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Abstract: 

This paper presents a shape optimization approach for a cartilage plate used in 

cartilage tympanoplasty to more closely approximate the original auditory 

characteristics of the human ear. First, we constructed a finite element model 

based on the geometric data of the middle ear, including the tympanic membrane, 

ossicles, and surrounding muscles. We then proposed a shape optimization 

method for designing the cartilage plate. The optimization problem was 

formulated with an objective function defined as the least squares difference 

between the amplitudes of the stapes post-repair and those in the healthy state 

across a wide frequency range. To enhance computational efficiency, we derived 

the shape gradient function and developed a method to calculate it using modal 

parameters. We employed the H1 gradient method for shape modification. 

Finally, two numerical examples, using a combination of CAE software and a 

custom program, were conducted. In an idealized model, the objective function 

decreased by 98%, while in a repaired tympanic membrane model, it decreased 

by 43%, demonstrating the effectiveness of our approach. 

 

Keywords: Shape optimization, Myringoplasty, Cartilage tympanoplasty, 

Tympanic membrane perforation, FEM analysis 

 

 

1. Introduction 

 

Tympanic membrane (TM) perforation is a common condition that may require surgical treatment, especially when 

it recurs. One widely used procedure is cartilage tympanoplasty, which involves harvesting cartilage from the 

patient’s auricle and using it to repair the damaged area of the TM. Typically, the cartilage is sliced into thin plates 

with a thickness ranging from 0.1 mm to 0.7 mm. However, in cases of large perforations, the auditory function after 

repair often does not fully recover to its pre-injury state. This limitation arises from the significant differences in 

material properties between cartilage and the native tympanic membrane. 

 

The ability of the middle ear to transmit sound depends on its vibration behavior. To improve hearing through surgery, 

it is important to make the repaired TM vibrate as closely as possible to a healthy one. In mechanical engineering, 

techniques like shape optimization are commonly used to control vibrations and improve the performance of 

mechanical structures. Inspired by these ideas, this study attempts to apply shape optimization methods from 

mechanical engineering to solve problems in TM reconstruction.  

 

To improve patients' quality of life (QOL), extensive efforts have been made to develop improved surgical techniques. 

To mitigate the risks associated with human ear experiments, many studies have utilized numerical analysis as an 

alternative approach to refine surgical methods. Since the early 1990s, the Finite Element Method (FEM) has            

been employed to model the complex dynamics of the middle ear. FEM allows for the simulation of the mechanical  
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behavior of the middle ear under various conditions without physical intervention. Pioneering work by Wada et al. 

[1] introduced a basic finite element model of the middle ear, which was later expanded to include muscles, ligaments, 

and ossicular joints [2]. These early models provided a foundation for further research that refined the representation 

of middle ear anatomy and its dynamic responses [3], [4]. Further research has focused on understanding the middle 

ear’s dynamic behavior when the TM is perforated [5], [6]. 

 

However, accurately modeling the middle ear remains challenging due to difficulties in capturing soft tissues like 

ligaments, muscles, and ossicular joints using conventional imaging techniques such as micro-CT. These soft tissues 

play essential roles in the mechanical function of the middle ear, influencing sound transmission and overall system 

response. Simplifications in numerical models often reduce accuracy. To address this, De Greef et al. [7] employed 

phosphotungstic acid staining to enhance soft tissue contrast, enabling more precise imaging of the middle ear’s 

anatomical structures, including ligaments and joints, and facilitating more accurate finite element modeling of its 

biomechanics. 

 

There are also several studies concerning the improvement of cartilage tympanoplasty. Zahnert et al. [8] measured 

the Young's modulus of conchal and tragal cartilage and evaluated the effect of cartilage thickness on acoustic transfer 

experimentally, confirming that a thickness of 500 μm or less reduces acoustic transfer loss. These findings provide 

valuable insights into the use of cartilage for TM reconstruction. Lee et al. [9] used finite element analysis to 

determine the optimal thickness of cartilage grafts for TM perforation repair. The results suggest that, for medium 

and large perforations, thinner grafts enhance sound transmission.  

 

In previous studies on the optimal thickness of cartilage, the cartilage plate was assumed to have a uniform thickness. 

Here, we consider an alternative approach to cartilage tympanoplasty by varying the thickness of the cartilage plate 

and optimizing its distribution to better approximate the original auditory characteristics of the human ear. Our 

objective is to optimize the design of the cartilage plate used for TM repair so that the vibration characteristics of the 

repaired membrane resemble those of a healthy TM. Specifically, within a certain frequency range, we aim to bring 

the amplitude of the stapes vibrations closer to that of the healthy ear. To address this optimization problem, the shape 

optimization approach should treat the problem of amplitude regulation over a broad frequency range. Shape 

optimization techniques have been widely used to enhance structural strength [10] or reduce vibration levels [11]. 

However, to the best of our knowledge, these methods have not yet been applied to amplitude regulation over a broad 

frequency range. 

 

As stated above, this study is motivated by the need to enhance the auditory performance of repaired tympanic 

membranes, addressing limitations in existing surgical methods. For this purpose, we proposed a shape optimization 

approach for the problem of amplitude regulation over a broad frequency range. We first construct a finite element 

model of the middle ear, and confirm the validity of numerical model. We then define the objective function for 

amplitude regulation over a broad frequency range, and formulate the optimization problem. Subsequently, we derive 

the shape gradient function, and develop a shape optimization system. Finally, we provide numerical examples to 

illustrate the effectiveness of our method. By leveraging shape optimization techniques, this approach not only 

advances the field of tympanic membrane reconstruction but also illustrates the potential for methodologies to achieve 

a desired vibration characteristic over a broad frequency range in the mechanical engineering field. 

 

2. Middle-Ear System and its Numerical Model 

 

A numerical model of the middle ear system was constructed using geometric data downloaded from the University 

of Antwerp website [12].  As shown in Fig. 1, it is a finite element (FE) model that includes the TM, ossicles, 

ligaments, joints, the stapedius muscle, and other structures. The names of all components, labeled from a to o in Fig. 

1, along with their material properties, are listed in Table 1 [4], [13], [14]. Figure 2 shows the boundary condition in 

which the nodes at the circumference of the tympanic annular ring, along with the attachment points of the tensor 

tympani tendon, each ligament, and the stapedius muscle, were constrained. The cochlea contains a watery fluid that 

oscillates in response to vibrations from the middle ear. Additionally, its complex structure makes it difficult to model. 

Therefore, to simplify this, the cochlear fluid’s viscosity was represented by a damper. The damper was attached to 

the bottom of the stapes footplate, and its damping coefficient was specified as 0.06 Ns/m [3]. A pressure of 0.632 

Pa, calculated from a sound pressure level of 90 dB, was applied to the surface of the TM as the load condition. The 

amplitude and frequency at the stapes footplate (SFP) are closely related to the strength of stimulation to the inner 

ear. Therefore, an analysis of the stapes base amplitude was conducted by applying a sound pressure level of 90 dB 
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to the TM over a frequency range of 0.25 kHz to 8 kHz. The frequency response of the amplitude is shown as a red 

line in Fig. 3. The analysis results were then compared with a measurement curve [15]. It was observed that the 

analyzed curve mostly lies between the lower and upper bounds of the measured curve, except for a small frequency 

range. Notably, there is a peak response around 1.0 kHz, which is close to the peak position of the measured curve. 

 

 

 

 

 

 

       

 

 

 

 

 

 

 

 

 

Table 1: Material properties of the parts of the middle ear.   
Young’s Modulus[MPa] Density[kg/m3] 

a Pars tensa of TM 33.4 1200 

b Pars flaccida of TM 11.1 1200 

c Tympanic annular ring 0.6 1200 

d Manubrium fold 3.34 1200 

e Malleus 14000 2390 

f Incus 14100 2150 

g Stapes 14000 2200 

h Tensor tympani tendon 5 1200 

i Anterior mallear ligament 21 1200 

j Lateral mallear ligament 6.7 1200 

k Posterior incudal ligament 4.8 1200 

l Stapedius muscle tendon 0.38 1200 

m Stapes annular ligament 0.15 1200 

n Incudomallear joint 7 1200 

o Incudostapedial joint 6 1200 

 

As shown in Fig. 4, simulations were also conducted for the perforated TM and the repaired TM with a cartilage 

plate. In the repaired models, the thicknesses of cartilage plate were set to 0.3mm, 0.5mm, and 0.7mm, respectively. 

The Young’s Modulus of the cartilage is set to 2.8MPa [8], which is quite different from that of the TM, and the 

density was set to 1300 kg/m3  
 

The frequency response curve of stapes footplate of each model was shown in Fig. 5. It can be found that the 

displacement of the stapes footplate with TM perforation is significantly reduced across all frequency ranges 

compared to that of a healthy middle ear. This reduction is considered to be due to the decreased load-bearing surface 

caused by the perforation. When the TM was repaired with cartilage, the displacement of the stapes footplate in the 

0.25 kHz to 2.0 kHz range was observed to approach that of a healthy ear compared to the perforated condition. 

However, there are still large differences remained in all models, especially beyond the 1.0 kHz frequency range. 

Additionally, the peak frequency of all cartilage TM models was observed to decrease compared to the healthy 

condition, likely due to cartilage having a lower Young’s modulus than the natural TM. 

 

Fig. 1. FE model of the middle ear system. 

 
Fig. 2. Constraint points in FE model. 

 



/ Volume 13(3), 2025 J. Res. Appl. Mech. Eng. 4 

 
 

Fig. 3. Comparison of analysis result of our mode and measured data of other studies. 

 

                  
 

                                              (a) Perforated TM                           (b) Repaired TM with cartilage 
 

Fig. 4. FE model of perforated TM and repaired TM. 
 

 
 

Fig. 5. Comparison of SFP amplitude of healthy, perforation and uniform cartilage plates. 

 
These results suggest that cartilage repair of TM perforation can lead to some improvement in stapes footplate 

displacement. However, simply adjusting the thickness of the TM does not address the reduction in peak frequency, 

and the repaired membrane does not fully replicate the characteristics of a healthy TM. To increase the peak 
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frequency, enhancing the stiffness of the cartilage TM is considered necessary. Therefore, optimizing the thickness 

distribution of the cartilage membrane may increase its stiffness, allowing it to achieve characteristics that more 

closely match those of a healthy TM.  

 

3. Shape Optimization Method for Auditory Amplitude Matching 

 

We consider the shape optimization problem of a cartilage plate to improve auditory characteristics by matching the 

SFP displacement after repair to that observed in a healthy ear across a wide frequency range. Initially, we focus on 

an optimization problem aimed at matching the SFP displacement at a single frequency. This approach is then 

extended to an optimization problem over a wide frequency range.  

 

3.1 Governing equation of the frequency response problem 

 

As a preparation for the formation of a shape optimization problem, the governing equation of the frequency response 

problem with viscous dampers is stated. 

 

An elastic continuum, which occupies a domain 𝛺 ⊂ ℝ𝑑 , 𝑑 = 2,3 , and has a boundary 𝛤  is considered. The 

continuum is fixed on the boundary 𝛤 1 ⊂ 𝛤 , supported by viscous dampers at local points, and excited by an 

excitation force 𝒑(𝑡) on the boundary 𝛤2 = 𝛤 ∖ 𝛤1. When 𝒑(𝑡) is a harmonic force with angular frequency 𝜔, both 

𝒑(𝑡) and its response 𝒖̃(𝑡) can be represented as: 

 

𝒑(𝑡) = 𝑷𝑒𝑗𝜔𝑡,  𝒖̃(𝑡) = 𝒖𝑒𝑗𝜔𝑡                                                              (1) 

 

where 𝑃 is the amplitude of the force, and 𝒖 is the complex amplitude of 𝒖̃(𝑡). For the sake of convenience in the 

derivation of the sensitivity function, we use the variational form of the equation of motion as the governing equation: 

 

𝑎(𝒖, 𝒗) + 𝑗𝜔𝑐(𝒖, 𝒗) − 𝜔2𝑏(𝒖, 𝒗) = 𝑙(𝑷, 𝒗) ,   ∀𝒗 in 𝛺              (2) 

  

where 𝒗 is the variation of 𝒖. Bilinear forms of 𝑎(∙ , ∙), 𝑏(∙ , ∙), 𝑐(∙ , ∙) and 𝑙(∙ , ∙) are defined as Eqs. (3)-(6). In this 

study, to account for the effects of Rayleigh damping and viscous dampers, the damping force term is represented as 

shown in Eq. (5). Here, 𝛼 and 𝛽 denote the Rayleigh damping coefficients. For simplicity, we assume an ideal viscous 

damper, where the damper’s stiffness and mass are considered negligible. The parameter 𝑐𝑑𝑚  is the damping 

coefficient for the dm-degree of freedom, and 𝑥𝑑𝑚 represents its position. 

 

𝑎(𝒖, 𝒗) = ∫ 𝐶𝑖𝑗𝑘𝑙𝑢𝑘,𝑙𝑣𝑖,𝑗𝑑𝑥
𝛺

                               (3) 

 

𝑏(𝒖, 𝒗) = ∫ 𝜌𝑢𝑖𝑣𝑖𝑑𝑥
𝛺

                             (4) 

 

𝑐(𝒖, 𝒗) = 𝛽𝑎(𝒖, 𝒗) + 𝛼𝑏(𝒖, 𝒗) + ∑ ∫ 𝑐𝑑𝑚𝛿(𝑥 − 𝑥𝑑𝑚)𝑢𝑖𝑣𝑖𝑑𝑥
𝛺

𝑁
𝑚=1                                (5) 

 

𝑙(𝑷, 𝒗) = ∫ 𝑃𝑖𝑣𝑖𝑑𝛤
𝛤2

                                           (6) 

 

where 𝐶𝑖𝑗𝑘𝑙 represents the elastic stiffness tensor, N is the number of dampers, and 𝛿(∙) denotes the Dirac's delta 

function. The Einstein summation convention and partial differential notation (∙),𝑖 ≡ 𝜕(∙) 𝜕𝑥𝑖⁄  are used for 

convenience. 

 

3.2 Objective function and formulation under frequency excitation 

 

Consider the problem of shape optimization, where the goal is to determine the magnitude of the complex amplitude 

𝑢𝑥0(𝜔) at position 𝒙0 under single-frequency excitation so that it meets a specified value 𝑢̅𝑥0(𝜔). For this amplitude 

regulation problem, the objective function can be set as follows: 

 

𝐹(𝜔) = |𝑓 (𝜔)| = |𝑢𝑥0(𝜔) ⋅ 𝑢𝑥0
∗(𝜔) − 𝑢̅𝑥0

2(𝜔)| = |∫ 𝛿(𝒙 − 𝒙0)𝒖 ⋅ 𝒖∗
Ω

𝑑Ω − 𝑢̅𝑥0
2(𝜔)|             (7) 
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where (∙)∗  represents a conjugate complex number of  (∙) . Then we introduce a mass constraint to the shape 

optimization problem as  

 

𝑚 = ∫ 𝜌𝑑𝑥
 

𝛺𝑠
≤ 𝑀                      (8) 

 

where 𝑚 denotes the mass, 𝑀 represents the upper mass limit, and 𝜌 is the density.  

We use a non-parametric approach to the shape optimization. Expressing the domain variation with a velocity field 

𝑽(𝑥), 𝑥 ∈ 𝛺 [16], then this shape optimization problem can be formulated as: 

 

find   𝑽(𝑥) 

that minimize 𝐹(𝜔) 

subject to Eq. (2), Eq. (8) and  

                             𝑎(𝒖∗, 𝒗∗) − 𝑗𝜔𝑐(𝒖∗, 𝒗∗) − 𝜔2𝑏(𝒖∗, 𝒗∗) = 𝑙(𝑷, 𝒗∗) ,   ∀𝒗∗ in 𝛺                  (2') 

 

Eq. 2′ is a conjugate equation of the governing equation (Eq. 2) which governs 𝒖∗, the conjugate complex of 𝒖. It is 

important to note that the governing equation and its conjugate equation are used as constraints equations since the 

objective function contains the terms of 𝒖 and 𝒖∗. 

 

3.3 Shape gradient function under a single frequency excitation 

 

We derive the shape gradient function of the optimization problem using the adjoint variable method and the Lagrange 

multiplier method. The Lagrange functional 𝐿  can be expressed as: 

 

𝐿 =|∫ 𝛿(𝒙 − 𝒙0)𝒖 ⋅ 𝒖∗
𝛺

𝑑𝛺 − 𝑢̅𝑥0
2(𝜔)| − {𝑎(𝒖, 𝒗) + 𝑗𝜔𝑐(𝒖, 𝒗) − 𝜔2𝑏(𝒖, 𝒗) − 𝑙(𝑷, 𝒗)}                                        

 −{𝑎(𝒖∗, 𝒗∗) − 𝑗𝜔𝑐(𝒖∗, 𝒗∗) − 𝜔2𝑏(𝒖∗, 𝒗∗) − 𝑙(𝑷, 𝒗∗)} + 𝛬(𝑚 − 𝑀)                                                                      
    (9) 

 

Here 𝒗 and 𝒗∗ are the adjoint variables, functioning as Lagrange multipliers. Additionally, 𝛬 is introduced as the 

Lagrange multiplier associated with the mass constraint. The derivative of L with respect to variations in the domain, 

denoted as 𝐿̇, can be obtained as follows: 

 

𝐿̇ = −{𝑎(𝒖, 𝒗′) + 𝑗𝜔𝑐(𝒖, 𝒗′) − 𝜔2𝑏(𝒖, 𝒗′) − 𝑙(𝑷, 𝒗′)}                                                                      

 −{𝑎(𝒖∗, 𝒗∗′) − 𝑗𝜔𝑐(𝒖∗, 𝒗∗′) − 𝜔2𝑏(𝒖∗, 𝒗∗′) − 𝑙(𝑷, 𝒗∗′)}                                                        

  −{𝑎(𝒖′, 𝒗) + 𝑗𝜔𝑐(𝒖′, 𝒗) − 𝜔2𝑏(𝒖′, 𝒗)}+sign(𝑓 (𝜔)) ∫ 𝛿(𝒙 − 𝒙0)𝒖′ ⋅ 𝒖∗
𝛺

𝑑𝛺                    

 −{𝑎(𝒖∗′, 𝒗∗) − 𝑗𝜔𝑐(𝒖∗′, 𝒗∗) − 𝜔2𝑏(𝒖∗′, 𝒗∗)} + sign(𝑓 (𝜔)) ∫ 𝛿(𝒙 − 𝒙0)𝒖 ⋅ 𝒖∗′
𝛺

𝑑𝛺    

 +𝛬̇(𝑚 − 𝑀) + 𝑙(𝑮, 𝑽)                                                                                                                  

              (10) 

where 
 

𝑙(𝑮, 𝑽) = ∫ 𝐺𝑛𝑖𝛤
𝑉𝑖𝑑𝛤                                                                                                                               (11)    

 

𝐺(𝒖, 𝒗) = −2Re[(1 + 𝑗𝜔𝛽)𝐶𝑖𝑗𝑘𝑙𝑢𝑘,𝑙𝑣𝑖,𝑗 − (𝜔2 − 𝑗𝜔𝛼)𝜌𝑢𝑖𝑣𝑖] + 𝛬                                         (12) 

 

In these equations, 𝑛𝑖 is the components of the normal vector, Re[ ∙ ] means the real part of a complex number, and 

G is called the shape gradient function. By satisfying Eqs. (13) to (15) below, 

 

𝑎(𝒖, 𝒗′) + 𝑗𝜔𝑐(𝒖, 𝒗′) − 𝜔2𝑏(𝒖, 𝒗′) = 𝑙(𝑷, 𝒗′) ,   ∀𝒗′ in 𝛺                                                   (13) 

 

𝑎(𝒖′, 𝒗) + 𝑗𝜔𝑐(𝒖′, 𝒗) − 𝜔2𝑏(𝒖′, 𝒗) = sign(𝑓 (𝜔)) ∫ 𝛿(𝒙 − 𝒙0)𝒖′ ⋅ 𝒖∗
𝛺

𝑑𝛺, ∀𝒖′ in 𝛺                         (14) 
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𝑚 − 𝑀 ≤ 0 , 𝛬̇(𝑚 − 𝑀) = 0, 𝛬 ≥ 0                                       (15) 
 

we obtain the Eq. (16) as: 

 

𝐿̇ = 𝑙(𝑮, 𝑽) = ∫ 𝐺𝑛𝑖𝛤
𝑉𝑖𝑑𝛤                                      (16) 

 

Equation (13) gives the governing equation for 𝒖, equation (14) gives the adjoint equation for adjoint variable 𝒗, and 

equation (15) defines the constraint equation on mass. Equation (16) implies that finding a velocity 𝑽 such that 

𝑙(𝑮, 𝑽) < 0 ensures that the original objective function decreases towards a minimum. 

 

3.4 Shape gradient function under a wideband frequency excitation 

 

For the optimization problem of amplitude regulation with a wideband frequency excitation, the objective function 

is defined as the integral of the single-frequency objective function across the frequency domain. When the excitation 

frequencies vary from  𝜔1 to 𝜔2, the objective function can be written as: 

 

𝐹 = ∫ |𝑢𝑥0(𝜔) ⋅ 𝑢𝑥0
∗(𝜔) − 𝑢̅𝑥0

2(𝜔)|𝑑𝜔
𝜔2

𝜔1
                                     (17) 

 

In this case, the shape gradient function is given in Eq. (18). 

 

𝐺(𝒖, 𝒗) = ∫ −2 Re[ (1 + 𝑗𝜔𝛽)𝐶𝑖𝑗𝑘𝑙𝑢𝑘,𝑙𝑣𝑖,𝑗 − (𝜔2 − 𝑗𝜔𝛼)𝜌𝑢𝑖𝑣𝑖]𝑑𝜔 + 𝛬
𝜔2

𝜔1
                                              (18) 

 

3.5 Modal solution of the shape gradient function 

 

To calculate the shape gradient function, both Eq. (2) and Eq. (14) must be solved for the frequency responses 𝒖 and 

𝒗. There are primarily two methods to solve the frequency response: the direct method and the modal method. The 

latter has an advantage in computational efficiency when evaluating the frequency response over a wide frequency 

range. However, it requires the decoupling of the equation of motion, which cannot be conducted in this case due to 

the existence of dampers. In this study, we use a hybrid approach to solve both 𝒖 and 𝒗 with modal parameters as 

follows: 

 

𝒖 = ∑ 𝜉𝑟𝒖𝑟
𝑛
𝑟=1                                    (19) 

 

𝒗 = ∑ 𝜂𝑟𝒖𝑟
𝑛
𝑟=1                         (20) 

 

In the two equations, 𝒖𝑟 denotes the rth eigenvector, while 𝜉𝑟 and 𝜂𝑟 represent the modal coordinates of 𝒖𝑟, and n is 

the number of degrees of freedom. For each sampling frequency, 𝜉𝑟 and 𝜂𝑟 can be obtained by solving a system of 

simultaneous equations with 𝑁 complex variables. Due to space limitations, the details of the calculations are omitted. 

Since the number of dampers N is typically much smaller than n, this approach can effectively reduce the computation 

time compared to directly solving the response with n degrees of freedom at each sampling frequency. 

 

4. Construction of optimization system 

 

We use the so-called the H1 gradient method for shape optimization. The H1 gradient method is a nonparametric 

technique for shape optimization [17]. This approach starts with an analytical derivation of the shape gradient 

function. It determines the optimal shape variation field by applying the shape sensitivity function as a pseudo-load 

on the design boundary to obtain the displacement field, which is then used to gradually refine the shape. By utilizing 

elastic deformation as the shape variation, this method has several advantages: it enables smooth shape changes 

without mesh refinement, eliminates the need for shape parameterization, and can be easily integrated with 

commercial finite element analysis (FEA) software. 

 

The optimization system is established by combining general-purpose CAE software with a custom-developed 

program. The main procedures of the optimization system are shown in Fig. 6. During the modeling process, two 

models are created: one for modal analysis, and another for shape modification by H1 gradient method. Each 
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optimization cycle includes one modal analysis, one calculation of shape gradient function, and one shape 

modification. From the modal analysis, the mode vectors and eigenvalues are obtained. The frequency response, 

adjoint variable, shape gradient function and objective function for each sampling frequency are calculate using the 

results from modal analysis. The optimization cycle is repeated until the objective function converges. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Flow chart of optimization analysis system. 

 

5.  Numerical analyses and considerations 

 

The optimization analysis of an idealized numerical model was conducted to confirm the validity of the proposed 

approach. Then, the shape optimization of a cartilage plate was performed, and the results were compared to those 

obtained using a flat plate. 

 

5.1 Numerical example1: shape optimization of an idealized model 

 

As a hypothetical model is employed, the material properties, dimensions, and frequencies are assigned non-

dimensional values to simplify analysis. The FE model is shown in Fig. 7. The shape of the model is a plate-like 3D 

solid with uniform thickness of 1. The boundaries are fully constrained, and an excitation force is applied normal to 

the upper surface as pressure, with a frequency range from 0.01 to 1. A damper is placed at the center of the plate 

with a damping coefficient of  𝑐𝑑 = 0.4. The material properties used are a young’s modulus of 𝐸 = 2.8 × 106,             

a density of 𝜌 = 1.3 × 103, and a Poisson's ratio of 𝜇 = 0.3. The coefficients of Rayleigh damping are set to 𝛼 = 1.0 

and 𝛽 = 7.5 × 10−5. The shape of the reference model is shown in Fig. 8. The objective of this analysis is to optimize 

the shape of plate so that the frequency response at the center point closely matches that of the reference model. 

 

 

Fig. 7. FE model of a uniform plate with a damper. 

 

 

 

 

 

 
 

Fig. 8. Shape of the reference model. 
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5.2 Results and consideration of numerical example1 

 

The optimized shape was obtained through this analysis, as shown in Fig. 9a (the overall view of the shape) and Fig. 

9b (the cross-sectional view). From the cross-sectional view, it can be seen that the optimized shape resembles the 

reference model. Figure 10 illustrates the variation history of the objective function, which is the least squares 

difference between the amplitudes at the center points of the two models, and the mass ratio m/m0. These results 

confirmed that the objective function decreased by 98%, while the mass remained approximately constant. This 

demonstrates that the proposed shape optimization approach worked effectively in this idealized model, confirming 

its validity before application to more realistic cases.  

 

To further evaluate the effectiveness of the optimization, frequency response curves at the center point of the plate 

for both the optimized model and the reference model were compared, as shown in Fig. 11. In the target frequency 

range, the optimized design nearly coincides with the reference curve except in a narrow high-frequency region. This 

result indicates that the optimized shape successfully reproduces the desired vibration characteristics, and 

demonstrates the potential of the proposed method to design desired frequency response characteristics, which may 

find application in the mechanical engineering, such as vibration suppression and structural optimization. 

 

   
 

      (a) Overall view of optimized shape                         (b) Cross section of the optimized shape 
 

Fig. 9. Optimized shape with an excitation frequency range from 0.01~1.00. 
 

 
 

  Fig. 10. Iteration histories of objective function and volume 
 

           
 

Fig. 11. Comparison of frequency response curves. 
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5.3 Numerical example2: shape optimization of a repaired TM model 

 

The repaired TM model shown in Fig. 4(b) was used for the optimization. A flat plate with a thickness of 0.5 mm 

serves as the initial design. The thickness is constrained to a range of 0.1 mm to 0.9 mm. The target frequency range 

is set from 0.25 kHz to 2.0 kHz, which is the most important range for daily conversation. 

 

5.4 Results and consideration of numerical example2 

 

The thickness distribution of the cartilage plate after 45 iterations of optimization is shown in Fig. 12, with thickness 

expressed in color. It is observed that the thickness of the lower part of the TM approached the lower limit, while the 

upper part approached the upper limit. This analysis suggests that when repairing the TM with a cartilage plate, 

making the lower half of the membrane thinner is important for approximating conventional auditory characteristics. 

The upper half becomes thicker, likely because its thickness is less critical than in the lower half, and there is a 

constraint to maintain a constant volume of the TM. Figure 13 illustrates the iteration history of the objective function 

and the volume constraint. It is found that the objective function decreased monotonically as the analysis progressed, 

converging to 57% of the initial value, while the volume remained constant. This result indicates the effectiveness of 

the shape optimization. Figure 14 shows the frequency response of the stapes footplate after optimization. Compared 

to the initial design, it can be observed that within the target frequency range, the optimized design closely follows 

the reference curve in most areas. Additionally, the optimized design improves the problem of the reduction in peak 

position. Although shape optimization can improve auditory characteristics, a significant gap remains between the 

optimized curve and the reference curve. This discrepancy may be due to the large difference in material properties 

between the cartilage and the original TM, and further improvements rely on the development of new biomaterials. 

Fortunately, significant research has been conducted in this area. For example, Anand et al. investigated the tensile 

strength and acoustic properties of artificial TM materials, demonstrating that radial and circumferential pattern 

shapes play an important role in these functional properties [18]. 

 

 
 

Fig. 12. Optimized thickness distribution of TM. 
 

 
 

Fig. 13. Iteration history of the objective function and the volume constraint. 
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Fig. 14. Frequency response of the stapes footplate. 

 

It should be noted that the optimal thickness distribution of the cartilage is likely to vary depending on the size and 

location of the tympanic membrane perforation. Therefore, this analysis only provides an optimal solution for the 

specific perforation area and location examined in this study. Moreover, this analysis result is considered solely from 

an engineering perspective. Some conditions for the analysis were set without significant consideration from a 

medical standpoint. For instance, the original geometric data was obtained from a 75-year-old male, and due to 

individual anatomical differences in middle ear structures, the medical representativeness of this data was not 

evaluated. Additionally, upper and lower limits were set for the cartilage plate thickness during the analysis, but 

whether these limits are medically appropriate has not been thoroughly considered. Furthermore, although the 

analysis results indicate an improvement in the middle ear’s vibration characteristics, it remains uncertain whether 

this level of improvement holds clinical significance. Through this analysis example, we did not aim to obtain the 

optimal shape for TM repair, but rather to demonstrate that the proposed method shows potential utility in such types 

of analysis, paving the way for future applications in TM repair design. 

 

6. Conclusion 

 

In this paper, we presented an approach for shape optimization of a cartilage plate used in cartilage tympanoplasty to 

improve auditory characteristics after surgery. A finite element model was developed and validated by comparing the 

analysis results with measured data. Using this model, we confirmed the differences in auditory characteristics when 

repairing TM perforations with a cartilage plate compared to the original healthy state. We formulated a shape 

optimization approach to minimize the least squares difference between the amplitudes of the stapes post-repair and 

those in the healthy state across a wide frequency range. To enhance computational efficiency, the shape gradient 

function was derived and calculated using modal parameters. The H1 gradient method was employed for shape 

modification. Numerical examples were conducted to demonstrate the effectiveness of our approach. The analysis 

results indicated that shape optimization of the cartilage plate can lead to a certain level of improvement in auditory 

characteristics. However, to achieve further enhancement, the development of advanced biomaterials that more 

closely match the properties of the native TM may also be necessary. Additionally, as this study was conducted 

primarily from an engineering perspective, to determine the real-world applicability of this approach, further medical 

evaluation is necessary to confirm its clinical relevance and address individual anatomical differences in middle ear 

structures. 
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