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Abstract: 

The accurate prediction of aerodynamic noise generated by cylinder flow is a 

critical challenge in various engineering applications, including automotive and 

aerospace industries. Traditional Computational Fluid Dynamics (CFD) 

methods, such as Direct Numerical Simulation (DNS), often require significant 

computational resources and time to simulate the complex interactions within 

flow. This study successfully creates a model using Machine Learning (ML) 

techniques to predict the pressure fluctuation in flow over a cylinder which 

provides a faster and equally reliable alternative to conventional methods. 

 

Keywords: Acoustic noise, Cylinder flow, Machine learning, Compressible, Low 
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1. Introduction  
 

In various industries, such as the automotive and aerospace sectors, cylinders are commonly encountered shapes and 

are frequently used as benchmarks in research due to the availability of reliable experimental data. Predicting the 

acoustic noise generated by fluid flow around objects like cylindrical structures is crucial, as this noise can impact 

performance and safety. However, calculating and predicting this flow-induced noise using traditional CFD methods, 

such as DNS, are complex and require substantial computational resources and time. This has created a strong demand 

for new techniques that can predict acoustic noise more efficiently while maintaining accuracy [1]. 
 

While DNS offers high-fidelity insights, it faces critical limitations in computational efficiency, posing significant 

challenges for industrial applications. Since DNS requires highly refined meshing and extensive computational 

resources, it is impractical for large-scale applications or situations requiring real-time predictions [2]. A review of 

related work reveals that multiple techniques have been developed to address this, such as combining Large Eddy 

Simulation (LES) with acoustic models. However, these methods do not provide high enough accuracy in noise 

predictions [3]. 
 

In response to these limitations, ML has been explored as a promising alternative for predicting flow-induced noise. 

ML models are capable of bypassing the intricate calculations required in DNS, instead of learning from large datasets 

of simulations or experimental results to capture complex noise generation patterns. ML techniques like 

Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) can capture both spatial and 

sequential flow information, and studies indicate that ML can achieve results comparable to DNS while reducing 

computational cost by over 90% [4]. Moreover, ML models can be tailored to specific conditions, such as varying 

flow velocities, geometries, and boundary conditions, to improve prediction accuracy [5]. 
 

Recent studies, such as Mosavi et al., demonstrated that ML algorithms could reliably predict flow-induced noise 

around bluff bodies like cylinders, achieving up to a 90% reduction in computational cost [6]. Additionally, Wang et 

al. developed hybrid ML models incorporating physical constraints, that enhanced accuracy while reducing the risk 

of overfitting—a common issue in purely data-driven approaches [7]. 
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This research aims to explore the potential of ML in creating models to predict acoustic noise generated by fluid flow 

around a cylinder, focusing on the accuracy of the models compared to the widely used DNS methods. Additionally, 

ML has the potential to significantly reduce computational costs by bypassing the intensive calculations required in 

traditional CFD approaches [8]. The results of this research will contribute to the development of highly efficient and 

cost-effective acoustic noise prediction tools.  
 

2. Numerical Approach 
 

2.1. Datasets 
 

Data of flow past a cylinder was prepared and collected from a DNS conducted at a Reynold number of 150 and a 

Mach number of 0.2. These values were chosen to ensure a balance between computational feasibility and physical 

relevance to flow-induced noise prediction. At a Reynolds number of 150, the cylinder flow exhibits the laminar 

vortex shedding. This phenomenon is ideal for investigating flow-induced noise because it produces periodic pressure 

fluctuations that generate significant acoustic noise [9]. The Mach number of 0.2 corresponds to a subsonic flow 

regime, where compressibility effects are minimal but still relevant to the study of aeroacoustics. At this speed, the 

generated acoustic noise remains unaffected by shock waves or supersonic flow instabilities, providing a clearer 

assessment of the noise generated purely from pressure fluctuations and vortex shedding [10]. The number of grid 

points in radial and azimuthal directions (𝑛𝑟, 𝑛𝜃) are 711 and 513. The dataset consists of 150 time series snapshots 

over 30 seconds. In this research, the denoted input X is constructed from flow property of pressure (p) to perform 

model prediction output Y for the instantaneous fluctuating pressure (𝑝′) and the next time steps of 𝑝′. Specifically, 

the model is trained using 100 snapshots of the pressure data p. After training, the model's performance is evaluated 

by testing it on 50 snapshots of 𝑝′. In this study, the training process is conducted for each grid point sequentially, 

utilizing a loop-based iteration through all grid points. This approach ensures that the model can effectively generalize 

its predictions for unseen data, capturing the intricate and evolving dynamics of the fluctuating pressure, 𝑝′over time. 

Hence, it enables more accurate forecasting of pressure variations even in complex and previously unobserved flow 

conditions.  
 

Table 1: Details of DNS 

𝑅𝑒∞ 150 

𝑀𝑎∞ 0.2 

Grid points of 𝑛𝑟 711 

Grid points of 𝑛𝜃 513 

Number of snapshots 150 
 

The computational domain for simulating aerodynamic noise is separated into two zones, the physical and buffer 

zones. In this work, the buffer zone will not be consid ered in the analysis, as the data collected from the buffer zone 

has minimal significance compared to the physical zone. The buffer zone's primary function is to filter out acoustic 

disturbances and minimize the reflection of waves back into the computational domain [10]. Within the physical 

zone, a very fine grid resolution was defined, with the smallest grid spacing of approximately ∆𝑟 = 0.005𝐷  in the 

radial direction. This grid spacing was kept equidistant for approximately 101 grid points near the wall boundary 

condition to accurately capture the pressure field. For the azimuthal direction, 513 grid points with uniform grid 

spacing were applied over zone, as illustrated in Figure 1. 
 

 
 

Fig. 1. Overall details of O-grid mesh used in this work. 
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The compressible fluid dynamics, three fundamental equations govern the flow: the conservation of mass, the 

conservation of momentum and the conservation of energy. These equations account for the variations in density, 

velocity, pressure, and temperature in compressible flows [11]. The conservation of mass for compressible flow is 

 
𝜕𝜌

𝜕𝑡
+ ∇ ∙ (𝜌𝒖) = 0                          (1) 

 

where 𝜌 is the fluid density, u is the velocity vector and t is time. The conservation of mass captures the variation of 

density at a specific location over time, which is fundamental in compressible flow dynamics [12]. 

 

The conservation of momentum for compressible flow, which describes the balance of forces, is given by 

 
𝜕(𝜌𝒖)

𝜕𝑡
+ ∇ ∙ (𝜌𝒖𝒖) = −∇𝑝 + ∇ ∙ 𝜏𝑖𝑗 + 𝜌𝒇                (2) 

 
 

where p is the pressure, 𝝉𝒊𝒋 is the viscous stress tensor and f presents external body forces. This equation is vital for 

understanding how the fluid's momentum changes due to pressure, viscous forces, and external forces [13]. 

The energy equation accounts for the conservation of total energy (including internal, kinetic, and potential energies) 

in a compressible fluid flow is 

 
𝜕(𝜌𝐸)

𝜕𝑡
+ ∇ ∙ (𝒖(𝜌𝐸 + 𝑝)) = ∇ ∙ (𝒖 ∙ 𝜏𝑖𝑗) + ∇ ∙ (𝑘∇𝑇) + 𝜌𝒇 ∙ 𝒖             (3) 

 

where E is the total energy per unit mass, T is the temperature and k is the thermal conductivity. This equation captures 

the transport of energy due to conduction, viscous dissipation, and external work, which is particularly important in 

high-speed flows where compressibility effects dominate [12]. 

 

The compressible Navier–Stokes equations for conservative variables are solved in curvilinear coordinates via an in-

house code, HiPSTAR. The flow solver employs a 4th-order optimized compact central finite-difference scheme [13] 

to discretize all the spatial derivatives in the radial (r) and azimuthal (∅) directions. Temporal advancement is obtained 

by an ultra-low-storage five-step 4th-order Runge–Kutta scheme [14]. To enhance the stability of the code, a skew-

symmetric splitting scheme of the convective terms and a pentadiagonal compact filter [15], applied after every full 

time-step with a cut-off wavenumber of 0.88, are used. 

 

The relationship between the pressure 𝑝(𝑥, 𝑦, 𝑡) and the instantaneous fluctuating pressure 𝑝′(𝑥, 𝑦, 𝑡) is linear. This 

implies that 𝑝′ can be expressed as a linear function of p, represented by the following equation 

 

𝑝′(𝑥, 𝑦, 𝑡) = 𝑝(𝑥, 𝑦, 𝑡) − 𝑝̅                  (4) 

 

where 𝑝̅ is the mean pressure is calculated as the average pressure p over the entire period of interest, and it serves as 

a baseline against which fluctuations are measured. This linear relationship is fundamental in the analysis of turbulent 

flows, where the fluctuating components of pressure are of primary interest, particularly in the study of flow-induced 

forces and noise generation. Following the prediction of 𝑝′, the subsequent step involves the computation of its Root 

Mean Square (RMS) value, represented by 𝑝′𝑟𝑚𝑠. This calculation is performed using the following equation 

 

𝑝′𝑟𝑚𝑠 = √𝑝′2̅̅ ̅̅                    (5) 

 
 

where 𝑝′2̅̅ ̅̅  represents the time-averaged value of the square of the 𝑝′ [16]. This term is calculated by taking the square 

of the 𝑝′ at each time step, then averaging these squared values over the entire time period. 

 

2.2. Linear regression 

 

This study utilizes basic supervised learning techniques, specifically regression. Linear regression is a supervised 

learning algorithm that forms the basis for many advanced techniques in machine learning [17], and can be used to 
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predict a continuous dependent variable Y based on one or more independent variables X. The hypothesis function 

(ℎ𝜃(𝑋)) in linear regression is used to predict the output value Y for a given input X. It is defined as 

 

ℎ𝜃(𝑋) = 𝜃0 + 𝜃1𝑋                   (6) 

 

where  𝜃0 𝑎𝑛𝑑 𝜃1 is the vector of parameters, and X is the vector of input feature (including the intercept term). 

 

In this formulation, the goal of linear regression is to find values of the parameters 𝜃0 and 𝜃1that minimize the 

difference between the predicted values ℎ𝜃(𝑋) and the actual observed value in the training data. This difference is 

typically measured using the cost function. 

 

2.3. Cost Function 

 

The cost function or loss function used in polynomial regression is the Mean Squared Error (MSE) function, which 

measures the average squared difference between the predicted values and the actual values. The cost function 𝐽(𝜃) 

is defined as 
 

𝐽(𝜃0, 𝜃1) =
1

2𝑚
∑ (ℎ(𝑋𝑖)  −  𝑌𝑖)2𝑚 − 1

𝑖 = 0                 (7) 

 

where m is the number of training examples, 𝑋𝑖  is the i-th input feature, and 𝑌𝑖 is the i-th output value [17]. 

 

2.4. Gradient Descent 

 

Gradient descent is an optimization algorithm used to minimize the cost function by iteratively updating the 

parameters 𝜃𝑗 (where j = 0, 1). The update rule for gradient descent in polynomial regression is 

 

𝜃𝑗 =  𝜃𝑗  −  𝛼
𝜕𝐽(𝜃𝑗)

𝜕𝜃𝑗
                   (8) 

 

where 𝛼 is the learning rate and 
𝜕𝐽(𝜃𝑗)

𝜕𝜃𝑗
 is the partial derivative of the cost function with respect to 𝜃𝑗 [17]. The gradient 

descent algorithm continues to adjust θ until the cost function converges to a minimum value [18, 19]. 

 

3. Results and Discussion 

 

3.1. Results of training model 

 

The performance of the trained model is evaluated through the cost function (J) plot over 800 epochs. The choice of 

800 epochs is determined based on the observation that the cost function must reach a stable value prior to this point. 

As a result, further training beyond 800 epochs does not lead to significant improvements in model performance. This 

suggests that 800 epochs are sufficient to achieve convergence and adequately train the model, ensuring efficient use 

of computational resources without overfitting. The cost function, which quantifies the discrepancy between predicted 

and actual values, exhibits a pronounced decline throughout the training process. This decrease reflects effective 

optimization of the model parameters. 

 

The model is trained with a learning rate of 1 × 10−2, as this value ensures the convergence of the cost function 

across all iterations. Additionally, experiments have been conducted with lower learning rates, which yielded 

comparable the cost function values. However, these lower learning rates significantly increased the training time, 

making them less computationally efficient. Therefore, the learning rate of 1 × 10−2 is an optimal balance between 

convergence performance and computational cost. Initially, the cost function decreases rapidly, indicating substantial 

improvements in the model’s accuracy. As training progresses, the rate of decrease in J is much slower, suggesting 

that the model approaches a convergence point with optimized parameters [17, 18]. The final cost function value is 

significantly lower than its initial value, demonstrating that the learning rate is appropriately set to balance the speed 

and stability of convergence, shows in Figure 2. This reduction in the cost function underscores the model’s capability 

to learn from the data effectively and accurately predict 𝑝′ from the input p. 
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Fig. 2. The cost function (𝐽) over the training epochs. 
 

   

   

  
 

Fig. 3. The comparison between 𝑝′
𝑎𝑐𝑡𝑢𝑎𝑙

 (blue dots) and 𝑝′
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

 (red dots)  

over a span of 150 snapshots at location of points. 
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The model is initially trained using a dataset comprising 100 snapshots with a total of 364,743 data points. This 

extensive training allows the model to learn and capture intricate patterns in 𝑝′ effectively. Following the training 

phase, the model is evaluated on a separate test set consisting of 50 snapshots. The results of this evaluation are 

depicted in Figure 3, demonstrating a high level of agreement between the predicted and actual values. This indicates 

that the model is able to make accurate predictions of the unseen data. 

 

Specifically, the close alignment between 𝑝′
𝑎𝑐𝑡𝑢𝑎𝑙

 and 𝑝′
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

 shows that the model is effectively captures the 

temporal dynamics of 𝑝′. The slight deviations are consistent with the inherent variability of the system and fall 

within acceptable error margins. This performance highlights the model’s robustness and its ability to provide reliable 

forecasts of pressure fluctuations based on the training data. Overall, the results validate the model's capability to 

accurately predict 𝑝′ over extended periods, underscoring its potential utility in practical applications. 

 

3.2. The pressure fluctuation  

 

The pressure fluctuation arises due to the fluid flow past a circular cylinder [1, 9], creating complex flow patterns 

that result in pressure variations on the cylinder's surface. Figure 4(a) illustrates a plot of 𝑝′
𝑎𝑐𝑡𝑢𝑎𝑙

, providing a detailed 

view of the pressure behavior around the cylinder. In contrast, Figure 4(b) shows 𝑝′
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

, plotted for comparison 

with the actual data presented in Figure 4(a). 

 

In both contour plots, the color scheme is used to represent different pressure levels, the red color indicates positive 

pressure, while the blue color indicates negative pressure. The alternating colors between red and blue in these figures 

highlight regions of rapid pressure change, signifying the pressure fluctuations caused by the flow separation and 

vortex shedding around the cylinder. A visual inspection reveals that the two plots exhibit remarkable similarity, 

indicating that the model’s predictions closely resemble the actual pressure fluctuations. 

 

To further examine the differences between the actual and predicted 𝑝′, the pressure values at a specific angular 

location of 90 degrees are extracted and analyzed, as shown in Figure 5 This analysis helps identify subtle 

discrepancies between the predicted and the actual pressure values, providing insight into the model’s prediction 

accuracy. 

 

 
 

     (a) 𝑝′
𝑎𝑐𝑡𝑢𝑎𝑙

 plot.                                                         (b) 𝑝′
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

 plot. 

 

Fig. 4. Contour of the instantaneous pressure fluctuations. 
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Fig. 5. Line graphs illustrating pressure fluctuations at the 100th, 110th and 120th snapshot. 
 

3.3. Root mean square pressure 
 

This section presents a quantitative and qualitative analysis of𝑝′ using the Root Mean Square (RMS) value, visualized 

through contour plots and directivity patterns. 
 

Figure 6 presents a comparison of RMS values of 𝑝′ between the actual and the predicted values. The contour plots 

show a close agreement in the overall distribution of 𝑝′𝑟𝑚𝑠, indicating that the model effectively captures the primary 

characteristics of 𝑝′ field. Nonetheless, slight differences in the contour boundaries between the actual and predicted 

plots are observed. These discrepancies likely stem from the variations in the 𝑝′values discussed in Figure 5, where 

subtle differences at certain time steps and angles are identified. While the general pattern of 𝑝′ is accurately 

reproduced, the differences in contour boundaries suggest that the model's accuracy in capturing finer details of the 

pressure field could be further improved. 
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        (a) Contour plot of actual 𝑝′𝑟𝑚𝑠.                                     (b) 𝑝′
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

 plot. 

 

Fig. 6. Contour plot of root mean square pressure (𝑝′𝑟𝑚𝑠). 

 

The directivity patterns derived from the RMS values of both the actual and predicted 𝑝′provide a visual comparison 

that allows a detailed assessment of the prediction model’s accuracy across various angular positions. The alignment 

between the actual and predicted patterns highlights the model's capability of capturing the directional behavior of 

𝑝′, as shown in Figure 7. 

 

 
 

Fig. 7. Directivity pattern from RMS value of p'(x, y, t); the blue line represents the actual 𝑝′𝑟𝑚𝑠  

and the red dashed line represents the predicted 𝑝′𝑟𝑚𝑠. 

 

4. Conclusion 

 

The linear regression ML techniques, with a learning rate of 1 × 10−2, is employed to model the acoustic field of 

flow past a cylinder at a 𝑅𝑒∞ of 150 and a 𝑀𝑎∞ of 0.2. The model effectively captures p' data, providing accurate 

predictions. Nonetheless, there are noticeable discrepancies in the contour plots between 𝑝′
𝑎𝑐𝑡𝑢𝑎𝑙

 and 𝑝′
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

, 

where the predicted values show a wavy pattern. This suggests the presence of acoustic noise or other disturbances 
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affecting the pressure field, indicating the need for further refinement of the model to address these issues and enhance 

its overall accuracy. 

 

To address these limitations, future work should prioritize enhancing the model's performance, potentially by 

incorporating advanced ML techniques. If the signal remains periodic with a fixed frequency, increasing the number 

of input features may help the model learn better representations, ultimately improving its prediction accuracy. This 

could be a promising direction for future research, with the potential to further refine the model's generalization 

capabilities and applicability to more complex flow conditions. 

 

Nomenclature 

 

D diameter, m 

∆𝑟 radial grid spacing, m 

E energy, J 

f external body forces, m/s2 

ℎ𝜃 hypothesis function 

𝐽 cost function 

k thermal conductivity of fluid, W/m-K 

𝑀𝑎 Mach number 

𝑛 number of grid points 

p Pressure, Pa 

𝑝′ instantaneous fluctuating pressure, Pa 

𝑝̅ mean pressure, Pa 

𝑅𝑒 Reynolds number 

𝜌 fluid density, kg/m3 

𝜏 viscous stress tensor 

T temperature, K 

t time, s 

u velocity vector, m/s 

𝑋𝑖 i-th input feature 

𝑌𝑖 i-th output value 

∅ azimuthal direction 
Subscripts 

rms root mean square 

r radial direction 

𝜃 vector of parameters 
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