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1. Introduction

This has been essential in the development of metropolitan areas for industry, which necessitates a rise in population
and the need for fossil fuel-based electricity [1]. As industrialization continues at its current rate, there will be a
greater need for energy, and shortages of some natural resources will pose a serious threat to future energy supplies
[2]. To meet the growing demand for electricity due to high pace industrialization and increasing populations will be
necessary to provide sustainable and efficient power generation methods [3]. Significant progress has been made in
the areas of performance, resilience, size, molecularity, and output optimization in the power generation industry [4].
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The modern day internal combustion (IC) engines are the backbone of current power production that is used to drive
various modes of transportation ranging from small commercial vans to huge industrial fork lifts. These versatile
engines run on different forms of liquid fossil fuels including petrol or diesel [5]. Nevertheless, burning these
traditional fuels does not occur without serious environmental consequences since their combustion produces toxic
mixtures. NOx, CO, SO,, heavy metals and greenhouse gases like carbon dioxide and methane are all emanations of
burning gasoline and diesel. The environment accumulates these harmful substances which destroys the fragile
ecological equilibrium leading to issues such as acid rain, global temperature swings as well as an augmenting
greenhouse effect. The necessity to monitor and lower the quantities of toxins produced by internal combustion
engines stems from the long-term consequences that these environmental stresses can have on all living things.

One possibility to be looked at is that, renewable, low-emission alternative fuels are developed and adopted.
Significant examples of innovative fuel sources analyzed by researchers as potential substitutes for standard gasoline
and diesel include hydrogen, propane, biodiesel, and methane hydrates among others. In this regard the use of
microbial electrolysis cells (MECs) is particularly significant because it uses electromotive microorganisms’
metabolic processes to convert ammonia into a clean burning gas which is hydrogen. Since ammonia has low splitting
potential it is an efficient and cost effective substrate for this mode of producing hydrogen [6]. On the other hand,
optimizing various factors such as: microbial community composition; electron donors’ presence; electrode materials;
pH and temperature; and hydraulic retention time is very crucial in maintaining ammonia-splitting reaction without
excessive energy loss. The need to find alternative fuels has become more pressing as the globe struggles to offset
the negative environmental effects of burning fossil fuels and reduce greenhouse gas emissions. In order to overcome
the obstacles involved in the creation and application of these greener, more sustainable power sources, researchers
are putting up endless effort. For Khatri etal. [7] recently used ANN model to evaluate the performance of Cl engine
running on Karanja oil and Karanja biodiesel, and they were able to obtain an impressive correlation value of 0.9948.
These developments highlight the enormous potential of alternative fuels to transform the energy landscape and open
the door to a more ecologically conscious future. To address the growing worries about environmental sustainability
and the depletion of fossil fuels, researchers have been looking into a variety of alternative fuel sources in recent
years. In one such study, the inedible seeds of the Chrysobalanus icaco plant were used to create a new biofuel. It
was carried out by Okonkwo et al. [8]. The performance parameters of this biodiesel fuel were predicted by the
authors through the application of sophisticated statistical modeling techniques. A high coefficient of determination
(R?=0.903) in their research indicated a very good fit between the observed and anticipated values. In addition, the
MAE was 0.650 and RMSE for the best model was a meagre 1.3723, indicating how accurate the model was in
predicting the performance of the biodiesel. The efficacy and emissions of two different biodiesel blends made from
feedstocks including Karanja, Neem, Mahua and jatropha in a different study [9]. When compared to pure diesel fuel,
their findings revealed a noteworthy 34.05% average decrease in carbon monoxide (CO) emissions, a 42.54 %
increased in carbon dioxide (CO>) levels, and a 21.29 % increased in nitrogen oxide (NOx) emissions. These results
show that these biodiesel blends have the potential to lower hazardous pollutants, but they also show that there are
trade-offs, such as higher NOx emissions, which may need for further optimization. In order to enhance the
performance of a diesel engine, an innovative strategy that combined the usage of nanomaterials and miture of the
microalgae Chlorella vulgaris with biogas [10]. Combining nanomaterials and biogas decreased fuelling by 14 percent
thus new fuel mixtures may boost the ability of engines to perform more efficiently. conversely for the A20 blend,
this resulted to higher brake-specific fuel consumption (BSFC) due to the higher viscosity of the fuel blend.
Krishnamoorthi et al. [11] made an assessment of the emission characteristics and efficiency of using a blend of
chaulmoogra oil and diethyl, through an artificial neural network (ANN) modeling. Thus, their investigation produced
regression coefficient values of the following range: 0.910 to 0. 999, meaning this model had almost 100 percent

accuracy in identifying the blend characteristics. Javed et al. have elaborated a model to assess the operational
efficiency of a hydrogen dual fuel engine when fueled with Jatropha Methyl Ester biodiesel. In the model, the overall
regression coefficient came came slightly to 0.9936, A MSE of 0. Equally important, the values for RMSD are
0.0011 and MAPE are 4.8630% [12].

Boylkdipci et al. [13] investigated the application of ammonia (NHs) additions to sunflower biodiesel in a diesel
engine. Their research showed that the vibration parameters of the engine were adversely affected by the additive.
But the accuracy ratios of the B90A10, B85A15 and B95A5 blends were astonishingly high (99.206%, 99.675% and
99.505%, respectively) showing that certain combinations of biodiesel additive and engine performance enhancer
have potential. In the study conducted by Balabin et al [14] the thermo physical properties of biodiesel were well
analyzed using near infrared spectroscopy in combination with artificial neural network (ANN) forecasting model.
The ANN model achieved optimal root mean squared errors of prediction (RMSEP) of just 0.42 kg m for density,
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0.068 mm? s for viscosity, 45 ppm for water %, and 51 ppm for methanol content, according to the researchers'
outstanding findings. These incredibly precise forecasting abilities highlight ANN modeling's potential as an effective
tool for assessing and improving biodiesel properties. In addition, research by Mathew et al. [15] found that the
presence of fuel-bound oxygen in biodiesels significantly decreased the generation of soot. This is an important
discovery because traditional diesel fuels pose a serious environmental risk due to soot emissions. The inherent
oxygen content in biodiesels, derived from their vegetable oil feedstocks, appears to play a pivotal role in mitigating
this pollutant. The growing interest in biomass-based alternative fuels, with vegetable oils being the most prominent,
is driven by their renewable nature and abundant availability [16]. Many nations, including India, have implemented
regulations mandating the blending of vegetable oil-based biofuels with conventional diesel, aiming to encourage the
widespread adoption of these sustainable energy sources. To further encourage the switch to alternative fuels like
biodiesel, governments have also implemented a number of support measures, including tax breaks, grants, subsidies,
and financing for research and development [17]. Vegetable or non-edible oil transesterification results in biodiesels
with heating values that are strikingly similar to conventional diesel fuel. The energy content and combustion
behavior of these mono-alkyl esters of long-chain fatty acids are comparable to those of diesel [18]. According to
studies, biodiesels based on soybean and rapeseed methyl ester have brake thermal efficiencies that are just 4-7%
lower than those of traditional diesel [19]. Additionally, the lubricity and cetane number of biodiesels are comparable
to those of diesel, ensuring compatibility with most existing engine systems [20]. With these favorable properties,
biodiesels have emerged as a highly promising alternative to fossil-based diesel, offering the potential to reduce our
reliance on finite resources while mitigating environmental concerns associated with traditional fuels [21]. The field
of engine performance modeling and optimization has seen significant advancements in recent years, with researchers
exploring various machine learning techniques to enhance predictive capabilities [22]. The appropriate biodiesel ratio
is an important factor in engine performance and emissions, and the researchers discovered that the K-ELM approach
was extremely effective in calculating this value. Furthermore, Silitonga et al. [23] demonstrated that K-ELM can
successfully forecast a range of engine performance indicators, including smoke opacity, carbon monoxide (CO),
nitrogen oxides (NOx), brake thermal efficiency (BTE), and brake-specific fuel consumption. With mean absolute
percentage error (MAPE) values ranging from 1.363% to 2.090%, the K-ELM model displayed outstanding predictive
power for these critical parameters. By utilizing ant colony optimization, enhanced a predictive artificial neural
network (ANN) for diesel engine pollution prediction, advancing the investigation of sophisticated modeling
methodologies [24]. This model's outputs were NOx and soot emissions, while its inputs were engine speed, power,
fuel mass injection rate, and intake air temperature. The ANN model surpassed conventional correlation-based
methods, according to the researchers, who also observed that it achieved remarkable R-squared values of 0.98 and
0.96 for NOx and soot emissions, respectively. This demonstrates how well ANN-based models are able to forecast
the intricate correlations between emissions and engine operating factors. Vignesh et al. [25] pushed the envelope
even farther by creating a DNN with four hidden layers and a special neuron configuration of 100-500-200-50. A
worldwide calibration technique for split injection control, an essential component of optimizing engine performance,
was developed using this DNN-based model. In comparison to the conventional response surface methodology
(RSM) technique, the authors showed that the DNN approach led to the selection of a more exact optimum point,
resulting in a wider power band with improvements of 11.13% and 12.90% in power and deliverable torque,
respectively. This demonstrates how deep learning can be used to maximize the possibilities for optimizing engine
performance. In another study regarding the usage of ANN, as well as the CMA-ES to forecast emissions and to
finish the studies in this sector completed by Zheng [26]. The effectiveness of this hybrid technique to emulate
complex engine emissions is further confirmed by the researcher’s report of theminimal error rate between expected
and experimental values, ranging from 3 to 10%. One highly significant area of research with numerous applications
is the capacity to create precise computer models for predicting the performance and emission characteristics of
biodiesel fuels. Though considerable efforts have been devoted to investigate the possibility of replacing the fossil
fuel with biodiesel in I C engines there is still a significant high accurate predictive means. This paper seeks to resolve
the above predicament through the use of intricate artificial neural network (ANN) model that forecasts fuel
consumption, CO, NOx, UHC and soot emissions, besides BTE, BSFC, BSEC, and fuel consumption by relying on
inherent properties. Developing such sophisticated computational models represents a significant step forward, as it
would reduce the industry's reliance on physical testing, which can be both challenging and redundant. The specific
objectives of this research are multi-faceted - not only will ANN-based models be created to predict both performance
and emissions, but sensitivity analyses will also be performed to identify the most influential input parameters,
providing valuable insights. The ultimate objective is to show that these ANN models are accurate and feasible in
predicting the behavior of biodiesel fuels, which would speed up the development and optimization of this promising
renewable energy source as a competitive substitute for traditional diesel.
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This work also pinpointed the most suitable ANN architectures for each of the forecast accuracy indices in terms of
MSE, RMSE, MAD and MAPE with low prediction errors. Analysis of sensitivity showed that fuel consumptions
greatly affect models of BTE and EGT, while torque does affect the model of BSFC. This paper reveals the applicative
significance of biodiesel, mainly from waste feedstock comprising used temple oil. By enhancing the predictive
models in use, it assists in reducing the levels of greenhouse gas emission together with encouraging the use of cleaner
energy.

2. Materials and Methods
2.1 Engine Experimental Setup

A single-cylinder, four-stroke engine with model number TAF1 HSD, 4 was used in the investigation shown in figure
1. Kirloskar, a renowned indian company, provided the 4 kW constant speed engine used for the testing work [27].
This engine was specially fitted with a range of cutting-edge measuring and controlling apparatuses, which made it
the perfect configuration for the study. This engine was used for additional agricultural tasks in addition to its
experimental applications, demonstrating its adaptability and suitability for a variety of practical applications.
Table 1 provides a reference for the comprehensive specs of this experimental CI (compression ignition) engine [28].
The principal fuel source for the current investigation is biodiesel based on used temple oil (UTO), as chosen
by the researchers. Since this biodiesel is made from non-edible oil rather than vegetable oil suitable for food use,
it is considered a second-generation type. Transesterification, which involves combining vegetable oil and
methanol with a NaOH catalyst to form the final biodiesel product, is the method used to produce the biodiesel [29].
Several blends, such as B20, B25, B30, B35, B40 and B100 were used in physical test of this UTO biodiesel at four
different engine load settings: they are 25%, 50%, 75% and 100% respectively [30]. Standard diesel fuel was also
employed to compare and analyze the qualities and performance of these substitute fuels in internal combustion
engines. This is so because the energy content to heat output ratio can be determined accurately by using conventional
diesel fuel.

Ty

Fig. 1. Experimental Setup Diagram

Table 1: Engine specifications

Manufacturer Kirloskar TV1
Power range 4 kKW 1500 rpm
Displacement volume 661 cm?®
Compression ratio 17.5:1
Standard injection timing 23°bTDC
Cooling type Air-cooled
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2.2 Engine performance parameters

A number of indicators are available for assessing efficiency of an internal combustion engine, and each one offers
insightful information [31]. The BSFC is one such metric that quantifies the rotational power efficiency or output
shaft of the engine. The BSFC is a measure of fuel efficiency; lower BSFC values correspond to higher brake power.
This is because less fuel and energy are needed to generate the desired power output. By directly comparing the BSFC
of different engines, engineers and researchers can assess which designs are optimizing the conversion of fuel into
useful mechanical work [32]. The engine's capacity to capture the energy content of the fuel input and transform it
into power produced at the braking point is assessed by the Brake Specific Energy Consumption (BSEC), another
related metric. Lower BSEC values signify higher efficiency, as they demonstrate the engine is extracting more usable
energy from the same amount of fuel. This is a crucial consideration, as maximizing the energy utilization helps
improve overall powertrain performance and reduce fuel consumption [33]. The Brake Thermal Efficiency (BTE)
develops these ideas further and calculates the proportion of work developed to the heat produced by the burning of
fuel. Greater BTE percentages show that the engine is using its fuel's chemical energy more efficiently to produce
mechanical power as opposed to wasting it as waste heat or as a result of inefficiencies. This efficiency metric
provides a holistic view of how well the engine is leveraging the energy potential of the fuel [34]. Finaly, the
combustion characteristics of the engine can be explained by the exhaust gas temperature. The EGT stands for
Exhaus. easy gases temperature which indicates temperature of gases released during the process of combustion. For
air-cooled engines, EGT serves as a valuable comparative indicator of the combustion situation, as higher
temperatures generally signify more complete fuel burning. However, it's important to note that the expelled gases,
many of which are greenhouse gases, can contribute to the overall heating of the engine and the environment,
underscoring the need for continued efficiency improvements.

2.3 Engine emission parameters

Smoke is an inevitable byproduct that arises when combustion occurs in an oxygen-deficient environment. This
smoke density, measured in Hartridge Smoke Units (HSU), is a crucial indicator for analyzing and understanding
emissions from various sources, particularly engines [35]. A multitude of intricately intertwined elements affect the
HSU value, such as the engine's operating circumstances, the fuel's physiochemical properties, and the particular
design features of the combustion chamber. For instance, engines running at higher loads or with sub optimal air-fuel
ratios will typically produce denser, more opagque smoke due to incomplete combustion. Similarly, fuels with different
compositions, such as higher aromatic content or increased viscosity, can also impact smoke density by altering the
fuel atomization, vaporization, and mixing processes within the cylinder. Additionally, the geometric configuration
of the combustion chamber, including factors like swirl and turbulence patterns, can affect in-cylinder mixing and,
consequently, smoke formation. Closely monitoring and managing smoke density is essential, as excessive smoke
not only indicates inefficient combustion but can also contribute to environmental pollution and health concerns [36].
The absorption coefficient (m™?) is another significant parameter that measures how much the fuel absorbs
electromagnetic radiation during combustion, in addition to smoke density. More energy released by the fuel per unit
of mass is indicated by a greater absorption coefficient, which could result in better combustion and lower emissions.

2.4 Dataset

The experimental compression ignition (CI) engine arrangement used in the Kirloskar series of studies provided the
data for this investigation. Throughout the trials, this engine was run at a steady 1500 revolutions per minute (rpm).
The engine was methodically subjected to various loads by the researchers as they meticulously measured and
recorded the engine's working parameters. This extensive dataset contains important engine performance indicators
including speed, torque, load, power and fuel consumption rate in addition to critical fuel factors like calorific value
[37]. Important performance metrics including brake-specific fuel consumption, brake-specific energy consumption,
brake thermal efficiency (BTE), and exhaust gas temperature were also recorded by the researchers. The dataset also
included metrics linked to emissions, such as the absorption coefficient and smoke density. The entire dataset was
divided into three separate sets by the researchers to enable more thorough analysis: 70% were put aside for training,
15% were set aside for validation, and the remaining 15% were set aside for final testing [38]. This strategic data
partitioning allows for robust model development, tuning, and evaluation to gain reliable insights from the
experimental findings. The researchers then employed correlation analysis to uncover the numeric relationships
between the various parameters. The correlation matrix provides a quantitative measure of the degree and direction
of correlation, ranging from -1 to +1. Negative values indicate an inverse relationship, while positive values signify
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a direct correlation between parameters [39]. Importantly, this correlation analysis holds true regardless of the
underlying data distribution, providing a generalized understanding of how the different parameters influence one
another. Building on this foundation, the researchers were able to develop a deeper, more nuanced comprehension of
how the engine's input variables, performance metrics, and emission characteristics are interrelated. As highlighted
by Jahirul et al., this type of correlation analysis can be a powerful tool, potentially enabling the use of advanced
techniques like artificial neural networks (ANNS) to reliably predict fuel properties and engine performance without
the need for extensive, time-consuming experimental evaluations. Even while the relationships aren't always strictly
linear, the correlation matrix shown in Table 2 makes it abundantly evident that every single input parameter assessed
affects the emissions and performance of the CI engine.

Table 2: Matrix of correlation for every parameter: an initial stage in visualizing the linear relationship between
various factors.

CV  Load Torque Speed Power . Y€ BSFC  BSEC BTE EGT Smo.keAbSOTP“O”
ensity coefficient

(kJkg) (%) (N-m) (rpm) (kw) COMSUMPLON \ l\Wih) (kIKWhH) (%) (°C)

(/) (HSU)  (m?)
CVv
1
(kg | 10000
Load
) 0.000 1.0000
Torque | 500 0.9993  1.0000
(N-m)
Speed 1 0978 0.9480 -0.9420 1.0000
(rpm)
Power
(QN) | 00030 09982 09996 09343 10000
Fuel
Consumption|-0.0261 0.9983 09962 -0.9570 09942 10000
(I/h)
BSFC
(o kujhy | 01444 -0.8680 08815 07206 08911 -0.8479 1.0000
BSEC 11030 -08743 -0.8880 07518 -08969  -0.8607 09678  1.0000
(kJ/kWh) ' ' ' ' ' ' ' '
B(I/S 01284 09019 09147 -0.7895 0.9225  0.8893 09570 -0.9900  1.0000
'f(g -0.0963 0.9594 0.9501 -0.9654 0.9436  0.9707 07260  -0.7560 0.7895 1.0000
Smoke
density |-0.0042 0.7151 0.6900 -0.7979 0.6741  0.7420 03443 -03450 0.3874 0.8483 1.0000
(HSU)
Absorption
coefficient |-0.0133 0.7253 0.7004 -0.8060 0.6849 07526 03427 03499 03909 0.8580 0.9846  1.0000
(m?)

2.5 Development of ANN models for CI engine

Machine learning offers many techniques for building a predictive model like decision trees, neural nets, regression
models, and many more clustering algorithms. Particular conditions and parameters are implementation regarding
the need to model the performance and efficiency of a compression ignition. The main prerequisite was that the model
had to be very interpretable so that the interactions between the different parameters could be clearly understood.
Additionally, the model had to be capable of handling non-sequential data, rather than being limited to sequential
data inputs. Equally important was the need for computational efficiency, ensuring the model could be deployed
without excessive resource demands [40]. In order to simulate and analyze engine operations and get important
insights into their behavior, engine modeling is a must. MATLAB 2021b is used for these simulations, which aid in
the assessment of engine performance and emissions through computational modeling. The training and validation
phases of the artificial neural network (ANN) model had a significant impact on its efficacy. Based on experimental
results, researchers adjusted network settings during validation, such as the hidden layer's neuron count. Using an
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activation function, an activation function is used to conduct a non-linear transformation after a linear transformation
is carried out by a single neuron in the ANN technique [41]. The model is a flexible option because of this
combination's ability to capture both linear and non-linear data. Additionally versatile and adaptive, ANN models
work well at replicating intricate, a non linear interactions between inputs and outputs. Simple layers in the ANN
govern how the inputs are converted into predictions, and the interpretation of each layer can offer important insights
into the structure of the data. Based on its activation properties, each layer adds to the ultimate prediction; the overall
prediction is the result of aggregating these layers according to their weights and biases. The Feed Forward Back
Propagation (FFBP) model is among the common techniques for solving non- linear problems that is being applied
in the current study. This is because the fuel and/or engine parameters that can be used as inputs can cause a wide
variety of non-linear effects on the operation of the IC engine and hence, ANN is an appropriate tool in modeling the
behavior of an IC engine.

2.6 Network

The basic design of the FFBP neural network architecture used in this present work as shown in figure 2. The input
layer, the hidden layer, and the output layer are the three separate layers that make up the FFBP models.

Input layer Hidden Layer Outputlayer

Calorific
value (kJ/kg) = Brake specific fuel
Load (%) consumption (kg/kWh)

Torque (N-m) = Brake specific energy

consumption (kJ/kWh)

Speed (RPM
peed ( ) = Brake thermalefficiency (%)

- L]
Brake Exhaustgas temperature (°C)

power (kW)
Fuel
consumption
(Vh)

= Smoke density (HSU)

= Absorptioncoefficient(m™)

Number of

Number of

neuronsin the

= ,
NuUmber or
Numl neuronsin

neuronsinthe \
Y the hidden Kt : 1
input layer=6 ' . outputlayer
‘ y layer=3to7

Fig. 2. FFBP neural structure of 6 nodes in input layer, 1 node in output layer and 7 nodes in hidden

For each parameter that needs to be predicted, the input layer consists of six (6) input neurons, while the output layer
has (1) neuron. To explore the optimal network topology, five different configurations were developed and tested -
6-3-1, 6-4-1, 6-5-1, 6-6-1, and 6-7-1, with the 6-7-1 topology shown in the figure 2.

Number of hidden layer neurons < Number of input layer neurons + 1 1)

. Number of hidden layer neurons
Number of hidden layer neurons = f 4 2

JNumber of input layer neurons X Number of output layer neurons

One important feature that can have a big impact on how well an ANN model performs is the quantity of the buried
layer's neurons. The Kolmogorov theorem states that the formulas in equations (1) and (2) can be used to calculate
the ideal quantity of the buried layer's neurons. These computations led to the decision to vary the hidden layer's
neuron count from three to seven. This method aids in making sure the ANN models can accurately represent the
problem's underlying complexity [42]. The Levenberg-Marquardt backpropagation algorithm, which is renowned for
its quicker convergence and less training epoch requirements as compared to other optimization techniques, was used
to train the ANN models. Furthermore, the learning function which was used in controlling the training of the model
was the gradient descent with momentum weights. Another important consideration for developing ANNSs is the
choice of the transfer function since it defines the way the input signals are processed to provide the network’s
response. In this study, the tan-sigmoid transfer function was utilized due to its continuous and differentiable nature,
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which typically exhibits better performance with non-linear problems. The Mean Squared Error (MSE) was chosen
as the performance index to evaluate the models' accuracy during the training phase.

2.7. Methodology

The topic description given above indicates a clear-cut process of building FFBP ANN model to predict the
performance and emission profile of a Cl test engine fueled with different percentages of UTO based biodiesel fuel
blends. The Supplementary Information document that is cited provides a thorough flowchart of this recommended
methodology. The first step in the process is gathering a solid dataset with the necessary input parameters, like engine
operating conditions (load, speed, torque, brake power), fuel properties (calorific value), and the desired output
parameters, such as exhaust gas temperature (EGT), smoke density, absorption coefficient, and brake-specific fuel
consumption (BSFC). The model can create significant links between engine operating circumstances, fuel properties,
and the performance and emissions that emerge from these associations thanks to this extensive dataset. After that, a
correlation matrix is created to measure the interdependencies among the different parameters. This helps to
determine which input-output variables are suitable and offers important insights into the physics at play. Deciding
the number of neurons in the hidden layer depending on the amount of initial and final variables is one of the strategies
used in enhancing the ANN design. The ANN models are then trained and simulated using MATLAB 2021b's Neural
Network Tool kit. Several performance metrics are calculated to assess the model's accuracy and predictive capacity
after the training phase. These include the mean absolute deviation (MAD), mean squared error (MSE), mean absolute
percentage error (MAPE), and root mean square error (RMSE). Choosing of the optimal model is made from the
perspective of the maximum R coefficients and the minimum values of errors. A comparison of maggio actual with
actual and predicted values, with conventional diesel as the reference, is done on graphs to ensure that the model’s
performance is accurate. This enables a visual analysis of the model's ability to capture the trends and subtleties of
the engine's performance and emissions characteristics when operating on various UTO based biodiesel fuel mixtures.
Lastly, a sensitivity analysis is carried out for every input parameter with respect to the optimal models, offering
insightful information about the relative significance and impact of different fuel qualities and operating conditions
on the emissions and engine performance. Utilizing this data will optimize fuel mixes and engine settings for greater
economy and lower emissions. According to the study process, it is therefore necessary to assess the biodiesel blends
in terms of its performance and emanation at both fully loaded and part loaded condition. This comparison is useful
in explaining biodiesel characteristics on the functionality and performances of vehicle engines under varying loads.
High loads often cause high fuel consumption and emissions and, at the same time, low loads may give various
thermal efficiencies. From such differences, improvements can be made on ANN models in order to give better
estimations and increase the suitability of biodiesel usage the most stable source of energy in place of conventional
energy at various types of operations.

2.8 Indexes for evaluating ANN models

Several statistical indicators were used to extensively analyze the performance of the created artificial neural network
(ANN) models.

- nyxy-yxxy (3)
Vi Tx2-T0?) (n Ty2-C»)?)
n
RMSE = Z/Z(xT‘y)z )
MAD = 2221 (6)
MAPE=%XZ|";—Y|X100 ©)

The correlation coefficient (R), where "n" is the total number of data points, "X" denotes the desired value, and "y"
denotes the anticipated value.

8/ Volume 13(2), 2025 J. Res. Appl. Mech. Eng.



Equation (3) was utilized to assess the linear relationship a value of 1 denoting a perfect positive correlation between
the model's predictions and the actual target values. The mean-squared error (MSE), which calculates the average
difference between expected and observed values and provides a general sense of model accuracy, was given by
equation (4). The root-mean-squared error (RMSE), which is determined by equation (5), was also computed to
provide more context. This measure shows the standard deviation of the prediction errors and is expressed in the same
units as the original data. In addition, compared to the MSE, the mean absolute deviation (MAD), which was
calculated using equation (6), offered a reliable indicator of the average absolute difference between predicted and
actual values and was less susceptible to outliers. Lastly, prediction accuracy was reported as a % using the mean
absolute percentage error (MAPE), which was obtained from equation (7). This provided a simple and understandable
metric for evaluating model performance. Through the examination of these diverse statistical metrics, the researchers
were able to acquire a thorough comprehension of the advantages, disadvantages, and general applicability of the
ANN models.

3. Result and Discussion
3.1 Prediction of some of the essential performance parameters of the engines

The performance of artificial neural network models to predict important engine parameters when the engine was
operated on biodiesel of different blends produced from used temple oil was investigated. Researchers employed
basic statistical measures to evaluate the models such as correlation coefficient (R), mean squared error (MSE), root
mean square error (RMSE), mean absolute deviation (MAD) and mean absolute percentage error (MAPE). They
systematically studied the impact of altering the size of the buried layer from three neurons to seven neurons. It was
pointed out that the most effective possibility for prediction of the engine’s brake-specific fuel consumption (BSFC)
was the 6-5-1 neural network topology, which includes 6 input neurons, 5 neurons in the only hidden layer, and 1
output neuron. On the basis of such parameters, this particular model emerged highly successful, with a desirable
R-All or an overall correlation coefficient of 0. 9970, MSE of 4. 36E-05, RMSE of 0. 0066, MAD of 0. 0052 and the
Mean Absolute Percentage Error of 1 was obtained. 2499. The 6-3-1 topology was determined as the most effective
one in the evaluation of BSEC with the R-All of 0. 9932, MSE of 0. 2121, RMSE of 0. 4606, MAD of 0. 3031 and
mean absolute percentage error (MAPE) of 1. 6702. The 6-3-1 design was also the best topology for predicting the
brake thermal efficiency (BTE) by having the highest value of R-All of 0. 9988, MSE of 0. 0397, RMSE of 0. 1993,
MAD of 0. 784 their values were 1234, and MAPE of 0. 5599. Singly, and despite the current lack of R-All penalties
at all, impressively. 9965, MSE of 23. 6187, RMSE of 4. 8599, MAD of 2. Avg actual flows equaled 8763 for
calibration, 9395 for validation, and MAPE of 0. 9917 was also found to be the best model and 6-5-1 was also
concluded to be the best candidate to forecast the exhaust gas temperature (EGT) second to BSFC. The study also
highlighted a notable observation the correlation coefficients during the training phase sometimes surpassed those in
the testing and validation phases, indicating a potential discrepancy in the topologies. In order to tackle this, the
researchers stressed that the R-All value which offers a thorough evaluation of the model's prediction accuracy and
generalization abilities across all data subsets should serve as the primary guide when choosing the ideal topology.
Let’s look closely at the performance parameters of the IC engine that runs on different blends of biodiesel from used
temple oil (UTO). The details are below in Figure 3, which explains it all quite well. A clearer comprehension of the
patterns and connections between the compositions of the biodiesel blends and engine performance data was made
possible by these visuals. For example, it was found that the BSFC decreased as engine load increased, which was
explained by improved combustion efficiency and decreased heat loss at higher loads. Comparably, when the load
increased, the BSEC showed a declining trend, indicating better overall performance and fuel efficiency [43]. In
contrast, the BTE showed a positive association with load, indicating improved engine performance and energy
conversion under greater load circumstances. It was also discovered that, in keeping with expectations, the EGT
increased as the engine load increased. These conclusions from the thorough investigation offer helpful advice for
enhancing the efficiency of IC engines using mixes of biodiesel made from UTO. The remarkable precision and
accuracy of the ideal artificial neural network (ANN) model is validated by the strong agreement between the
predictions and the target values. The biofuels under consideration, B20 (20% biofuel, 80% diesel) and B100 (pure
biofuel), appear to have remarkably similar properties to conventional diesel fuel, as evidenced by the lack of any
significant deviation or separation between the trend lines for the different biofuel blends on the y-axis, which
represents key performance metrics like brake-specific fuel consumption (BSFC), brake-specific energy consumption
(BSEC), brake thermal efficiency (BTE), and exhaust gas temperature (EGT) [52,53].
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This suggests that these biofuel mixes can be smoothly incorporated into compression ignition (CI) engines as
alternate fuels without significantly affecting the engine's overall performance. These results are in line with the
model's performance as reported by Javed et al. [44], who were able to accurately simulate the emissions and
operation of a dual-fuel engine powered by hydrogen and a blend of Jatropha Methyl Ester biodiesel. In support of
this, the additional data shown in Fig. 3 confirms a high correlation with engine load where, in general, all fuels of
diesel, B20, B25, B30, B35, B40 and B100 to exhibit similar trends for BTE, BSFC, BSEC and exhaust gas
temperature [45]. The striking similarities observed across this wide range of biofuel blends support the conclusion
that these renewable fuels can be easily incorporated into Cl engine applications as viable and effective alternatives
to conventional diesel, without sacrificing engine performance or efficiency.

3.2 Emission Parameters prediction with ANN

The research examined the emission properties of a compression ignition (CI) engine operating on various biodiesel
mixes derived from used temple oil. The two primary emission parameters that were looked at were smoke density
and absorption coefficients. These data are crucial for understanding the engine's combustion characteristics and
exhaust emissions. To represent these emission parameters, the researchers created a variety of neural network
topologies using three to seven neurons. The performance evaluation metrics for these models are included in Table
4 of the study, demonstrating their high prediction accuracy of the engine's emission behavior [46]. For smoke
density, the 6-3-1 topology exhibited the strongest correlation, with an R-All value of 0.9946. This model also
demonstrated low error metrics, with an MSE of 3.0261, RMSE of 1.7396, MAD of 1.4677, and MAPE of 8.7520.
Similarly, for absorption coefficient prediction, the 6-6-1 topology outperformed the others, achieving an R-All of
0.9932 and impressively low error values of 0.0008 for MSE, 0.0282 for RMSE, 0.0221 for MAD, and 5.9503 for
MAPE. These exceptional results indicate that the proposed models are highly accurate and well-suited for modeling
the non-linear relationships inherent in engine emission characteristics [47]. The study's conclusions were further
corroborated by a comparison with an earlier study that used engine speed and load data to predict fuel consumption
and emissions from a spark ignition engine; the current model's demonstrated performance was comparable with
those earlier findings, demonstrating the approach's robustness and applicability. Also, the trends in smoke density
as well as the absorption coefficient were also analyzed whereby the engine load was considered. As depicted in
Figures 4(a) and 4(b), both parameters exhibited a positive correlation with increasing load, indicating that higher
engine loads lead to greater smoke density and absorption coefficient. Importantly, the minimal deviation observed
between the trend lines for different biodiesel blends (B20 and B100) and diesel suggests that these biofuels exhibit
very similar properties to conventional diesel fuel. This finding implies that the tested biodiesel blends can be used
as viable alternatives to diesel in ClI engines without significantly impacting the engine's emissions profile [48]. In
addition, Figure 3 of the supplemental information also corroborates these findings as it presented the dependence of
smoke density and absorption coefficient on load as a function of fuel type and load, although the fuels used in
evaluating this work included diesel, B20, B25, B30, B35, B40 and B100 [49]. This large set of data is useful in
comprehending the emission profile of Cl engines fuelled with different biodiesel blends and can guide the design of
improved engines that have a reduced emission footprint.

3.3 Sensitivity analysis

Sensitivity analysis assists in forecasting an output parameter, while trying to determine one input parameter. The
feasibility and the optimal model were evaluated by calculating the remaining parameter value with one of the input
parameter fixed at time using the test set. To dig deeper, we checked out how these values line up with each other.
We did this with something called the correlation coefficient (R-All) as well as MSE & RMSE [50]. You can also
find the sensitivity analysis for the ideal model topologies regarding BTE, EGT, BSFC, & BSEC forecasts in Table
5 [51]. Hypothesis testing made it possible to establish that the input parameter torque influenced the best accurate
model for predicting BSFC (6-5-1). In order to ensure the overall output tops the total figure in terms of fuel
consumption, there has to be a balance between torque and BSFC [52]. Originally, torque means the force that tries
to rotate an object or the revolve force of the engine. The exhaust gas temperature of 6-5-2-1 is closely linked with
fuel consumption while the prediction of BSEC of 6-3-2-1 is significantly affected by the braking power. It can be
seen that ideal torque and fuel affect the brake thermal efficiency model to a larger extend. Table 6 illustrates
sensitivity analysis performed on the top models regarding the emission, absorption coefficient and smoke density.
The model that achieved the highest accuracy in forecasting two highly sensitive to engine speed smoke density
(6-3-1) and extremely sensitive to engine load absorption coefficient (6-6-1) of the tested vehicle was topology.
This work was mainly concerned with refining artificial neural network (ANN) models to predict several engine
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system performance indicators. According to the investigation of several ANN topologies, the researchers found in
their study which ANNSs viewed better forecasts for given indicators [53]. for the prediction of BFSC, brake specific
energy consumption (BSEC), brake thermal efficiency (BTE) and exhaust gas temperature (EGT), respectively, the
best ANN model topologies were found to be 6-5-1, 6-3-1, 6-3-1 and 6-5-1. For the BTE prediction, using calculated
MSE, MAD, MAPE and RMSE the values were found to be 0.0397, 0.1993, 0.1234 and 0.5599, in that order. The
findings also suggest a significant correspondence between the model’s outputs as well as the actual observed values;
quite expectedly, the BTE prediction yielded the highest R-All of 0. 9988. The research also anticipated that technique
with 6-3-1 topologies and the 6-6-1 topologies was ideal for predicting absorption coefficient and smoke density,
respectively. as indicated in analyses of the emission parameters, the prediction of the smoke density using the ANN
of 6-3-1 topology holds the more value of R-All correlation coefficient of 0.9946. the corresponding of RMSE, MSE,
MAPE for the smoke density prediction was 3.0261, 1.7396, 1.4677 and 8.7520, in that order.

Even if ANNs have shown a lot of promise, it is still worthwhile to investigate alternative machine learning
techniques, including Decision Trees and Support Vector Machines, in order to perform comparative analyses
and obtain a deeper comprehension of the dynamics of ClI engine [54]. To fully realize the promise of these
computational tools in real-world Cl engine applications, future research should concentrate on optimizing
neural network architectures, refining training methodologies, and investigating the integration of diverse machine
learning approaches [55]. The creation of reliable real-time data processing and collection strategies will be essential
to this project in order to facilitate the smooth integration of these cutting-edge methods into the engine control
systems.

Table 3: displays the models used to anticipate emissions.

parameter | Model n’:{j’};‘; R - Train Va“éqa;ions R-Tests R-ALL| MSE | RMSE | MAD | MAPE
BSFC BSFC-6 31| 3 | 0996 | 009952 | 09520 | 0.9919 | 0.0001 | 0.0104 | 0.0049 | 1.1198
(kg-kWh)  Fpsrcsa1| 4 | 09984 | 09987 | 09431 | 0.9682 | 0.0005 | 00213 | 00083 | 18187
BSFC651| 5 | 09974 | 0.0998 | 0.9976 | 0.9970 | 0.0000 | 0.0066 | 0.0052 | 1.2499
BSFC-6 61| 6 | 09620 | 009909 | 09607 | 0.9658 | 0.0007 | 0.0273 | 0.0233 | 59579
BSFC-6.7-1| 7 | 09985 | 00943 | 0.9994 | 0.9937 | 0.0001 | 0.0092 | 0.0048 | 1.1731
BSEC BSEC-631| 3 | 0.9965 | 0.9972 | 0.9984 | 0.9932 | 0.2121 | 0.4606 | 0.3031 | 1.6702
(IKWH)  Fosecea1| 4 | 09955 | 05606 | 09773 | 0.9893 | 02702 | 05198 | 03083 | 1.9908
BSEC651| 5 | 02075 | 0.8910 | 06371 | 02914 |14.8957 3.8595 | 2.3660 | 11.5680
BSEC6.61| 6 | 09922 | 09378 | 0.9998 | 0.9787 | 0.4814 | 0.6938 | 0.4037 | 2.2602
BSEC-6-7-1 7 0.5861 0.7940 0.7511 0.6412 |19.7816| 4.4477 3.4422 22.4025
BTE BTE-631| 3 | 0.9992 | 1.0000 | 0.9774 | 0.9988 | 0.0397 | 0.1993 | 0.1234 | 0.5599
(%) BTE-6-4-1 4 0.8967 0.9990 0.9980 0.9394 2.8713 1.6945 1.0036 4.6516
BTE-6-5-1 5 0.9981 0.9999 0.9986 0.9083 0.0535 0.2313 0.1765 0.8419
BTE-6-6-1 6 0.8835 0.9920 0.9666 0.9298 5.0974 2.2577 1.6914 7.7218
BTE-6-7-1 7 0.9999 0.9317 0.9146 0.9766 0.7654 0.8749 0.3340 1.5205
EGT EGT-6-3-1 3 0.9987 0.6994 0.9308 0.9919 45.0672| 6.7132 3.3875 1.1332
(OC) EGT-6-4-1 4 0.9933 0.9959 0.9995 0.9920 |46.3064| 6.8049 4.9097 1.6096
EGT651| 5 | 09994 | 09919 | 09839 | 0.9965 |23.6187| 4.8599 | 2.9395 | 0.9917
EGT661 | 6 | 09973 | 009706 | 09985 | 0.0912 |49.0486 7.0674 | 4.6041 | 1.5226
EGT67-1 | 7 | 1.0000 | 1.0000 | 03214 | 0.9831 |91.3481, 9.5576 | 3.5016 | 1.1857
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Fig. 3. predicted values and observed of BTE, BSFC, BSEC and EGT.
Table 4: lists the emission prediction models performance evaluation indices.
parameter | Model | N T IR Train| R | R._Tests |R-ALL| MSE | RMSE | MAD | MAPE
neurons validations
Zmoke SD-6-3-1 3. 0. 9956 0. 9997 0.9967 0.9946 | 3.0261 | 1.739 1.4677 8.7520
ensit
(Hsu)y SD-6-4-1 4 0.9975 0.9965 0.9991 0.9930 | 27116 | 1.6467 1.0883 5.8984
SD-6-5-1 5 0.9871 0.9985 0.9829 0.9799 | 13.9407 | 3.7337 2.8539 | 18.5829
SD-6-6-1 6 0.6599 0.9881 0.9977 0.7508 |102.5749| 10.1279 | 4.8282 | 32.1169
SD-6-7-1 7 0.9936 0.9982 0.9901 0.9928 | 4.1567 | 2.0388 1.5730 9.6690
Absorption | AC-6-3-1 3 0.9992 0.9988 0.9853 | 0.9893 | 0.0064 | 0.0802 | 0.0386 | 9.5293
‘(:r%‘?lf)f'c'e”t AC-6-4-1 4 0.9916 | 0.9953 | 0.9869 | 0.9893 | 0.0051 | 0.0712 | 0.0499 | 12.6555
AC-6-5-1 5 0.9902 0.9988 1.0000 | 0.9932 | 0.0032 | 0.0563 | 0.0363 | 9.2059
AC-6-6-1 6 0.9934 0.9999 1.0000 | 0.9932 | 0.0008 | 0.0282 | 0.0221 | 5.9503
AC-6-7-1 7 0.9751 0.9998 0.9994 | 0.9840 | 0.0091 | 0.0952 | 0.0697 | 19.4951
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Fig. 4. Predicted values and observed values of absorption coefficient and smoke density

Table 5: Sensitivity analysis for the predicttion of BTE, BSFC, BSEC and EGT

100

Prediction parameter Parameter name (on hold) R-ALL MSE RMSE
BSFC BSFC-(6-5-1) CVin kikg 0.9947 0.0001 0.0091
(kg/kwh) Load in % 0.9957 0.0001 0.0076
Torque in N-m 0.9805 0.0012 0.0346
Speed in RPM 0.9972 0.0000 0.0064
Brake Power in KW 0.9947 0.0001 0.0089
Fuel consumption in I/h 0.9953 0.0001 0.0071
BSEC BSEC-(6-3-1) | CVin kikg 0.9826 0.4021 0.6341
(kI/Kwh) Load in % 0.9839 0.4364 0.6606
Torgue in N-m 0.9925 0.1745 0.4177
Speed in RPM 0.9944 0.1277 0.3574
Brake Power in KW 0.7615 12.5246 3.5390
Fuel consumption in I/h 0.7630 6.1141 2.4727
BTE BTE- (6-3-1) | CVin kikg 0.9869 0.8934 0.9452
(%) Load in % 0.9874 0.5227 0.7230
Torque in N-m 0.9979 0.0638 0.2526
Speed in RPM 0.9906 0.2992 0.5470
Brake Power in KW 0.9911 0.2920 0.5404
Fuel consumption in I/h 0.9836 0.5227 0.7230
EGT EGT-(6-5-1) | CVin kikg 0.9922 39.6486 6.2967
(°C) Load in % 0.9890 69.5387 8.3390
Torgue in N-m 0.9961 21.7855 4.6675
Speed in RPM 0.9936 37.5758 6.1299
Brake Power in KW 0.9029 1380.0000 37.1820
Fuel consumption in I/h 0.7510 2360.0000 48.6272
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Table 6: Sensitivity analysis for absorption coefficient, smoke density, and emission parameter prediction.

Prediction parameter Parameter name (on hold) R-ALL MSE RMSE
smoke density SD-(6-3-1) | CVin klkg 0.9830 0.9830 0.9830
(HSY) Load in % 0.9420 0.9420 0.9420
Torque in N-m 0.8031 0.8031 0.8031
Speed in RPM 0.4310 514.0440 22.6725
Brake Power in KW 0.9758 18.5262 4.3042
Fuel consumption in I/h 0.5960 321.5964 17.9331

Absorption AC-(6-6-1) | CVin ki/kg 0.9863 0.0087 0.0933

Coefficient .

(m) Load in % 0.7965 0.1159 0.3404
Torque in N-m 0.9918 0.0057 0.0755
Speed in RPM 0.9983 0.0008 0.0288
Brake Power in KW 0.9905 0.0008 0.0288
Fuel consumption in I/h 0.9330 0.0333 0.1825

4. Conclusions

The importance of artificial neural networks in increasing the stock of biodiesel as a renewable energy source for Cl
engines is therefore underlined by this work. The models of ANN that were developed systematically and optimized
in this work make it possible to provide the prediction of biodiesel fuel performance and emission characteristics with
a high degree of accuracy, rarely seen when working on this topic. Specific patterns of applied some ANN
architectures such as 6-5-1 for brake specific fuel consumption (BSFC) represent the reliability and stability of the
modeling methodology. It is possible to draw the conclusions about describing of highly excellent correlation
coefficients that is 0, 17000 for brake thermal efficiency (BTE) is obtained in addition to low values for MSE such
as just 0. 0397 for BTE, the above -stated indices evidently affirm the reliability and prognostic capability of the
developed ANN models. This study's sophistication is further demonstrated by the sensitivity analysis that was done,
which provides insightful information about the most important parameters. This information can be used to advise
and direct future model optimizations and revisions.

The pursuit of the sustainable development goals (SDGs) will be greatly impacted by these ground-breaking
discoveries since they directly support SDG 7's promation of environmentally friendly energy sources and SDG 13's
mitigation of greenhouse gas emissions. This work contributes to the improvement of sustainable energy practices
and opens the door to a more environmentally friendly future by minimizing the need for resource-intensive physical
testing. In line with the worldwide necessity to shift towards greener energy alternatives and accomplish sustainable
development goals, the research promotes the wider usage of biodiesel as a clean, renewable substitute for traditional
fossil fuels.
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