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ABSTRACT 

Thai-desserts or snacks (Thai: “ขนมไทย”) are included in Thai cuisine. The Food Republic 

– a well-known organization that gives some information about foods, drinks and snacks, 

has recommended the 7 Thai-desserts as Khanom Krok (Thai: ขนมครก), Coconut Ice-cream 

(Thai: ไอศกรมีกะทสิด), Fruity Luk Chub (Thai: ลกูชบุผลไม)้, Woon Bai Toey (Thai: วุน้ใบเตย), 

Tub Tim Krob (Thai: ทบัทมิกรอบ), Luem Gluen (Thai: ลมืกลนื) and Bua Loy (Thai: บวัลอย). 

However, the international outsiders do not dare to have these beautiful and delicious Thai-

desserts because of the inconvenience of finding these Thai names and recipes. For 

example, some outsiders have diabetes and cannot have too much sugar or insulin. This 

paper combines the “Artificial Intelligence” and “Computer Vision” to build a computer model 

for tagging the name and recipe of unknown image. Our computer model was done on 

Convolution Neural Networks (CNN) that provided more than 85% of the accuracy. 
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1. Introduction 

The definition of “Thai-dessert(s)” or “snack(s)” is a confectionery course [1] that is 

always served to the consumers after the main meal in Thai cuisine. The course usually 

consists of various sweet desserts and their recipes are mostly composed from the country’s 

natural and agricultural products. The Food Republic [2] – a well-known organization that 

gives some information about foods, drinks and snacks, has recommended the 7 Thai-

desserts as shown in figure 1. 
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Figure 1  The 7 Thai-desserts recommended by “The Food Republic”  

 

For outsiders (foreigners/ non-Thais), those desserts can be generally tasted in either 

“luxurious restaurant(s)” or “street food market(s)” in Thailand. Those desserts also can be 

seen as “Thai-ness (Thai: ความเป็นไทย)” in light of “Thai folk wisdom (Thai: ภมูปัิญญาไทย)” 

[3]. To put it another way, it is really inconvenient to find those “Thai name(s)” and “recipe(s)” 

during the travel [4]. The inconvenience of finding those Thai-keywords means the 

international outsiders do not dare to have those attractive desserts in spite of their beautiful 

features and delicious tastes. Importantly, some outsiders have so the high level of blood 

sugar that they have to control the amount of sugar consumption. Considering all factors, 

this paper proposes a novel “Name and Recipe Estimation of Thai-desserts beyond Image 

Tagging” that builds a “computer model” for tagging (or estimating) the “name” and “recipe” 

of unknown image. This paper is the first groundwork that applies the subjects of “Computer 

Vision” [5, 6] and “Artificial Intelligence” [7, 8] into Thai-desserts. Since these subjects have 

been successful in previous applications like place recognition [9, 10], facial detection [11, 

12], architecture identification [13-15], satellite imageries [16-18], tourism categorization [19] 

and human detection [20-22]. Likewise, it can be applied in food recognition [23, 24]. The 

researches about food recognition are a supervised-based computer model that has been 

gradually increasing since 2017 [25, 26]. As well as the food, it is feasible to build the 

computer model of desserts. Our model is done by “Convolution (or Convolutional) Neural 

Networks (CNN)”. The “unknown image” is automatically checked to search for its name and 

recipes by CNN. In conclusion, our computer model provided more than 85% of the accuracy. 

The organization of this paper can be divided into 4 sections. The section “CNN-based 

computer model of name and recipe-tagged images” and “name and recipe estimation of 
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dessert images” are in section 2 and 3, respectively. And the section 4 describes 

“conclusions”. 

 

2.  CNN-based Computer Model of Name and Recipe-tagged Images 

This section deeply describes our architecture of computer model “Convolutional Neural 

Networks (CNN)” [27] that is a type of feed-forwarding Neural Networks. Due to the very 

large number of pixels within a recipe-tagged image, the traditional Neural Networks (also 

called “Multi Layer Perceptron: MLP”) applied in computer vision easily produces very high 

number of neurons. For example, the “128x128 colored image” has 3 dimensions (in red, 

green and blue) that would have “128x128x3=49,152 weights and biases”.  Moreover, the 

number of input images is defined by “number of features”. As opposed to MLP [28], CNN 

provides the solution by reducing the number of useless pixels. Our architecture of CNN 

based computer model can be organized into 4 sub-sections: “Input Image”, “Convolutions 

(CONV)”, “Max Pooling Layers (MPL)” and “Rectified Linear Units (RELU) with Output 

Classes”, as shown in figure 2. 

 

2.1 Input Image 

The name-and-recipe-tagged images are trained to CNN-based computer model. For 

more convenience, all sizes of the color images are converted or cropped into 128x128x3 

pixels. In our experiment, we used 480 recipe-tagged images to build the computer model. 

 

2.2 Convolutions 

The Convolutional operation of CNN is used to extract the features from an image 

before passing to the next “Max Pooling Layers (MPL)”.  Convolution can improve the free 

parameters using the “concept of neighbour pixels” [29, 30]. The examples can be visualized 

in figure 3. 
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Figure 2 Architecture of CNN-based Computer Model 

 

 

Figure 3 Convolution of a 6x6 Colored Image 

 

2.3 Max Pooling Layers 

CNN provide the local and global layers that combine the convolutions within the pool. 

The combination of region within convolution can reduce the spatial size of the representation 

that makes CNN totally less computation than MLP. There are various non-linear functions 

to the pooling layers. Most CNN-based computer models use “Max Pooling Layers: MPL” 

instead of “Average Pooling Layers: APL”. MPL is better in performance than APL because 
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the finding of the max value is totally faster than the average. For example, a max pooling 

of a 4x4 convolution can be shown in figure 4. 

 

 

Figure 4 Max Pooling Layers of a 4x4 Convolution 

 

2.4  Rectified Linear Units with Output Classes 

In order to fully connected layers of the CNN-based computer model, the “Rectified 

Linear Units (RELU)” can be seen as the decision function (also called “activation function”) 

to select the “neurons ( )( ixa )” of computer model. The RELU considers the neuron from 

its fully connected layers to another one. The RELU using absolute of hyperbolic tangent 

function is well-known to train with several times faster than other functions (that can be 

defined as |)tanh(|)( ii xxRELU = ).  

To build neurons ( )( ixa ), the CNN-based computer model can be trained from set of 

480 recipe-tagged images ( X ) (where { }480321 ,...,,, xxxxX = ) and their output classes (

Y ) (where { }7654321 ,,,,,, yyyyyyyY = ). The output classes are according to 7 Thai-

desserts as Khanom Krok, Coco Ice-cream, Fruity Luk Chub, Woon Bai Toey, Tub Tim Krob, 

Luem Gluen and Bua Loy. The training set of CNN can be done using cross-entropy loss, 

by (1). 
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3.  Name and Recipe Estimation of Dessert Images 

Our CNN-based computer model is built from 480 recipe-tagged images that cover 7 

Thai-desserts as as Khanom Krok, Coco Ice-cream, Fruity Luk Chub, Woon Bai Toey, Tub 
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Tim Krob, Luem Gluen and Bua Loy. The unknown dessert image is estimated (or tagged) 

to search for its name and recipes by the model as shown in figure 5. 

 

 

Figure 5 Name and Recipe Estimation of an Unknown Image 

 

To estimate the name and recipes, the probability of output classes has been computed 

by (2). 
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where x  is the result from RELUs, jw  and jb  are the weight and bias values in the 

thj −  neuron, and y  is any output class (from 7 classes). The estimation is finally done 

by the highest probability of output class ( ŷ ) as (3). 

 

 ( ))...,,...,,|(maxargˆ 721721 bbbwwwxjyPy j ==  (3) 

 

With this in mind, our proposed “Name and Recipe Estimation of Thai-desserts beyond 

Image Tagging” is evaluated by the accuracy criteria that can be computed by (4). 
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where TP (True Positive) is the dessert “A” and our model estimates correctly as “A”, 

TN (True Negative) is not the dessert “A” and our model estimates correctly as not “A”, FP 
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(False Positive) is not the dessert “A” and our model estimates wrongly as “A” and FN (False 

Negative) is the dessert “A” and our model estimates wrongly as not “A”. The results are 

shown in Table 1. 

 

Table 1 The accuracy of Thai-dessert Recognition 

Thai-dessert Accuracy (%) 

Khanom Krok  (Thai: ขนมครก) 82 

Coco Ice-cream (Thai: ไอศกรมีกะทสิด) 95 

Fruity Luk Chub (Thai: ลกูชบุผลไม)้ 93 

Woon Bai Toey (Thai: วุน้ใบเตย) 87 

Tub Tim Krob (Thai: ทบัทมิกรอบ) 78 

Luem Gluen (Thai: ลมืกลนื) 85 

Bua Loy (Thai: บวัลอย) 81 

Average 86 

 

Since Convolutional Neural Network (CNN) is a successfully well-known image tagging 

that totally provides high accuracy. As our CNN-based computer model for estimating the 

name and recipe of unknown Thai-dessert images are generally done over 85%. Having said 

that, the similarity between “Tub Tim Krob” and “Bua Loy” is sometimes difficult to distinguish 

and the accuracy becomes lower than other Thai-desserts. The “Coco Ice-cream” and “Fruity 

Luk Chub” provides the highest recognition accuracy because of their uniqueness(s).  

 

4. Conclusions 

Since Thai-desserts mean the “Thai folk wisdom (Thai: ภูมิปัญญาไทย)”. In 2015, The 

Food Republic recommended the 7 Thai-deserts.  However, the inconvenience of finding 

these Thai names and recipes means the international outsiders do not dare to have these 

Thai-desserts. Hence, this paper proposes a novel combination between “Artificial 

Intelligence” and “Computer Vision” to build a CNN-based computer model for tagging the 

name and recipe of unknown Thai-dessert image. The computer model is built from 480 

recipe-tagged images that cover those 7 Thai-desserts. From the experimental results, our 
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computer model provides the accuracy higher than 85%. For future work, this research can 

be used the newest “Image-to-image translation techniques” [31] of computer vision that will 

provide better speed and higher correctness. 
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