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Abstract

Land use represents the relationship of physical, social, political and technological factors. The objectives
of this study are: 1) to study the land use change of the of Land Development Department in 2006, 2009 and
2015, in Amphoe Mueang Chiang Mai and surrounding areas, 2) to validate the FLUS Model and 3) to predict the
land use change in 2024. The relationship of 8 factors and land use 5 types including agriculture area forest area
miscellaneous area built-up area and water bodies area by using Artificial Neuron Network (ANN) and the future

scenario from Markov Model were applied to predict the land use change. The research results from land use
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prediction in 2024 illustrated that agriculture area was 408,977 rai 26.97% of the total area, forest area was
699,156 rai 46.11% of the total area, miscellaneous area was 53,987 rai 3.56% of the total area, built-up area
was 326,973 rai 21.56% of the total area and water bodies area was 27,261 rai 1.8% of the total area. The
database can be implemented to land use management planning for Amphoe Mueang Chiang Mai and surrounding

areas.
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