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Abstract: 

Effective control of nonlinear dynamics under varying conditions is challenging 

in aerospace systems, especially for altitude regulation. Traditional linear 

controllers like PID and LQR are simple but struggle with complex flight 

dynamics and changing conditions, such as airspeed and density variations. 

Nonlinear Dynamic Inversion (NDI) offers a solution by transforming nonlinear 

dynamics into a linearized form, allowing the use of linear control techniques. 

However, tuning NDI parameters is complex and time-consuming with 

traditional methods. Metaheuristic algorithms provide a robust alternative, 

efficiently exploring large solution spaces for near-optimal tuning. This study 

compares various metaheuristics for optimizing the parameters of NDI 

controllers in altitude control, assessing stability, responsiveness, and 

robustness. Results indicate that Success-History Based Adaptive Differential 

Evolution (SHADE) with Linear Population Size Reduction (L-SHADE) is the 

most effective algorithm for NDI controller optimization, delivering optimal 

control gains across varying conditions. 

 

Keywords: Nonlinear dynamic inversion controller, Metaheuristic, Altitude 

control, Many objective optimization. 

 

 

1. Introduction 

 

Effective control of systems with nonlinear dynamics and varying operational conditions presents a persistent 

challenge in modern control engineering, particularly in the field of aerospace [1]. Precise altitude control is crucial 

for ensuring flight stability, safety, and overall performance, especially when subject to fluctuating environmental 

conditions such as changes in airspeed and air density [2]. Altitude control serves as a prominent example where 

nonlinearities in aerodynamic behaviour can significantly affect control performance. Given the wide range of 

operating conditions, traditional linear control strategies often prove inadequate for maintaining precise altitude 

regulation [3]. Widely used linear controllers, such as Proportional-Integral-Derivative (PID) controllers [4] and 

Linear Quadratic Regulators (LQR) [5], are favoured for their simplicity and ease of implementation. However, these 

controllers frequently struggle to manage highly nonlinear system dynamics effectively. While 𝐻∞ control [6] 

approaches have been developed to handle system uncertainties and manage some degree of nonlinearity, their 

performance tends to degrade under extreme nonlinear conditions. Nonlinear Dynamic Inversion (NDI) has emerged 

as a potential solution for such scenarios, providing a method to linearize nonlinear dynamics by effectively 

"inverting" them [7]. 

 

Nonlinear Dynamic Inversion (NDI) is a control strategy that linearizes nonlinear system dynamics, enabling the 

application of conventional linear control techniques [8]. This method is particularly valuable in aerospace, where 
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nonlinearities arise from factors such as aerodynamic forces, changing altitudes, and varying flight speeds. NDI has 

been effectively employed in the control of high-performance aircraft, offering improved manoeuvrability and 

stability. A notable example is its use in the control system of the F-16 fighter jet, where NDI has significantly 

enhanced pitch and roll rate control across a range of operational conditions [9]. Despite its advantages, the successful 

implementation of NDI depends on precise tuning of control parameters, a task that continues to present substantial 

challenges. 

 

Optimizing controller parameters in NDI-based systems is essential for achieving high performance, particularly in 

altitude control. Traditional manual tuning methods, like trial-and-error or expert-guided approaches, are often time-

consuming and can possibly fail to yield optimal results. Furthermore, because of the high dimensionality and 

complexity of nonlinear systems, conventional techniques, such as pole placement, can be insufficient and often 

demand detailed system modeling. In spacecraft control, for instance, manually tuning attitude control parameters 

can extend development times and reduce control efficiency. This issue is especially significant in nonlinear systems, 

where even small changes in the operating environment can markedly affect performance [10].  

 

To address these limitations, metaheuristic optimization methods offer a powerful solution. These techniques are 

specifically designed to solve complex problems, excelling in handling nonlinearity, multimodal optimization, and 

uncertain systems. By employing a population-based concept and stochastic operators, metaheuristics enable global 

exploration and robustness [11–16]. With advancements in computational power, these methods provide automated 

and intelligent search processes that facilitate the discovery of optimal parameters for nonlinear controllers [17]. This 

capability ensures superior performance and robustness in complex nonlinear systems, making metaheuristics an 

indispensable tool for modern control design. 

 

This work focuses on using metaheuristic algorithms to tune controller parameters in NDI-based control systems, 

aiming to develop an optimal flight controller across the full flight envelope. A multi-objective optimization problem 

is formulated for NDI flight controller tuning across various flight conditions, with the weighted sum technique 

employed to scalarize such multiple objectives. Metaheuristics (MHs) such as Particle Swarm Optimization (PSO) 

[18], Differential Evolution (DE) [19], Self-Adaptive Differential Evolution (JADE) [20], Success-History Based 

Adaptive Differential Evolution (SHADE) [21], and SHADE with Linear Population Size Reduction (L-SHADE) 

[22] provide robust solutions for tuning controller parameters by efficiently exploring large solution spaces and 

identifying near-optimal solutions. These algorithms have proven particularly effective in optimizing control gains 

for complex systems, as they are capable of handling multiple objective functions and constraints. In the context of 

altitude control, metaheuristics have been successfully applied to the optimization of controller parameters in aircraft 

systems, resulting in enhanced stability and overall performance [23]. 

 

To our best knowledge, the use of metaheuristic algorithms (MHs) for tuning NDI controller parameters has been 

minimally explored, particularly in comparative studies focused on altitude control in aerospace systems. This gap 

provides an opportunity to evaluate various optimization algorithms based on stability, responsiveness, and 

robustness in nonlinear flight dynamics. Previous studies have shown that the effectiveness of each metaheuristic 

algorithm for controller tuning can vary depending on system complexity and environmental factors [24].  

 

Therefore, this study conducts a comparative analysis of several metaheuristic algorithms, PSO, DE, JADE, SHADE, 

and L-SHADE, for tuning NDI controllers in altitude control systems. The research investigates how these 

optimization techniques affect control performance in terms of stability, robustness, and responsiveness under diverse 

operational conditions, including changes in airspeed and air density. 
 

2. Formulation of a nonlinear dynamic inversion controller for altitude control design problem 

 

2.1 Aircraft Flight Dynamics used in this work 

 

In this study, a portion of the nonlinear longitudinal flight dynamics model [25] is utilized for the discussion. Forces, 

velocity, and angles are referenced from the origin at the vehicle's center of mass, as shown in Fig. 1. The system is 

described in a nonlinear state-variable form as shown in Eq. (1), with the state vector 𝒙 = {𝑣𝑇, 𝛼, 𝜃, 𝑞, 𝛿𝑒 , 𝐻, 𝐻̇}
𝑇
 and 

the input 𝒖 = {𝛿𝑒 , 𝛿𝑡}
𝑇. 

 

𝒙̇  =  𝒇(𝒙) + 𝒈(𝒙)𝒖                  (1) 
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or 

[
 
 
 
 
 
 
 
 
𝑣̇𝑇

𝛼̇
𝜃̇
𝑞̇

𝛿̇𝑒

𝛿̇𝑡

𝐻̇
𝐻̈ ]

 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
 

𝐹𝑇(𝑣𝑇,𝛿𝑡) 𝑐𝑜𝑠 𝛼−𝑞(𝑣𝑇)𝑆𝐶𝐷(𝛼)−𝑊𝑠𝑖𝑛 𝛾(α,𝜃)

𝑚
−𝐹𝑇(𝑣𝑇,𝛿𝑡) 𝑠𝑖𝑛𝛼−𝑞(𝑣𝑇)𝑆𝐶𝐿(𝛼)+𝑊 𝑐𝑜𝑠 𝛾(α,𝜃)

𝑚𝑣𝑇+𝑞

𝑞
𝑀(𝑣𝑇,α,q,𝛿𝑒)

𝐼𝑦𝑦

−20.2𝛿𝑒

−20.2𝛿𝑡

𝐻̇

𝐹𝑇(𝑣𝑇,𝛿𝑡) 𝑠𝑖𝑛𝜃−𝑞(𝑣𝑇)𝑆𝐶𝐷(𝛼) 𝑠𝑖𝑛 𝛾(α,𝜃)−𝑊+𝑞(𝑣𝑇)𝑆𝐶𝐿(𝛼) 𝑐𝑜𝑠 𝛾(α,𝜃)

𝑚 ]
 
 
 
 
 
 
 
 
 
 
 

+

[
 
 
 
 
 
 
 

0 0
0 0
0 0
0 0

20.2 0
0 20.2
0 0
0 0 ]

 
 
 
 
 
 
 

[
𝛿𝑒

𝛿𝑡
]                                          (2) 

 

The equations for calculating other variables are as follows: 

 

𝐹𝑇(𝑣𝑇, 𝛿𝑡) =  (338.02 + 1.5651𝑣𝑇(𝑡) − 0.00884𝑣𝑇(𝑡)
2 )𝛿𝑡(𝑡)                        (3) 

 

𝑞(𝑣𝑇) =  
𝜌𝑣𝑇(𝑡)2

2
                               (4) 

 

𝐶𝐿(𝛼) =  𝐶𝐿0
+ 𝐶𝐿𝛼

𝛼(𝑡)                           (5) 

 

𝐶𝐷(𝛼) =  𝐶𝐷0
+

1

𝜋𝑒𝐴𝑅
𝐶𝐿(𝛼)2                             (6) 

 

𝛾(α, 𝜃) =  𝜃(𝑡) − 𝛼(𝑡)                             (7) 

 

𝐶𝑀(𝛼, 𝛿𝑒) =  C𝑀0
+ 𝐶𝑀𝛼

+ 𝐶𝑀𝛿𝑒
𝛿𝑒(𝑡)                             (8) 

 

𝑀(𝑣𝑇 , α, q, 𝛿𝑒) = 𝑞(𝑣𝑇)𝑆𝑐(𝐶𝑀(𝛼, 𝛿𝑒) +
𝑐

2𝑣𝑇(𝑡)
𝐶𝑀𝑞

𝑞(𝑡))                         (9) 

 

The parameters 𝑊, 𝑚,  𝐼𝑦𝑦, 𝑆, 𝑐, 𝑒, 𝑎𝑛𝑑 𝐴𝑅 represent the aircraft's weight, mass, moment of inertia about the lateral 

axis, wing reference area, mean aerodynamic chord, Oswald efficiency factor, and aspect ratio, respectively. The 

terms 𝐹𝑇, 𝑞, 𝐶𝐿, 𝐶𝐷, 𝛾, 𝐶𝑀, and 𝑀 correspond to nonlinear thrust force, dynamic pressure, lift coefficient, drag 

coefficient, angle of attack, pitching moment coefficient, and pitching moment, respectively. 

 

Additionally, aerodynamic parameters are defined as: 

 

𝐶𝐿0
: Lift coefficient at zero angle of attack. 

𝐶𝐷0
 and C𝑀0

 : Drag coefficient and pitching moment coefficient at zero lift. 

𝐶𝐿𝛼
 and 𝐶𝑀𝛼

 : Derivatives of the lift coefficient and pitching moment coefficient with respect to the angle of attack. 

𝐶𝑀𝛿𝑒
 and  𝐶𝑀𝑞

: Derivatives of the pitching moment coefficient with respect to elevator deflection and pitch rate, 

respectively. 

 

The constant values used in this study were derived from small airplane models, specifically the Cessna 172, as 

presented by Brian L. Stevens and his team in the book Aircraft Control and Simulation [21], as follows: 

 

𝑊 = 2300(lb),  𝑚 = 71.4286(slugs),  𝐼𝑦𝑦 = 2094(slug-ft2),  𝑆 = 175 (ft2),  𝑐 = 4.89(ft), and 
1

𝜋𝑒𝐴𝑅
= 0.053 

 

The aerodynamic derivative can be expressed as follows: 

 

𝐶𝑚𝑞
= −12.0(per rad/s),  𝐶𝐿0

= 0.25,  𝐶𝐿𝛼
= 4.58(per rad),  𝐶𝐷0

= 0.038,   

𝐶𝑀0
= 0.015,  𝐶𝑀𝛼

= −0.75(per rad), and 𝐶𝑀𝛿𝑒
= −0.9 
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The state evolution and output 𝒚 are defined by arbitrary functions of the current states in Eq. (10). 

 

𝒚 =  𝒉(𝒙)                           (10) 

 

 
 

Fig. 1. The notation for forces, velocity, and angles: The coordinates' origin is at the centre of the vehicle's mass. 

 

2.2 Nonlinear dynamic inversion controller architecture 

 

The nonlinear dynamic inversion controller is given by 

 

𝒖 =  𝐺−1(𝒙)[−𝐹(𝒙)  + 𝑟̇ + 𝐾𝑦(𝑟 − 𝑦)]                       (11) 

 

In this work, we defined input 𝒖 = {𝛿𝑒} and 𝑟̇ = 0. This controller is depicted in Fig. 2. It requires state feedback as 

𝒙 = {𝑣𝑇 , 𝛼, 𝜃, 𝑞, 𝛿𝑒}
𝑇. The output is selected as 

 

𝑦 = 𝑛zp + 𝐾𝑞𝑞 ≡ ℎ(𝑥)                             (12) 

 

The 𝐾𝑞 parameter is constant. It was argued that the 𝑛zp  cue would dominate at high velocities, and at slower 

approaches, velocities 𝑞 would dominate. The normal acceleration at the pilot’s station is 

 

𝑛zp = 𝑛𝑧 +  15𝑀/𝑔𝐼𝑦𝑦                                  (13) 

 

With M the pitching moment. The normal acceleration is given by 

 

𝑛𝑧  =  𝑞̄𝑆(𝐶𝐿 𝑐𝑜𝑠 𝛼 + 𝐶𝐷 𝑠𝑖𝑛 𝛼)/𝑚𝑔 − 𝑐𝑜𝑠 𝜃                        (14) 

 

 
 

Fig. 2. Nonlinear dynamic inversion controller. 
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We aim to apply (11) to compute the dynamic inversion controller. To do this, we must determine 

 

𝐹(𝒙) =
𝜕ℎ

𝜕𝒙
𝒇(𝒙), 𝐺(𝒙) =

𝜕ℎ

𝜕𝒙
𝒈(𝒙)                         (15) 

 

The functions 𝒇(𝒙), 𝒈(𝒙) are defined as: 

 

𝒇(𝒙) =

[
 
 
 
 
 
 

𝐹𝑇(𝑣𝑇,𝛿𝑡) 𝑐𝑜𝑠 𝛼−𝑞(𝑣𝑇)𝑆𝐶𝐷(𝛼)−𝑊 𝑠𝑖𝑛𝛾(α,𝜃)

𝑚
−𝐹𝑇(𝑣𝑇,𝛿𝑡) 𝑠𝑖𝑛𝛼−𝑞(𝑣𝑇)𝑆𝐶𝐿(𝛼)+𝑊𝑐𝑜𝑠 𝛾(α,𝜃)

𝑚𝑣𝑇+𝑞

𝑞
𝑀(𝑣𝑇,α,q,𝛿𝑒)

𝐼𝑦𝑦

−20.2𝛿𝑒 ]
 
 
 
 
 
 

, 𝒈(𝒙) =

[
 
 
 
 

0
0
0
0

20.2]
 
 
 
 

                         (16) 

 

Finding 𝜕ℎ/𝜕𝒙 is tedious and the results are as follows. 

 
𝜕ℎ

𝜕𝒙
≡

𝜕𝑦

𝜕𝒙
=

𝜕𝑛𝑧

𝜕𝒙
+

15

𝑔𝐼𝑦𝑦

𝜕𝑀

𝜕𝒙
+ 𝒌                   (17) 

 

or 

 

𝜕ℎ

𝜕𝒙
=

[
 
 
 
 
 
 
 
 
𝜕𝑛𝑧

𝜕𝑣𝑇

𝜕𝑛𝑧

𝜕𝛼
𝜕𝑛𝑧

𝜕𝜃
𝜕𝑛𝑧

𝜕𝑞

𝜕𝑛𝑧

𝜕𝛿𝑒]
 
 
 
 
 
 
 
 
𝑇

+
15

𝑔𝐼𝑦𝑦

[
 
 
 
 
 
 
 
 
𝜕𝑀

𝜕𝑣𝑇

𝜕𝑀

𝜕𝛼
𝜕𝑀

𝜕𝜃
𝜕𝑀

𝜕𝑞

𝜕𝑀

𝜕𝛿𝑒]
 
 
 
 
 
 
 
 
𝑇

+

[
 
 
 
 
0
0
0
0
𝐾𝑞]

 
 
 
 
𝑇

                       (18) 

 

First, 𝜕𝑛𝑧/𝜕𝒙 is given as 

 
𝜕𝑛𝑧

𝜕𝑣𝑇
=

𝜌𝑣𝑇𝑆(𝐶𝐿 𝑐𝑜𝑠 𝛼 + 𝐶𝐷 𝑠𝑖𝑛 𝛼)

𝑚𝑔
 

𝜕𝑛𝑧

𝜕𝛼
=

𝑞𝑆[(𝐶𝐷 + 4.58) 𝑐𝑜𝑠 𝛼 − 0.515𝐶𝐿 𝑠𝑖𝑛 𝛼]

𝑚𝑔
 

𝜕𝑛𝑧

𝜕𝜃
= 0,

𝜕𝑛𝑧

𝜕𝑞
= 0,

𝜕𝑛𝑧

𝜕𝛿𝑒
= 0                    (19) 

 

Next, 𝜕𝑀/𝜕𝒙 is given by 

 

𝜕𝑀

𝜕𝑣𝑇
= 𝜌𝑣𝑇𝑆𝑐̄𝐶𝑀 +

𝑆𝑐̄2

4
𝜌𝑞𝐶𝑚𝑞 

𝜕𝑀

𝜕𝛼
= −0.75𝑞̄𝑐̄𝑆 

𝜕𝑀

𝜕𝜃
= 0 

𝜕𝑀

𝜕𝑞
=

𝑆𝑐̄2𝑞̄

2𝑣𝑇
𝐶𝑚𝑞 

𝜕𝑀

𝜕𝛿𝑒
= −0.9𝑞̄𝑐̄𝑆                         (20) 
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Fig. 3. Overview of the altitude controller architecture. 

 

The altitude controller for this study utilizes the control architecture depicted in Fig. 3. Form Fig. 2. and Fig. 3. 

showing control gains are 𝐾𝑣𝑇
, 𝐾𝐻, 𝐾𝐻̇, 𝐾𝑦, 𝐾𝑞. 

 

2.3 Controller design optimization problem 

 

The optimization problem is formulated to identify all feasible controllers, as shown in Fig. 3., for flight control 

conditions involving an altitude climb to a reference of 𝐻 = +10(ft) from the initial state over a time interval of 0 to 

10 seconds, followed by a descent to a reference of  𝐻 = −10(ft) from 10 to 20 seconds. This process is evaluated 

across varying speed and air density conditions. The design seeks to find 𝒙 = {𝐾𝑣𝑇
, 𝐾𝐻, 𝐾𝐻̇, 𝐾𝑦, 𝐾𝑞}

𝑻
 subject to bound 

constraints {0 0 0 0 0}𝑇 ≤ 𝒙 ≤ {100 10 10 100 10}𝑻. 
 

The objective is to minimize specific functions for optimal altitude reference tracking across four initial trim 

conditions, as illustrated in Fig. 4. Two objective functions, detailed in Eqs. (21) – (22), are proposed to consolidate 

many objectives into a single formulation. These objectives are compared to identify the most efficient controller 

obtained through the optimization process. The proposed optimization problem is formulated as follows: 

 

Objective function Case I 

 

𝑚𝑖𝑛: 𝒇(𝐱) = max ( 𝑓1(𝐱) , 𝑓2(𝐱) , 𝑓3(𝐱) , 𝑓4(𝐱) )                       (21) 

 

Objective function Case II 

 

𝑚𝑖𝑛: 𝒇(𝐱) = 0.25𝑓1(𝐱) + 0.25𝑓2(𝐱) + 0.25𝑓3(𝐱) + 0.25𝑓4(𝐱)             (22) 

 

Subjected to: 

 

𝑔1(𝑥) = |𝜃(𝑡)| ≤ 20(𝑑𝑒𝑔) , 
𝑔2(𝑥) = 𝑚𝑎𝑥(𝐻(𝑡)) ≤ 10(ft), 
𝑔3(𝑥) = 𝑚𝑖𝑛(𝐻(𝑡)) ≥ 0(ft) 
 

where 
 

𝑓1(𝐱) = ∫ 𝑡𝑒2(𝑡)𝑑𝑡
𝑡=10

𝑡=0
+ ∫ (𝑡 − 10)𝑒2(𝑡)𝑑𝑡

𝑡=20

𝑡=10
  

 

: Initial trim condition  𝑣𝑇 = 90 (ft/s) and 𝜌 at sea level 
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𝑓2(𝐱) = ∫ 𝑡𝑒2(𝑡)𝑑𝑡
𝑡=10

𝑡=0
+ ∫ (𝑡 − 10)𝑒2(𝑡)𝑑𝑡

𝑡=20

𝑡=10
  

 

: Initial trim condition  𝑣𝑇 = 120 (ft/s)  and 𝜌 at 15,000 (ft) above sea level 

 

𝑓3(𝐱) = ∫ 𝑡𝑒2(𝑡)𝑑𝑡
𝑡=10

𝑡=0
+ ∫ (𝑡 − 10)𝑒2(𝑡)𝑑𝑡

𝑡=20

𝑡=10
  

 

: Initial trim condition  𝑣𝑇 = 180 (ft/s) and 𝜌 at sea level 

 

𝑓4(𝐱) = ∫ 𝑡𝑒2(𝑡)𝑑𝑡
𝑡=10

𝑡=0
+ ∫ (𝑡 − 10)𝑒2(𝑡)𝑑𝑡

𝑡=20

𝑡=10
  

 

: Initial trim condition  𝑣𝑇 = 200 (ft/s)  and 𝜌 at 15,000 (ft) above sea level 

 

The functions f1(x) - f4(x) represent the integral time-squared error of the altitude response compared to the altitude 

reference across four initial flight trim conditions, as shown in Fig. 4. This formulation aims for optimal altitude 

reference tracking over a time domain of 0 to 20 seconds, with a time step of 0.01 seconds. The constraint 𝑔1(𝑥) 

ensures that the pitch angle does not exceed the aircraft’s operational limits, while 𝑔2(𝑥) and 𝑔3(𝑥) accuracy in 

reference tracking.  

 

The penalty function used to handle these constraints in this work is expressed as follows: 

 

𝑓𝑝(𝑥) = {

𝑓(𝑥)                                   𝐼𝑓  max (𝒈(𝒙)) < 0 

𝑓(𝑥) + 1𝑒3 ∑max (0, 𝑔𝑖( 𝒙)),

3

𝑖=1

  otherwise
 

 

 
 

Fig. 4. Usable operation range of optimal NDI controller using Metaheuristics. 

 

3. Numerical Experiment 

 

Two numerical experiments are proposed in this study. Firstly, consolidate multiple objectives problem into a single 

formulation problem as detailed in objective function Case I and Case II are compared. The Success-History Based 

Adaptive Differential Evolution with Linear Population Size Reduction (L-SHADE) [22] is employed for process 

optimization of those two objective problem and performance of the flight controller. Then, an object problem is used 
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to evaluate the performance of MHs. For the MHs performance investigation five state of the art MHs are used. The 

five MHs used in this study and their optimization parameter settings are detailed as follows: 

 

1. Particle swarm optimisation (PSO) [18]: 

• Starting inertia weight (Wst) and ending inertia weight (Wen) are set to 0.5 and 0.01, respectively while the 

balance between exploration and exploitation is achieved by controlling the influence of a particle’s previous 

velocity on its current movement. 

• A cognitive learning factor (C1) is set to 2.8. The parameter determines the influence of a particle’s personal 

best on its movement, reflecting its tendency to learn from its own experience. 

• A social learning factor (C2) is set to 1.3. The parameter governs the influence of the global best on a 

particle’s movement, representing its tendency to follow the collective knowledge of the swarm. 

 

2. Differential evolution (DE) [19]: 

• The DE/best/2/bin strategy was used. 

• A scaling factor (F) is set to 0.5, it controls the magnitude of the differential mutation operator. 

• A crossover rate (CR) and the probability of choosing elements of mutant vectors (PC) are set to 0.7 and 

0.8, respectively. These parameters determine the likelihood of each component of the trial vector being 

inherited from the mutant vector. 

 

3. Self Adaptive Differential Evolution (JADE) [20]: 

• The optimisation parameters are self-adaptive. 

 

4. Success-History Based Adaptive Differential Evolution (SHADE) [21]: 

• The optimisation parameters are self-adaptive. 

 

5. SHADE with Linear Population Size Reduction (L-SHADE) [22]: 

• The optimisation parameters are self-adaptive. 

 

Each algorithm is used to solve the proposed design problem for 30 optimization runs while the maximum number 

of iterations and the population size are both set at 50. Each run consists of a total of 2,500 evaluations. 

 

4. Results and Discussion 

 

4.1 Evaluation of consolidating many objectives into a single formulation for Case I and Case II 

 

After 30 optimization runs using L-SHADE for solving Case I and Case II, the comparative efficiency results for 

each case are presented in Figs. 5-6. and Table 1. Fig. 5. shows the search history of minimizing penalty functions 

fp1(x), fp2(x), fp3(x), and fp4(x) as a function of evaluations for both Case I and Case II. The figure shows that Case II 

achieved better initial minimization than Case I approximately 650 function evaluations. However, after 1,000 

function evaluations, both cases converge to a similar minimum value. These results indicate that, for NDI-based 

flight controller optimal tuning, consolidating many objectives into a single formulation for Case I and Case II does 

not affect the final solution after 2,500 function evaluations. The final solutions obtained based on Case I and Case 

II, presented in Table 1, are insignificantly different. Case I produces slightly better results for fp1(x) and fp2(x), while 

Case II yields slightly better values for fp3(x) and fp4(x). The steady-state errors in both cases are very small, with 

Case I demonstrating slightly better performance. 

 

Fig. 6. illustrates the height reference tracking for varying initial conditions of the controller designed with Case I 

compared to Case II. The figure clearly shows that the two lines overlap perfectly. These results indicate that Case I 

and Case II produce equivalent design outcomes. Fig. 6. also demonstrates that the NDI controller, designed using L-

SHADE, effectively performs height reference tracking across varying initial flight trim conditions, as illustrated in 

Fig. 4. Fig. 7. presents the aircraft's dynamic simulation states from 0 to 20 seconds, confirming that the results 

comply with the specified constraint |𝜃(𝑡)| ≤ 20(𝑑𝑒𝑔) and saturation limits |𝛿𝑒| ≤ 20(𝑑𝑒𝑔), and 0.2 ≤ 𝛿𝑇 ≤ 1.
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Fig. 5. Mean search history of 30 optimization runs for minimizing the penalty function of objective function:  

Case I vs. Case II (Logarithmic Scale) 

 

Table 1: The design variables, objective penalty functions, constraints, and steady-state error of the best run were 

minimized using objective function Case I and Case II (Bold indicates the best value). 

Design Variables 𝐎𝐛𝐣𝐅𝟏 𝐎𝐛𝐣𝐅𝟐 

𝑥1 1.0000E+02 1.0000E+02 

𝑥2 5.2953E-01 5.2853E-01 

𝑥3 8.5115E-02 8.7899E-02 

𝑥4 1.0000E+02 9.9996E+01 

𝑥5 1.7714E+00 1.8345E+00 

Penalty functions   

𝑓𝑝1(𝑥) 2.1916E+05 2.1925E+05 

𝑓𝑝2(𝑥) 1.4801E+05 1.4803E+05 

𝑓𝑝3(𝑥) 2.5090E+04 2.4987E+04 

𝑓𝑝4(𝑥) 3.1920E+04 3.1737E+04 

Constraints   

𝑔1(𝑥) -7.2072E-02 -7.1912E-02 

𝑔2(𝑥) -8.0751E-04 -8.8208E-04 

𝑔3(𝑥) 8.4399E-06 8.4399E-06 

Steady-state error   

𝑒𝑠𝑠 at 10s on 𝑣𝑇 = 90  and 𝜌 at 0 ft 0.0113 ft 0.0127 ft 

𝑒𝑠𝑠 at 20s on 𝑣𝑇 = 90 and 𝜌 at 0 ft 0.0132 ft 0.0149 ft 

𝑒𝑠𝑠 at 10s on 𝑣𝑇 = 120 and 𝜌 at 15,000 ft 0.0087 ft 0.0102 ft 

𝑒𝑠𝑠 at 20s on 𝑣𝑇 = 120 and 𝜌 at 15,000 ft 0.0081 ft 0.0094 ft 

𝑒𝑠𝑠 at 10s on 𝑣𝑇 = 180 and 𝜌 at 0 ft 0.0061 ft 0.0070 ft 

𝑒𝑠𝑠 at 20s on 𝑣𝑇 = 180 and 𝜌 at 0 ft 0.0061 ft 0.0071 ft 

𝑒𝑠𝑠 at 10s on 𝑣𝑇 = 200 and 𝜌 at 15,000 ft 0.0074 ft 0.0084 ft 

𝑒𝑠𝑠 at 20s on 𝑣𝑇 = 200 and 𝜌 at 15,000 ft 0.0074 ft 0.0085 ft 
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Fig. 6. Height reference tracking for various initial conditions of best solution at 2,500 function of evaluations for 

controller designed using objective function Case I compared with objective function Case II. 

 

4.2 Performance investigation of MHs 

 

To evaluate performance of several MHs on solving NDI-base flight control optimization design, many objective 

problems which consolidated to single objective in Case II is applied. After perform 30 optimization runs on solving 

the problem, the results were compared based on the objective function values presented in Table 2. The mean value 

of the objective function was used to evaluate the convergence rate and consistency of the algorithms, while the 

number of successful runs was used to measure their search consistency. In the event that two algorithms had the 

same number of successful runs, their consistency performance was evaluated using the standard deviation (STD) of 

the objective function values. Only the algorithm that found the feasible solution at least twice was allowed to have 

mean and STD values. From Table 2, all metaheuristics (MHs) were able to obtain 30 feasible solutions. L-SHADE 

performed best across all metrics, including Best, Worst, Mean, Standard Deviation (STD), and Friedman ranking, 

while SHADE and JADE ranked second and third, respectively. 

 

Fig. 8. illustrates the average search history of the metaheuristics (MHs) from Table 2. At the beginning of the 

optimization process, Differential Evolution (DE) performed the worst, while SHADE became trapped in a local 

optimum. In contrast, JADE, SHADE, and L-SHADE continued to improve. JADE was the fastest, followed by L-

SHADE and SHADE in second and third places, respectively. By the end of the optimization process, L-SHADE 

emerged as the best performer, with SHADE and JADE in second and third places, respectively. 

 



J. Res. Appl. Mech. Eng.  2025, Volume 13(3)/ 11 

 

 

 
 

Fig. 7. The aircraft’s dynamic simulation states from 0 to 20 seconds of the best solution of L-SHADE  

minimizes minimizing objective function Case II. 
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Table 2: The statistical comparison includes the best, worst, mean, standard deviation (STD), and Friedman ranking 

(Fr) scores, based on the 30 runs minimizing objective function Case II (Bold indicates the best value). 

Algorithms Worst Best Mean STD No.sr* Fr* 

PSO 2.452E+08 1.136E+05 1.308E+08 1.243E+08 30 4.03 

DE 4.327E+12 2.650E+07 1.457E+11 7.897E+11 30 4.97 

JADE 1.189E+05 1.072E+05 1.099E+05 2.338E+03 30 2.63 

SHADE 1.151E+05 1.066E+05 1.093E+05 1.803E+03 30 2.37 

LSHADE 1.061E+05 1.060E+05 1.060E+05 1.053E+01 30 1.00 

No.sr* = No. of successful runs ,  Fr* = The mean Friedman ranking scores 

 

 
 

Fig. 8. The search history averaged over 30 runs. 

 

5. Conclusion 

 

This study explores the successful application of several metaheuristic algorithms (MHs) in designing a nonlinear 

dynamic inversion (NDI) controller for altitude control. The optimization challenge centers on selecting control gains 

that maximize performance while maintaining stability and adhering to control handling constraints. To simplify the 

many objective optimization problem, it is reformulated into two single-objective cases—Case I and Case II. The 

results show that both cases can be used effectively to design the NDI controller with comparable efficiency, although 

Case II achieves a slightly better optimum result. Additionally, a range of MHs is employed to tackle this problem, 

with their performance rigorously assessed. Among the algorithms tested, L-SHADE is identified as the most 

efficient, demonstrating superior convergence and consistency. A key contribution of this work is that the application 

of effective metaheuristics enables even novice designers to engage in NDI controller synthesis successfully. This 

research lays the groundwork for further exploration of straightforward and efficient approaches to NDI controller 

design using many-objective MHs, with future studies planned to extend these methods to the design of Incremental 

Nonlinear Dynamic Inversion (INDI) controllers. 
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