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most effective algorithm for NDI controller optimization, delivering optimal
control gains across varying conditions.
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1. Introduction

Effective control of systems with nonlinear dynamics and varying operational conditions presents a persistent
challenge in modern control engineering, particularly in the field of aerospace [1]. Precise altitude control is crucial
for ensuring flight stability, safety, and overall performance, especially when subject to fluctuating environmental
conditions such as changes in airspeed and air density [2]. Altitude control serves as a prominent example where
nonlinearities in aerodynamic behaviour can significantly affect control performance. Given the wide range of
operating conditions, traditional linear control strategies often prove inadequate for maintaining precise altitude
regulation [3]. Widely used linear controllers, such as Proportional-Integral-Derivative (PID) controllers [4] and
Linear Quadratic Regulators (LQR) [5], are favoured for their simplicity and ease of implementation. However, these
controllers frequently struggle to manage highly nonlinear system dynamics effectively. While H,, control [6]
approaches have been developed to handle system uncertainties and manage some degree of nonlinearity, their
performance tends to degrade under extreme nonlinear conditions. Nonlinear Dynamic Inversion (NDI) has emerged
as a potential solution for such scenarios, providing a method to linearize nonlinear dynamics by effectively
"inverting" them [7].

Nonlinear Dynamic Inversion (NDI) is a control strategy that linearizes nonlinear system dynamics, enabling the
application of conventional linear control techniques [8]. This method is particularly valuable in aerospace, where
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nonlinearities arise from factors such as aerodynamic forces, changing altitudes, and varying flight speeds. NDI has
been effectively employed in the control of high-performance aircraft, offering improved manoeuvrability and
stability. A notable example is its use in the control system of the F-16 fighter jet, where NDI has significantly
enhanced pitch and roll rate control across a range of operational conditions [9]. Despite its advantages, the successful
implementation of NDI depends on precise tuning of control parameters, a task that continues to present substantial
challenges.

Optimizing controller parameters in NDI-based systems is essential for achieving high performance, particularly in
altitude control. Traditional manual tuning methods, like trial-and-error or expert-guided approaches, are often time-
consuming and can possibly fail to yield optimal results. Furthermore, because of the high dimensionality and
complexity of nonlinear systems, conventional techniques, such as pole placement, can be insufficient and often
demand detailed system modeling. In spacecraft control, for instance, manually tuning attitude control parameters
can extend development times and reduce control efficiency. This issue is especially significant in nonlinear systems,
where even small changes in the operating environment can markedly affect performance [10].

To address these limitations, metaheuristic optimization methods offer a powerful solution. These techniques are
specifically designed to solve complex problems, excelling in handling nonlinearity, multimodal optimization, and
uncertain systems. By employing a population-based concept and stochastic operators, metaheuristics enable global
exploration and robustness [11-16]. With advancements in computational power, these methods provide automated
and intelligent search processes that facilitate the discovery of optimal parameters for nonlinear controllers [17]. This
capability ensures superior performance and robustness in complex nonlinear systems, making metaheuristics an
indispensable tool for modern control design.

This work focuses on using metaheuristic algorithms to tune controller parameters in NDI-based control systems,
aiming to develop an optimal flight controller across the full flight envelope. A multi-objective optimization problem
is formulated for NDI flight controller tuning across various flight conditions, with the weighted sum technique
employed to scalarize such multiple objectives. Metaheuristics (MHs) such as Particle Swarm Optimization (PSO)
[18], Differential Evolution (DE) [19], Self-Adaptive Differential Evolution (JADE) [20], Success-History Based
Adaptive Differential Evolution (SHADE) [21], and SHADE with Linear Population Size Reduction (L-SHADE)
[22] provide robust solutions for tuning controller parameters by efficiently exploring large solution spaces and
identifying near-optimal solutions. These algorithms have proven particularly effective in optimizing control gains
for complex systems, as they are capable of handling multiple objective functions and constraints. In the context of
altitude control, metaheuristics have been successfully applied to the optimization of controller parameters in aircraft
systems, resulting in enhanced stability and overall performance [23].

To our best knowledge, the use of metaheuristic algorithms (MHs) for tuning NDI controller parameters has been
minimally explored, particularly in comparative studies focused on altitude control in aerospace systems. This gap
provides an opportunity to evaluate various optimization algorithms based on stability, responsiveness, and
robustness in nonlinear flight dynamics. Previous studies have shown that the effectiveness of each metaheuristic
algorithm for controller tuning can vary depending on system complexity and environmental factors [24].

Therefore, this study conducts a comparative analysis of several metaheuristic algorithms, PSO, DE, JADE, SHADE,
and L-SHADE, for tuning NDI controllers in altitude control systems. The research investigates how these
optimization techniques affect control performance in terms of stability, robustness, and responsiveness under diverse
operational conditions, including changes in airspeed and air density.

2. Formulation of a nonlinear dynamic inversion controller for altitude control design problem

2.1 Aircraft Flight Dynamics used in this work

In this study, a portion of the nonlinear longitudinal flight dynamics model [25] is utilized for the discussion. Forces,
velocity, and angles are referenced from the origin at the vehicle's center of mass, as shown in Fig. 1. The system is

described in a nonlinear state-variable form as shown in Eq. (1), with the state vector x = {vT, a,0,q,6,,H, H }T and
the input u = {8,, 6,.}".

X = f(x)+g(x)u )
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The equations for calculating other variables are as follows:
Fr(vr,6.) = (338.02 + 1.5651v4(t) — 0.00884v,(t)? )5, (t)

_ pvur(t)?
q(wr) = 21

C(a) = Cyt Ca(t)
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y(0,6) = 6(t) — a(®)

Cu(@,60) = Cagy + Cua, + Ciay, 8e(£)

M(vr,0,q,8,) = GO)ST(Cu (@ 5) + 575 Cuy 4 (0)

The parameters W, m, I,,,

)

3)
“
&)
(6)
O]
®)

€)

S, ¢, e,and AR represent the aircraft's weight, mass, moment of inertia about the lateral

axis, wing reference area, mean aerodynamic chord, Oswald efficiency factor, and aspect ratio, respectively. The
terms Fr, q, C;, Cp, ¥, Cy,and M correspond to nonlinear thrust force, dynamic pressure, lift coefficient, drag

coefficient, angle of attack, pitching moment coefficient, and pitching moment, respectively.
Additionally, aerodynamic parameters are defined as:

C,,: Lift coefficient at zero angle of attack.
Cp, and Cy, : Drag coefficient and pitching moment coefficient at zero lift.

C., and Cy, : Derivatives of the lift coefficient and pitching moment coefficient with respect to the angle of attack.

CM&g
respectively.

and C My Derivatives of the pitching moment coefficient with respect to elevator deflection and pitch rate,

The constant values used in this study were derived from small airplane models, specifically the Cessna 172, as

presented by Brian L. Stevens and his team in the book Aircraft Control and Simulation [21], as follows:
W = 2300(Ib), m = 71.4286(slugs), I,, = 2094(slug-ft*), S = 175 (ft*), ¢ = 4.89(ft), and$= 0.053
The aerodynamic derivative can be expressed as follows:

Cng = —12.0(per rad/s), €, = 0.25, C;, = 4.58(per rad), Cp, = 0.038,
Cy, = 0.015, Cy, = —0.75(per rad), and Cus, = =09
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The state evolution and output y are defined by arbitrary functions of the current states in Eq. (10).

y = h(x) (10)

Lift

Weight
Fig. 1. The notation for forces, velocity, and angles: The coordinates' origin is at the centre of the vehicle's mass.
2.2 Nonlinear dynamic inversion controller architecture
The nonlinear dynamic inversion controller is given by
u=GrX)[-Fx) +7+ K,(r —y)] (11)

In this work, we defined input u = {§,} and 7 = 0. This controller is depicted in Fig. 2. It requires state feedback as
x ={vr,a,6,q,8,}". The output is selected as

y=n,+Kq = h(x) (12)

The K, parameter is constant. It was argued that the n,, cue would dominate at high velocities, and at slower
approaches, velocities ¢ would dominate. The normal acceleration at the pilot’s station is

n, =n, + 15M/gl,,, (13)

With M the pitching moment. The normal acceleration is given by

n, = qS(C,cosa+ Cpsina)/mg — cos 6 (14)
Linearization

Loop F(x)

v (1)

— . a(t)

r(£) - ; 5. tl Alrcraft- o0

y G (%) » Dynamic
Model q9(1)
w(t) o,(1)
y=mn, + qu

Fig. 2. Nonlinear dynamic inversion controller.
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We aim to apply (11) to compute the dynamic inversion controller.

F(x) = 2 f(2),6(x) = - g(x)

The functions f(x), g(x) are defined as:

[ Fr(vr,6¢) cos a—q(vr)SCp (@) —W siny(a,6) 1

m
—Fr(vT,6¢) sina—q(vr)SCr(a)+W cos y(a,0)

mvr+q [

fx) = q ,g(x) =|
M(vT,0,9,8¢) l

Lyy 2

—20.26,

Finding dh/0x is tedious and the results are as follows.
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First, dn,/0x is given as

on, pvrS(C cosa+ Cpsina)

dvr mg

on, qS[(Cp +4.58) cosa — 0.515(C; sina]
da mg

oy _ o Oz _ o Oz _

20 = 0 aq _O’aae_o

Next, M /0x is given by

oM ] Sc?

a_UT = pvrScly + qucmq
oM = —0.75g¢S
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oM 0
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dq 2vp ™
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Fig. 3. Overview of the altitude controller architecture.

The altitude controller for this study utilizes the control architecture depicted in Fig. 3. Form Fig. 2. and Fig. 3.
showing control gains are K., Ky, K, Ky, K.

2.3 Controller design optimization problem

The optimization problem is formulated to identify all feasible controllers, as shown in Fig. 3., for flight control
conditions involving an altitude climb to a reference of H = +10(ft) from the initial state over a time interval of 0 to

10 seconds, followed by a descent to a reference of H = —10(ft) from 10 to 20 seconds. This process is evaluated
across varying speed and air density conditions. The design seeks to find x = {Kv Ku, Ky, Ky, Ky }T subject to bound

constraints {0 0 0 0 0} <x<{100 10 10 100 10}

il

The objective is to minimize specific functions for optimal altitude reference tracking across four initial trim
conditions, as illustrated in Fig. 4. Two objective functions, detailed in Egs. (21) — (22), are proposed to consolidate
many objectives into a single formulation. These objectives are compared to identify the most efficient controller
obtained through the optimization process. The proposed optimization problem is formulated as follows:

Objective function Case I

min: f(x) = max (1(x), (%), f3(X), fu(x)) 21
Objective function Case II

min: f(x) = 0.25f,(x) + 0.25£,(x) + 0.25£;5(x) + 0.25f,(x) (22)
Subjected to:

91(x) = 16(8)| < 20(deg),
g2(x) = max(H(t)) < 10(fr),

gs(x) = min(H(t)) = 0(ft)
where

t=10 t=20

i) = ft:o te?(t)dt + [,_, (t — 10)e*(t)dt

: Initial trim condition vy = 90 (ft/s) and p at sea level
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t=10 t=20

L) = [,_, te*(®)dt + [,_ (t —10)e*(t)dt

: Initial trim condition vy = 120 (ft/s) and p at 15,000 (ft) above sea level

t=10 t=20

X)) = ft:o te?(t)dt + [,_,, (t — 10)e*(t)dt

: Initial trim condition vy = 180 (ft/s) and p at sea level

t=10 t=20

fix) = ft:o te?(t)dt + [,_, (t —10)e*(t)dt
: Initial trim condition v = 200 (ft/s) and p at 15,000 (ft) above sea level

The functions fi(x) - fa(x) represent the integral time-squared error of the altitude response compared to the altitude
reference across four initial flight trim conditions, as shown in Fig. 4. This formulation aims for optimal altitude
reference tracking over a time domain of 0 to 20 seconds, with a time step of 0.01 seconds. The constraint g; (x)
ensures that the pitch angle does not exceed the aircraft’s operational limits, while g,(x) and g;(x) accuracy in
reference tracking.

The penalty function used to handle these constraints in this work is expressed as follows:

f(x) If max (g(x)) <0
3
o) = fx) +1e3 Z max (0, g;(x)), otherwise

i=1

f2(x) fa(x)

15000 [

10000

Usable operation range of optimal
NDI controller using Metaheuristic

Altitude (ft)

5000

fi(x) fz(x)

80 100 120 140 160 180 200
Airspeed (ft/s)

Fig. 4. Usable operation range of optimal NDI controller using Metaheuristics.

3. Numerical Experiment

Two numerical experiments are proposed in this study. Firstly, consolidate multiple objectives problem into a single
formulation problem as detailed in objective function Case I and Case II are compared. The Success-History Based
Adaptive Differential Evolution with Linear Population Size Reduction (L-SHADE) [22] is employed for process
optimization of those two objective problem and performance of the flight controller. Then, an object problem is used
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to evaluate the performance of MHs. For the MHs performance investigation five state of the art MHs are used. The
five MHs used in this study and their optimization parameter settings are detailed as follows:

1. Particle swarm optimisation (PSO) [18]:

e  Starting inertia weight (W) and ending inertia weight (W.,) are set to 0.5 and 0.01, respectively while the
balance between exploration and exploitation is achieved by controlling the influence of a particle’s previous
velocity on its current movement.

e A cognitive learning factor (C;) is set to 2.8. The parameter determines the influence of a particle’s personal
best on its movement, reflecting its tendency to learn from its own experience.

e A social learning factor (C>) is set to 1.3. The parameter governs the influence of the global best on a
particle’s movement, representing its tendency to follow the collective knowledge of the swarm.

2. Differential evolution (DE) [19]:
e The DE/best/2/bin strategy was used.
e A scaling factor (F) is set to 0.5, it controls the magnitude of the differential mutation operator.
e A crossover rate (CR) and the probability of choosing elements of mutant vectors (PC) are set to 0.7 and
0.8, respectively. These parameters determine the likelihood of each component of the trial vector being
inherited from the mutant vector.

3. Self Adaptive Differential Evolution (JADE) [20]:
e The optimisation parameters are self-adaptive.

4. Success-History Based Adaptive Differential Evolution (SHADE) [21]:
e The optimisation parameters are self-adaptive.

5. SHADE with Linear Population Size Reduction (L-SHADE) [22]:
e The optimisation parameters are self-adaptive.

Each algorithm is used to solve the proposed design problem for 30 optimization runs while the maximum number
of iterations and the population size are both set at 50. Each run consists of a total of 2,500 evaluations.

4. Results and Discussion
4.1 Evaluation of consolidating many objectives into a single formulation for Case I and Case II

After 30 optimization runs using L-SHADE for solving Case I and Case II, the comparative efficiency results for
each case are presented in Figs. 5-6. and Table 1. Fig. 5. shows the search history of minimizing penalty functions
Jo1(X), fr2(X), fp3(X), and f,4(x) as a function of evaluations for both Case I and Case II. The figure shows that Case I1
achieved better initial minimization than Case I approximately 650 function evaluations. However, after 1,000
function evaluations, both cases converge to a similar minimum value. These results indicate that, for NDI-based
flight controller optimal tuning, consolidating many objectives into a single formulation for Case I and Case II does
not affect the final solution after 2,500 function evaluations. The final solutions obtained based on Case I and Case
11, presented in Table 1, are insignificantly different. Case I produces slightly better results for f,1(x) and f,2(x), while
Case II yields slightly better values for f£,3(x) and f,4(x). The steady-state errors in both cases are very small, with
Case I demonstrating slightly better performance.

Fig. 6. illustrates the height reference tracking for varying initial conditions of the controller designed with Case I
compared to Case II. The figure clearly shows that the two lines overlap perfectly. These results indicate that Case I
and Case II produce equivalent design outcomes. Fig. 6. also demonstrates that the NDI controller, designed using L-
SHADE, effectively performs height reference tracking across varying initial flight trim conditions, as illustrated in
Fig. 4. Fig. 7. presents the aircraft's dynamic simulation states from 0 to 20 seconds, confirming that the results
comply with the specified constraint |6(t)| < 20(deg) and saturation limits |§.| < 20(deg), and 0.2 < §; < 1.
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Fig. 5. Mean search history of 30 optimization runs for minimizing the penalty function of objective function:

Case [ vs. Case II (Logarithmic Scale)

Table 1: The design variables, objective penalty functions, constraints, and steady-state error of the best run were
minimized using objective function Case I and Case II (Bold indicates the best value).

Design Variables ObjF, ObjF,
X1 1.0000E+02 1.0000E+02
X, 5.2953E-01 5.2853E-01
X3 8.5115E-02 8.7899E-02
Xy 1.0000E+02 9.9996E+01
Xs 1.7714E+00 1.8345E+00
Penalty functions
fp1(x) 2.1916E+05 2.1925E+05
fp2(X) 1.4801E+05 1.4803E+05
fp3(x) 2.5090E+04 2.4987E+04
fpa(x) 3.1920E+04 3.1737E+04
Constraints
g1(x) -7.2072E-02 -7.1912E-02
g2(x) -8.0751E-04 -8.8208E-04
g3 (x) 8.4399E-06 8.4399E-06
Steady-state error
€ss at 10son vy = 90 and p at O ft 0.0113 ft 0.0127 ft
€ at20son vy =90 and p at O ft 0.0132 ft 0.0149 ft
€ at 10s on vy = 120 and p at 15,000 ft 0.0087 ft 0.0102 ft
€ss at 20s on vy = 120 and p at 15,000 ft 0.0081 ft 0.0094 ft
€gs at 10s on vy = 180 and p at 0 ft 0.0061 ft 0.0070 ft
€5 at20s on vy = 180 and p at O ft 0.0061 ft 0.0071 ft
€ss at 10s on vy = 200 and p at 15,000 ft 0.0074 ft 0.0084 ft
€ at 20s on vy = 200 and p at 15,000 ft 0.0074 ft 0.0085 ft

J. Res. Appl. Mech. Eng.
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At a velocity of 90 ft/s and an air density at a height of 0 ft above sea level
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Fig. 6. Height reference tracking for various initial conditions of best solution at 2,500 function of evaluations for
controller designed using objective function Case I compared with objective function Case II.

4.2 Performance investigation of MHs

To evaluate performance of several MHs on solving NDI-base flight control optimization design, many objective
problems which consolidated to single objective in Case II is applied. After perform 30 optimization runs on solving
the problem, the results were compared based on the objective function values presented in Table 2. The mean value
of the objective function was used to evaluate the convergence rate and consistency of the algorithms, while the
number of successful runs was used to measure their search consistency. In the event that two algorithms had the
same number of successful runs, their consistency performance was evaluated using the standard deviation (STD) of
the objective function values. Only the algorithm that found the feasible solution at least twice was allowed to have
mean and STD values. From Table 2, all metaheuristics (MHs) were able to obtain 30 feasible solutions. L-SHADE
performed best across all metrics, including Best, Worst, Mean, Standard Deviation (STD), and Friedman ranking,
while SHADE and JADE ranked second and third, respectively.

Fig. 8. illustrates the average search history of the metaheuristics (MHs) from Table 2. At the beginning of the
optimization process, Differential Evolution (DE) performed the worst, while SHADE became trapped in a local
optimum. In contrast, JADE, SHADE, and L-SHADE continued to improve. JADE was the fastest, followed by L-
SHADE and SHADE in second and third places, respectively. By the end of the optimization process, L-SHADE
emerged as the best performer, with SHADE and JADE in second and third places, respectively.
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Fig. 7. The aircraft’s dynamic simulation states from 0 to 20 seconds of the best solution of L-SHADE
minimizes minimizing objective function Case II.
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Table 2: The statistical comparison includes the best, worst, mean, standard deviation (STD), and Friedman ranking

(Fr) scores, based on the 30 runs minimizing objective function Case II (Bold indicates the best value).

Algorithms Worst Best Mean STD No.sr* Fr*
PSO 2.452E+08 1.136E+05 1.308E+08 1.243E+08 30 4.03
DE 4.327E+12 2.650E+07 1.457E+11 7.897E+11 30 4.97
JADE 1.189E+05 1.072E+05 1.099E+05 2.338E+03 30 2.63
SHADE 1.151E+05 1.066E+05 1.093E+05 1.803E+03 30 2.37
LSHADE 1.061E+05 1.060E+05 1.060E+05 1.053E+01 30 1.00
No.sr* = No. of successful runs , Fr* = The mean Friedman ranking scores
12
3512 T T T T

@ —PSO0

s af | ——DE i

8 i JADE

2 ~—_ 1\ e SHADE

gz.s H | - - “LSHADE|

R

2 1f , -

E 05} -

: N\

0 N7 1 f ] L
0 500 1000 1500 2000 2500

Number of function evaluations
Fig. 8. The search history averaged over 30 runs.

5. Conclusion

This study explores the successful application of several metaheuristic algorithms (MHs) in designing a nonlinear
dynamic inversion (NDI) controller for altitude control. The optimization challenge centers on selecting control gains
that maximize performance while maintaining stability and adhering to control handling constraints. To simplify the
many objective optimization problem, it is reformulated into two single-objective cases—Case I and Case II. The
results show that both cases can be used effectively to design the NDI controller with comparable efficiency, although
Case II achieves a slightly better optimum result. Additionally, a range of MHs is employed to tackle this problem,
with their performance rigorously assessed. Among the algorithms tested, L-SHADE is identified as the most
efficient, demonstrating superior convergence and consistency. A key contribution of this work is that the application
of effective metaheuristics enables even novice designers to engage in NDI controller synthesis successfully. This
research lays the groundwork for further exploration of straightforward and efficient approaches to NDI controller
design using many-objective MHs, with future studies planned to extend these methods to the design of Incremental
Nonlinear Dynamic Inversion (INDI) controllers.
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