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ABSTRACT

Thai-desserts or snacks (Thai: “T%&JVLVIEJ") are included in Thai cuisine. The Food Republic
— a well-known organization that gives some information about foods, drinks and snacks,
has recommended the 7 Thai-desserts as Khanom Krok (Thai: a%3a3n), Coconut Ice-cream
(Thai: lafn3unzfiam), Fruity Luk Chub (Thai: §nTunA 1af), Woon Bai Toey (Thai: uluias),
Tub Tim Krob (Thai: NUAiNNIaU), Luem Gluen (Thai: 84Na%) and Bua Loy (Thai: 12888).
However, the international outsiders do not dare to have these beautiful and delicious Thai-
desserts because of the inconvenience of finding these Thai names and recipes. For
example, some outsiders have diabetes and cannot have too much sugar or insulin. This
paper combines the “Artificial Intelligence” and “Computer Vision” to build a computer model
for tagging the name and recipe of unknown image. Our computer model was done on
Convolution Neural Networks (CNN) that provided more than 85% of the accuracy.
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1. Introduction

The definition of “Thai-dessert(s)” or “snack(s)” is a confectionery course [1] that is
always served to the consumers after the main meal in Thai cuisine. The course usually
consists of various sweet desserts and their recipes are mostly composed from the country’s
natural and agricultural products. The Food Republic [2] — a well-known organization that
gives some information about foods, drinks and snacks, has recommended the 7 Thai-

desserts as shown in figure 1.
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Khanom Krok
Coconut Ice-cream

Woon Bai Toey
Tub Tim Krob
Luem Gluen

Bua Loy

Fruity Luk Chub

Figure 1 The 7 Thai-desserts recommended by “The Food Republic”

For outsiders (foreigners/ non-Thais), those desserts can be generally tasted in either
“luxurious restaurant(s)” or “street food market(s)” in Thailand. Those desserts also can be
seen as “Thai-ness (Thai: m’]mﬂuvlml)” in light of “Thai folk wisdom (Thai: Qﬁﬂfyfy’lvlﬂﬂ)”
[3]. To put it another way, it is really inconvenient to find those “Thai name(s)” and “recipe(s)”
during the travel [4]. The inconvenience of finding those Thai-keywords means the
international outsiders do not dare to have those attractive desserts in spite of their beautiful
features and delicious tastes. Importantly, some outsiders have so the high level of blood
sugar that they have to control the amount of sugar consumption. Considering all factors,
this paper proposes a novel “Name and Recipe Estimation of Thai-desserts beyond Image
Tagging” that builds a “computer model” for tagging (or estimating) the “name” and “recipe”
of unknown image. This paper is the first groundwork that applies the subjects of “Computer
Vision” [5, 6] and “Artificial Intelligence” [7, 8] into Thai-desserts. Since these subjects have
been successful in previous applications like place recognition [9, 10], facial detection [11,
12], architecture identification [13-15], satellite imageries [16-18], tourism categorization [19]
and human detection [20-22]. Likewise, it can be applied in food recognition [23, 24]. The
researches about food recognition are a supervised-based computer model that has been
gradually increasing since 2017 [25, 26]. As well as the food, it is feasible to build the
computer model of desserts. Our model is done by “Convolution (or Convolutional) Neural
Networks (CNN)”. The “unknown image” is automatically checked to search for its name and
recipes by CNN. In conclusion, our computer model provided more than 85% of the accuracy.

The organization of this paper can be divided into 4 sections. The section “CNN-based

computer model of name and recipe-tagged images” and “name and recipe estimation of
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dessert images” are in section 2 and 3, respectively. And the section 4 describes

“conclusions”.

2. CNN-based Computer Model of Name and Recipe-tagged Images

This section deeply describes our architecture of computer model “Convolutional Neural
Networks (CNN)” [27] that is a type of feed-forwarding Neural Networks. Due to the very
large number of pixels within a recipe-tagged image, the traditional Neural Networks (also
called “Multi Layer Perceptron: MLP”) applied in computer vision easily produces very high
number of neurons. For example, the “128x128 colored image” has 3 dimensions (in red,
green and blue) that would have “128x128x3=49,152 weights and biases”. Moreover, the
number of input images is defined by “number of features”. As opposed to MLP [28], CNN
provides the solution by reducing the number of useless pixels. Our architecture of CNN
based computer model can be organized into 4 sub-sections: “Input Image”, “Convolutions

(CONV)”", “Max Pooling Layers (MPL)" and “Rectified Linear Units (RELU) with Output

Classes”, as shown in figure 2.

2.1 Input Image
The name-and-recipe-tagged images are trained to CNN-based computer model. For
more convenience, all sizes of the color images are converted or cropped into 128x128x3

pixels. In our experiment, we used 480 recipe-tagged images to build the computer model.

2.2 Convolutions

The Convolutional operation of CNN is used to extract the features from an image
before passing to the next “Max Pooling Layers (MPL)". Convolution can improve the free
parameters using the “concept of neighbour pixels” [29, 30]. The examples can be visualized

in figure 3.
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Figure 3 Convolution of a 6x6 Colored Image

2.3 Max Pooling Layers

CNN provide the local and global layers that combine the convolutions within the pool.
The combination of region within convolution can reduce the spatial size of the representation
that makes CNN totally less computation than MLP. There are various non-linear functions
to the pooling layers. Most CNN-based computer models use “Max Pooling Layers: MPL”

instead of “Average Pooling Layers: APL”. MPL is better in performance than APL because
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the finding of the max value is totally faster than the average. For example, a max pooling

of a 4x4 convolution can be shown in figure 4.
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Figure 4 Max Pooling Layers of a 4x4 Convolution

2.4 Rectified Linear Units with Output Classes

In order to fully connected layers of the CNN-based computer model, the “Rectified
Linear Units (RELU)” can be seen as the decision function (also called “activation function”)
to select the “neurons (a(Xi) ) of computer model. The RELU considers the neuron from
its fully connected layers to another one. The RELU using absolute of hyperbolic tangent

function is well-known to train with several times faster than other functions (that can be
defined as RELU (X;) = tanh(X;) |).

To build neurons (a(Xi) ), the CNN-based computer model can be trained from set of
480 recipe-tagged images ( X ) (where X = {X1, Xy s Xgyeeny X480}) and their output classes (
Y ) (where Y= {yl, Yo Y3 Yar Y50 Yo y7}). The output classes are according to 7 Thai-
desserts as Khanom Krok, Coco Ice-cream, Fruity Luk Chub, Woon Bai Toey, Tub Tim Krob,

Luem Gluen and Bua Loy. The training set of CNN can be done using cross-entropy loss,
by (1).

480

> (Ina(x) +(L-y;) In(L-a(x,)
Model(X,Y) =— & 280 (1)

3. Name and Recipe Estimation of Dessert Images
Our CNN-based computer model is built from 480 recipe-tagged images that cover 7

Thai-desserts as as Khanom Krok, Coco Ice-cream, Fruity Luk Chub, Woon Bai Toey, Tub
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Tim Krob, Luem Gluen and Bua Loy. The unknown dessert image is estimated (or tagged)

to search for its name and recipes by the model as shown in figure 5.
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Figure 5 Name and Recipe Estimation of an Unknown Image

To estimate the name and recipes, the probability of output classes has been computed
by (2).

w; X+b
i e ] ]
Py =J|xwW,W,..w,,b,b,..b,)=——— (2)

Z e W X+by
k=1

where X is the result from RELUs, Wj and bj are the weight and bias values in the

j—th neuron, and Y is any output class (from 7 classes). The estimation is finally done

by the highest probability of output class ( y ) as (3).
§ =arg, max(P(y = j| X, W, W,..w,,b,b,..b,)) 3)

With this in mind, our proposed “Name and Recipe Estimation of Thai-desserts beyond

Image Tagging” is evaluated by the accuracy criteria that can be computed by (4).

Accuracy = TP+ TN 4)
TP +TN + FP + FN

where TP (True Positive) is the dessert “A” and our model estimates correctly as “A”,

TN (True Negative) is not the dessert “A” and our model estimates correctly as not “A”, FP
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(False Positive) is not the dessert “A” and our model estimates wrongly as “A” and FN (False
Negative) is the dessert “A” and our model estimates wrongly as not “A”. The results are

shown in Table 1.

Table1 The accuracy of Thai-dessert Recognition

Thai-dessert Accuracy (%)
Khanom Krok (Thai: 1%i@a3N) 82
Coco Ice-cream (Thai: baan3unzfiaa) 95
Fruity Luk Chub (Thai: anuwa L) 93
Woon Bai Toey (Thai: uluiaz) 87
Tub Tim Krob (Thai: NufinnIay) 78
Luem Gluen (Thai: ﬁwﬂﬁu) 85
Bua Loy (Thai: U7a8g) 81
Average 86

Since Convolutional Neural Network (CNN) is a successfully well-known image tagging
that totally provides high accuracy. As our CNN-based computer model for estimating the
name and recipe of unknown Thai-dessert images are generally done over 85%. Having said
that, the similarity between “Tub Tim Krob” and “Bua Loy” is sometimes difficult to distinguish
and the accuracy becomes lower than other Thai-desserts. The “Coco Ice-cream” and “Fruity

Luk Chub” provides the highest recognition accuracy because of their uniqueness(s).

4. Conclusions

Since Thai-desserts mean the “Thai folk wisdom (Thai: Qﬁﬂzyryﬂvlmﬂ)". In 2015, The
Food Republic recommended the 7 Thai-deserts. However, the inconvenience of finding
these Thai names and recipes means the international outsiders do not dare to have these
Thai-desserts. Hence, this paper proposes a novel combination between “Atrtificial
Intelligence” and “Computer Vision” to build a CNN-based computer model for tagging the
name and recipe of unknown Thai-dessert image. The computer model is built from 480

recipe-tagged images that cover those 7 Thai-desserts. From the experimental results, our
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computer model provides the accuracy higher than 85%. For future work, this research can

be used the newest “Image-to-image translation techniques” [31] of computer vision that will

provide better speed and higher correctness.
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