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1. Introduction

In computational fluid dynamics (CFD) research, the simulation of compressible flows governed by hyperbolic
conservation laws presents a significant challenge, particularly in developing high-order numerical schemes that can
both resolve small-scale flow structures and accurately capture discontinuities, such as shock waves. The primary
challenge lies in achieving a balance between low numerical dissipation to preserve small-scale flow features and the
accurate resolution of discontinuities [1]. In the past, various schemes were developed to address these issues. Harten
et al. [2] proposed the ENO scheme, which selects the smoothest sub-stencil to avoid oscillations, while Liu et al. [3]
introduced the WENO scheme, which improves accuracy at discontinuities by weighing multiple sub-stencils. Jiang
and Shu [4] introduced a smoothness indicator for WENO, leading to the WENO-JS scheme. However, classical
WENO schemes face difficulties in achieving fifth-order accuracy at critical points, a problem addressed by Henrick
et al. [5] through the WENO-M scheme, which remaps WENO-JS weights to correct for accuracy loss. Borgers et al.
[6] followed with the WENO-Z scheme, incorporating a global smoothness indicator to achieve fifth-order accuracy
at critical points with computational costs like the WENO-JS scheme. Alternatively, Hu et al. [7] introduced the
WENO-CUG6 scheme, a sixth-order adaptive central-upwind method incorporating contributions from downwind
stencils and adapting between upwind and central schemes depending on the local smoothness. Wong and Lele. [8]
introduced CWENOG6-CULD scheme. By blending central interpolation with upwind-biased nonlinear interpolation,
which is more dissipative, this scheme can resolve complex flow features effectively.

More recently, Fu et al. [9,10,11] introduced a series of high-order TENO schemes aimed at enhancing numerical
robustness in comparison to classical WENO schemes. Their research emphasizes the critical role of the cut-off
threshold parameter C, in the TENO weighting process. Nevertheless, standard TENO schemes still face challenges

when applying adaptive dissipation. In high-wavenumber regions, minimal dissipation is needed, while in regions
with discontinuities, sufficient dissipation is crucial for accurate resolution. Fu et al. [9,10] addressed this with the
TENO-A schemes, which adapt the C,. threshold using a near-discontinuity sensor.
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The objective of this work is to compare six-point stencil WENO and TENO schemes, particularly CWENO6-CULD
and TENOG6-A, by analyzing their spectral properties using ADR analysis [12]. Various test cases, including linear
advection of density and shock-tube problems, are examined.

2. Construction of WENO schemes

The primary numerical challenge is to solve a system of hyperbolic conservation laws that exhibit solutions spanning
a wide variety of length scales and discontinuities while maintaining high-order accuracy. To simplify the
presentation, the theory is discussed within the framework of a one-dimensional conservation law, written as

ou 0 .o ~_ (1)
ot/ =0

In this context, u represents the conservative variable, and f denotes the flux function. The discretization of the
problem on a uniform Cartesian grid produces a system of ordinary differential equations, as

d_ o . @
dt ox

where n is the number of grids. Finite-difference scheme can be applied to approximate Eq. (2) as

du

. 1
— = X — £ (3)
dt (S rn=Sian)

where f,,, is fluxes approximated at midpoint by WENO/TENO interpolations.

According to [4], f,,,,, can be reconstructed nonlinearly as

i+l/

~ ril ~

fi+1/2 = Za)kfk,mu )
k=0

Where r is a candidate stencil. For five-point stencils of WENO schemes, The sub-stencils [ SL, , SL, and SL, ], are
used while sub-stencils [ SL, , SL, , SL, and SL, ] are used for six-point stencils of WENO scheme as shown in Fig. 1.
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Fig. 1. Five- and Six-point stencils of the WENOS5-JS and CWENO6-CULD schemes.

2.1 WENQOS5-JS scheme

From Eq. (4) the classical fifth-order WENO-JS scheme, the numerical flux approximation at the grid half point
i+1/2 is represented by

A 1 )
fo,i+1/2 = g(zﬁ—z =7f+1 lfi )’

- 1
fl,m/z = g(_fH + Sfi + 2fi+l)’

2/ Volume 13(3), 2025 J. Res. Appl. Mech. Eng.



fAz,m/z = é(zf, + Sf,-H - f,—+2) Q)

The nonlinear weight coefficients ®, are determined by the specific method applied. These weights @, are

determined by the optimal weights «, , as

JS
o a,

wJS — k , a.IS — k (6)

CTY et (B

k=0 "k

In this case, the optimal weights are denoted by a, =1/10, a, =6/10, a, =3/10 . The parameter £ =10 is used
to prevent division by zero. A cutoff for the smoothness measure is chosen as g =2 . The local smoothness indicator

B, is expressed as follows,

A= [ (jx—mj dx %

=

According to Jiang and Shu [4], the local smoothness indicators are explicitly provided as follows

13 2, 1 _ 2
Pr= e =2 1)+ g s =4 431

B - 2 X ory 8
Bi= U =2 fa) 5 U= ) ®)
Bro= =2+ il 4 (L= + £

2.2 CWENOG6-CULD scheme

The CWENOG6-CULD scheme [8,18], features a reconstruction that includes an additional third-order three-point
stencil, referred to as J}a,fu/z = %(1 Uiy =Tfin+2f0) The smoothness indicator 5, is derived from the complete
sixth-point stencil as shown below.

B.=B, = 1201960 [27177912, + f._,(~2380800 1., +4086352f, 3462252 f,, +1458762 ., —245620f.,)
+/_, (5653317 f_, —20427884 f +17905032f.,, — 7727988 f.,, +1325006 1., )

+/,(19510972 1, —35817664 f,,, +15929912 1., —2792660 1)+ f.., (17195652 f.,,
—15880404 f,,, + 2863984 1,,,) + f..,(3824847 f., 1429976 f, ) +139633 /2, ]

Due to the implementation of localized dissipative interpolation, two types of nonlinear weights are required. The
first type consists of Z-type nonlinear weights for upwind-biased interpolation, @, while the second consists of

C-type nonlinear weights for central interpolation @, . Since ¢ is always set to zero, the @; also becomes zero.
The equations for ¢, and «, are shown below.

o

u q
wl?:3—u’a1it:ak |:1+[ TM J} 5k:0a]a273
Zk:Oak ﬂk+‘9

¢ q
a);:#’a;:bm C+[ . ] ,m=0,1,2,3
Zm:()a;’ ﬂm+g

(10)
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T, = |ﬂo _ﬂzl and 7. = |183 _ﬂuve

= +605 + /8 . To prevent division by zero, the very small value of ¢ is set to 107 . In upwind-biased
ave o 1 2 p Yy Ty p

are the fifth and sixth-order reference smoothness indicators, while

interpolation the parameters ¢ = 2 and a,=1/10, ¢, =6/10, a,=3/10 ,and a,=0 are used, ¢ = 4 and
b,=0.05, b =045, b, =0.45and b,=0.05 are applied for central interpolation. The process of hybridizing the

nonlinear weights begins with calculating the relative reference smoothness indicator, R, as

R = fe |
+&
ave (1 1)
CUD O +(1-0)w,, if R >35
* o, otherwise.

In this context, @

m

represents the nonlinear weight. The shock sensor @ is in the range of 0 <@ <1, that manages
the balance between central and upwind-biased interpolations. The value of 6 can be obtained from @ = max(6,,0.,,)

and the sensor is defined as follows

0 = |Afi+1/2 _Af[71/2|

=i T 8 Man=Sfa—S (12)
|Afi+1/z | - |Aﬁ—1/2| " 1

3. Construction of TENO schemes

In contrast to WENO schemes that employ candidate stencils of the same size, TENO schemes implement stencils
with progressively increasing widths. For sixth-order TENO schemes, The sub-stencils are [ SL,, SL,, SL,and SL,

] as shown in Fig. 3

l
1
i+ i+2 i+3
Fig. 2. Six-point stencils of the TENOG6-A scheme.
3.1 Six-point TENO Scheme

The candidate fluxes of the 6™ -order TENO scheme are computed as follows

A 1
fo,fmz = (_fi—l + Sfi + 2fi+1)9

6
- 1
S ==QCfi+5fi0 = fi2)s
° (13)
- 1
fz,i+1/2 = g(zfi-z - 7fi—1 +1 lfi )>

A 1
f3,i+1/2 = E(3fz +13f0 =5 i+ fis )
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According to Fu et al [10], The local smoothness indicators are explicitly given as

13 1
ﬂo,s =— (/. -2f, +ﬁ+1)2 +—(f1, _fi+1)2a
12 4
13 , 1 2
ﬂl,} :E(»fl _2fi+1 +fi+2) +Z(3fi _4fi+1 +f1+2) >
13 1
ﬂz,s = E(j;—Z _Zﬁ—l +ff)2 +Z(ﬁ—2 _4.]{;—] +3fi)27 (14)
ﬂ3,4 22%40[f,.(2107fi —9402f,,, +7042+ f,,, —1854 f,,,) + f,, (11003 f;,, =17246 ., + 4642 f,.;)
+/,.,(70431.,, —3882fi+3)+547f:3].

The smoothness measure is defined as

q
T
=|C+—=* ,
}/k [ ﬂk,rk +8J

/Bk _é(ﬂm +ﬁ2,3 + 4/30,3)

T, = s
' (15)
Vi
Zk = Kl,g, >
i=0 }/1
Oaif‘lk < CT
o, = .
1, otherwise

The parameter & =10"" serves to avoid division by zero, while C =1 and ¢ =6 . The local smoothness of full
stencil is represented by S, , and S, can be calculated as shown in Eq. (9). The ENO-like stencil selection strategy
relies on measuring smoothness through y, . In TENO schemes, stencils identified as non-smooth are discarded or

substituted with smooth stencils, which utilize optimal linear weights for reconstruction. The nonlinear adaptation is
controlled by a sudden cut-off function and the C, which remains constant in the classical TENO scheme.

3.2 Adaptive Dissipation Control

The TENO-A (TENO adaptive dissipation control) scheme applies adaptive control of the scheme numerical
dissipation in different flow regions. This is achieved by adding a shock sensor to modify the threshold value C, .

For this purpose, an indicator »n is introduced as follows

n =1—min[1,n’éij,
g (16)

|2Af;+l/2Af;71/2| té tE = 0'9Cr 52
(Afin/z )2 +(Af,~,1/2 )2 +& ’ 1-0.9C.

The parameter & =107 is provided, with C, =0.17, and 7,,,,, = min(n, ,,1,,1,,,-7,,,) are applied for six-point

i

reconstruction. The value of C, is dynamically adapted in response to the local smoothness flow scales. The
adaptation strategy for C, is formulated as

gm)=(1-n)*(1+4n),
B =a-a,(1-g), (17)
¢, =10
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The Gauss bracket is represented by |_J and g (n) is a mapping function based on a smoothing kernel. For six-point

reconstruction, o, =10.5, and «, =4.5 are used. TENO schemes that incorporate adaptive dissipation control are
classified as TENO-A. Finaly the nonlinear weight is computed as follows

TENO-A o
[0

== % =49, (18)

k ZK—S
i=0 &

The optimal weights are a, =0.4294317718960898 , a, =0.1727270875843552 , a, = 0.0855682281039113 and
a, =0.312272912415645 .

The approximated dispersion relation (ADR) analysis [12] is utilized to examine the dispersion and dissipation
properties of the different schemes, where &, refers to the real parts (phase error) and &, denotes the imaginary
parts (amplitude error) of the modified wavenumber. As shown in Fig. 3, the TENOG6-A scheme demonstrates better
performance in both dispersion and dissipation compared to the CWENO6-CULD scheme. For central difference
schemes of sixth and eighth order, the dissipation properties should be zero.
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—— TENO6-A 7
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Fig. 3. (a) Dispersion and (b) dissipation properties of different schemes.
4. Numerical Validation

The following numerical validations illustrate the potential of the WENOS5-JS, CWENO6-CULD, and TENO6-A
schemes. The flow is governed by the 1D compressible Euler equations. They express the conservation of mass,
momentum, and energy as

LA
ot Ox

T
U=[p.puE] ,

fO) = pu, puu,uk, 1 (19)

0,

where p,u, p and E; are respectively the density, velocity, pressure, and total energy £, = p(y —1) +l pu’ -
2

To close this set of equations, the ideal-gas equation of state p = (y —1)pe with y =1.4 is applied. The convective

fluxes are approximated by using the HLLC Riemann solver [18]. The third-order TVD Runge—Kutta [13] is used
for time integration.
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4.1 Linear advection of density
The numerical accuracy of the chosen schemes is first assessed by examining the one-dimensional Gaussian pulse

advection problem [14]. This problem involves solving the linear advection of density equation with an initial
condition

(pott, p) = (140 1,1 (20)
and the exact solution
(poit, p) = (147 11y 1)

within a computational domain extending from 0 to 1 and x, = 0.5. The final simulation time corresponds to one
period (¢ =1). The uniform grids are employed to analyze the convergence of the L error. The norm of the error is
computed by comparison with the exact solution at the time ¢ =1 according to

i=0,..N (22)

x

L, = max|ui —u

exact,i

Grid resolutions of N =50, 100, 200, 400, 800 and 1600 are selected, while the time step is sufficiently reduced to
ensure negligible time integration error. Table 1 presents the statistics for L, error, numerical accuracy order, and
CPU time (in seconds). The WENOS5-JS, CWENOG6-CULD, and TENOG6-A schemes achieve fifth, sixth, and fourth-
order accuracy, respectively. Additionally, CWENOG6-CULD exhibits a lower computational cost than TENOG6-A, as
indicated by the CPU times.
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1072
1.8

104
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X N
(a) (b)

Fig. 4. (a) Linear advection of density with N=50 and (b) Convergence of the L, error of WENOS5-JS,
CWENOG6-CULD and TENO6-A scheme.

Table 1: L_ error, order of numerical accuracy, and CPU time (s) of WENOS5-JS, CWENO6-CULD and TENO6-A

scheme.

WENOS5-JS CWENO6-CULD TENO6-A
N L, error order CPUtime [ error order CPUtime [_error order CPU time
50 1.34E-01 * 2.12 4.19E-02 * 2.54 7.38E-02 * 2.74
100 1.32E-02  3.34 6.59 1.44E-03 4.86 8.53 8.53E-03  3.11 9.48

200 5.88E-04 449 25.27 2.54E-05 5.83 34.07 6.37E-04 3.74 36.34
400 2.64E-05 4.64 94.63 4.10E-07  5.95 128.76 4.17E-05  3.93 147.61
800 8.27E-07 4.84 450.45 6.44E-09 599 549.84 2.63E-06 3.98 616.80
1600 2.65E-8 4.96 1859.26  1.06E-10  5.92 2677.86  1.65E-07  4.00 2745.49
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4.2 Sod shock-tube problem

The Sod shock-tube problem [15] is then investigated. The initial conditions used in the test are

1,0,1), if x<0

, 23
(0.125,0,0.1,  if x=0 23)

(p,u, p) ={

with a computational domain spanning from -0.5 to 0.5, divided into N = 100 uniformly spaced grid points. The
simulations are conducted from =0 to #=0.2. Fig. 4 presents the computed density distributions, comparing the
results obtained using the CWENOG6-CULD and TENO6-A schemes. Both schemes demonstrate improved accuracy
over the WENOS-JS scheme in resolving the contact discontinuity at locations x=0.13 and x=0.23. However,
concerning the velocity distribution, both CWENO6-CULD and TENOG6-A show overshoots at positions x =—-0.03
and x =0.02, indicating a failure to handle the case accurately.

0.5
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0.4 03
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Fig. 5. The Sod shock-tube problem: (a) density distribution and (b) close-up view of near discontinuity;
(c) velocity distribution and (d) close-up view of near discontinuity

4.3 Shu—Osher problem

As presented by Shu and Osher [16], the Shu-Osher problem features a Mach 3 shock wave interacting on one-
dimensional with a perturbed density field. This interaction generates discontinuities and small-scale structures,
making it a challenging benchmark for assessing the effectiveness of numerical schemes in resolving shocks and
waves. The initial conditions for the problem are

(3.857143,2.62936,10.33339), if x<—4 (24)

(pu.p ):{(1+0.2sin(5x),0,1), if x> -4’
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with a computational domain from -5.0 to 5.0, discretized into N =200 uniformly spaced grid points. The simulations
are conducted from ¢#=0 to #=1.8. The reference exact solution is acquired using the WENOS5-JS scheme with a
highly refined grid of N=10000 cells,

Fig. 5 shows that CWENO6-CULD and TENOG6-A schemes excel at capturing acoustic waves, with TENO6-A
demonstrating superior accuracy in maintaining the phase of the density distribution between positions x =1 and
x =2 . Furthermore, TENOG6-A delivers the best resolution for the velocity distribution, particularly preserving
amplitude between positions x =-3 and x=-1.

5.0
4.5 ——  Exact
—— WENOS-JS
4.0 45 —e— CWENOG6-CULD
—a— TENOG-A
35
4.0
p30 P
2.5
35
2.0
—= Exact
154 —— WENO5-JS 3.0
—e— CWENOB-CULD
104 . TENO6-A
25
-5 4 -3 2 1 o 1 2 3 4 5 10 15 2.0
X X
(a) (b)
3.0
—-=- Exact
} —— WENOS5-JS
25 —e— CWENOG-CULD
—+— TENOG-A
20 A TP
uLs
10

—-— Exact

057 —— WENO5-JS
—+— CWENO6-CULD
0.01 —— TENOG-A

=5 -4 -3 -2 -1 0 1 2 3 4 5 -3.0 -2.0 -1.0
X X
(©) (d)

Fig. 6. The Shu-Osher problem: (a) density distribution and (b) close-up view of near wave-resolution; (c) velocity
distribution and (d) close-up view of near contact discontinuity

4.4 Titarev—Toro problem

An intensified version of the Shu—Osher problem, the Titarev—Toro problem [17], presents a more severe test of a
scheme's shock-capturing capabilities. The initial condition for the Titarev-Toro problem is

(1.515695,0.523326,1.805), if x<—4.5

, 25
(1+0.1sin(207x),0,1), if x>-45 (2)

(p’u’p) :{

The computational domain ranges from -5 to 5 with N = 1000 uniformly spaced grid points. The simulations are
conducted from #=0 to z=5. The exact solution is obtained using the WENOS5-JS scheme with a highly refined
grid of N=10000 cells.
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As shown in Fig. 7, in terms of density distributions, the CWENO6-CULD scheme demonstrates superior resolution
in preserving both the amplitudes and phase of the density distributions between positions x =—2and x=-1.5.
Additionally, the CWENOG6-CULD scheme significantly outperforms the WENOS5-JS and TENOG6-A schemes in
maintaining the amplitudes and phase of the velocity distributions between positions x =—1.1and x=-0.6.

18

1.0+ —— WENOS5-JS i —— WENOS5-JS

—e— CWENO6-CULD " 13 —e— CWENO6-CULD
—— TENOG6-A ] —— TENO6-A
e 3 2 . 0 1 3 3 & & =20 Zi9 18 17 16 J1s
X X
(b)
0.6 0.55
0.5
0.4
uo.:3 u
0.2
01l Exact - Exact
1 —— WENOS-JS 0,50 —— WENOS-JS
—s— CWENO6-CULD 7] —e— cwENO6-CULD
0.01 —— TENOG-A —+— TENO6-A
-5 -4 -3 -2 -1 0 1 2 3 4 5 i, T 3.0 209 208 207 206
X X
(© (d)

Fig. 7. The Titarev—Toro problem: (a) density distribution and (b) close-up view of near wave-resolution;
(c) velocity distribution and (d) close-up view of near contact discontinuity

Fig. 7 presents the density distribution errors for different benchmark tests. The WENOS5-JS scheme produced higher
errors in the Sod shock-tube and Shu-Osher problems compared to CWENO6-CULD and TENO6-A. However, in
the Titarev—Toro problem over the interval x =-2 to x=1, the TENO6-A scheme showed higher error compared
to the WENOS5-JS and CWENOG6-CULD schemes.

The p,,, error and CPU time of WENOS5-JS, CWENO6-CULD and TENOG6-A scheme are summarized in Table 2.

The TENOG6-A scheme exhibited a lower p,,, error for both the Sod shock-tube and Shu—Osher problems. The p,,,

error differences between CWENOG6-CULD and TENOG6-A schemes were 0.00037, 0.03065, and 0.04878,
respectively. With respect to CPU time, the CWENOG6-CULD scheme demonstrated reduced computational costs
across all cases.

Table 2: p,,. error and CPU time (s) of WENOS5-JS, CWENO6-CULD and TENOG6-A scheme for benchmark
simulations.

Sod shock-tube Shu—Osher Titarev—Toro
P, EITOT CPU time Pys EITOT CPU time Prms EITOT CPU time
WENOS5-JS 0.01597 7.32 0.16803 16.40 0.07165 84.94
CWENO6-CULD 0.01529 7.61 0.10503 18.06 0.03583 100.44
TENO6-A 0.01492 7.81 0.07438 19.11 0.08461 106.35
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Fig. 8. The p error of the various test cases: (a) Sod shock-tube problem,

(b) Shu-Osher problem and (c) Titarev—Toro problem
5. Conclusion

This study provides a comprehensive evaluation of the WENOS5-JS, CWENO6-CULD, and TENOG6-A schemes
across several benchmark tests, including linear advection, Sod shock-tube, Shu-Osher, and Titarev-Toro problems.
The aim is to assess their capability in capturing small-scale flow structures and shock waves. The results indicate
that the TENOG6-A scheme exhibits lower numerical dissipation compared to the CWENO6-CULD and WENOS5-JS
schemes, as demonstrated by the modified wave number analysis. For the linear advection of density test case, the
CWENOG6-CULD scheme achieves sixth-order of accuracy, surpassing TENO6-A scheme, which achieves fourth-
order of accuracy. Across all benchmark tests, the CWENOG6-CULD and TENO6-A schemes outperform the
WENOS-JS scheme, with CWENOG6-CULD scheme offering the added advantage of lower computational cost.
However, the TENOG6-A scheme excels in capturing small-scale flow structures and resolving shock waves, making
it particularly well-suited for high-precision shock-resolution applications. Overall, both WENO and TENO schemes
provide significant advantages in applications requiring precise handling of numerical discontinuities and complex
flow features, making them essential tools in many fields such as aerospace, automotive engineering, and the
simulation of combustion or explosion dynamics.

Nomenclature

f.,,, numerical fluxes

S, candidate stencil fluxes

®,  nonlinear weighting coefficient
a, optimal weights

,Bk The local smoothness indicators
Ty The global smoothness indicators
C,  thresholds constant
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