinging of column at the base section. Throughout the test only few
diagonal tension cracks were observed at the joint region. It should be noted that even
though the yielding of beam reinforcements for both specimens were developed but the
maximum column shear forces of these specimens were significantly different. Moreover,
the cumulative cracks at beam sections close to column faces of CJL specimen were
concentrated only at the bottom fibers while the cracks at the same section for JL were
distributed both at top and bottom fibers.

Figure 7 (c) shows the strain distribution versus drift of column longitudinal
reinforcement at interface region i.e. between column and foundation whereas Figure 7 (d)
shows the strain distribution versus drift ratios of column longitudinal reinforcement at top
section (A section located at 50 mm. down from bottom fiber of joint) of lower column. The
observations show that, from the initial drifting state, the strain distributions of both
locations are moved in the same direction. At each load step, therefore, one side of
column received only one kind of stress, tension or compression. As a result, the inflection
point of CJL was moved closely to the center of joint while the point of inflection of JL was
artificially assumed at the mid height of column. Although it cannot theoretically confirm
that entire column measured from base to center of joint plays the same direction of
bending moment however it can practically say that this column is dominated by single

curvature behavior or cantilever action.
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(a) Specimen JL

(b) Specimen CJL

Figure 6 Crack patterns of tested specimens
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Figure 7 Strain developments at various sections of specimens
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Figure 8 Hysteresis loop for test specimen

3.2 Envelope of column shear force and joint shear force
In order to clearly demonstrate the development of strength and stiffness of tested
specimens, the envelopes of horizontal column shear forces versus drift are plotted in

Figure 9. It can be seen that strength and stiffness of both specimens are significantly

different from each other.
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Figure 9 Envelope of column shear forces

Total increase in column shear force of specimen CJL was increased up to 122.9% as
compared to the specimen JL. This may emphasize that column has large contribution to
change the behavior of beam-column joint especially when it is controlled by cantilever
action. Further, these results confirmed that typical test set-up of beam-column joint is not
sufficient to explain behavior of beam-column joint especially in the case of first few floors
of structure. It can be clearly observed from the Figure 9 that the initial stiffness, measured
from the initial slope of the force-deformation curve, of CJL is larger than JL. This is
attributed to the stiffness of column of CJL which controls the structural deformation is
larger than beam stiffness of JL specimen.

The envelope curves of joint shear force vs. story drift are compared in Figure 10.
Joint shear force was calculated using equation (1) and or (2). In these equations, the
stress of beam longitudinal bars was transformed from recorded strain by Ramberg-

Osgood relationship.

_ '
Vju—T-|—T —Veol (1)
_ rr
Vju = Agfs T Asfs = Veor (2)
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As presented in figure 10, the maximum normalized of horizontal joint shear stresses

are 0.821/fé and 0-701“0’ MPa for JL and CJL, respectively. The joint shear stress of
specimen JL is 17.14% higher than specimen CJL. The lower joint shear force of specimen
CJL even though both beam reinforcements of those specimens were reached the yield

strength also reflects to one manifest of high stiffness column contributed to beam-column

joint.

3.3 Influence of cantilever action to beam-column joint behavior

As aforementioned, there were distinct behaviors observed from tested specimens.
Although both of them were design accordingly the same beam-sway concept. For CJL
specimen, the dramatic increase of column force resulted from the shift up of point of
contra-flexure in lower column. According to column distance (h,) as shown in Figure 11
was shortens therefore under the constant beam flexural capacity, the column shear force

can be amplified greatly.

P= T P T
h, A h,
R RJ{ R Rl
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a
J P — R(Ll + LZ)
h,

Figure 11 Schematic moment distribution for specimens
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The single curvature trend of lower column not only changes the column shear force
and joint shear stress as explained in 3.2 but also develops new force. It also forms the
new force transfer mechanism in a joint panel. Based on conventional theory of beam-
column connection in beam-sway building, the horizontal shear forces in a joint can be
transferred by a combination of two mechanisms. The first is a large strut formed between
the opposite corners of the joint in compression, and the second is a panel truss
mechanism formed by intermediate joint ties acting as tension members and smaller
inclined struts action in compression [1]. In the case of substandard beam-column joints,
however, the truss mechanism cannot active due to lacking of joint shear reinforcements
[12]. Therefore, in substandard beam-column joints, only large compressive strut
mechanism is transferred symmetrically from one joint corner to other diagonal opposite
corner (Figure 12 (a)). However, this theory is true for typical beam-column joint in beam-
sway building/specimen at which the inflection point is assumed to locate at mid height of
column only. In the case of beam-column joint occupied by cantilever action, the
compressive stress block exerted by lower column, below the joint, vanished. Therefore the
total compressive force from the top corner of the joint is transferred directly to beam
compressive zone (Figure 12 (b)). The new load transfer mechanism lead the compressive
damage at bottom beam section (Figure 6 (b)) and probably induced the rupture of steel
bars at larger load reversal as explained in section 3.1. This is due to the reason that
compressive stress is concentrated only at bottom fiber of beam sections rather than
distributed to column and beam adjacent the joint corner which usually found in the case of
conventional load transfer mechanism. Consequently, it can believe that the compressive
force in the joint which connected to column that dominated by cantilever action has the
lower value when compared to typical beam-column controlled by beam-sway mechanism
due to smaller of size of compressive strut. Therefore, the induced joint shear force in the
joint is relieved. The horizontal component of compressive force from diagonal strut is
balanced by compressive stress result in bottom fiber of beam as shown in Figure 12 (b).
The vertical component of compressive force, which is resulting in lower part of column is
equilibrated by tension force of main column reinforcement (T') instead of compressive
stress result in lower part of column as found in those typical beam-sway mechanism. The
probability of column hinging above the single curvature column may rise, with increase in

tension force in the main reinforcement of column above the joint.
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Figure 12 force transfer mechanisms

Alternative interpretation of shear force development in the joint core can be viewed by
means of moment gradient in the joint. The moment diagrams of the column for typical
column and column dominated by cantilever action are shown schematically in Figure 13.
Based on structural mechanics, shear force distribution along the member can be computed
by gradient of bending moment. In the case of conventional beam-column joint, the high
shear in the joint can be developed typically four to six times, as observed from the higher
moment gradient in the joint core, in the case of cruciform beam-column joint [8] (Figure 13
(b)). However, shear force for beam-column dominated by cantilever action is somewhat
lower since moment gradient which drawn from upper to lower moment diagram of column is
very small. This low value of moment gradient is due to the reason that the same side of

bending moment diagram are presented in the top and bottom columns (Figure (c)).

@) (b) ©

Figure 13 Bending moment diagram of column (a) shear force

(b) beam-sway mechanism (c) cantilever action
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3.4 Influence of cantilever action to shear design of column

Under cantilever action, the capacity design philosophy which assigned the beam
hinging at column faces as a fuse of structure cannot be applied individually. It can be
seen from experimental results of CJL, although the beam hingings are started but column
shear force is still increased. To demonstrate the importance role of moment capacity at
column base of cantilever action structure, the equilibrium of forces at ultimate state are

presented in Figure 14.

col't 4 A/Mct col

2nd yield

3 yield

H <

Figure 14 Equilibrium of specimen at ultimate stage

Based on figure 14, the column shear force at ultimate state can be computed as follows;

R,L+R L +M
bl=I br=r ch
Vcol - H )

whereR,, and R,  are the reactions corresponding to nominal moments of beam at the
left and right section of column faces, respectively. The M, is nominal moment of column

at base section and H (= h, + h,) is the total height of specimen i.e. summation of h;
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and h,. However, if column dimension is neglected, therefore, equation (3) can be

simplified conservatively as

M,+M,_ +M
_ bl br ch
Vcol - “)
H

where M,, and M,  are the nominal moments of beam at left and right section of column
faces, respectively. Equation (4) presents the column shear force in term of moment
capacity at critical sections. The mechanism starts when the 1" yielding of beam section
based on positive moment at column face takes place and follows by yielding of beam
section based on negative moment. When beams section developed the plastic moments,
force demand will be restored equal to sectional capacity until the ultimate capacity of
sections achieved (Figure 14). Aforementioned, even though beam hinges are developed,
however, the structure do not lost its capacity suddenly due to the reason that structure
still possesses some strength and stability. This remaining strength and stability due to last
degree of determinacy which took place on section column at base. The column shear
force can develop further until section of column at base meet the ultimate capacity. On
another hand, the global behavior of specimen is controlled by flexural capacity of column
at base.

Generally, column hinges at the 1" floor of beam-sway building have been achieved
by various standards [6, 7]. This column shear force (V. ) typically presents in the form of

following equation

M +M

__ ""nc,top nc,bot

Ve = (®)
¢SLC

where V. = column shear force corresponding to the simultaneous development of
the anticipated maximum moments at both ends of the column, acting at the same sense;

M M column moment capacity at top and bottom ends of the column

nc,top’ nc,bot =
(based on increased vyield stress primary to recognize strain hardening in the

reinforcement); and L, = clear height of the column. ¢S is reduction factor for shear
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recommended by code, for example ACI [5] use 0.75. Equation (3) implies that column
shear force in the lowest column of the building frame may be designed based on
simultaneous hingings of column sections. This is true especially for beam-sway building.
Moreover, design by equation (3) presents very conservative approach and, therefore, use
only for high seismicity. However, in the case of cantilever action where column have large
column bending capacity, the use of equation (5) is not economical since the probability of
both column hingings at the same column may not easily to occur. The design shear force,

therefore, in column should be design based on single hinging at column base as follow.

M
vV = n,bot (6)

uc
¢SLC

To prevent unexpected mode of failure, however, Paulay and Priestley [8]
suggested ﬂ = 1.50 for practical propose. The recommendation by equation (5) can
be verified from test result of CJL. Since the flexural capacity of column (M, )
computed based on ACI318 approach equal to 288.25 kN-m therefore shear force in

column, V__, = 288.15/1.63 kN when 1.63 is clear height of bottom column (Figure 2). It

col
can be seen that the computed column shear force by mean of equation (6) is close to

column shear force obtained from the experimental result (Figure 9).

3.5 Influence of cantilever action to column hingings

As aforementioned, the capacity design based on beam-sway mechanism desires
hinging of beam ends close to column faces rather than at column end sections. To
achieve this concept, therefore, the flexural strength of column to beam is controlled to
greater than 1. In the case of cantilever action, however, the column hingings, especially
for first few floors, can be appeared even though the column to beam strength ratio is too
high. Hence, a column section may receive the moment higher than the average sum of
beam moments at the same connection which is mostly expected during primary design
step. Consequently, in the case of cantilever action, a flexural demand shall be calculated

based on the new joint equilibrium concept which is expressed below
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Where ZMnb and M . are the sum of moment capacities of beam sections around
joint along loading directions and moment in the column, respectively. Factor A and P,
are distribution factor and reduction factor for column as recommended by codes. For
general beam-sway mechanism, factor A equal to 0.5 while ¢, equal to 1.0. It shows that
the summation of moment around joint are shared equally for upper and lower column
sections.

In the case of higher mode response or cantilever action, factor A may different from
0.5. Kelly [13] suggested that the value for A could be set around 0.80 to 1.3, the higher
value being observed for a rather flexible frame and the smaller value being representative
of a relatively rigid frame. For general propose, Park and Paulay [1] suggested to use
¢C =0.9 therefore the design moment in the column under these situation may be taken

as M, =098 M, and M,, =158) M for A =0.8 and 1.3, respectively.

4. CRITERIA FOR CANTILEVER ACTION

The problem deal with cantilever action cannot be performed economically by simple
design procedures (i.e., beam-sway mechanism). Therefore the selection of design
procedure is depend upon the behavior of frame and if the designer found that frame is
controlled by cantilever action, the design procedures as recommended from 3.3 to 3.5
shall be applied. However, the problem is how we can roughly check whether the designed
frame is controlled by cantilever action or not. Here an easy and simple equation for
differentiating frame behavior is presented. It is required especially in the case of primary
design. All indices for formulating of mentioned criteria are exhibited in Figure 14.

The formulation approach is performed by simple virtual force method in which,

column shear force (V

o) IS selected as redundant and assumed and uniform modulus of

Elasticity, E is assumed for all members. The reactions at beam ends can be expressed as

follows.
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3v. L hl (h +2h)
— I=L"p'b\"'b t
Ry = Lo (8.1)
2L, (L,L,1, +3L,hblb +3Lrhblb)
3PL_h I (h, +2h,)
R, = r''b'b\"'p t (8.2)
2L, (L,L, 1, + 3L,hy 1, + 3L, hyly)
The end moment of top column is,
M, =PXh, ©)

The moment at each end of bottom column can be computed by equilibrium at the joint;
zMjo int =0;

M, +M

t ot ~Mp =My =0 (10)

When M, and M, are moments in beam at column faces which can be calculated by

multiplying R,, and R, by L, and L, respectively. From equation (10), moment at top

re

end of bottom column can be expressed as,

2 2, _
_ P@Lhgl, +3L kg1, —2hLL 1)

(11)
2(L,L, I, +3L,hyl, +3L.h,1,)

The moments at bottom end, base, of bottom column can be computed from equilibrium

from global system.

P(h, +hy)+ M, —R,L, —R, L, =0 (12)

br=r

Thus,

_ PR LI, +2h, L1, +3Lh21, + 3L hEL)
cb

(13)
2L L1, +3Lh, 1, +3L,hyl,)
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From (11) and (13), the shear span can be calculated base on similar triangle.

Substituted (11) and (13) into (14), thus

2 2
_2h Ll + 2hyLiL g + 3L 1, + 3L A2l

a (15)
2(L,L 1, +3L,hyl, + 3L, hyly)
For simplicity, the beam lengths, L, andL , are assumed as L. Hence,
(h, + h, LI+ 3h2
g =t b/ b'b (16)
LI, +6h,l,
Hy
Above expression implies that if the length of shear span (a) approach to h, —— then
2

the bending moment diagram of bottom column has single sign convention. Hence, the

frame is dominating by cantilever action. On another hand, if the shear span is higher than
Hy, . . . :
h, ——, it's mean that column of building frame is fully governed by cantilever action.
Because h,is assumed equal to half of clear height of second floor. Therefore, it shall be
noted that equation (16) is correctly applied if and only if the inflection point of upper
column is not greater than half of its clear height. For convenience, the cantilever action
may be assumed to present at the first floor story and h, is placed at half of second floor
column height. Beyond this assumption, a small error may be occurred using equation (16)
but it also still in acceptable range. Hence, for summarization, equation (16) can be

rewritten as

2
(h +hy)Llg + 3051, o H,
LI, +6hl, 2
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If equation (17) is true, it means that the bottom column behave as cantilever action.
In contrast, bottom column may be controlled by double sign convention and beam-sway
mechanism is still effective. Moreover, equation (16) was derived based on elastic analysis.
In the case of large deformation of structure, the plastic hinge in beam ends can move up
the inflection point a bit. According to nonlinear analysis of frame dominated by cantilever
action, it can be found that approximate 20% of column shear span may be increased after
both plastic hinges of beam were developed. Here, based on experimental data the left
hand side of equation (17) shows 1779.44 mm. while the right hand side is 1630 mm.
Hence equation (17) is true and column presents cantilever action. This small calculation

shows how well of proposed equation compared to the test results.

5. CONCLUSION

This paper presents the experimental results of two half scale reinforced concrete
beam-column joints under reversed cyclic loading. The size of columns is relatively large
as compared to the beams. These tested joints are representing for large tributary area
category which is usually found in medium-to-high rise buildings. The specimens were
designed with identical dimension and reinforcing detailing except that the column was
extended and fixed at base for second specimen. The specimen with extended column
was constructed for investigating the behavior of beam-column joint in 1% floor story
compared to typical cruciform test specimens. The test results found that those specimens
behave with different manner. Behavior of cruciform beam-column joint specimens was
controlled by beams flexural strength while behavior of beam-column joint with extended
column was controlled by column flexural strength so called “cantilever action”. This action
may be found in structure with low relative stiffness of beams compare to columns. By
domination of cantilever action, the behavior of beam-column joint cannot be explained by
simple theory of beam-sway concept.

1) The design column shear force of cantilever dominated column can be reduced
safety. However, the transverse reinforcement for design shear should be checked
together with required for confined concrete because the height of inflection point is moved
along the height of column.

2) The symmetrical strut mechanism in the joint core for typical beam-sway concept

was changed to tapered strut according to compressive part of lower column was
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vanished. To maintain the equilibrium of the joint, however, the tensile force in column
significantly increased because it has to compensate the vertical part of compressive strut.
Therefore, the probability of upper column hinging can be observed.

3) Without scrupulous analysis of structure, there is difficult to differentiate the
cantilever action and beam-sway mechanism. Consequent, authors propose a simple
criterion for evaluating the cantilever action based on standard properties of member
adjacent the joint at 1* floor column of structure. With proposed evaluation criteria, the
cantilever action can be primarily detected and special detail design can be planed

carefully.
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