
วารสารวิชาการเพื่อการพัฒนานวัตกรรมเชิงพื้นท่ี (JSID) ปีท่ี 4 ฉบับท่ี 3 กันยายน – ธันวาคม 2566 l 27

การเพิ่มประสิทธิภาพการเข้าถงึข้อมูลในงานส ารวจเชิงพื้นท่ี โดยใช้เทคนิคการสร้าง

ดรรชนี ส าหรับชุดข้อมูลขนาดใหญ่ ภายใต้รูปแบบวัตถุของจาวาสคริปต์

จริวัฒน์ ดวงแก้ว1, บวรศักดิ์ ศรสีังสิทธิสันติ1*, อภวิัฒน์ วิทยารัฐ1, นราศักดิ์ บุญเทพ1,

ภูวศิสรณ์ ภูมิสรณคมณ์1 และจริาพร ไชยวงศ์สาย1

Enhancing Data Retrieval Efficiency in Geospatial Surveys Using Indexing

Techniques for Large-Scale JavaScript Object Notation Datasets

Jirawat Duangkaew1, Bowonsak Srisungsittisunti1*, Apiwat Witayarat1, Narasak Boonthep1,

Phuwitsorn Phumsaranakhom1 and Jirabhorn Chaiwongsai1

1 Program in Computer Engineering, School of Information and Communication Technology, University of Phayao, Phayao, 56000
* Corresponding author: bowonsak.sr@up.ac.th

Received: September 9, 2023; Revised: September 21, 2023; Accepted: September 22, 2023

บทคัดย่อ
การใช้รูปแบบวัตถุของจาวาสคริปต ์(JavaScript Object Notation, JSON) ในฐานขอ้มูลท่ีไม่ใชเ่ชงิสัมพันธ์ (Not

only Structured Query Language, NoSQL) ได้รับความนิยมเป็นอย่างมาก อย่างไรก็ตาม หากพิจารณาข้อจ ากัดของ

NoSQL ส่วนของการจัดท าดรรชนี (Indexing) ส าหรับไฟล์ JSON ขนาดใหญ่ จึงเป็นข้อจ ากัดอันท้าทายเป็นอย่างมาก

โดยเฉพาะอย่างยิ่งในกรณีท่ีต้องการส ารวจและเข้าถึงข้อมูลท่ีมีขนาดใหญ่แต่อุปกรณ์ท่ีใช้ในการส ารวจหน้างานมี

หน่วยความจ าไม่เพียงพอส าหรับการประมวลผลไฟล์ขนาดใหญ่ ในการศึกษานี้ ได้เสนอการใช้ชุดข้อมูล JSON

ในการรักษาข้อมูลในกระบวนการส ารวจทรัพยากร ซึ่งด าเนินการทดลองบนชุดข้อมูลขนาด 32 กิกะไบต์ ท่ีมีจ านวน

ข้อมูล 1,000,000 รายการ ในรูปแบบ JSON และได้ท าการจัดท าดรรชนีสองวิธีคือ การจัดท าดรรชนีแบบหนาแน่น

(Dense) และแบบกระจาย (Sparse) เพื่อเพิ่มประสิทธิภาพในการเข้าถึงข้อมูล นอกจากนี้ยังได้ค้นพบขนาดตัวอย่างท่ี

เหมาะสมส าหรับวิธีการจัดท าดรรชนีท้ังสอง ผลการศึกษาพบว่าการใช้กรณีการจัดท าดรรชนีแบบหนาแน่น ลดเวลา

ในการเข้าถึงข้อมูลจาก 26,869.218 มลิลวินิาที (กรณไีมม่กีารจัดท าดรรชนี) ลงเหลอื 382.196 มลิลวินิาที หรือลดลง

ถึง 98.58% ในการเข้าถึงข้อมูลแบบหนึ่งต่อหนึ่ง และจาก 38,300.848 มิลลิวินาที (กรณีไม่มีการจัดท าดรรชนี) ลง

เหลือ 1.097 มิลลิวินาที ในกรณีท่ีไม่มีค าค้นหา ในทางกลับกัน การใช้การจัดท าดรรชนีแบบกระจาย ลดเวลาใน

การเรียกข้อมูลจาก 55,197.734 มิลลิวินาทีลงเหลือ 854.661 มิลลิวินาที หรือลดลงถึง 98.45% ในการเรียกข้อมูล

แบบหนึ่งต่อกลุ่ม และจาก 47,203.253 มิลลิวินาทีลงเหลือ 0.179 มิลลิวินาที ในกรณีท่ีไม่พบค าค้นหา นอกจากนี้

ยังค้นพบว่าทุกช่วงขนาดส่วนตัวอย่างท้ังหมด ส าหรับวิธีการจัดท าดรรชนีแบบหนาแน่น และดรรชนีแบบกระจาย

ยังคงสามารถจัดการกับหนว่ยความจ าและการเข้าถึงค าหลัก (Keyword) ได้อยา่งรวดเร็ว

ค าส าคัญ: การจัดท าดรรชนีหนาแน่น, การท าดรรชนีกระจาย, ชุดข้อมูลขนาดใหญ่, ฐานข้อมูลท่ีไม่ใช่เชิงสัมพันธ์,

ไฟลรู์ปแบบวัตถุของจาวาสคริปต์

1 สาขาวิชาวิศวกรรมคอมพิวเตอร ์คณะเทคโนโลยสีารสนเทศและการสื่อสาร มหาวิทยาลัยพะเยา จังหวดัพะเยา 56000

28 l The Journal of Spatial Innovation Development (JSID) Vol. 4 No.3 September - December 2023

Abstract
The use of JavaScript Object Notation (JSON) format as a Not only Structured Query Language (NoSQL)

storage solution has grown in popularity but has presented technical challenges, particularly in indexing large-

scale JSON files. In this study, we propose using JSON data sets especially in cases to survey and access large

amounts of data, but the devices used for data collection have insufficient memory to process large-sized files.

We conducted experiments on 32 Gigabyte data sets with 1,000,000 transactions in JSON format and

implemented two types of indexing, Dense and Sparse, to enhance data access efficiency. Additionally,

we identified the suitable sample size for both indexing methods. The findings indicated that the use of dense

indexing decreased data retrieval time from 26,869.218 milliseconds (Non index) to 382.196 milliseconds,

a reduction of 98.58% in one-to-one data retrieval and from 38,300.848 milliseconds to 1.097 when there were

no keywords. In contrast, sparse indexing reduced data retrieval time from 55 ,197 .734 milliseconds (Non index)

to 854.661 milliseconds, a decrease of 98.45% in one-to-many data retrieval and from 47,203.253 milliseconds

to 0.179 milliseconds when keywords were not found. Furthermore, we discovered that for both dense and sparse

indexing, all sample size ranges could rapidly manage memory and access keywords.

Keywords: Dense Indexing, Sparse Indexing, Large Scale Dataset, Not only Structured Query Language,

JavaScript Object Notation

บทน า
ในการบันทึกข้อมูลจากการส ารวจเชิงพื้นท่ี บางคร้ังอาจพบกับสถานการณ์ท่ีไม่สามารถเข้าถึงเครือข่าย ได้

ดังนั้น จ าเป็นต้องเก็บข้อมูลในลักษณะอื่นท่ีไม่ใช่ระบบฐานข้อมูล อาทิ การบันทึกข้อมูลในรูปแบบไฟล์ข้อมูล

นอกจากนี้ ข้อมูลท่ีบันทึกอาจมขีนาดใหญ่และปริมาณมาก ท าให้การประมวลผลด้วยอุปกรณ์ส ารวจและประมวลผล

หน้างานส ารวจท่ีมักเป็นอุปกรณ์เคลื่อนท่ีสะดวก เช่น โทรศัพท์มือถือ ไม่สามารถท าได้เนื่องจากขนาดของไฟล์ใหญ่

กว่าหนว่ยความจ าท่ีใชใ้นการประมวลผลของอุปกรณ ์

อย่างไรก็ตามไฟล์รูปแบบวัตถุของจาวาสคริปต์ (JavaScript Object Notation, JSON) เป็นเทคโนโลยีฐานข้อมูล

ไมใ่ชเ่ชงิสัมพันธ์ (Not only Structured Query Language, NoSQL) ซึ่งมคีวามยดืหยุน่ของการจัดเก็บข้อมูลทางโครงสร้าง

ได้อย่างอิสระ จึงได้รับความนิยมอย่างกว้างขวางในปัจจุบัน การเพิ่มขึ้นของปริมาณข้อมูล ส่งผลต่อความท้าทาย

ทางด้านเทคนคิหลายประการ โดยเฉพาะอยา่งยิ่งเกี่ยวกับเทคนคิการจัดท าดรรชนีส าหรับชุดข้อมูลรูปแบบ JSON ขนาด

ใหญ่ อีกท้ังข้อมูลไฟล์รูปแบบ JSON มีขนาดใหญ่เกินความจุของหน่วยความจ าแบบเข้าถึงแบบสุ่ม (Random Access

Memory, RAM) จึงเป็นไปไม่ได้ท่ีจะส ารวจและสืบค้นข้อมูลท้ังหมดในการเข้าถึงเพียงครั้งเดียว แต่สามารถแบ่งข้อมูล

ออกเป็นส่วนเท่า ๆ กันของข้อมูล ดังแสดงในรูปท่ี 1 โดยแต่ละส่วนจะถูกจัดเรียงล าดับแถวข้อมูลลงใน RAM เพื่อเข้าสู่

กระบวนการส ารวจและเข้าถึงข้อมูลด้วยหนว่ยประมวลผลกลาง (Central Processing Unit, CPU)

วารสารวิชาการเพื่อการพัฒนานวัตกรรมเชิงพื้นท่ี (JSID) ปีท่ี 4 ฉบับท่ี 3 กันยายน – ธันวาคม 2566 l 29

รูปที ่1 กรณท่ีีไมม่ดีรรชนีส าหรับชุดข้อมูลขนาดใหญ่

การศึกษาคร้ังนี้ใช้รูปแบบ JSON เพื่อตรวจสอบเทคนิคการจัดท าดรรชนีส าหรับชุดข้อมูลขนาดใหญ่ใน

NoSQL ซึ่งการทบทวนการศึกษาท่ีเกี่ยวข้องน าเสนอความเข้าใจท่ีครอบคลุมเกี่ยวกับการวิจัยท่ีทันสมัยในด้านนี้

การวิจัยก่อนหน้านี้เกี่ยวกับการจัดท าดรรชนี เช่น (Chang et al., 2017) เสนอวิธีการค้นหาข้อมูลอภิพันธ์ุ (Metadata)

โดยอาศัยการค้นหาด้วยดรรชนีตามค าหลัก (keyword-index) ในระบบไฟล์ขนาดใหญ่ โดยใช้เทคนิคการแบ่งส่วน

(Partition) ของดรรชนีได้อย่างมีประสิทธิภาพ เพื่อใช้ประโยชน์จากคุณสมบัติการกระจายของข้อมูลอภิพันธ์ุ

(Metadata) และความสามารถในการค้นหาข้อมูลอภิพันธ์ุ (Metadata) ผลการทดลองพบว่าวิธีการแบ่งส่วนมี

ประสิทธิภาพมากกว่าวิธีการท่ีไม่ใช้การแบ่งส่วนข้อมูลท่ีมีอยู่ในปัจจุบัน (Chopade & Pachghare, 2020) เสนอ

การจัดท าดรรชนีทางด้านการเพิ่มประสิทธิภาพการสบืค้นของฐานขอ้มูล (MongoDB) และความเกี่ยวข้องในการพิสูจน์

หลักฐานของฐานข้อมูล ผลการทดสอบพบว่าการจัดท าดรรชนีสามารถเพิ่มประสิทธิภาพเป็นอย่างมาก โดยการลด

เวลาในการตรวจสอบเอกสาร ท าให้เป็นสว่นส าคัญของการพัฒนาแอปพลเิคชันและการวเิคราะห์ทางนิตวิทิยาศาสตร์

(Yuan, J. & Liu, X., 2012) เสนอวิธีการค้นหาตัวเลือกท่ีใกล้เคียงท่ีสุดโดยใช้ (Embedded k-Means) ซึ่งสร้างดรรชนี

แบบแบ่งกลุ่มสองระดับท่ีมีศูนย์กลางทางคณิตศาสตร์ (Centroid) สองกลุ่ม และใช้ไฟล์ (Inverted file) เพื่อบันทึก

การจัดกลุ่ม ท่ีระดับค้นหา ซึ่งใช้กลยุทธ์ตัดสินใจเพื่อควบคุมคุณภาพและความเร็วในการค้นหา ผลการทดลองบน

ชุดข้อมูลรูปภาพ (Scale-Invariant Feature Transform, SIFT) และ (Generic Indexing of Spatial Data, GIST) แสดง

ประสิทธิภาพการค้นหาท่ีดีและมีภาวะความจ าและความซับซ้อนท่ีต่ า (Zi̇neddi̇ne et al., 2018) เสนอโครงสร้าง

การจัดท าดรรชนีแบบต้นไม้แบบทวิภาค (Binary tree) แบบใหม่ เพื่อจัดระเบียบคุณสมบัติของภาพ (สี รูปร่าง พื้นผิว)

ส าหรับการค้นหาภาพขนาดใหญ่อย่างมีประสิทธิภาพ แนะน าการสร้างดรรชนีและอัลกอริทึมการค้นหา (K-Nearest

Neighbors, KNN) โดยใชแ้นวคิดคอนเทนเนอร์ (Containers) เพื่อเพิ่มประสิทธิภาพความซับซ้อนท่ีประเมินจากชุดขอ้มูล

จริง (Jin et al., 2021) เสนอการปรับเปลี่ยนโครงสร้างดรรชนี (Balanced Tree Plus, B+Tree) และ (Log-Structured

Merge-Tree, LSM-Tree) ส าหรับอุปกรณ์บันทึกข้อมูล (Solid state drives, SSDs) ท่ีมี (Zoned Namespaces, ZNS)

ซึ่งมตีน้ทุนและค่าใช้จ่ายจากการเตรียมความพร้อมท่ีต่ า แตส่ามารถรองรับการเขียนแบบล าดับ (Abdulkadhem, A. A.

& Al-Assadi, T. A., 2019) เสนอวิ ธีการ ท่ี ใ ช้ ระบบข้อมูลภูมิ ศาสต ร์ (Geographic Information System, GIS)

ในการสร้างจุดส าคัญบนถนนด้วยจุดมุมและข้อมูลมัลติมเีดีย เป็นขั้นตอนการท างานล่วงหนา้ส าหรับการค้นหาแผนท่ี

จากภาพยนตร์วิดโีอ โดยมีเป้าหมายเพื่อให้สามารถสืบค้นมัลตมิเีดียภายในสภาพแวดลอ้ม GIS นอกจากนี้ ยังได้ศึกษา

งานวิจัยท่ีเกี่ยวข้องกับการประยุกต์ใช้ดรรชนี เช่น (Alqatawneh, A., 2022) เสนอเทคนิคใหม่ส าหรับระบบ

การถ่ายทอดสัญญาณแบบความถี่ศูนย์ ท่ีตั้งฉาก (Orthogonal frequency division multiplexing, OFDM) โดยใช้

30 l The Journal of Spatial Innovation Development (JSID) Vol. 4 No.3 September - December 2023

สัญลักษณ์ส่งสู่จุดศูนย์ เพื่อส่งบิตข้อมูลเพิ่มเติม โดยไม่ส่งผลกระทบต่อความแม่นย า ในการประมาณการช่องทาง

หรือประสิทธิภาพข้อผิดพลาดของระบบการตรวจจับท่ีใช้เรียกว่า (Minimum Mean Square Error, MMSE) และผลจาก

การจ าลองแสดงให้เห็นถึงการเพิ่มขึ้นของอัตราการส่งผ่านขอ้มูลของระบบ และอัตราความผิดพลาดท่ีต่ าเมื่อใช้ระดับ

สัญญาณแรงสูง (L. Tan, K. & C. Lim, K., 2019) เสนอระบบกล้องรักษาความปลอดภัยท่ีสามารถตรวจจับสัญญาณ

(Wireless Fidelity, WiFi) พร้อมกับตัวกรองการตรวจสอบโครงสร้างของสัญญาณ WiFi มี ท้ังหมด 3 ขั้นตอน

โดยพิจารณาจากความแรงของสัญญาณ WiFi ในการกรองและติดตามท่ีอยู่ของอุปกรณ์เคลื่อนท่ี (Media Access

Control, MAC address) ไปยังโครงสร้างของวดิีโอ วธีิน้ีใชข้้อมูลอภพิันธ์ุ (Meta data) ของท่ีอยู่อุปกรณเ์คลื่อนท่ี ในการ

ก าหนดล าดับความส าคัญในการเรียกโครงสร้างของวิดีโอ เพื่อลดระยะเวลาและความยุ่งยากในการค้นหาวิดีโอของ

เจ้าหนา้ท่ีสว่นงานรักษาความปลอดภัยของสาธารณะ (S, M. & MB, S. P., 2020) เสนอดรรชนีการตรวจสอบทางด้าน

อารมณโ์ดยอาศัยภาพคลื่นกระแสไฟฟ้า (Electroencephalogram, EEG) โดยใชก้ารจ าแนกประเภทโดยอาศัยเพื่อนบ้าน

ท่ีใกล้ท่ีสุด k-NN ซึ่งท าให้สามารถวเิคราะห์ความคลา้ยคลึง และความไมค่ล้ายคลงึระหว่างสัญญาณของบุคคลแต่ละ

คนและข้อมูลเป็นมาตรฐาน ผลการวิจัยแสดงให้เห็นถึงศักยภาพในการเข้าใจความรู้สึกอารมณ์พื้นฐานของบุคคล

(Zeffora, J. & Shobarani, S., 2022) เสนอวิธีการเลือกคุณสมบัติท่ีสามารถปรับตัวได้ ท่ีเรียกว่า (Random Forest)

โดยพิจารณาการเปลี่ยนแปลงทางโครงสร้างในชุดข้อมูล ในการประยุกต์ใช้กับข้อมูลของกล้ามเนื้อหัวใจ (Myocardial

Infarction) วธีิน้ีได้ช่วยปรับปรุงความถูกต้องและป้องกันปัญหาท่ีเหมาะสม อกีทัง้ ยังได้ศึกษางานวิจัยท่ีเกี่ยวข้องกับชุด

ข้อมูลขนาดใหญ่ เช่น (Ma et al., 2017) เสนอวิธีการค้นหาข้อมูลสื่อหลากหลายรูปแบบท่ีเรียกว่า (Apache Spark)

ท่ีอาศัยการค านวณแบบกระจายเพื่อเพิ่มความเร็วในการค้นหา ด้วยการใช้ตน้ไมค้้นหา (Search trees) ในระบบข้อมูล

ขนาดในใหญ่ (Big Data) ส่งผลให้การค้นหาฐานข้อมูลสื่อมคีวามรวดเร็วมากยิ่งขึน้ โดยเป็นผลมาจากการจัดเก็บทาง

โครงสร้างของการท าดรรชนีลงในหนว่ยความจ าและจัดเรียงผลลัพธ์ จึงท าให้ระบบมคีวามถูกต้องในระดับท่ียอมรับได้

และมีประสิทธิภาพ (Fathy et al., 2018) เสนอการเชื่อมต่อวัตถุกับโลกไซเบอร์ผ่านอุปกรณ์เซนเซอร์และการท างาน

ผ่านเครือข่ายภายใต้แนวคิดท่ีเรียกว่า อินเทอร์เน็ตทุกสรรพสิ่ง (Internet of Things, IoT) กล่าวถึงข้อมูลของ

อนิเทอร์เน็ตทุกสรรพสิ่ง IoT ท่ีได้จากการเก็บรวบรวมของอุปกรณท่ี์เชื่อมตอ่อินเทอร์เน็ตซึ่งสามารถจัดการได้ผ่านการ

สร้างดรรชนี ค้นหา และจัดอันดับข้อมูล ซึ่งส าคัญส าหรับการสร้างแอปพลิเคชันท่ีต้องการการเข้าถึงและค้นหาข้อมูล

IoT ได้อยา่งรวดเร็ว (Abdulsada et al., 2021) เสนอระบบค้นหาค าท่ีคล้ายคลึงในขอ้มูลท่ีถูกเขา้รหัส (Encrypted data)

ซึ่งมีส่วนย่อยท่ีสั้นและแสดงผลลัพธ์ท่ีถูกต้องตามคะแนนความคล้ายคลึง โดยด าเนินการแปลงเอกสารทุกตัวให้เป็น

ส่วนย่อยท่ีถูกบีบอัด ส่วนย่อยถูกสร้างด้วยฟังก์ชันแฮช (Hash functions) ท่ีใช้ค าหลัก (Keyword) เพื่อรักษาความเป็น

ส่วนตัว ผู้ใช้ท่ีได้รับอนุญาตเท่านั้นท่ีจะสร้างส่วนย่อยท่ีถูกต้อง โดยท่ีคะแนนความคล้ายคลึงของเอกสารทางข้อความ

จะถูกประเมินโดยการค านวณระยะแฮมมิง (Hamming distance) ผลการทดลองพบวา่รูปแบบท่ีเสนอมปีระสิทธิภาพใน

การค้นหามากกว่ารูปแบบท่ีมีอยู่ (Yusof, M. K., 2017) เสนอการจัดการข้อมูลขนาดใหญ่โดยใช้ภาษา (Extensible

Markup Language, XML) และ JSON ด้วยการทดสอบการค้นหาข้อมูลขนาดใหญ่พบว่ารูปแบบไฟล์ JSON มีความเร็ว

ในการค้นหาและการใช้หน่วยประมวลผลกลางท่ีดีกว่ารูปแบบ XML โดยรูปแบบ JSON มีศักยรูปท่ีเหมาะสมส าหรับ

เทคโนโลยีฐานข้อมูลขนาดใหญ่ในอนาคต และ (Gayathiri et al., 2019) เสนอเทคนิคส าหรับการดรรชนีข้อมูลขนาด

ใหญ่ (Big Data Indexing) เพื่อช่วยในการจัดเรียง การก าหนดท่ีอยู่ และการค้นหาข้อมูลท่ีดีขึ้น โดยมีแนวทางในการ

ค้นหาข้อมูลขนาดใหญ่ คือ (Map Reduce) สามาถช่วยลดข้อมูลท่ีมีขนาดใหญ่เป็นค่าท่ีสรุปได้ และ (Hash indexing)

เ ป็นวิ ธีการสร้างกุญแจการจัดเก็บค่าของทัพเพิล (Tuples) ซึ่ งทดลองกับฐานข้อมูล ท่ีไม่ ใช่ เชิ งสัมพันธ์

บนระบบฐานข้อมูลท่ีเรียกว่า มองโกดีบี (MongoDB) ท้ังแบบเดียว (Singleton) รวมถึงแบบกระจาย (Distributed) และ

วเิคราะห์ประสิทธิภาพในการคน้หาข้อมูลขนาดต่าง ๆ จากชุดข้อมูลท้ังหมด

วารสารวิชาการเพื่อการพัฒนานวัตกรรมเชิงพื้นท่ี (JSID) ปีท่ี 4 ฉบับท่ี 3 กันยายน – ธันวาคม 2566 l 31

ในการวิจัยนี้เสนอการเพิ่มประสิทธิภาพในการส ารวจและเข้าถึงข้อมูล โดยใช้เทคนิคการสร้างดรรชนี

ส าหรับชุดข้อมูลขนาดใหญ่ ภายใต้รูปแบบวัตถุของจาวาสคริปต์ ซึ่งเกี่ยวข้องกับการจัดท าดรรชนีแบบหนาแน่น

(Dense Index) ส าหรับการดึงข้อมูลแบบหนึ่งต่อหนึ่ง (One to one) และดรรชนีแบบกระจาย (Sparse Index) ส าหรับ

การดึงข้อมูลแบบหนึ่งต่อกลุ่ม (One-to-many) โดยใช้การส ารวจและเข้าถึงข้อมูลตามค าหลัก (Keyword-Index)

เพื่อตรวจสอบว่าเทคนิคการจัดท าดรรชนีเหล่านี้สามารถลดเวลาในการดึงข้อมูลได้อย่างไร นอกจากนี้ ยังได้ส ารวจ

ขนาดของการแบ่งส่วน (Segment Size) ท่ีเหมาะสม เพื่อการดึงข้อมูลท่ีมีประสิทธิภาพ โดยการพัฒนาชุดค าสั่งด้วย

ภาษาไพธอน (Python) ท้ายสุดนี้ ผลลัพธ์พิสูจน์ให้เห็นว่าเทคนิคการจัดท าดรรชนีไฟล์รูปแบบวัตถุของจาวาสคริปต์

ส าหรับชุดข้อมูลขนาดใหญ่ สามารถชว่ยเพิ่มประสิทธิภาพทางด้านเวลาในการดึงขอ้มูลได้เป็นอย่างมาก

วัตถุประสงค์
1. เพื่อเพิ่มประสิทธิภาพของดรรชนี (Indexing) ทางด้านการส ารวจและเข้าถึงข้อมูลได้เร็วขึ้นกับลักษณะ

ดรรชนท่ีีมีความหนาแนน่แบบหนึ่งตอ่หนึ่ง (Dense Index) ส าหรับชุดข้อมลูไฟลรู์ปแบบวัตถุของจาวาสคริปตข์นาดใหญ่

2. เพื่อเพิ่มประสิทธิภาพของดรรชนี (Indexing) ทางด้านการส ารวจและเข้าถึงข้อมูลได้เร็วขึ้นกับลักษณะ

ดรรชนกีระจายแบบหนึ่งตอ่กลุ่ม (Sparse Index) ส าหรับชุดข้อมูลไฟล์รูปแบบวัตถุของจาวาสคริปตข์นาดใหญ่

วิธีการด าเนินการวิจัย

 ขั้นตอนการจ าลองชุดข้อมูลขนาดใหญ่ในไฟล์รูปแบบวัตถุของจาวาสคริปต์

ในการศึกษานี้ ได้จ าลองชุดข้อมูลท่ีชื่อว่า BigData.json ซึ่งประกอบด้วยข้อมูลขนาด 32 กิกะไบต์ และมีข้อมูล

ข้อมูล 1,000,000 รายการ ชุดไฟลข์้อมูลจัดเก็บอยู่ในรูปแบบวัตถุของจาวาสคริปต ์(JavaScript Object Notation, JSON)

และประกอบด้วยฟิลด์ท่ีหลากหลาย เช่น Position, Latitude, Longitude, Resource_name, Location, Size, Description,

และ hex of image โดยชุดข้อมูลไฟล์ Bigdata.json ของผู้วิจัยมีความยืดหยุ่นรองรับการปรับแต่งเพื่อตอบสนอง

ความตอ้งการของการวจิัยเฉพาะส่วนได้ ดังรูปท่ี 2 แสดงตัวอยา่งการท าข้อมูลบางรายการจากชุดข้อมูล

รูปที ่2 แสดงตัวอยา่งของชุดไฟล์ขอ้มูล BigData.json ส าหรับการส ารวจ

ภายใต้รูปแบบ JSON ท่ีมีขนาด 32 GB และ 1,000,000 ข้อมูล

{

 "position": 1,

 “latitude”:256,

 “longitude”:152,

 "Resource_name": "Forest",

 "Location": "Amazon Rainforest",

 "Size": "1,500,000 hectares",

 "Description": "The Amazon Rainforest, also known as the Amazon Jungle, is a vast tropical ……….

 "hex of image": "ffd8ffe000104a4649460001010100480048000..." (32MB)

},

 …….….

 “position”:2

 “position”:3

 ………..

 {

 "position": 1000000,

 “latitude”:123,

 “longitude”:244,

 "Resource_name": "Marine Reserve",

 "Location": "Great Barrier Reef",

 "Size": "344,400 square kilometers",

 "Description": "The Great Barrier Reef is the world's largest coral reef system, located off the …….

 "hex of image": "ffd8ffe000104a4649460001010100480048000..." (32MB)

 }

32 l The Journal of Spatial Innovation Development (JSID) Vol. 4 No.3 September - December 2023

 อัลกอริทึมส าหรับการดึงข้อมูลโดยไม่มีดรรชน ี

 เมื่อต้องจัดการกับชุดข้อมูลขนาดใหญ่ภายใต้รูปแบบวัตถุของจาวาสคริปต์ (JavaScript Object Notation,

JSON) ของฐานข้อมูลไมใ่ช่เชิงสัมพันธ์ (Not only Structured Query Language, NoSQL) โดยไม่มีการจัดท าดรรชนีกับชุด

ข้อมูลท่ีเรียกว่า Bigdata.json ซึ่งมขีนาด 32 กิกะไบตแ์ละมีขอ้มูล 1,000,000 รายการ ตามท่ีได้อธิบายไว้ก่อนหน้านี้ใน

ส่วนของการจ าลองชุดข้อมูลขนาดใหญ่ในไฟล์ JSON ดังรูปท่ี 2 การศึกษานี้เมื่อต้องน าเข้าข้อมูลท้ังหมดไปยัง

หน่วยความจ าเข้าถึงแบบสุ่ม (Random Access Memory, RAM) ท้ังหมดพร้อมกันเป็นสิ่งท่ีท้าทายเป็นอย่างมาก ท่ีจะ

ท าให้การเข้าถึงและค้นหาข้อมูลเกิดปัญหาขึ้นได้ การศึกษานี้น าเสนอเทคนิคในการเรียกส ารวจและเข้าถึงข้อมูล

โดยไม่ต้องจัดท าดรรชนีเพื่อแก้ไขปัญหานี้ รหัสเทียมส าหรับการดึงข้อมูลโดยไม่มีดรรชนีจะแสดงอยู่ในรูปท่ี 3 และ

แสดงดว้ยผังงานในรูปท่ี 4 เทคนิคน้ีเกี่ยวข้องกับการแบ่งข้อมูลจาก Bigdata.json ออกเป็นสบิส่วน แตล่ะส่วนประกอบ

ด้วย 3.2 กิกะไบต์ และ 100,000 รายการ ในระหว่างกระบวนการแบ่งกลุ่ม Bigdata.json ขั้นตอนนี้จะไม่เกี่ยวข้องกับ

การแยกไฟล์ออกเป็นสิบไฟล์แยกกันแต่จะเกี่ยวข้องกับการน าเข้าของการแบ่งส่วน (Segment size) ลงใน RAM

หลังจากนั้น ระบบจะดึงข้อมูลโดยดึงข้อมูล แต่ละส่วนภายใน RAM หากข้อมูลตรงกับค าหลัก (Keyword) ท่ีก าหนด

ระบบจะแยกและแสดงหลังจากดึงการแบ่งส่วน (Segment) ท้ังหมด การดึงข้อมูลครอบคลุมกลุ่ม Bigdata.json

ท้ังหมด แมว้า่เทคนิคน้ีจะชว่ยดึงและเข้าถึงข้อมูล แตก่็มีขอ้เสียท่ีส าคัญ เชน่ การเรียกใชท้รัพยากรของ RAM และต้อง

ใช้พลังการประมวลผลจ านวนมากของหน่วยประมวลผลกลาง (Central Processing Unit, CPU) ส่งผลให้การส ารวจ

และเข้าถึงขอ้มูลมคีวามล่าช้าเป็นอยา่งมากอย่าง

รูปที ่3 รหัสเทียมของการดงึข้อมูลโดยไม่มีดรรชนี

1. Import Bigdata.json and specify the keyword to search for.

2. Divide Bigdata.json (size of 32 GB) into 10 segments.

3. For each segment (i = 1 to 10):

A. Load the segment i into RAM.

B. Search for specified keyword in segment i.

C. Retrieve the relevant data from segment i.

4. Display final search result

วารสารวิชาการเพื่อการพัฒนานวัตกรรมเชิงพื้นท่ี (JSID) ปีท่ี 4 ฉบับท่ี 3 กันยายน – ธันวาคม 2566 l 33

รูปที ่4 ผังงานของการดงึข้อมูลโดยไม่มีดรรชนี

 อัลกอริทึมส าหรับการส ารวจและเข้าถึงข้อมูลโดยดรรชน ี

 งานวิจัยนี้เสนออัลกอริทึมส าหรับการเพิ่มประสิทธิภาพเวลาในการส ารวจและเข้าถึงข้อมูลของฐานข้อมูล

ไม่ใช่เชิงสัมพันธ์ (Not only Structured Query Language, NoSQL) ขนาดใหญ่ ภายใต้รูปแบบวัตถุของจาวาสคริปต์

(JavaScript Object Notation, JSON) โดยใช้ดรรชนีแบบหนาแน่น (Dense Index) และดรรชนีแบบกระจาย (Sparse

index) จากฐานข้อมูลเชิงสัมพันธ์ (Relational databases) กับชุดไฟล์ข้อมูล Bigdata.json ดังรูปท่ี 5 รหัสเทียมของ

การส ารวจและเขา้ถึงข้อมูลจากดรรชนี และดังรูปท่ี 6 แผนผังล าดับงานของการส ารวจและเข้าถึงชุดข้อมูลขนาดใหญ่

ตามดรรชนี ซึ่งอัลกอริทึมได้มีการปรับให้เหมาะสม และแบ่งเป็นการจัดท าดรรชนีแบบหนาแน่น (Dense Index) และ

ดรรชนีแบบกระจาย (Sparse index) ส าหรับชุดข้อมูล NoSQL ซึ่งมีขนาด 32 กิกะไบต์ รวมถึงค าหลัก (Keyword) และ

ต าแหนง่ (Position) เพื่อก าหนดส าหรับการอา้งอิงท่ีมีประสิทธิภาพ จากหนว่ยความจ าเข้าถึงแบบสุ่ม (Random Access

Memory, RAM) ไปยังชุดไฟล์ข้อมูล Bigdata.json ระหว่างกระบวนการการส ารวจด้วยเทคนิคการเข้าถึงข้อมูลตาม

ค าหลัก (Keyword-Index) ชุดค าสั่งจะด าเนินการน าเข้าชุดข้อมูล Bigdata.json ท่ีมีขนาด 32 กิกะไบต์ และมีข้อมูล

1,000,000 รายการ ซึ่งชุดข้อมูลไฟล์ Bigdata.json จะถูกแบ่งออกเป็น 10 ส่วน แต่ละส่วนประกอบด้วยข้อมูล

100,000 รายการ ได้ก าหนดส่วนแรกให้สอดคล้องกับต าแหน่งของข้อมูล 1 ถึง 100,000 ส่วนท่ีสองเป็นต าแหน่งของ

ข้อมูล 100,001 ถึง 200,000 และด าเนินต่อไป จนถึงส่วนท่ีสิบแสดงต าแหน่ง 900,001 ถึง 1,000,000 ถัดไป

อัลกอริทึมจะตรวจสอบต าแหน่งของข้อมูล ในแต่ละส่วนเทียบกับไฟล์ดรรชนี หากต าแหน่งอยู่ในของการแบ่งส่วน

(Segment) อัลกอริทึมจะน าเข้าส่วน (Segment) ลงใน RAM และเข้าถึงข้อมูลโดยใชค้ าหลัก (Keyword) เพื่อค้นหาข้อมูล

ท่ีตรงกับค าหลัก (Keyword) ท่ีก าหนด เมื่อพบการจับคู่ท่ีตรงกันอัลกอริทึมจะเข้าถึงข้อมูล และแสดงข้อมูลภายใน

กลุ่มตามผลลัพธ์ท่ีพบ

34 l The Journal of Spatial Innovation Development (JSID) Vol. 4 No.3 September - December 2023

รูปที่ 5 รหัสเทียมของการส ารวจและเขา้ถึงข้อมูลจากดรรชนี

ขนาดของกลุ่มท่ีใช้ในอัลกอริทึมอาจมีการเปลี่ยนแปลงตามความเหมาะสมส าหรับชุดข้อมูลท่ีก าหนดในรหัส

เทียมท่ีแสดงเป็นตัวอย่างของการก าหนดค่าดังกล่าว โดยสมมติว่าการแบ่งส่วน (Segment) มีขนาด 100,000 ข้อมูล

อย่างไรก็ตาม ขนาดส่วนท่ีเหมาะสมท่ีสุดท่ีก าหนดโดยการทดลองจะถูกรายงานในตารางท่ี 5 และ 6 เพื่อให้แน่ใจว่า

ผลการวจิัยมคีวามถูกต้อง ได้จัดเตรียมวธีิการโดยละเอยีดและข้อมูลอ้างองิท่ีสนับสนุนแนวทางของผู้วิจัย

รูปที ่6 แผนผังล าดับงานของการส ารวจและเขา้ถึงชุดข้อมูลขนาดใหญ่ตามดรรชนี

1. Import files index_position.json, Bigdata.json and Keyword

2. Divide Bigdata.json (size of 32 GB) into 10 segments.

3. Search for key in index position.json to get position of Bigdata.json

4. For segment i = 1 to 10

A. If position is in segment i.

A1. Load segment i into RAM

A2. Search position in segment i

A3. Retrieve the relevant data from segment i.

B. Else, skip segment i.

5. Display search result

วารสารวิชาการเพื่อการพัฒนานวัตกรรมเชิงพื้นท่ี (JSID) ปีท่ี 4 ฉบับท่ี 3 กันยายน – ธันวาคม 2566 l 35

 ดรรชนแีบบหนาแน่นส าหรับชุดข้อมูลขนาดใหญ ่(Dense index in a large-scale dataset)

 ในการวิจัยคร้ังนี้ ได้เพิ่มประสิทธิภาพการส ารวจและเข้าถึงข้อมูลแบบหนึ่งต่อหนึ่ง (One-to-One) ในชุด

ข้อมูลขนาดใหญ่ ซึ่งเก็บอยู่ในรูปแบบวัตถุของจาวาสคริปต์ (JavaScript Object Notation, JSON) บนฐานข้อมูลไม่ใช่

เชิงสัมพันธ์ (Not only Structured Query Language, NoSQL) การเชื่อมโยงข้อมูลแบบหนึ่งต่อหนึ่ง (One-to-One) ใน

ท่ีนีห้มายถงึการเชื่อมโยงความสัมพันธ์เฉพาะค าหลัก (Keyword) ซึ่งเป็นสิ่งท่ีท้าทายเป็นอยา่งมาก เมื่อต้องจัดการกับ

ข้อมูลขนาดใหญ่ ได้เสนออัลกอริทึม (Algorithm) ท่ีเรียกว่า การสร้างดรรชนีแบบหนาแน่น (Dense Index Algorithm)

เป็นอัลกอริทึมท่ีได้รับการออกแบบมา เพื่อเพิ่มประสิทธิภาพในเชิงเวลาของการส ารวจและเข้าถึงข้อมูลขนาดใหญ่

ส่วนถัดไปของงานวิจัยนี้ จะเป็นการให้ค าอธิบายท่ีครอบคลุมถึงอัลกอริทึมในการสร้างดรรชนีแบบหนาแน่น รวมถึง

วธีิการท่ีไฟลด์รรชนีแบบหนาแนน่ ถูกน าไปใชใ้นการส ารวจและเขา้ถึงชุดข้อมูลขนาดใหญ่

อัลกอริทึมการสร้างต าแหน่งของดรรชนแีบบหนาแน่น ส าหรับชุดข้อมูลขนาดใหญ่

ในการศึกษานี้ ค าว่า ชุดข้อมูลขนาดใหญ่ (Large-scale dataset) หมายถึงไฟล์ชุดการจ าลองท่ีชื่อว่า

Bigdata.json ไดอ้ธิบายก่อนหนา้นี้ในส่วนการจ าลองชุดข้อมูลขนาดใหญ่ในไฟล์รูปแบบวัตถุของจาวาสครปิต์ (JavaScript

Object Notation, JSON) ดังรูปท่ี 2 การศึกษานี้ “ดรรชนีความหนาแน่น” คือไฟล์ท่ีมีชื่อว่า Dense_index_position.json

ซึ่งสร้างโดยการสแกนไฟล์ Bigdata.json คร้ังเดียว เพื่อดึงข้อมูลท่ีไม่ซ้ าซ้อนในฟิลด์ท่ีเลือกเป็นค าหลัก (Keyword)

การศึกษานี้ประกอบด้วยละติจูด (Latitude) ลองจิจูด (Longitude) และต าแหน่ง (Position) ท่ีสอดคล้องกันในไฟล์

Bigdata.json ไฟล์ดรรชนีแบบหนาแน่นของผู้วิจัยมีโครงสร้างท่ีแสดงไว้ดังรูปท่ี 7 เป็นการออกแบบเพื่อการอ้างอิง

แบบหนึ่งต่อหน่ึง (One to One) และการเข้าถึงข้อมูลได้อย่างมีประสิทธิภาพ ภายในโครงสร้างของไฟล์ต าแหน่งดรรชนี

แบบหนาแน่นประกอบด้วยข้อมูลละติจูด (Latitude) ลองจิจูด (Longitude) และต าแหน่ง (Position) โดยต าแหน่งท่ีสร้าง

ขึน้นัน้สามารถชว่ยในการเข้าถึงข้อมูลจากชุดไฟล์ Bigdata.json ท่ีเก็บไวใ้น RAM ไดอ้ยา่งรวดเร็ว การศกึษาไฟล์ต าแหน่ง

ดรรชนแีบบหนาแนน่ของผู้วิจัยมีขนาด 20 เมกะไบต ์และมขี้อมูล 1,000,000 รายการ

รูปที่ 7 แสดงตัวอยา่งข้อมูลในชุดไฟล์ Dense index position.json

อัลกอริทึมการใชง้าน Dense_index_position.json เพื่อส ารวจและเขา้ถึงชดุข้อมลูขนาดใหญ ่

 ส าหรับชุดไฟล์ดรรชนีแบบหนาแน่น (Dense_index_position.json) สามารถช่วยในการส ารวจและเข้าถึง

ฐานข้อมูลไม่ใช่เชิงสัมพันธ์ (Not only Structured Query Language, NoSQL) ขนาดใหญ่ ภายใต้รูปแบบวัตถุของจาวา

สคริปต์ (JavaScript Object Notation, JSON) ตามท่ีอธิบายไว้ก่อนหน้านี้ส่วนของหัวข้อ สร้างการจัดท าต าแหน่งของ

ดรรชนีแบบหนาแน่น ส าหรับชุดข้อมูลขนาดใหญ่ ซึ่งขั้นตอนเร่ิมต้นโดยการน าเข้าไฟล์ดรรชนีแบบหนาแน่น

(Dense_index_position.json) และชุดข้อมูล Bigdata.json ท่ีได้รับการก าหนดให้ละติจูด (Latitude) ลองจิจูด (Longitude)

เป็นค าหลัก (Keyword) ส าหรับการส ารวจและเข้าถึงข้อมูล โดยมกีระบวนการท างานดังรูปท่ี 7 เมื่อด าเนนิการเรียกดูใน

{

 "256,152": 1,

 "3405,11824": 2,

 "5150,128": 3,

 ...

 "123,244": 1000000

}

36 l The Journal of Spatial Innovation Development (JSID) Vol. 4 No.3 September - December 2023

ชุดดรรชนีแบบหนาแน่น (Dense_index_position.json) เมื่อทราบต าแหน่ง (Position) ท่ีสอดคล้องกับค าหลัก (Keyword)

ท่ีก าหนดซึ่งขนาดของไฟล์ท่ี 20 เมกะไบต์ ท าให้มีประสิทธิภาพสูงในการเข้าถึงได้อย่างรวดเร็ว อย่างไรก็ตาม แต่ละ

ค าหลัก (Keyword) เมื่อทราบต าแหน่ง (Position) เดียวในไฟล์ดรรชนีแบบหนาแน่น (Dense_index_position.json)

จึงต้องการน าเข้าเฉพาะส่วนหนึ่งของดรรชนีแบบหนาแน่น (Dense_index_position.json) ท้ังหมด ลงในหน่วยความจ า

เข้าถึงแบบสุ่ม (Random Access Memory, RAM) เพื่อการเข้าถึงข้อมูล ในทางกลับกัน เมื่อค าหลัก (Keyword) ไมต่รงกับ

การท าข้อมูลใด ๆ ในชุดไฟล์ดรรชนีแบบหนาแน่น (Dense_index_position.json) จะไม่ได้รับต าแหน่งใด ๆ และดังนั้นจึง

ไมม่สี่วนของดรรชนแีบบหนาแนน่ (Dense_index_position.json) น าเข้าลงใน RAM

ดรรชนแีบบกระจาย ส าหรับชุดข้อมูลขนาดใหญ ่

ในการวิจัยคร้ังนี้ ได้เพิ่มประสิทธิภาพในการส ารวจและเข้าถึงข้อมูลแบบหนึ่งต่อกลุ่ม (One-to-May) ในชุด

ข้อมูลขนาดใหญ่ ซึ่งเก็บอยู่ในรูปแบบวัตถุของจาวาสคริปต์ (JavaScript Object Notation, JSON) บนฐานข้อมูลไม่ใช่

เชิงสัมพันธ์ (Not only Structured Query Language, NoSQL) การเชื่อมโยงข้อมูลแบบหนึ่งต่อกลุ่ม (One-to-Many) ใน

ท่ีนี้หมายถึงความสัมพันธ์เฉพาะค าหลัก (Keyword) สามารถเชื่อมโยงกับกลุ่มข้อมูลค าหลักท่ีเหมอืนกัน ซึ่งเป็นสิ่งท่ีท้า

ทายเป็นอย่างมาก เมื่อต้องจัดการกับข้อมูลขนาดใหญ่ ได้เสนออัลกอริทึม (Algorithm) ท่ีเรียกว่า ดรรชนีแบบกระจาย

(Sparse Index Algorithm) เป็นอัลกอริทึมท่ีได้รับการออกแบบมา เพื่อเพิ่มประสิทธิภาพในเชิงเวลาของการส ารวจและ

เข้าถึงข้อมูลขนาดใหญ่ ส่วนถัดไปของงานวิจัยน้ี จะเป็นการให้ค าอธิบายท่ีครอบคลุมถึงอัลกอริทึมในการสร้างดรรชนี

แบบกระจาย รวมถึงวธีิการท่ีไฟล์ดรรชนแีบบกระจาย ถูกน าไปใชใ้นการส ารวจและเข้าถึงชุดข้อมูลขนาดใหญ่

อัลกอริทึมการสร้างต าแหน่งของดรรชนแีบบกระจาย ส าหรับชุดข้อมูลขนาดใหญ่

การศึกษานีใ้ห้ค าจ ากัดความของชุดข้อมูลขนาดใหญ่เป็นไฟล์ Bigdata.json ท่ีอธิบายไว้ในส่วนของการจ าลอง

ชุดข้อมูลขนาดใหญ่ในไฟล์รูปแบบวัตถุของจาวาสคริปต์ ดังรูปท่ี 2 ได้ท าการออกแบบและพัฒนาชุดค าสั่งสร้างไฟล์

ดรรชนีแบบกระจาย (Sparse Index) ท่ีเรียกว่า Sparse_index_position.json จากชุดข้อมูลไฟล์ Bigdata.json โดยได้มา

จากการสแกนหนึ่งคร้ังเพื่อแยกข้อมูลท่ีไม่ซ้ ากัน โดยเลือกใช้ชื่อแหล่งท่ีมา (Resource_name) เป็นฟิลด์ค าหลัก

(Keyword) ชุดไฟล์ดรรชนีแบบกระจาย (Sparse Index) นี้ ดังแสดงในรูปท่ี 8 ได้ออกแบบและพัฒนาเพื่อเพิ่ม

ประสิทธิภาพเชิงเวลาในการส ารวจและเข้าถึงข้อมูลแบบหนึ่งต่อกลุ่ม (One-to-Many) โดยจะมีท้ังชื่อแหล่งท่ีมา

(Resource_name) และข้อมูลต าแหนง่ (Position) ท่ีเกี่ยวข้องโดยท่ีชื่อแหล่งท่ีมา (Resource_name) อาจมีหลายต าแหน่ง

(Position) ข้อมูลในไฟล์ดรรชนีของผู้วิจัยสามารถช่วยให้การอ้างอิงจาก RAM ไปยังข้อมูลภายในชุดไฟล์ Bigdata.json

ได้อย่างมีประสิทธิภาพเชิงเวลา เมื่อมีการเรียกใช้งานชุดไฟล์ดรรชนีแบบกระจาย (Sparse Index) โปรดทราบว่าไฟล์

ดรรชนีแบบกระจาย (Sparse Index) ท่ีเรียกว่า Sparse_index_position.json ของผู้วิจัยมีขนาดไฟล์ 8 เมกะไบต์ และ

มขี้อมูล 5,146 รายการ

รูปที ่8 แสดงตัวอยา่งข้อมูลในชุดไฟล์ Sparse index position.json

{

 "Forest”: [46163, 66867, 88916, 94633, 130606, 150253, 185197, 189917, 214931, 999999],

 ……

 " Marine Reserve": [46153, 59781, 93151, 94460, 101100, 172271, 244064, 368397, 439620, 888888]

}

วารสารวิชาการเพื่อการพัฒนานวัตกรรมเชิงพื้นท่ี (JSID) ปีท่ี 4 ฉบับท่ี 3 กันยายน – ธันวาคม 2566 l 37

อัลกอริทึมการใช้งาน Sparse_index_position.json เพื่อส ารวจและเขา้ถึงชดุข้อมลูขนาดใหญ ่

ในการส ารวจและเข้าถึงข้อมูลรูปแบบวัตถุของจาวาสครปิต ์(JavaScript Object Notation, JSON) บนฐานข้อมูล

ไม่ใช่เชิงสัมพันธ์ (Not only Structured Query Language, NoSQL) ขนาดใหญ่ สามารถใช้ไฟล์ดรรชนีแบบกระจาย

(Sparse_index_position.json) ดังแสดงในรูปท่ี 8 ไฟล์ดรรชนีนี้เหมาะอย่างยิ่งส าหรับการส ารวจและการเข้าถึงแบบหนึ่ง

ต่อกลุ่ม (One-to-Many) โดยเร่ิมจากการน าเข้าข้อมูล ไฟล์ดรรชนีแบบกระจาย (Sparse_index_position.json)

ประกอบด้วยชื่อแหล่งท่ีมา (Resource_name) และต าแหน่ง (Position) ท่ีสอดคล้องกัน ซึ่งท าหน้าที่เป็นจุดอ้างอิงไปยัง

ข้อมูลภายในไฟล์ดรรชนีแบบกระจาย (Sparse_index_position.json) ท่ีจัดเก็บไว้ใน RAM ซึ่งน าไปสู่เวลาในการค้นหาท่ีมี

ประสิทธิภาพ ส่วนรูปท่ี 2 แสดงกระบวนการท่ีเร่ิมต้นด้วยการน าเข้าไฟล์ Bigdata.json ในบริบทนี้ ชื่อแหล่งท่ีมา

(Resource_name) คือค าหลักส าหรับการส ารวจและเข้าถึ งข้อมูล เมื่ อด าเนินการเรียกข้อมูลโดยใช้ ไฟล์

(Sparse_index_position.json) ค าสั่งจะเข้าถึงต าแหน่งท่ีเกี่ยวข้องกับค าหลัก (Keyword) ท่ีก าหนด โปรดทราบว่าดรรชนี

แบบกระจาย (Sparse_index_position.json) ของผู้วิจัยมขีนาดค่อนขา้งเล็กเพยีง 8 เมกะไบต ์ซึ่งมสี่วนชว่ยให้ประสิทธิรูป

ท่ีโดดเด่นในการเข้าถึงข้อมูลอย่างรวดเร็ว อย่างไรก็ตาม การเข้าถึงค าหลัก (Keyword) เมื่อทราบต าแหน่ง (Position)

หลายต าแหน่งจากภายในไฟล์ดรรชนีแบบกระจาย (Sparse_index_position.json) ในกรณีเช่นนี้ ระบบต้องน าเข้าดรรชนี

หลายส่วน (Segment) ลงใน RAM เพื่อแยกข้อมูลท่ีจ าเป็น ในทางกลับกัน หากค าหลัก (Keyword) ไม่ตรงกับข้อมูลใด ๆ

ในไฟลด์รรชนแีบบกระจาย (Sparse_index_position.json) ชุดค าสั่งจะไมเ่ข้าถึงต าแหนง่นั้น ๆ และเป็นผลให้ RAM ไมต่อ้ง

น าเข้าส่วนดรรชนใีด ๆ

ผลการศึกษา
 ในการศึกษานี้ได้ประเมินประสิทธิภาพของเทคนิคการท าดรรชนีท่ีพัฒนาขึ้นใหม่ ส าหรับฐานข้อมูลไม่ใช่เชิง

สัมพันธ์ (Not only Structured Query Language, NoSQL) จัดเก็บข้อมูลภายใต้ไฟล์รูปแบบวัตถุของจาวาสคริปต์

(JavaScript Object Notation, JSON) ของการส ารวจและเข้าถึงชุดข้อมูลขนาดใหญ่ โดยเฉพาะอย่างยิ่ง เมื่อเปรียบเทียบ

ประสิทธิภาพของดรรชนีแบบหนาแน่น (Dense Index) และดรรชนีแบบกระจาย (Sparse Index) ท้ังท่ีมีและไม่มีดรรชนี

ผู้วิจัยทดลองบนระบบคอมพวิเตอร์ท่ีมีหน่วยประมวลผลกลาง (Central Processing Unit, CPU) ของ Intel™ ท่ีมีความเร็ว

สูงสุดถึง 4.90 กิกะเฮิร์ตซ์ พร้อมกับหน่วยความจ าเข้าถึงแบบสุ่ม (Random Access Memory, RAM) ขนาด 8 กิกะไบต์

และโซลิดสเตตไดรฟ ์(Solid State Drive, SSD) ขนาด 500 กิกะไบต ์ไดน้ าเข้าชุดข้อมูลขนาดใหญ่ท่ีเรียกว่า Bigdata.json

ตามท่ีอธิบายไว้ในส่วนการจ าลองชุดข้อมูลขนาดใหญ่ในไฟล์รูปแบบวัตถุของจาวาสคริปต์ ดังรูปท่ี 2 จากไฟล์

Bigdata.json เพื่อให้ได้ตัวอย่างท่ีเป็นตัวแทน ได้สุ่มเลือกข้อมูล 524 รายการ จากฟิลด์ละติจูด (Latitude) ลองจิจูด

(Longitude) และ ชื่อแหล่งท่ีมา (Resource_name) ซึ่งคิดเป็น 0.05% ของข้อมูลจ าลองท้ังหมด และทดสอบอัลกอริทึม

ดังกล่าวซ้ าสามครั้ง การศึกษานี้มีวัตถุประสงค์เพื่อตรวจสอบประสิทธิภาพเวลาในการส ารวจและเข้าถึงข้อมูล โดยมี

และไมม่ดีรรชนรีวมถึงมขี้อมูลหรือไม่มีข้อมูลท่ีระบุภายในไฟล์ Bigdata.json โดยมผีลลัพธ์จากการทดลองดังนี ้

 ในการทดลองคร้ังแรก ได้ประเมินประสิทธิภาพของการเข้าถึงข้อมูลโดยการใช้ดรรชนีแบบหนาแน่น (Dense

Index) ในการส ารวจและเข้าถึงข้อมูลจากไฟล์ Bigdata.json โดยเปรียบเทียบประสิทธิภาพทางด้านเวลาของการเข้าถึง

ข้อมูลแบบหนึ่งต่อหนึ่ง (One to one) ท้ังท่ีมีดรรชนีแบบหนาแน่น (Dense Index) และไม่มีดรรชนี (Non Index) เป็นท่ี

น่าสังเกตว่าค าหลัก (Keyword) ท่ีเลือกแบบสุ่มท้ังหมดมีอยู่ในไฟล์ Bigdata.json การทดลองนี้มีวัตถุประสงค์เพื่อ

ตรวจสอบประสิทธิภาพเวลาในการส ารวจและเข้าถึงข้อมูลของการใช้ดรรชนีแบบหนาแน่น (Dense Index) เปรียบเทียบ

กับการเข้าถึงข้อมูลโดยไม่มีดรรชนี (Non Index) โดยเน้นท่ีการมีอยู่ของค าหลักภายในไฟล์ Bigdata.json ดังแสดงใน

38 l The Journal of Spatial Innovation Development (JSID) Vol. 4 No.3 September - December 2023

ตารางท่ี 1 ของผลการทดสอบท่ีเกี่ยวข้องกับการเรียกค าหลัก 524 ค า โดยใช้ดรรชนีแบบหนาแน่น (Dense Index)

ด าเนนิการศกึษาท้ังหมดสามรอบ โดยน าเสนอเวลาเฉลี่ยในการเข้าถึงข้อมูลต่อค าหลัก (Keyword) การค้นพบนี้แสดงให้

เห็นวา่การใชด้รรชนแีบบหนาแน่น (Dense Index) สามารถชว่ยลดเวลาในการเข้าถึงข้อมูลเมื่อเทียบกับไมม่ดีรรชน ี(Non

Index) ผลการทดสอบพบว่า ดรรชนีแบบหนาแน่น (Dense Index) ใช้เวลาเฉลี่ยต่อค าหลักในการเข้าถึงต าแหน่งข้อมูล

เท่ากับ 375.721 มลิลิวินาที ส่วนการเข้าถึงไฟล์ Bigdata.json โดยการแบ่งส่วนข้อมูล (Segment) ใชเ้วลาเฉลี่ยตอ่ค าหลัก

เท่ากับ 6.476 มิลลิวินาที นอกจากนี้ เมื่อพิจารณาการเข้าถึงข้อมูลท้ังหมดด้วยการใช้ดรรชนีแบบหนาแน่น (Dense

Index) เวลาท่ีใช้เฉลี่ยต่อค าหลักเท่ากับ 382.196 มิลลิวินาที หากไม่มีดรรชนี (Non Index) ใช้เวลาในการเข้าถึงข้อมูล

เฉลี่ยต่อค าหลักเท่ากับ 26,869.218 มิลลิวินาที ในการทดสอบซ้ าท้ังสามรอบของ 524 ค าหลัก พบว่าการเข้าถึงข้อมูล

โดยใช้ดรรชนีแบบหนาแน่น (Dense Index) ใช้เวลาเฉลี่ยเท่ากับ 200,270.949 มิลลิวินาที ในขณะท่ีการเข้าถึงข้อมูล

โดยไม่มีดรรชนี (Non Index) ใช้เวลาโดยเฉลี่ยเท่ากับ 14,079,470.37 มิลลิวินาที ผลการทดสอบแสดงให้เห็นถึง

ประสิทธิภาพทางด้านเวลาของ ดรรชนแีบบหนาแนน่ (Dense Index) ท่ีดขีึน้เป็นอยา่งมาก เมื่อเทียบกับไมม่ดีรรชน ี(Non

Index) เนื่องจากสามารถข้ามข้อมูลท่ีไม่จ าเป็นและเข้าถึงข้อมูลเพียงคร้ังเดียว นอกจากนี้ ยังน าเข้าข้อมูลลงใน RAM

หนึ่งคร้ังต่อค าหลัก (Keyword) ช่วยลดเวลาในการเข้าถึงข้อมูลและประมวลผลข้อมูล ในทางตรงกันข้าม การเข้าถึง

ข้อมูลโดยไม่มีดรรชนี (Non Index) จะน าเข้าข้อมูลค าหลัก (Keyword) ท้ังหมด ซึ่งน าไปสู่การสูญเสียทรัพยากร

หนว่ยความจ าอยา่งมากและส่งผลกระทบตอ่เวลาในการเข้าถึงข้อมูลท่ีเพิ่มขึน้ตามขนาดข้อมูล

ตารางที่ 1 การเปรียบเทียบประสิทธิภาพของการส ารวจและเวลาในการเข้าถึงไฟล์ข้อมูล Bigdata.json โดยใช้ดรรชนี

แบบหนาแนน่ และไมม่กีารจัดท าดรรชนี

การประเมนิประสิทธิภาพ

(มิลลิวนิาที)

524 ค าหลัก ค่าเฉลี่ย

1 ค าหลัก

รอบที่ 1 รอบที่ 2 รอบที่ 3 ค่าเฉลี่ย

เวลาการเข้าถงึข้อมูล Index

ด้วย Dense Index
197,367.708 197,722.472 195,542.527 196,877.569 375.721

เวลาการเข้าถงึข้อมูล Segment

ด้วย Dense index
3,388.343 3,388.343 3,388.343 3,393.38 6.476

เวลาการเข้าถงึข้อมูล

Dense index ทั้งหมด
200,756.5 201,112.118 198,944.677 200,270.949 382.196

เวลาการเข้าถงึข้อมูล

กรณีไม่มีดรรชนี
14,091,572.26 14,087,301.7 14,059,537.15 14,079,470.37 26,869.218

การทดลองคร้ังท่ีสอง ไดป้ระเมนิประสิทธิภาพของการเข้าถึงข้อมูลแบบใชด้รรชนแีบบหนาแน่น (Dense Index)

ในการส ารวจและเข้าถึงข้อมูลจากไฟล์ Bigdata.json โดยเปรียบเทียบประสิทธิภาพทางด้านเวลาของการเข้าถึงข้อมูล

แบบหนึ่งต่อหนึ่ง (One to one)ท้ังท่ีมีดรรชนีแบบหนาแน่น (Dense Index และประสิทธิภาพของการเข้าถึงข้อมูลแบบ

ไม่มีดรรชนี (Non Index) โดยไฟล์ดรรชนีดังกล่าวจะไม่พบค าหลัก (Keyword not found) อันเนื่องมาจากใช้เทคนิคการ

เลือกแบบสุ่มท้ังหมด การศึกษาให้ผลลัพธ์ของการทดลองดังแสดงในตารางท่ี 2 ของสถานการณ์ท่ีไม่พบค าหลัก

(Keyword not found) เวลาในการส ารวจและเข้าถึงข้อมูล ซึ่งจ ากัดอยู่ท่ีเวลาท่ีใช้ในการเข้าถึงข้อมูลในไฟล์ดรรชนี

แบบหนาแน่น (Dense Index) และไม่เกี่ยวข้องกับการเข้าถึงข้อมูลใน RAM นี่เป็นเพราะไม่มีส่วนท่ีเกี่ยวข้องท่ีจะน าเข้า

และไม่มีต าแหน่ง (Position) ในดรรชนีแบบหนาแน่น (Dense Index) ท่ีต้องการเข้าถึงข้อมูล ได้ท าการทดลองโดยใช้

วารสารวิชาการเพื่อการพัฒนานวัตกรรมเชิงพื้นท่ี (JSID) ปีท่ี 4 ฉบับท่ี 3 กันยายน – ธันวาคม 2566 l 39

ค าหลักของดรรชนีแบบหนาแน่น (Dense Index) 524 ค าหลัก ผลลัพธ์แสดงให้เห็นถึงประสิทธิภาพทางด้านเวลาของ

การเข้าถึงข้อมูลโดยเฉลี่ยต่อค าหลักเท่ากับ 1.097 มิลลิวินาที โดยมีเวลาเข้าถึงข้อมูลเฉลี่ยส าหรับท้ังสามรอบเท่ากับ

574.767 มิลลิวินาที ในทางตรงกันข้าม วิธีการเข้าถึงข้อมูลโดยไม่มีดรรชนี (Non Index) ในกรณีท่ีไม่พบนั้นทดสอบกับ

524 ค าหลัก ผลลัพธ์พบว่าเวลาในการเข้าถึงข้อมูลโดยเฉลี่ยต่อค าหลักเท่ากับ 38,300.848 มิลลิวินาที โดยมีเวลา

การเข้าถึงข้อมูลเฉลี่ยส าหรับท้ังสามรอบเท่ากับ 20,069,244.44 มิลลิวินาที ผลลัพธ์พบว่าการเข้าถึงข้อมูลโดยดรรชนี

หนาแน่น (Dense Index) ในกรณีท่ีไม่พบค าหลัก (Keyword not found) มีประสิทธิภาพมากกว่า กรณีท่ีไม่มีดรรชนี

(Non Index) เนื่องจากข้อมูลท่ีไม่จ าเป็นถูกข้ามไป และข้อมูลถูกเข้าถึงเพียงคร้ังเดียวต่อค าหลัก (Keyword) ท าให้ลด

เวลาในการเข้าถึงข้อมูลเฉลี่ยต่อค าหลัก (Keyword) ลดลงเหลือเพียง 1.097 มิลลิวินาที ในทางกลับกัน การส ารวจและ

เข้าถึงข้อมูลโดยไมม่กีารจัดท าดรรชนใีนกรณีท่ีไมพ่บค าหลัก (Keyword not found) ท าให้ใชเ้วลาในการส ารวจและเข้าถึง

ข้อมูลนานกว่ามาก โดยเวลาเข้าถึงข้อมูลเฉลี่ยต่อค าหลักเท่ากับ 38,300.848 มิลลิวินาที ส่งผลกระทบสูงต่อ RAM

โดยเฉพาะอยา่งยิ่งในกระบวนการน าเข้าค าหลักท้ังหมด และเวลาในการเข้าถึงข้อมูล

ตารางที่ 2 การเปรียบเทียบประสิทธิภาพของการเข้าถึงขอ้มูล โดยใชด้รรชนีแบบหนาแนน่และไมม่ดีรรชนีและกรณท่ีี

ไมม่คี าหลักในไฟลข์้อมูล Bigdata.json

การประเมนิประสิทธิภาพ
524 ค าหลัก ค่าเฉลี่ย

1 ค าหลัก

รอบที่ 1 รอบที่ 2 รอบที่ 3 ค่าเฉลี่ย

การเข้าถงึข้อมูลด้วย Dense Index

ในกรณีที่ไม่พบค าหลัก
569.96 572.78 581.56 574.767 1.097

การเข้าถงึข้อมูลด้วย Non Index

ในกรณีที่ไม่พบค าหลัก
20,528,300.2 20,871,312.76 1,880,8120.53 20,069,244.44 38,300.848

ในการทดลองคร้ังท่ีสาม ได้ประเมินประสิทธิภาพการเข้าถึงข้อมูลของการใช้ดรรชนีแบบกระจาย (Sparse

Index) ในการส ารวจและเขา้ถึงข้อมูลจากไฟล ์Bigdata.json โดยเปรียบเทียบประสิทธิภาพทางด้านเวลาของการเข้าถึง

ข้อมูลแบบหนึ่งต่อกลุ่ม (One-to-Many) ทั้งท่ีมีดรรชนีแบบกระจาย (Sparse Index) และไม่มีดรรชนี (Non Index) เป็น

ท่ีน่าสังเกตว่าค าหลัก (Keyword) ท่ีเลือกแบบสุ่มท้ังหมดมีอยู่ในไฟล์ Bigdata.json การทดลองนี้มีวัตถุประสงค์เพื่อ

ตรวจสอบประสิทธิภาพเวลาในการส ารวจและเข้าถึงข้อมูลของการใช้ ดรรชนีแบบกระจาย (Sparse Index)

เปรียบเทียบกับไม่มีดรรชนี (Non Index)โดยเน้นท่ีการมีอยู่ของค าหลักภายในไฟล์ Bigdata.json ดังแสดงในตารางท่ี 3

ของผลการทดสอบท่ีเกี่ยวข้องกับการเรียกค าหลัก 524 ค า โดยใช้ดรรชนีแบบกระจาย (Sparse Index) ด าเนิน

การศึกษาท้ังหมดสามรอบ โดยน าเสนอเวลาเฉลี่ยในการเข้าถึงข้อมูลต่อค าหลัก (Keyword) การค้นพบนี้แสดงให้เห็น

ว่าการใช้ดรรชนีแบบกระจาย (Sparse Index) สามารถช่วยลดเวลาในการเข้าถึงข้อมูลเมื่อเทียบกับไม่มีดรรชนี (Non

Index)ผลการทดสอบพบว่า ดรรชนีแบบกระจาย (Sparse Index) ใช้เวลาเฉลี่ยต่อค าหลักในการเข้าถึงหลายต าแหนง่

ข้อมูลเท่ากับ 9.795มิลลิวินาที ส่วนการเข้าถึงไฟล์ Bigdata.json โดยการแบ่งส่วนข้อมูล (Segment) ใช้เวลาเฉลี่ยต่อ

ค าหลักเท่ากับ 756.65 มิลลิวินาที นอกจากนี้ เมื่อพิจารณาการเข้าถึงข้อมูลท้ังหมดด้วยการใช้ดรรชนีแบบกระจาย

(Sparse Index) เวลาท่ีใช้เฉลี่ยต่อค าหลักเท่ากับ 854.662 มิลลิวินาที หากไม่มีดรรชนี (Non Index)ใช้เวลาใน

การเข้าถึงขอ้มูลเฉลี่ยตอ่ค าหลักเท่ากับ 55,197.734 มลิลวินิาที ในการทดสอบซ้ าทัง้สามรอบของ 524 ค าหลัก พบวา่

การเข้าถึงข้อมูลโดยใช้ดรรชนีแบบกระจาย (Sparse Index) ใช้เวลาเฉลี่ยเท่ากับ 447,842.638 มิลลิวินาที ในขณะท่ี

การเข้าถึงขอ้มูลโดยไมม่ดีรรชนี (Non Index)ใชเ้วลาโดยเฉลี่ยเท่ากับ 28,923,612.59 มลิลวินิาที ผลการทดสอบแสดง

40 l The Journal of Spatial Innovation Development (JSID) Vol. 4 No.3 September - December 2023

ให้เห็นถึงประสิทธิภาพทางด้านเวลาของ ดรรชนีแบบกระจาย (Sparse Index) ท่ีดีขึ้นเป็นอย่างมาก เมื่อเทียบกับไม่มี

ดรรชนี (Non Index)เนื่องจากสามารถข้ามข้อมูลท่ีไม่จ าเป็นและเข้าถึงข้อมูลเพยีงครั้งเดียว นอกจากนี้ ยังน าเขา้ข้อมูล

ลงใน RAM หนึ่งครัง้ตอ่ค าหลัก (Keyword) แมว้า่ค าหลักจะปรากฏในหลายต าแหนง่ (Position) ซึ่งสามารถชว่ยลดเวลา

ในการเข้าถึงข้อมูลและประมวลผลข้อมูล ในทางตรงกันข้าม การเข้าถึงข้อมูลโดยไม่มีดรรชนี (Non Index) จะน าเข้า

ข้อมูลค าหลัก (Keyword) ทั้งหมด ซึ่งน าไปสู่การสูญเสียทรัพยากรหน่วยความจ าอย่างมากและส่งผลกระทบต่อเวลา

ในการเข้าถึงขอ้มูลท่ีเพิ่มขึ้นตามขนาดขอ้มูล

ตารางที่ 3 การเปรียบเทียบประสิทธิภาพของการส ารวจและเวลาในการเข้าถึงไฟลข์้อมูล Bigdata.json โดยใชด้รรชนี

แบบกระจาย และไมม่กีารจัดท าดรรชนี

ประเภทของการทดสอบ
524 ค าหลัก ค่าเฉลี่ย

1 ค าหลัก

รอบที่ 1 รอบที่ 2 รอบที่ 3 ค่าเฉลี่ย

เวลาการเข้าถงึข้อมูล Index

ด้วย Sparse Index (มิลลิวนิาที)
52,056.211 50,885.636 51,130.898 51,357.582 9.795

เวลาการเข้าถงึ Segment

ด้วย Sparse index (มิลลิวนิาที)
395,083.445 395,693.442 398,678.282 396,485.565 756.65

เวลาการเข้าถงึข้อมูล

Sparse Index ทั้งหมด (มิลลิวินาที)
447,139.656 446,579.078 449,809.18 447,842.638 854.661

เวลาการเข้าถงึข้อมูล

กรณีไม่มีดรรชนี (มิลลิวนิาที)
28,850,300.91 28,970,251.46 28,950,285.38 28,923,612.59 55,197.734

การทดลองคร้ังท่ีสี่ ได้ประเมินประสิทธิภาพการเข้าถึงข้อมูลของการใช้ดรรชนีแบบกระจาย (Sparse Index)

ในการส ารวจและเข้าถึงข้อมูลจากไฟล์ Bigdata.json โดยเปรียบเทียบประสิทธิภาพทางด้านเวลาของการเข้าถึงข้อมูล

แบบหนึ่งต่อกลุ่ม (One-to-Many) ท้ังท่ีมีดรรชนีแบบกระจาย (Sparse Index) และไม่มีดรรชนี (Non Index) โดยไฟล์

ดรรชนีดังกล่าวจะไมพ่บค าหลัก (Keyword not found) การศึกษาให้ผลลัพธ์ของการทดลองดังแสดงในตารางท่ี 4 ของ

สถานการณ์ท่ีไม่พบค าหลัก (Keyword not found) เวลาในการส ารวจและเข้าถึงข้อมูล ซึ่งจ ากัดอยู่ท่ีเวลาท่ีใช้ใน

การเข้าถึงข้อมูลในไฟล์ดรรชนีแบบกระจาย (Sparse Index) และไม่เกี่ยวข้องกับการเข้าถึงข้อมูลใน RAM นี่เป็นเพราะ

ไม่มีส่วนท่ีเกี่ยวข้องท่ีจะน าเข้าและไม่มีต าแหน่ง (Position) ในดรรชนีแบบกระจาย (Sparse Index) ท่ีต้องการเข้าถึง

ข้อมูล ผู้วิจัยท าการทดลองโดยใช้ค าหลักของดรรชนีแบบกระจาย (Sparse Index) 524 ค าหลัก ผลลัพธ์แสดงให้เห็น

ถึงประสิทธิภาพทางด้านเวลาของการเข้าถึงข้อมูลโดยเฉลี่ยต่อค าหลักเท่ากับ 0.179 มิลลิวินาที โดยมีเวลาเข้าถึง

ข้อมูลเฉลี่ยส าหรับท้ังสามรอบเท่ากับ 93.543 มิลลิวินาที ในทางตรงกันข้าม วิธีการเข้าถึงข้อมูลโดยไม่มีดรรชนี

(Non Index)ในกรณีท่ีไม่พบค าหลักนั้นทดสอบกับ 524 ค าหลัก ผลลัพธ์พบว่าเวลาในการเข้าถึงข้อมูลโดยเฉลี่ยต่อ

ค าหลักเท่ากับ 47,203.253 มิลลิวินาที โดยมีเวลาการเข้าถึงข้อมูลเฉลี่ยส าหรับท้ังสามรอบเท่ากับ 24,734,504.72

มิลลิวินาที ผลลัพธ์พบว่าการเข้าถึงข้อมูลโดยดรรชนีแบบกระจาย (Sparse Index) ในกรณีท่ีไม่พบค าหลัก (Keyword

not found) มปีระสิทธิภาพมากกวา่ กรณท่ีีไมม่ดีรรชนี (Non Index) เนื่องจากข้อมูลท่ีไม่จ าเป็นถูกข้ามไป และข้อมูลถูก

เข้าถึงเพียงคร้ังเดียวต่อค าหลัก (Keyword) ท าให้ลดเวลาในการเข้าถึงข้อมูลเฉลี่ยต่อค าหลัก (Keyword) ลดลงเหลือ

เพียง 0.179 มิลลิวินาที ในทางกลับกัน การส ารวจและเข้าถึงข้อมูลโดยไม่มีการจัดท าดรรชนีในกรณีท่ีไม่พบค าหลัก

(Keyword not found) ท าให้ใช้เวลาในการส ารวจและเข้าถึงข้อมูลนานกว่ามาก โดยเวลาเข้าถึงข้อมูลเฉลี่ยต่อค าหลัก

วารสารวิชาการเพื่อการพัฒนานวัตกรรมเชิงพื้นท่ี (JSID) ปีท่ี 4 ฉบับท่ี 3 กันยายน – ธันวาคม 2566 l 41

เท่ากับ 47,203.253 มิลลิวินาที ส่งผลกระทบสูงต่อ RAM โดยเฉพาะอย่างยิ่งเวลาในกระบวนการน าเข้าค าหลัก

ท้ังหมด และเวลาในการเข้าถึงขอ้มูล

ตารางที่ 4 การเปรียบเทียบประสิทธิภาพของการเข้าถึงขอ้มูล โดยใชด้รรชนีแบบกระจายและไมม่ดีรรชนีและกรณท่ีี

ไมม่คี าหลักในไฟลข์้อมูล Bigdata.json

การประเมนิประสิทธิภาพ
524 ค าหลัก ค่าเฉลี่ย

1 ค าหลัก รอบที่ 1 รอบที่ 2 รอบที่ 3 ค่าเฉลี่ย

การเข้าถงึข้อมูลด้วย Sparse Index

ในกรณีที่ไม่พบค าหลัก
93.12 90.2 97.31 93.543 0.179

การเข้าถงึข้อมูลด้วย Non Index

ในกรณีที่ไม่พบค าหลัก
26,873,520.89 23,599,661.86 23,730,331.4 24,734,504.72 47,203.253

วัตถุประสงค์อีกประการหนึ่งของการทดลองนี้ คือการก าหนดขนาดส่วน (Segment size) ท่ีเหมาะสมท่ีสุดโดย

ท าการทดสอบในสามช่วงท่ีแตกต่างกัน ช่วงแรกครอบคลุมตั้งแต่ 100 ถึง 1,000 โดยเพิ่มขึ้นทีละ 100 ส าหรับแต่ละ

ขนาดส่วน (segment) ช่วงท่ีสองครอบคลุม 1,000 ถึง 10,000 โดยเพิ่มขึ้น 1,000 ส าหรับแต่ละขนาดส่วน (Segment

size) สุดท้าย ช่วงท่ีสามขยายจาก 10,000 เป็น 200,000 โดยเพิ่มขึ้น 10,000 ส าหรับแต่ละขนาดส่วน (Segment size)

ผู้วิจัยท าการทดลองท้ังหมดสามรอบและค านวณค่าเฉลี่ย นอกจากนี้ ตารางท่ี 5 และ 6 ยังสรุปค่าขนาดส่วน (Segment

size) ท่ีเหมาะสมส าหรับการประเมินประสิทธิภาพของดรรชนีแบบหนาแน่น (Dense Index) และดรรชนีแบบกระจาย

(Sparse Index) ในชว่งท่ีก าหนดท้ังสามชว่ง โดยมรีายละเอยีดของผลการทดลองดังนี ้

ตารางที่ 5 แสดงค่าขนาดส่วน (Segment size) ท่ีเหมาะสมส าหรับการประเมินประสิทธิภาพของดรรชนีแบบ

หนาแน่น (Dense Index) โดยแบ่งออกเป็นสามช่วง แต่ละช่วงขนาดส่วน (Segment size) กลุ่มแรกตั้งแต่ 100 ถึง 1,000

มีเวลาเฉลี่ยต่อค าหลักเท่ากับ 197,367.708 มิลลิวินาที ช่วงท่ีสองตั้งแต่ 1,000 ถึง 10,000 มีเวลาเฉลี่ยต่อค าหลัก

เท่ากับ 197722.472 มิลลิวินาที สุดท้าย ช่วงท่ีสามตั้งแต่ 10,000 ถึง 200,000 มีเวลาเฉลี่ยต่อค าหลักเท่ากับ

195542.527 มิลลิวินาที รูปท่ี 9 แสดงให้เห็นว่าขนาดส่วน (Segment size) ในช่วงตั้งแต่ 100 ถึง 200,000 พบว่า

ประสิทธิภาพในการเข้าถึงค าหลัก (Keyword) มีความแตกต่างทางด้านของเวลาเล็กน้อย เนื่องจากการเข้าถึง RAM

ไม่มีความแตกต่าง เมื่อเทียบกับขนาดส่วน (Segment size) ท้ังนี้ขึ้นอยู่กับประสิทธิภาพของระบบคอมพิวเตอร์ ดังนั้น

ไม่ว่าขนาดส่วน (Segment size) จะอยู่ ในช่วงใด ดรรชนีแบบหนาแน่น (Dese Index) ยังคงสามารถจัดการกับ

หนว่ยความจ าและการเข้าถึงค าหลัก (Keyword) ได้อยา่งรวดเร็ว

42 l The Journal of Spatial Innovation Development (JSID) Vol. 4 No.3 September - December 2023

ตารางที ่5 ประสิทธิภาพดรรชนีแบบหนาแนน่ ตามขนาดสว่น และความถี่ของค าหลัก

ขนาดของสว่น ค่าเฉลี่ย 1 ค าส าคัญ (มลิลิวนิาท)ี

100 to 1000 197,367.708

1000 to 10000 197722.472

10000 to 200000 195542.527

รูปที่ 9 การเปรียบเทียบประสิทธิภาพของดรรชนีแบบหนาแนน่

ตารางที่ 6 แสดงค่าขนาดส่วน (Segment size) ท่ีเหมาะสมส าหรับการประเมินประสิทธิภาพของดรรชนีแบบ

กระจาย. (Sparse Index) โดยแบ่งออกเป็นสามช่วง แต่ละช่วงขนาดส่วน (Segment size) กลุ่มแรกตั้งแต่ 100 ถึง 1,000

มีเวลาเฉลี่ยต่อค าหลักเท่ากับ 52,056.21 มิลลิวินาที ช่วงท่ีสองตั้งแต่ 1,000 ถึง 10,000 มีเวลาเฉลี่ยต่อค าหลักเท่ากับ

50,885.637 มิลลิวินาที สุดท้าย ช่วงท่ีสามตั้งแต่ 10,000 ถึง 200,000 มีเวลาเฉลี่ยต่อค าหลักเท่ากับ 51,130.898

มิลลิวินาที รูปท่ี 9 แสดงให้เห็นว่าขนาดส่วน (Segment size) ในช่วงตั้งแต่ 100 ถึง 200,000 พบว่าประสิทธิภาพใน

การเข้าถึงค าหลัก (Keyword) มีความแตกต่างทางด้านของเวลาเล็กน้อย เนื่องจากการเข้าถึง RAM ไม่มีความแตกต่าง

เมื่อเทียบกับขนาดส่วน (Segment size) ท้ังนี้ขึ้นอยู่กับประสิทธิภาพของระบบคอมพิวเตอร์ ดังนั้น ไม่ว่าขนาดส่วน

(Segment size) จะอยู่ในช่วงใด ดรรชนีแบบกระจาย (Sparse Index) ยังคงสามารถจัดการกับหน่วยความจ าและ

การเข้าถึงค าหลัก (Keyword) ได้อยา่งรวดเร็ว

ตารางที่ 6 ประสิทธิภาพดรรชนีแบบหนาแนน่ ตามขนาดสว่น และความถี่ของค าหลัก

ขนาดของสว่น ค่าเฉลี่ย 1 ค าส าคัญ (มลิลิวนิาท)ี

100 to 1000 52,056.21

1000 to 10000 50,885.637

10000 to 200000 51,130.898

วารสารวิชาการเพื่อการพัฒนานวัตกรรมเชิงพื้นท่ี (JSID) ปีท่ี 4 ฉบับท่ี 3 กันยายน – ธันวาคม 2566 l 43

รูปที่ 10 การเปรียบเทียบประสิทธิภาพของดรรชนีแบบกระจาย

โปรดสังเกตว่า เวลาในการส ารวจและเข้าถึงข้อมูล โดยใช้การท าดรรชนีแบบหนาแน่น (Dense Index) พบว่า

นานกวา่เวลาท่ีใชก้ารท าดรรชนแีบบกระจาย (Sparse Index) ซึ่งเป็นผลมาจากเวลาค้นหาค าหลัก (Keyword) ท่ีนานขึน้ท่ี

จ าเป็นในการดึงต าแหน่งของข้อมูลในไฟล์ดรรชนีหนาแน่น (Dense Index) เมื่อเทียบกับไฟล์ดรรชนีกระจาย (Sparse

Index) ความแตกตา่งนี้ยังเห็นได้ชัด เมื่อพจิารณาจากขนาดไฟลแ์ละจ านวนข้อมูล โดยไฟล์ดรรชนแีบบหนาแน่น (Dense

Index) จะมีขนาด 20 เมกะไบต์และมีข้อมูล 1,000,000 รายการ ในขณะท่ีไฟล์ดรรชนีแบบกระจาย (Sparse Index)

จะมขีนาดเพยีง 8 เมกะไบตแ์ละมขี้อมูล 5146 รายการ

สรุปและอภิปรายผล
การศึกษานี้น าเสนอการเพิ่มประสิทธิภาพในการส ารวจและเข้าถึงข้อมูล โดยใช้เทคนิคการสร้างดรรชนี

ส าหรับชุดข้อมูลขนาดใหญ่ ภายใต้รูปแบบวัตถุของจาวาสคริปต์ โดยการน าประยุกต์เทคนิคการจัดท าดรรชนีแบบ

หนาแน่น (Dense Index) และดรรชนีแบบกระจาย (Sparse Index) เพื่อเพิ่มประสิทธิภาพการส ารวจและเข้าถึงข้อมูล

การค้นพบนี้แสดงให้เห็นว่าวิธีการสร้างดรรชนีใหม่ช่วยลดเวลาในการส ารวจและเข้าถึงข้อมูลลดลงได้อย่างมาก

นอกจากนี้ การทดลองในท้ังสามช่วงขนาดส่วน (Segment size) ตั้งแต่ช่วง 100 ถึง 1,000, 1,000 ถึง 10,000 และ

10,000 ถึง 200,000 ผลลัพธ์พิสูจน์ให้เห็นว่าการเปลี่ยนแปลงขนาดส่วนไมไ่ด้ส่งผลต่อประสิทธิภาพทางด้านเวลาใน

การเข้าถึงค าหลัก (Keyword) ซึ่งเป็นผลมาจากการเข้าถึงหน่วยความจ าเข้าถึงแบบสุ่ม (Random Access Memory,

RAM) ท่ีใกล้เคียงกันเมื่อเทียบกับขนาดส่วน (Segment size) ท้ังน้ีขึน้อยูก่ับประสิทธิภาพของระบบคอมพิวเตอร์ ดังนั้น

ไมว่า่ขนาดส่วน (Segment size) จะอยู่ในช่วงใด ดรรชนีแบบหนาแนน่ (Dense Index) และดรรชนีแบบกระจาย (Sparse

Index) ยังคงสามารถจัดการกับหน่วยความจ าและการเข้าถึงค าหลัก (Keyword) ได้อย่างรวดเร็ว นอกจากนี้ ดรรชนี

แบบหนาแน่น (Dense Index) สามารถเพิ่มประสิทธิภาพทางด้านเวลาในการเข้าถึงกับลักษณะข้อมูลแบบหนึ่งตอ่หน่ึง

(One-to-One) เฉลี่ยต่อค าหลักเท่ากับ 382.196 มิลลิวินาที เมื่อเทียบกับการเข้าถึงข้อมูลของกรณีไม่มีดรรชนี (Non

Index) เฉลี่ยต่อค าหลักเท่ากับ 26,869.218 มิลลิวินาที ในขณะท่ีดรรชนีแบบกระจาย (Sparse Index) สามารถเพิ่ม

ประสิทธิภาพทางด้านเวลาในการเข้าถึงกับลักษณะข้อมูลแบบหนึ่งต่อกลุ่ม (One-to-Many) เฉลี่ยต่อค าหลักเท่ากับ

854.662 มิลลิวินาที เมื่อเทียบกับการเข้าถึงข้อมูลของกรณีไม่มีดรรชนี (Non Index) เฉลี่ยต่อค าหลักเท่ากับ

55,197.734 มิลลิวินาที การค้นพบนี้ชี้ให้เห็นว่าแนวทางการจัดท าดรรชนีแบบหนาแน่น (Dense Index) สามารถ

44 l The Journal of Spatial Innovation Development (JSID) Vol. 4 No.3 September - December 2023

ลดเวลาในการเข้าถึงข้อมูลถึง 98.57% จากวิธีการไม่มีดรรชนีและดรรชนีแบบกระจาย (Sparse Index) สามารถ

ลดเวลาในการเข้าถึงข้อมูลถึง 98.45% จากวิธีการไม่มีดรรชนีท้ังสองวิธีการดรรชนีของผู้วิจัยสามารถช่วยเพิ่ม

การส ารวจและเข้าถึงในชุดฐานข้อมูลท่ีไม่ใช่เชิงสัมพันธ์ (Not only Structured Query Language, NoSQL) ท่ีจัดเก็บอยู่

ภายใต้รูปแบบวัตถุของจาวาสคริปต์ (JavaScript Object Notation, JSON) โดยเฉพาะอย่างยิ่งเมื่อจ าลองชุดข้อมูล

ขนาดใหญ่ การศึกษาในอนาคตสามารถขยายการวิจัยนี้ได้โดยการทดสอบประสิทธิภาพของเทคนิคการจัดท าดรรชนี

กับขอ้มูลประเภทตา่ง ๆ และชุดข้อมูลขนาดต่าง ๆ เพื่อก าหนดความสามารถในการปรับขนาดและความสามารถท่ัวไป

ในการท างานในอนาคต การปรับปรุงอัลกอริทึมการส ารวจและเข้าถึงต าแหน่งข้อมูลในไฟล์ดรรชนีแบบหนาแน่น

(Dense Index) อาจเป็นส่วนท่ีมีศักยภาพในการตรวจสอบ เนื่องจากไฟล์ดรรชนีแบบหนาแน่น (Dense Index) มักจะมี

ข้อมูลจ านวนมาก กระบวนการค้นหาจึงใชเ้วลานานและไมม่ีประสิทธิภาพ การลดเวลาที่จ าเป็นส าหรับกระบวนการน้ี

สามารถปรับปรุงประสิทธิภาพโดยรวมของแนวทางการจัดท าดรรชนีแบบหนาแน่น (Dense Index) ได้อยา่งมาก ดังนัน้

วิธีการเพิ่มประสิทธิภาพอัลกอริทึมของการส ารวจและเข้าถึงส าหรับการจัดท าดรรชนีแบบหนาแน่น (Dense Index)

อาจเป็นช่องทางที่นา่สนใจส าหรับงานในอนาคต

กิตติกรรมประกาศ
ผู้เขียนขอขอบคุณหน่วยวิจัยเพื่อการพัฒนานวัตกรรมเชิงพื้นท่ี (RUSID) คณะเทคโนโลยีสารสนเทศ

และการสื่อสาร มหาวทิยาลัยพะเยา ที่ให้การสนับสนุนสิ่งอ านวยความสะดวก

เอกสารอ้างอิง
Abdulkadhem, A. A., & Al-Assadi, T. A. (2019). An Important Landmarks Construction for a GIS-Map based on

Indexing of Dolly Images. Indonesian Journal of Electrical Engineering and Computer Science, 15(1), 451.

https://doi.org/10.11591/ijeecs.v15.i1.pp451-459.

Abdulsada, A. I., Honi, D. G., & Al-Darraji, S. (2021). Efficient multi-keyword similarity search over encrypted

cloud documents. Indonesian Journal of Electrical Engineering and Computer Science, 23(1), 510.

https://doi.org/10.11591/ijeecs.v23.i1.pp510-518.

Alqatawneh, A. (2022). Orthogonal frequency division multiplexing system with an indexed-pilot channel

estimation. Indonesian Journal of Electrical Engineering and Computer Science, 26(2), 808.

https://doi.org/10.11591/ijeecs.v26.i2.pp808-818.

Chang, J., Xiao, L., Huo, Z., Zhou, B., Ruan, L., Wang, H., & Liu, S. (2017). Optimization of Index-Based Method

of Metadata Search for Large-Scale File Systems. 2017 10th International Symposium on

Computational Intelligence and Design (ISCID). https://doi.org/10.1109/iscid.2017.147.

Chopade, R., & Pachghare, V. (2020). MongoDB Indexing for Performance Improvement. Advances in Intelligent

Systems and Computing, 1077, 529–539. https://doi.org/10.1007/978-981-15-0936-0_56.

Fathy, Y., Barnaghi, P., & Tafazolli, R. (2018). Large-Scale Indexing, Discovery, and Ranking for the Internet of

Things (IoT). ACM Computing Surveys, 51(2), 1–53. https://doi.org/10.1145/3154525.

วารสารวิชาการเพื่อการพัฒนานวัตกรรมเชิงพื้นท่ี (JSID) ปีท่ี 4 ฉบับท่ี 3 กันยายน – ธันวาคม 2566 l 45

Gayathiri, N. R., Jaspher, D. D., & Natarajan, A. M. (2019). Big Data retrieval techniques based on Hash

Indexing and MapReduce approach with NoSQL Database. 2019 International Conference on Advances

in Computing and Communication Engineering (ICACCE).

https://doi.org/10.1109/icacce46606.2019.9079964.

Jin, P., Zhuang, X., Luo, Y., & Lu, M. (2021, December 1). Exploring Index Structures for Zoned Namespaces

SSDs. https://doi.org/10.1109/BigData52589.2021.9671606.

L. Tan, K., & C. Lim, K. (2019). Fast surveillance video indexing & retrieval with WiFi MAC address tagging.

Indonesian Journal of Electrical Engineering and Computer Science, 16(1), 473.

https://doi.org/10.11591/ijeecs.v16.i1.pp473-481.

Ma, Y., Liu, D., Scott, G., Uhlmann, J., & Shyu, C.-R. (2017, December 1). In-Memory Distributed Indexing for

Large-Scale Media Data Retrieval. https://doi.org/10.1109/ISM.2017.38.

S, M., & MB, S. P. (2020). Indexing intelligence using benchmark classifier. Indonesian Journal of Electrical

Engineering and Computer Science, 18(1), 179. https://doi.org/10.11591/ijeecs.v18.i1.pp179-187.

Yuan, J., & Liu, X. (2012). A novel index structure for large scale image descriptor search. 2012 19th IEEE

International Conference on Image Processing. https://doi.org/10.1109/icip.2012.6467265.

Yusof, M. K. (2017). Efficiency of JSON for Data Retrieval in Big Data. Indonesian Journal of Electrical Engineering

and Computer Science, 7(1), 250. https://doi.org/10.11591/ijeecs.v7.i1.pp250-262.

Zeffora, J., & Shobarani, S. (2022). Optimizing random forest classifier with Jenesis-index on an imbalanced

dataset. Indonesian Journal of Electrical Engineering and Computer Science, 26(1), 505.

https://doi.org/10.11591/ijeecs.v26.i1.pp505-511.

Zi̇neddi̇neK., Ami̇neF. M., & Adeel, A. (2018). Indexing Multimedia Data with an Extension of Binary Tree --

Image Search by Content --. International Journal of Informatics and Applied Mathematics, 1(1), 47–55.

Retrieved from https://dergipark.org.tr/en/pub/ijiam/issue/43831/532310.

