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Abstract: 

In this paper, the performance of high-order numerical schemes for capturing 

small-scale flow structures and shock waves is evaluated. The chosen schemes 

are a fifth-order WENO scheme of Jiang and Shu (1996) (WENO-JS), a sixth-

order WENO with localized dissipative interpolation (CWENO6-CULD) of 

Wong and Lele (2017), and a sixth-order TENO scheme with adaptive dissipation 

of Fu, Hu, and Adams (2019). The results indicate that the CWENO6-CULD 

scheme offers reduced computational time than TENO6-A to 5%, while the 

TENO6-A scheme excels in capturing both small-scale flow features and shock 

waves with greater accuracy. 
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1. Introduction 
 

In computational fluid dynamics (CFD) research, the simulation of compressible flows governed by hyperbolic 

conservation laws presents a significant challenge, particularly in developing high-order numerical schemes that can 

both resolve small-scale flow structures and accurately capture discontinuities, such as shock waves. The primary 

challenge lies in achieving a balance between low numerical dissipation to preserve small-scale flow features and the 

accurate resolution of discontinuities [1]. In the past, various schemes were developed to address these issues. Harten 

et al. [2] proposed the ENO scheme, which selects the smoothest sub-stencil to avoid oscillations, while Liu et al. [3] 

introduced the WENO scheme, which improves accuracy at discontinuities by weighing multiple sub-stencils. Jiang 

and Shu [4] introduced a smoothness indicator for WENO, leading to the WENO-JS scheme. However, classical 

WENO schemes face difficulties in achieving fifth-order accuracy at critical points, a problem addressed by Henrick 

et al. [5] through the WENO-M scheme, which remaps WENO-JS weights to correct for accuracy loss. Borgers et al. 

[6] followed with the WENO-Z scheme, incorporating a global smoothness indicator to achieve fifth-order accuracy 

at critical points with computational costs like the WENO-JS scheme. Alternatively, Hu et al. [7] introduced the 

WENO-CU6 scheme, a sixth-order adaptive central-upwind method incorporating contributions from downwind 

stencils and adapting between upwind and central schemes depending on the local smoothness. Wong and Lele. [8] 

introduced CWENO6-CULD scheme. By blending central interpolation with upwind-biased nonlinear interpolation, 

which is more dissipative, this scheme can resolve complex flow features effectively. 
 

More recently, Fu et al. [9,10,11] introduced a series of high-order TENO schemes aimed at enhancing numerical 

robustness in comparison to classical WENO schemes. Their research emphasizes the critical role of the cut-off 

threshold parameter 
TC  in the TENO weighting process. Nevertheless, standard TENO schemes still face challenges 

when applying adaptive dissipation. In high-wavenumber regions, minimal dissipation is needed, while in regions 

with discontinuities, sufficient dissipation is crucial for accurate resolution. Fu et al. [9,10] addressed this with the 

TENO-A schemes, which adapt the 
TC  threshold using a near-discontinuity sensor. 
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The objective of this work is to compare six-point stencil WENO and TENO schemes, particularly CWENO6-CULD 

and TENO6-A, by analyzing their spectral properties using ADR analysis [12]. Various test cases, including linear 

advection of density and shock-tube problems, are examined. 

 

2. Construction of WENO schemes 

 

The primary numerical challenge is to solve a system of hyperbolic conservation laws that exhibit solutions spanning 

a wide variety of length scales and discontinuities while maintaining high-order accuracy. To simplify the 

presentation, the theory is discussed within the framework of a one-dimensional conservation law, written as 

 

( ) 0.
u

f u
t x

 
+ =

 
                    (1) 

 

In this context, u  represents the conservative variable, and f denotes the flux function. The discretization of the 

problem on a uniform Cartesian grid produces a system of ordinary differential equations, as 
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where n is the number of grids. Finite-difference scheme can be applied to approximate Eq. (2) as 

 

1/2 1/2

1
( ).i

i i

du
f f

dt x
+ −= − −


                       (3) 

 

where 1/2i
f

+ is fluxes approximated at midpoint by WENO/TENO interpolations. 

According to [4], 1/2i
f

+  can be reconstructed nonlinearly as 
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Where r  is a candidate stencil. For five-point stencils of WENO schemes, The sub-stencils [ 0SL ,
1SL and

2SL ], are 

used while sub-stencils [ 0SL , 1SL , 2SL and 3SL  ] are used for six-point stencils of WENO scheme as shown in Fig. 1. 

 

 
 

Fig. 1. Five- and Six-point stencils of the WENO5-JS and CWENO6-CULD schemes. 

 

2.1 WENO5-JS scheme 

 

From Eq. (4) the classical fifth-order WENO-JS scheme, the numerical flux approximation at the grid half point 

1/ 2i +  is represented by 
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The nonlinear weight coefficients k  are determined by the specific method applied. These weights k  are 

determined by the optimal weights k , as 
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In this case, the optimal weights are denoted by 0 1/10a = , 1 6 /10a = , 2 3 /10a =  . The parameter 
2010 −=  is used 

to prevent division by zero. A cutoff for the smoothness measure is chosen as 2q = . The local smoothness indicator 

k  is expressed as follows, 

 

1/2

1/2

2
2

2 1

1

ˆ ( ) .
i

i

j
x

j

k kjx
j

d
x f x dx

dx


+

−

−

=

 
=   

 
                    (7) 

 

According to Jiang and Shu [4], the local smoothness indicators are explicitly provided as follows 
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2.2 CWENO6-CULD scheme 

 

The CWENO6-CULD scheme [8,18], features a reconstruction that includes an additional third-order three-point 

stencil, referred to as ( )3, 1/2 1 2 3

1ˆ 11 7 2
6

i i i if f f f+ + + += − + . The smoothness indicator 3  is derived from the complete 

sixth-point stencil as shown below. 
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Due to the implementation of localized dissipative interpolation, two types of nonlinear weights are required. The 

first type consists of Z-type nonlinear weights for upwind-biased interpolation, u

k  while the second consists of           

C-type nonlinear weights for central interpolation c

m  . Since 3

u  is always set to zero, the 3

u  also becomes zero. 

The equations for u

k  and 
c

m
  are shown below. 
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0 2u  = −  and 3c ave  −=  are the fifth and sixth-order reference smoothness indicators, while 

0 1 2( 6 ) / 8ave   = + + . To prevent division by zero, the very small value of   is set to 2010− . In upwind-biased 

interpolation the parameters   2q = and 0 1/10a = , 1 6 /10a = , 2 3 /10a = ,and 3 = 0a  are used,   4q = and 

0 0.05b = , 1 0.45b = , 2 0.45b = and 3 = 0.05b  are applied for central interpolation. The process of hybridizing the 

nonlinear weights begins with calculating the relative reference smoothness indicator, R  as 
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In this context, m  represents the nonlinear weight. The shock sensor   is in the range of 0 1  , that manages 

the balance between central and upwind-biased interpolations. The value of   can be obtained from 1( , )i imax   +=  

and the sensor is defined as follows 
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3. Construction of TENO schemes 

 

In contrast to WENO schemes that employ candidate stencils of the same size, TENO schemes implement stencils 

with progressively increasing widths. For sixth-order TENO schemes, The sub-stencils are [ 0SL , 
1SL , 

2SL and 
3SL

] as shown in Fig. 3 

 

 
 

Fig. 2. Six-point stencils of the TENO6-A scheme. 

 

3.1 Six-point TENO Scheme 

 

The candidate fluxes of the 6th -order TENO scheme are computed as follows 
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According to Fu et al [10], The local smoothness indicators are explicitly given as 
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The smoothness measure is defined as 
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The parameter 
4010 −=  serves to avoid division by zero, while 1C =  and 6q =  . The local smoothness of full 

stencil is represented by  k  , and 6
  can be calculated as shown in Eq. (9). The ENO-like stencil selection strategy 

relies on measuring smoothness through k
 . In TENO schemes, stencils identified as non-smooth are discarded or 

substituted with smooth stencils, which utilize optimal linear weights for reconstruction. The nonlinear adaptation is 

controlled by a sudden cut-off function and the TC  which remains constant in the classical TENO scheme. 

 

3.2 Adaptive Dissipation Control 

 

The TENO-A (TENO adaptive dissipation control) scheme applies adaptive control of the scheme numerical 

dissipation in different flow regions. This is achieved by adding a shock sensor to modify the threshold value TC  . 

For this purpose, an indicator n  is introduced as follows 
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The parameter 
310 −=  is provided, with 0.17rC = , and 1/2 1 1 2( , , , )i i i i imin    + − + +=  are applied for six-point 

reconstruction. The value of TC  is dynamically adapted in response to the local smoothness flow scales. The 

adaptation strategy for TC  is formulated as 
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The Gauss bracket is represented by .    and ( )g n  is a mapping function based on a smoothing kernel. For six-point 

reconstruction, 1 10.5 = , and 2 4.5 =  are used. TENO schemes that incorporate adaptive dissipation control are 

classified as TENO-A. Finaly the nonlinear weight is computed as follows 
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,
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The optimal weights are 0 0.4294317718960898a = , 
1 0.1727270875843552a = ,

2 0.0855682281039113a = and 

3 0.312272912415645a = . 

 

The approximated dispersion relation (ADR) analysis [12] is utilized to examine the dispersion and dissipation 

properties of the different schemes, where  R  refers to the real parts (phase error) and I  denotes the imaginary 

parts (amplitude error) of the modified wavenumber. As shown in Fig. 3, the TENO6-A scheme demonstrates better 

performance in both dispersion and dissipation compared to the CWENO6-CULD scheme.  For central difference 

schemes of sixth and eighth order, the dissipation properties should be zero. 

 

 
 

     (a)                   (b) 

 

Fig. 3. (a) Dispersion and (b) dissipation properties of different schemes. 

 

4. Numerical Validation 

 

The following numerical validations illustrate the potential of the WENO5-JS, CWENO6-CULD, and TENO6-A 

schemes. The flow is governed by the 1D compressible Euler equations. They express the conservation of mass, 

momentum, and energy as 
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where , , Tp u p and E are respectively the density, velocity, pressure, and total energy 21
( 1)

2
TE p u = − + .  

 

 

To close this set of equations, the ideal-gas equation of state ( 1)p e = −  with 1.4 =  is applied. The convective 

fluxes are approximated by using the HLLC Riemann solver [18]. The third-order TVD Runge–Kutta [13] is used 

for time integration. 
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4.1 Linear advection of density 

 

The numerical accuracy of the chosen schemes is first assessed by examining the one-dimensional Gaussian pulse 

advection problem [14]. This problem involves solving the linear advection of density equation with an initial 

condition 

 
2

300( )
( , , ) ( ,11 ,1)cx x
p u p e

− −
= +                 (20) 

 

and the exact solution 

 
2300( )
,1( , , ) 1(1 , )cx t x

p u p e
− − −

= +                      (21) 

 

within a computational domain extending from 0 to 1 and 0.5cx = . The final simulation time corresponds to one 

period ( 1t = ). The uniform grids are employed to analyze the convergence of the L error. The norm of the error is 

computed by comparison with the exact solution at the time 1t =  according to 

 

,max 0,...,i exact i xL u u i N = − =                        (22) 

 

Grid resolutions of N = 50, 100, 200, 400, 800 and 1600 are selected, while the time step is sufficiently reduced to 

ensure negligible time integration error. Table 1 presents the statistics for L error, numerical accuracy order, and 

CPU time (in seconds). The WENO5-JS, CWENO6-CULD, and TENO6-A schemes achieve fifth, sixth, and fourth-

order accuracy, respectively. Additionally, CWENO6-CULD exhibits a lower computational cost than TENO6-A, as 

indicated by the CPU times. 

 

 
 

  (a)            (b) 

 

Fig. 4. (a) Linear advection of density with N=50 and (b) Convergence of the L  error of WENO5-JS, 

CWENO6-CULD and TENO6-A scheme. 

 

Table 1: L error, order of numerical accuracy, and CPU time (s) of WENO5-JS, CWENO6-CULD and TENO6-A 

scheme. 

N 

WENO5-JS  CWENO6-CULD TENO6-A 

L  error order CPU time  L  error order CPU time  L  error order CPU time  

50 1.34E-01 * 2.12 4.19E-02 * 2.54 7.38E-02 * 2.74 

100 1.32E-02 3.34 6.59 1.44E-03 4.86 8.53 8.53E-03 3.11 9.48 

200 5.88E-04 4.49 25.27 2.54E-05 5.83 34.07 6.37E-04 3.74 36.34 

400 2.64E-05 4.64 94.63 4.10E-07 5.95 128.76 4.17E-05 3.93 147.61 

800 8.27E-07 4.84 450.45 6.44E-09 5.99 549.84 2.63E-06 3.98 616.80 

1600 2.65E-8 4.96 1859.26 1.06E-10 5.92 2677.86 1.65E-07 4.00 2745.49 
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4.2 Sod shock-tube problem 

 

The Sod shock-tube problem [15] is then investigated. The initial conditions used in the test are 

 

(1,0,1), 0
( , , ) ,

(0.125,0,0.1), 0

if x
u p

if x



= 


                     (23) 

 

with a computational domain spanning from -0.5 to 0.5, divided into N = 100 uniformly spaced grid points. The 

simulations are conducted from 0t =  to 0.2t = . Fig. 4 presents the computed density distributions, comparing the 

results obtained using the CWENO6-CULD and TENO6-A schemes. Both schemes demonstrate improved accuracy 

over the WENO5-JS scheme in resolving the contact discontinuity at locations 0.13x =  and 0.23x = . However, 

concerning the velocity distribution, both CWENO6-CULD and TENO6-A show overshoots at positions  0.03x = −  
and 0.02x = , indicating a failure to handle the case accurately. 

 

 
 

                 (a)                    (b) 
 

  
 

              (c)                     (d) 
 

Fig. 5. The Sod shock-tube problem: (a) density distribution and (b) close-up view of near discontinuity;  

(c) velocity distribution and (d) close-up view of near discontinuity 

 

4.3 Shu–Osher problem 

 

As presented by Shu and Osher [16], the Shu-Osher problem features a Mach 3 shock wave interacting on one-

dimensional with a perturbed density field. This interaction generates discontinuities and small-scale structures, 

making it a challenging benchmark for assessing the effectiveness of numerical schemes in resolving shocks and 

waves. The initial conditions for the problem are 
 

(3.857143,2.62936,10.33339), 4
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(1 0.2 (5 ),0,1), 4
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sin x if x
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 −
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                        (24) 
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with a computational domain from -5.0 to 5.0, discretized into N = 200 uniformly spaced grid points. The simulations 

are conducted from 0t =  to 1.8t = . The reference exact solution is acquired using the WENO5-JS scheme with a 

highly refined grid of N=10000 cells, 

 

Fig. 5 shows that CWENO6-CULD and TENO6-A schemes excel at capturing acoustic waves, with TENO6-A 

demonstrating superior accuracy in maintaining the phase of the density distribution between positions 1x =  and 

2x = . Furthermore, TENO6-A delivers the best resolution for the velocity distribution, particularly preserving 

amplitude between positions 3x = −  and 1x = − . 
 

 
 

     (a)               (b) 
 

     
 

     (c)                (d) 
 

Fig. 6. The Shu-Osher problem: (a) density distribution and (b) close-up view of near wave-resolution; (c) velocity 

distribution and (d) close-up view of near contact discontinuity 

 

4.4 Titarev–Toro problem 
 

An intensified version of the Shu–Osher problem, the Titarev–Toro problem [17], presents a more severe test of a 

scheme's shock-capturing capabilities. The initial condition for the Titarev-Toro problem is 

 

(1.515695,0.523326,1.805), 4.5
( , , ) ,

(1 0.1 (20 ),0,1), 4.5

if x
u p

sin x if x




 −
= 

+  −
                        (25) 

 

The computational domain ranges from -5 to 5 with N = 1000 uniformly spaced grid points. The simulations are 

conducted from 0t =  to 5t = . The exact solution is obtained using the WENO5-JS scheme with a highly refined 

grid of N=10000 cells. 
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As shown in Fig. 7, in terms of density distributions, the CWENO6-CULD scheme demonstrates superior resolution 

in preserving both the amplitudes and phase of the density distributions between positions 2x = − and 1.5x = − .  

Additionally, the CWENO6-CULD scheme significantly outperforms the WENO5-JS and TENO6-A schemes in 

maintaining the amplitudes and phase of the velocity distributions between positions 1.1x = − and 0.6x = − . 
 

 
 

     (a)               (b) 
 

  
 

     (c)                (d) 
 

Fig. 7. The Titarev–Toro problem: (a) density distribution and (b) close-up view of near wave-resolution;  

(c) velocity distribution and (d) close-up view of near contact discontinuity 

 

Fig. 7 presents the density distribution errors for different benchmark tests. The WENO5-JS scheme produced higher 

errors in the Sod shock-tube and Shu-Osher problems compared to CWENO6-CULD and TENO6-A. However, in 

the Titarev–Toro problem over the interval 2x = −  to 1x = , the TENO6-A scheme showed higher error compared 

to the WENO5-JS and CWENO6-CULD schemes. 
 

The rms error and CPU time of WENO5-JS, CWENO6-CULD and TENO6-A scheme are summarized in Table 2. 

The TENO6-A scheme exhibited a lower rms error for both the Sod shock-tube and Shu–Osher problems. The rms

error differences between CWENO6-CULD and TENO6-A schemes were 0.00037, 0.03065, and 0.04878, 

respectively. With respect to CPU time, the CWENO6-CULD scheme demonstrated reduced computational costs 

across all cases. 
 

Table 2: rms error and CPU time (s) of WENO5-JS, CWENO6-CULD and TENO6-A scheme for benchmark 

simulations. 

 Sod shock-tube Shu–Osher Titarev–Toro 

 
rms error CPU time rms error CPU time rms error CPU time 

WENO5-JS 0.01597 7.32 0.16803 16.40 0.07165 84.94 

CWENO6-CULD 0.01529 7.61 0.10503 18.06 0.03583 100.44 

TENO6-A 0.01492 7.81 0.07438 19.11 0.08461 106.35 
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         (a)                              (b) 
 

 
 

          (c) 
 

Fig. 8. The  error of the various test cases: (a) Sod shock-tube problem, 

(b) Shu-Osher problem and (c) Titarev–Toro problem 
 

5. Conclusion 
 

This study provides a comprehensive evaluation of the WENO5-JS, CWENO6-CULD, and TENO6-A schemes 

across several benchmark tests, including linear advection, Sod shock-tube, Shu-Osher, and Titarev-Toro problems. 

The aim is to assess their capability in capturing small-scale flow structures and shock waves. The results indicate 

that the TENO6-A scheme exhibits lower numerical dissipation compared to the CWENO6-CULD and WENO5-JS 

schemes, as demonstrated by the modified wave number analysis. For the linear advection of density test case, the 

CWENO6-CULD scheme achieves sixth-order of accuracy, surpassing TENO6-A scheme, which achieves fourth-

order of accuracy. Across all benchmark tests, the CWENO6-CULD and TENO6-A schemes outperform the 

WENO5-JS scheme, with CWENO6-CULD scheme offering the added advantage of lower computational cost. 

However, the TENO6-A scheme excels in capturing small-scale flow structures and resolving shock waves, making 

it particularly well-suited for high-precision shock-resolution applications. Overall, both WENO and TENO schemes 

provide significant advantages in applications requiring precise handling of numerical discontinuities and complex 

flow features, making them essential tools in many fields such as aerospace, automotive engineering, and the 

simulation of combustion or explosion dynamics. 
 

Nomenclature 
 

1/2
ˆ
if +

 numerical fluxes 

r
S  candidate stencil fluxes 

k  nonlinear weighting coefficient 

ka  optimal weights 

k  The local smoothness indicators 

k  The global smoothness indicators 

TC  thresholds constant 
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