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Abstract: 

Power generation is highly dependent on compression ignition engines, which 

are mostly compression ignition engines with no power output that release 

dangerous toxic gases such as petrol and diesel, contaminating the atmosphere 

by disturbing local ecosystems and contributing to environmental problems. 

Efforts to solve this problem have focused on alternative fuels, and oil-based 

biodiesels are a popular choice owing to their sustainability and diesel-like 

performance. Towards this objective, the present study is focused on development 

of artificial neural network models for the performance and emission 

characteristics of biodiesel to reduce the physical testing which demand high 

resource inputs by making property based predictions more accurate. The brake 

specific fuel consumption (6–5–1), brake thermal efficiency (6-3-1) and exhaust 

gas temperature (6-5-1) are the best ANN model architectures for forecasting 

different performance metrics. The model obtained MSE of 0.0397, RMSE of 

0.1993, MAD of 0.1234 and MAPE of 0.5599 for brake thermal efficiency 

prediction. According to the sensitivity analysis, the model for brake thermal 

efficiency and exhaust gas temperature is sensitive to fuel consumption. The ANN 

model for brake specific fuel consumption is significantly sensitive to torque, and 

the model for brake specific energy consumption is sensitive to breaking power, 

which provides credence to the wider use of a biodiesel as a practical substitute 

of fuel, especially for products made from used temple oil. This change may 

contribute to a greener future by lowering a greenhouse gas emission and 

promotes better energy practices. 

 

Keywords: ANN, Performance and emission characteristics, Machine learning, 

Temple oil, Biodiesel blends, Compression ignition engine 

 

 

1. Introduction  

 

This has been essential in the development of metropolitan areas for industry, which necessitates a rise in population 

and the need for fossil fuel-based electricity [1]. As industrialization continues at its current rate, there will be a 

greater need for energy, and shortages of some natural resources will pose a serious threat to future energy supplies 

[2]. To meet the growing demand for electricity due to high pace industrialization and increasing populations will be 

necessary to provide sustainable and efficient power generation methods [3]. Significant progress has been made in 

the areas of performance, resilience, size, molecularity, and output optimization in the power generation industry [4]. 
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The modern day internal combustion (IC) engines are the backbone of current power production that is used to drive 

various modes of transportation ranging from small commercial vans to huge industrial fork lifts. These versatile 

engines run on different forms of liquid fossil fuels including petrol or diesel [5]. Nevertheless, burning these 

traditional fuels does not occur without serious environmental consequences since their combustion produces toxic 

mixtures. NOx, CO, SO2, heavy metals and greenhouse gases like carbon dioxide and methane are all emanations of 

burning gasoline and diesel. The environment accumulates these harmful substances which destroys the fragile 

ecological equilibrium leading to issues such as acid rain, global temperature swings as well as an augmenting 

greenhouse effect. The necessity to monitor and lower the quantities of toxins produced by internal combustion 

engines stems from the long-term consequences that these environmental stresses can have on all living things. 

 

One possibility to be looked at is that, renewable, low-emission alternative fuels are developed and adopted. 

Significant examples of innovative fuel sources analyzed by researchers as potential substitutes for standard gasoline 

and diesel include hydrogen, propane, biodiesel, and methane hydrates among others. In this regard the use of 

microbial electrolysis cells (MECs) is particularly significant because it uses electromotive microorganisms’ 

metabolic processes to convert ammonia into a clean burning gas which is hydrogen. Since ammonia has low splitting 

potential it is an efficient and cost effective substrate for this mode of producing hydrogen [6]. On the other hand, 

optimizing various factors such as: microbial community composition; electron donors’ presence; electrode materials; 

pH and temperature; and hydraulic retention time is very crucial in maintaining ammonia-splitting reaction without 

excessive energy loss. The need to find alternative fuels has become more pressing as the globe struggles to offset 

the negative environmental effects of burning fossil fuels and reduce greenhouse gas emissions. In order to overcome 

the obstacles involved in the creation and application of these greener, more sustainable power sources, researchers 

are putting up endless effort. For Khatri etal. [7] recently used ANN model to evaluate the performance of CI engine 

running on Karanja oil and Karanja biodiesel, and they were able to obtain an impressive correlation value of 0.9948. 

These developments highlight the enormous potential of alternative fuels to transform the energy landscape and open 

the door to a more ecologically conscious future. To address the growing worries about environmental sustainability 

and the depletion of fossil fuels, researchers have been looking into a variety of alternative fuel sources in recent 

years. In one such study, the inedible seeds of the Chrysobalanus icaco plant were used to create a new biofuel. It 

was carried out by Okonkwo et al. [8]. The performance parameters of this biodiesel fuel were predicted by the 

authors through the application of sophisticated statistical modeling techniques. A high coefficient of determination 

(R2 = 0.903) in their research indicated a very good fit between the observed and anticipated values. In addition, the 

MAE was 0.650 and RMSE for the best model was a meagre 1.3723, indicating how accurate the model was in 

predicting the performance of the biodiesel. The efficacy and emissions of two different biodiesel blends made from 

feedstocks including Karanja, Neem, Mahua and jatropha in a different study [9]. When compared to pure diesel fuel, 

their findings revealed a noteworthy 34.05% average decrease in carbon monoxide (CO) emissions, a 42.54 % 

increased in carbon dioxide (CO2) levels, and a 21.29 % increased in  nitrogen oxide (NOx) emissions. These results 

show that these biodiesel blends have the potential to lower hazardous pollutants, but they also show that there are 

trade-offs, such as higher NOx emissions, which may need for further optimization. In order to enhance the 

performance of a diesel engine, an innovative strategy that combined the usage of nanomaterials and miture of the 

microalgae Chlorella vulgaris with biogas [10]. Combining nanomaterials and biogas decreased fuelling by 14 percent 

thus new fuel mixtures may boost the ability of engines to perform more efficiently. conversely for the A20 blend, 

this resulted to higher brake-specific fuel consumption (BSFC) due to the higher viscosity of the fuel blend. 

Krishnamoorthi et al. [11] made an assessment of the emission characteristics and efficiency of using a blend of 

chaulmoogra oil and diethyl, through an artificial neural network (ANN) modeling. Thus, their investigation produced 

regression coefficient values of the following range: 0.910 to 0. 999, meaning this model had almost 100 percent 

accuracy in identifying the blend characteristics. Javed et al. have elaborated a model to assess the operational 

efficiency of a hydrogen dual fuel engine when fueled with Jatropha Methyl Ester biodiesel. In the model, the overall 

regression coefficient came came slightly to 0.9936, A MSE of 0. Equally important, the values for RMSD are                 
0.0011 and MAPE are 4.8630% [12]. 

 

Böyükdipçi et al. [13] investigated the application of ammonia (NH3) additions to sunflower biodiesel in a diesel 

engine. Their research showed that the vibration parameters of the engine were adversely affected by the additive. 

But the accuracy ratios of the B90A10, B85A15 and B95A5 blends were astonishingly high (99.206%, 99.675% and 

99.505%, respectively) showing that certain combinations of biodiesel additive and engine performance enhancer 

have potential. In the study conducted by Balabin et al [14] the thermo physical properties of biodiesel were well 

analyzed using near infrared spectroscopy in combination with artificial neural network (ANN) forecasting model. 

The ANN model achieved optimal root mean squared errors of prediction (RMSEP) of just 0.42 kg m-3 for density, 
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0.068 mm2 s-1 for viscosity, 45 ppm for water %, and 51 ppm for methanol content, according to the researchers' 

outstanding findings. These incredibly precise forecasting abilities highlight ANN modeling's potential as an effective 

tool for assessing and improving biodiesel properties. In addition, research by Mathew et al. [15] found that the 

presence of fuel-bound oxygen in biodiesels significantly decreased the generation of soot. This is an important 

discovery because traditional diesel fuels pose a serious environmental risk due to soot emissions. The inherent 

oxygen content in biodiesels, derived from their vegetable oil feedstocks, appears to play a pivotal role in mitigating 

this pollutant. The growing interest in biomass-based alternative fuels, with vegetable oils being the most prominent, 

is driven by their renewable nature and abundant availability [16]. Many nations, including India, have implemented 

regulations mandating the blending of vegetable oil-based biofuels with conventional diesel, aiming to encourage the 

widespread adoption of these sustainable energy sources. To further encourage the switch to alternative fuels like 

biodiesel, governments have also implemented a number of support measures, including tax breaks, grants, subsidies, 

and financing for research and development [17]. Vegetable or non-edible oil transesterification results in biodiesels 

with heating values that are strikingly similar to conventional diesel fuel. The energy content and combustion 

behavior of these mono-alkyl esters of long-chain fatty acids are comparable to those of diesel [18]. According to 

studies, biodiesels based on soybean and rapeseed methyl ester have brake thermal efficiencies that are just 4-7% 

lower than those of traditional diesel [19]. Additionally, the lubricity and cetane number of biodiesels are comparable 

to those of diesel, ensuring compatibility with most existing engine systems [20]. With these favorable properties, 

biodiesels have emerged as a highly promising alternative to fossil-based diesel, offering the potential to reduce our 

reliance on finite resources while mitigating environmental concerns associated with traditional fuels [21]. The field 

of engine performance modeling and optimization has seen significant advancements in recent years, with researchers 

exploring various machine learning techniques to enhance predictive capabilities [22]. The appropriate biodiesel ratio 

is an important factor in engine performance and emissions, and the researchers discovered that the K-ELM approach 

was extremely effective in calculating this value. Furthermore, Silitonga et al. [23] demonstrated that K-ELM can 

successfully forecast a range of engine performance indicators, including smoke opacity, carbon monoxide (CO), 

nitrogen oxides (NOx), brake thermal efficiency (BTE), and brake-specific fuel consumption. With mean absolute 

percentage error (MAPE) values ranging from 1.363% to 2.090%, the K-ELM model displayed outstanding predictive 

power for these critical parameters. By utilizing ant colony optimization, enhanced a predictive artificial neural 

network (ANN) for diesel engine pollution prediction, advancing the investigation of sophisticated modeling 

methodologies [24]. This model's outputs were NOx and soot emissions, while its inputs were engine speed, power, 

fuel mass injection rate, and intake air temperature. The ANN model surpassed conventional correlation-based 

methods, according to the researchers, who also observed that it achieved remarkable R-squared values of 0.98 and 

0.96 for NOx and soot emissions, respectively. This demonstrates how well ANN-based models are able to forecast 

the intricate correlations between emissions and engine operating factors. Vignesh et al. [25] pushed the envelope 

even farther by creating a DNN with four hidden layers and a special neuron configuration of 100-500-200-50. A 

worldwide calibration technique for split injection control, an essential component of optimizing engine performance, 

was developed using this DNN-based model. In comparison to the conventional response surface methodology 

(RSM) technique, the authors showed that the DNN approach led to the selection of a more exact optimum point, 

resulting in a wider power band with improvements of 11.13% and 12.90% in power and deliverable torque, 

respectively. This demonstrates how deep learning can be used to maximize the possibilities for optimizing engine 

performance. In another study regarding the usage of ANN, as well as the CMA-ES to forecast emissions and to 

finish the studies in this sector completed by Zheng [26]. The effectiveness of this hybrid technique to emulate 

complex engine emissions is further confirmed by the researcher’s report of theminimal error rate between expected 

and experimental values, ranging from 3 to 10%. One highly significant area of research with numerous applications 

is the capacity to create precise computer models for predicting the performance and emission characteristics of 

biodiesel fuels. Though considerable efforts have been devoted to investigate the possibility of replacing the fossil 

fuel with biodiesel in I C engines there is still a significant high accurate predictive means. This paper seeks to resolve 

the above predicament through the use of intricate artificial neural network (ANN) model that forecasts fuel 

consumption, CO, NOx, UHC and soot emissions, besides BTE, BSFC, BSEC, and fuel consumption by relying on 

inherent properties. Developing such sophisticated computational models represents a significant step forward, as it 

would reduce the industry's reliance on physical testing, which can be both challenging and redundant. The specific 

objectives of this research are multi-faceted - not only will ANN-based models be created to predict both performance 

and emissions, but sensitivity analyses will also be performed to identify the most influential input parameters, 

providing valuable insights. The ultimate objective is to show that these ANN models are accurate and feasible in 

predicting the behavior of biodiesel fuels, which would speed up the development and optimization of this promising 

renewable energy source as a competitive substitute for traditional diesel. 
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This work also pinpointed the most suitable ANN architectures for each of the forecast accuracy indices in terms of 

MSE, RMSE, MAD and MAPE with low prediction errors. Analysis of sensitivity showed that fuel consumptions 

greatly affect models of BTE and EGT, while torque does affect the model of BSFC. This paper reveals the applicative 

significance of biodiesel, mainly from waste feedstock comprising used temple oil. By enhancing the predictive 

models in use, it assists in reducing the levels of greenhouse gas emission together with encouraging the use of cleaner 

energy. 

 

2. Materials and Methods 

 

2.1 Engine Experimental Setup 

 

A single-cylinder, four-stroke engine with model number TAF1 HSD, 4 was used in the investigation shown in figure 

1. Kirloskar, a renowned indian company, provided the 4 kW constant speed engine used for the testing work [27]. 

This engine was specially fitted with a range of cutting-edge measuring and controlling apparatuses, which made it 

the perfect configuration for the study. This engine was used for additional agricultural tasks in addition to its 

experimental applications, demonstrating its adaptability and suitability for a variety of practical applications.        
Table 1 provides a reference for the comprehensive specs of this experimental CI (compression ignition) engine [28].                         

The principal fuel source for the current investigation is biodiesel based on used temple oil (UTO), as chosen                             

by the researchers. Since this biodiesel is made from non-edible oil rather than vegetable oil suitable for food use,                   

it is considered a second-generation type. Transesterification, which involves combining vegetable oil and                       

methanol with a NaOH catalyst to form the final biodiesel product, is the method used to produce the biodiesel [29]. 

Several blends, such as B20, B25, B30, B35, B40 and B100 were used in physical test of this UTO biodiesel at four 

different engine load settings: they are 25%, 50%, 75% and 100% respectively [30]. Standard diesel fuel was also 

employed to compare and analyze the qualities and performance of these substitute fuels in internal combustion 

engines. This is so because the energy content to heat output ratio can be determined accurately by using conventional 

diesel fuel. 
 

 
 

Fig. 1. Experimental Setup Diagram 

 

Table 1: Engine specifications 

    Manufacturer Kirloskar TV1 

    Power range 4 kW 1500 rpm 

    Displacement volume  661 cm3 

    Compression ratio 17.5:1 

    Standard injection timing 23° bTDC 

    Cooling type Air-cooled 
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2.2 Engine performance parameters 

 

A number of indicators are available for assessing efficiency of an internal combustion engine, and each one offers 

insightful information [31]. The BSFC is one such metric that quantifies the rotational power efficiency or output 

shaft of the engine. The BSFC is a measure of fuel efficiency; lower BSFC values correspond to higher brake power. 

This is because less fuel and energy are needed to generate the desired power output. By directly comparing the BSFC 

of different engines, engineers and researchers can assess which designs are optimizing the conversion of fuel into 

useful mechanical work [32]. The engine's capacity to capture the energy content of the fuel input and transform it 

into power produced at the braking point is assessed by the Brake Specific Energy Consumption (BSEC), another 

related metric. Lower BSEC values signify higher efficiency, as they demonstrate the engine is extracting more usable 

energy from the same amount of fuel. This is a crucial consideration, as maximizing the energy utilization helps 

improve overall powertrain performance and reduce fuel consumption [33]. The Brake Thermal Efficiency (BTE) 

develops these ideas further and calculates the proportion of work developed to the heat produced by the burning of 

fuel. Greater BTE percentages show that the engine is using its fuel's chemical energy more efficiently to produce 

mechanical power as opposed to wasting it as waste heat or as a result of inefficiencies. This efficiency metric 

provides a holistic view of how well the engine is leveraging the energy potential of the fuel [34]. Finaly, the 

combustion characteristics of the engine can be explained by the exhaust gas temperature. The EGT stands for 

Exhaus. easy gases temperature which indicates temperature of gases released during the process of combustion. For 

air-cooled engines, EGT serves as a valuable comparative indicator of the combustion situation, as higher 

temperatures generally signify more complete fuel burning. However, it's important to note that the expelled gases, 

many of which are greenhouse gases, can contribute to the overall heating of the engine and the environment, 

underscoring the need for continued efficiency improvements. 

 

2.3 Engine emission parameters 

 

Smoke is an inevitable byproduct that arises when combustion occurs in an oxygen-deficient environment. This 

smoke density, measured in Hartridge Smoke Units (HSU), is a crucial indicator for analyzing and understanding 

emissions from various sources, particularly engines [35]. A multitude of intricately intertwined elements affect the 

HSU value, such as the engine's operating circumstances, the fuel's physiochemical properties, and the particular 

design features of the combustion chamber. For instance, engines running at higher loads or with sub optimal air-fuel 

ratios will typically produce denser, more opaque smoke due to incomplete combustion. Similarly, fuels with different 

compositions, such as higher aromatic content or increased viscosity, can also impact smoke density by altering the 

fuel atomization, vaporization, and mixing processes within the cylinder. Additionally, the geometric configuration 

of the combustion chamber, including factors like swirl and turbulence patterns, can affect in-cylinder mixing and, 

consequently, smoke formation. Closely monitoring and managing smoke density is essential, as excessive smoke 

not only indicates inefficient combustion but can also contribute to environmental pollution and health concerns [36]. 

The absorption coefficient (m-1) is another significant parameter that measures how much the fuel absorbs 

electromagnetic radiation during combustion, in addition to smoke density. More energy released by the fuel per unit 

of mass is indicated by a greater absorption coefficient, which could result in better combustion and lower emissions. 

 

2.4 Dataset 

 

The experimental compression ignition (CI) engine arrangement used in the Kirloskar series of studies provided the 

data for this investigation. Throughout the trials, this engine was run at a steady 1500 revolutions per minute (rpm). 

The engine was methodically subjected to various loads by the researchers as they meticulously measured and 

recorded the engine's working parameters. This extensive dataset contains important engine performance indicators 

including speed, torque, load, power and fuel consumption rate in addition to critical fuel factors like calorific value 

[37]. Important performance metrics including brake-specific fuel consumption, brake-specific energy consumption, 

brake thermal efficiency (BTE), and exhaust gas temperature were also recorded by the researchers. The dataset also 

included metrics linked to emissions, such as the absorption coefficient and smoke density. The entire dataset was 

divided into three separate sets by the researchers to enable more thorough analysis: 70% were put aside for training, 

15% were set aside for validation, and the remaining 15% were set aside for final testing [38]. This strategic data 

partitioning allows for robust model development, tuning, and evaluation to gain reliable insights from the 

experimental findings. The researchers then employed correlation analysis to uncover the numeric relationships 

between the various parameters. The correlation matrix provides a quantitative measure of the degree and direction 

of correlation, ranging from -1 to +1. Negative values indicate an inverse relationship, while positive values signify 
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a direct correlation between parameters [39]. Importantly, this correlation analysis holds true regardless of the 

underlying data distribution, providing a generalized understanding of how the different parameters influence one 

another. Building on this foundation, the researchers were able to develop a deeper, more nuanced comprehension of 

how the engine's input variables, performance metrics, and emission characteristics are interrelated. As highlighted 

by Jahirul et al., this type of correlation analysis can be a powerful tool, potentially enabling the use of advanced 

techniques like artificial neural networks (ANNs) to reliably predict fuel properties and engine performance without 

the need for extensive, time-consuming experimental evaluations. Even while the relationships aren't always strictly 

linear, the correlation matrix shown in Table 2 makes it abundantly evident that every single input parameter assessed 

affects the emissions and performance of the CI engine. 

Table 2: Matrix of correlation for every parameter: an initial stage in visualizing the linear relationship between 

various factors. 

 
CV 

(kJ/kg) 

Load 

(%) 

Torque 

(N-m) 

Speed 

(rpm) 

Power 

(kW) 

Fuel 

Consumption 

(l/h) 

BSFC 

(kg-kW/h) 

BSEC 

(kJ/kWh) 

BTE 

(%) 

EGT 

(oC) 

Smoke 

density 

(HSU) 

Absorption 

coefficient 

(m-1) 

CV 

(kJ/kg) 
1.0000      

Load 

(%) 
0.000 1.0000     

Torque 

(N-m) 
0.000 0.9993 1.0000    

Speed 

(rpm) 
0. 0978 -0. 9480 -0.9420 1.0000   

Power 

(kW) 
0.0030 0.9982 0.9996 -0.9343 1.0000  

Fuel 

Consumption 

(l/h) 

-0.0261 0.9983 0.9962 -0.9570 0.9942 1.0000       

BSFC 

(kg-kW/h) 
-0.1444 -0.8680 -0.8815 0.7206 -0.8911 -0.8479 1.0000      

BSEC 

(kJ/kWh) 
0.1039 -0.8743 -0.8880 0.7518 -0.8969 -0.8607 0.9678 1.0000     

BTE 

(%) 
-0.1284 0.9019 0.9147 -0.7895 0.9225 0.8893 -0.9570 -0.9900 1.0000    

EGT 

(oC) 
-0.0963 0.9594 0.9501 -0.9654 0.9436 0.9707 -0.7260 -0.7560 0.7895 1.0000   

Smoke 

density 

(HSU) 

-0.0042 0.7151 0.6900 -0.7979 0.6741 0.7420 -0.3443 -0.3450 0.3874 0.8483 1.0000  

Absorption 

coefficient 

(m-1) 

-0.0133 0.7253 0.7004 -0.8060 0.6849 0.7526 -0.3427 -0.3499 0.3909 0.8580 0.9846 1.0000 

 

2.5 Development of ANN models for CI engine  

 

Machine learning offers many techniques for building a predictive model like decision trees, neural nets, regression 

models, and many more clustering algorithms. Particular conditions and parameters are implementation regarding 

the need to model the performance and efficiency of a compression ignition. The main prerequisite was that the model 

had to be very interpretable so that the interactions between the different parameters could be clearly understood. 

Additionally, the model had to be capable of handling non-sequential data, rather than being limited to sequential 

data inputs. Equally important was the need for computational efficiency, ensuring the model could be deployed 

without excessive resource demands [40]. In order to simulate and analyze engine operations and get important 

insights into their behavior, engine modeling is a must. MATLAB 2021b is used for these simulations, which aid in 

the assessment of engine performance and emissions through computational modeling. The training and validation 

phases of the artificial neural network (ANN) model had a significant impact on its efficacy. Based on experimental 

results, researchers adjusted network settings during validation, such as the hidden layer's neuron count. Using an 
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activation function, an activation function is used to conduct a non-linear transformation after a linear transformation 

is carried out by a single neuron in the ANN technique [41]. The model is a flexible option because of this 

combination's ability to capture both linear and non-linear data. Additionally versatile and adaptive, ANN models 

work well at replicating intricate, a non linear interactions between inputs and outputs. Simple layers in the ANN 

govern how the inputs are converted into predictions, and the interpretation of each layer can offer important insights 

into the structure of the data. Based on its activation properties, each layer adds to the ultimate prediction; the overall 

prediction is the result of aggregating these layers according to their weights and biases. The Feed Forward Back 

Propagation (FFBP) model is among the common techniques for solving non- linear problems that is being applied 

in the current study. This is because the fuel and/or engine parameters that can be used as inputs can cause a wide 

variety of non-linear effects on the operation of the IC engine and hence, ANN is an appropriate tool in modeling the 

behavior of an IC engine. 

 

2.6 Network 

 

The basic design of the FFBP neural network architecture used in this present work as shown in figure 2. The input 

layer, the hidden layer, and the output layer are the three separate layers that make up the FFBP models. 

 

 
 

Fig. 2. FFBP neural structure of 6 nodes in input layer, 1 node in output layer and 7 nodes in hidden 

 

For each parameter that needs to be predicted, the input layer consists of six (6) input neurons, while the output layer 

has (1) neuron. To explore the optimal network topology, five different configurations were developed and tested - 

6-3-1, 6-4-1, 6-5-1, 6-6-1, and 6-7-1, with the 6-7-1 topology shown in the figure 2.  

 

Number of hidden layer neurons ≤ Number of input layer neurons + 1                            (1) 

 

Number of hidden layer neurons  =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 ℎ𝑖𝑑𝑑𝑒𝑛 𝑙𝑎𝑦𝑒𝑟 𝑛𝑒𝑢𝑟𝑜𝑛𝑠

√𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑝𝑢𝑡 𝑙𝑎𝑦𝑒𝑟 𝑛𝑒𝑢𝑟𝑜𝑛𝑠 × 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑢𝑡𝑝𝑢𝑡 𝑙𝑎𝑦𝑒𝑟 𝑛𝑒𝑢𝑟𝑜𝑛𝑠

            (2) 

 

One important feature that can have a big impact on how well an ANN model performs is the quantity of the buried 

layer's neurons. The Kolmogorov theorem states that the formulas in equations (1) and (2) can be used to calculate 

the ideal quantity of the buried layer's neurons. These computations led to the decision to vary the hidden layer's 

neuron count from three to seven. This method aids in making sure the ANN models can accurately represent the 

problem's underlying complexity [42]. The Levenberg-Marquardt backpropagation algorithm, which is renowned for 

its quicker convergence and less training epoch requirements as compared to other optimization techniques, was used 

to train the ANN models. Furthermore, the learning function which was used in controlling the training of the model 

was the gradient descent with momentum weights. Another important consideration for developing ANNs is the 

choice of the transfer function since it defines the way the input signals are processed to provide the network’s 

response. In this study, the tan-sigmoid transfer function was utilized due to its continuous and differentiable nature, 
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which typically exhibits better performance with non-linear problems. The Mean Squared Error (MSE) was chosen 

as the performance index to evaluate the models' accuracy during the training phase. 

 

2.7. Methodology 

 

The topic description given above indicates a clear-cut process of building FFBP ANN model to predict the 

performance and emission profile of a CI test engine fueled with different percentages of UTO based biodiesel fuel 

blends. The Supplementary Information document that is cited provides a thorough flowchart of this recommended 

methodology. The first step in the process is gathering a solid dataset with the necessary input parameters, like engine 

operating conditions (load, speed, torque, brake power), fuel properties (calorific value), and the desired output 

parameters, such as exhaust gas temperature (EGT), smoke density, absorption coefficient, and brake-specific fuel 

consumption (BSFC). The model can create significant links between engine operating circumstances, fuel properties, 

and the performance and emissions that emerge from these associations thanks to this extensive dataset. After that, a 

correlation matrix is created to measure the interdependencies among the different parameters. This helps to 

determine which input-output variables are suitable and offers important insights into the physics at play.  Deciding 

the number of neurons in the hidden layer depending on the amount of initial and final variables is one of the strategies 

used in enhancing the ANN design. The ANN models are then trained and simulated using MATLAB 2021b's Neural 

Network Tool kit. Several performance metrics are calculated to assess the model's accuracy and predictive capacity 

after the training phase. These include the mean absolute deviation (MAD), mean squared error (MSE), mean absolute 

percentage error (MAPE), and root mean square error (RMSE). Choosing of the optimal model is made from the 

perspective of the maximum R coefficients and the minimum values of errors. A comparison of maggio actual with 

actual and predicted values, with conventional diesel as the reference, is done on graphs to ensure that the model’s 

performance is accurate. This enables a visual analysis of the model's ability to capture the trends and subtleties of 

the engine's performance and emissions characteristics when operating on various UTO based biodiesel fuel mixtures. 

Lastly, a sensitivity analysis is carried out for every input parameter with respect to the optimal models, offering 

insightful information about the relative significance and impact of different fuel qualities and operating conditions 

on the emissions and engine performance. Utilizing this data will optimize fuel mixes and engine settings for greater 

economy and lower emissions. According to the study process, it is therefore necessary to assess the biodiesel blends 

in terms of its performance and emanation at both fully loaded and part loaded condition. This comparison is useful 

in explaining biodiesel characteristics on the functionality and performances of vehicle engines under varying loads. 

High loads often cause high fuel consumption and emissions and, at the same time, low loads may give various 

thermal efficiencies. From such differences, improvements can be made on ANN models in order to give better 

estimations and increase the suitability of biodiesel usage the most stable source of energy in place of conventional 

energy at various types of operations. 

 

2.8 Indexes for evaluating ANN models 

 

Several statistical indicators were used to extensively analyze the performance of the created artificial neural network 

(ANN) models. 

 

R= 
𝑛 ∑ 𝑥𝑦−∑ 𝑥 ∑ 𝑦

√(𝑛 ∑ 𝑥2−(∑ 𝑥)2) (𝑛 ∑ 𝑦2−(∑ 𝑦)2)
                       (3) 

 

MSE = 
∑(𝑥−𝑦)2

𝑛
                                           (4) 

 

RMSE = √
∑(𝑥−𝑦)2

𝑛

2
                      (5) 

 

MAD = 
∑ |𝑥−𝑦|

𝑛
                     (6) 

 

MAPE = 
1

𝑛
 x ∑ | 

𝑥−𝑦

𝑦
| x 100                                   (7) 

 

The correlation coefficient (R), where "n" is the total number of data points, "x" denotes the desired value, and "y" 

denotes the anticipated value. 
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Equation (3) was utilized to assess the linear relationship a value of 1 denoting a perfect positive correlation between 

the model's predictions and the actual target values. The mean-squared error (MSE), which calculates the average 

difference between expected and observed values and provides a general sense of model accuracy, was given by 

equation (4). The root-mean-squared error (RMSE), which is determined by equation (5), was also computed to 

provide more context. This measure shows the standard deviation of the prediction errors and is expressed in the same 

units as the original data. In addition, compared to the MSE, the mean absolute deviation (MAD), which was 

calculated using equation (6), offered a reliable indicator of the average absolute difference between predicted and 

actual values and was less susceptible to outliers. Lastly, prediction accuracy was reported as a % using the mean 

absolute percentage error (MAPE), which was obtained from equation (7). This provided a simple and understandable 

metric for evaluating model performance. Through the examination of these diverse statistical metrics, the researchers 

were able to acquire a thorough comprehension of the advantages, disadvantages, and general applicability of the 

ANN models. 

 

3. Result and Discussion 

 

3.1 Prediction of some of the essential performance parameters of the engines 

 

The performance of artificial neural network models to predict important engine parameters when the engine was 

operated on biodiesel of different blends produced from used temple oil was investigated. Researchers employed 

basic statistical measures to evaluate the models such as correlation coefficient (R), mean squared error (MSE), root 

mean square error (RMSE), mean absolute deviation (MAD) and mean absolute percentage error (MAPE). They 

systematically studied the impact of altering the size of the buried layer from three neurons to seven neurons. It was 

pointed out that the most effective possibility for prediction of the engine’s brake-specific fuel consumption (BSFC) 

was the 6-5-1 neural network topology, which includes 6 input neurons, 5 neurons in the only hidden layer, and 1 

output neuron. On the basis of such parameters, this particular model emerged highly successful, with a desirable     

R-All or an overall correlation coefficient of 0. 9970, MSE of 4. 36E-05, RMSE of 0. 0066, MAD of 0. 0052 and the 

Mean Absolute Percentage Error of 1 was obtained. 2499. The 6-3-1 topology was determined as the most effective 

one in the evaluation of BSEC with the R-All of 0. 9932, MSE of 0. 2121, RMSE of 0. 4606, MAD of 0. 3031 and 

mean absolute percentage error (MAPE) of 1. 6702. The 6-3-1 design was also the best topology for predicting the 

brake thermal efficiency (BTE) by having the highest value of R-All of 0. 9988, MSE of 0. 0397, RMSE of 0. 1993, 

MAD of 0. 784 their values were 1234, and MAPE of 0. 5599. Singly, and despite the current lack of R-All penalties 

at all, impressively. 9965, MSE of 23. 6187, RMSE of 4. 8599, MAD of 2. Avg actual flows equaled 8763 for 

calibration, 9395 for validation, and MAPE of 0. 9917 was also found to be the best model and 6-5-1 was also 

concluded to be the best candidate to forecast the exhaust gas temperature (EGT) second to BSFC. The study also 

highlighted a notable observation the correlation coefficients during the training phase sometimes surpassed those in 

the testing and validation phases, indicating a potential discrepancy in the topologies. In order to tackle this, the 

researchers stressed that the R-All value which offers a thorough evaluation of the model's prediction accuracy and 

generalization abilities across all data subsets should serve as the primary guide when choosing the ideal topology. 

Let’s look closely at the performance parameters of the IC engine that runs on different blends of biodiesel from used 

temple oil (UTO). The details are below in Figure 3, which explains it all quite well. A clearer comprehension of the 

patterns and connections between the compositions of the biodiesel blends and engine performance data was made 

possible by these visuals. For example, it was found that the BSFC decreased as engine load increased, which was 

explained by improved combustion efficiency and decreased heat loss at higher loads. Comparably, when the load 

increased, the BSEC showed a declining trend, indicating better overall performance and fuel efficiency [43]. In 

contrast, the BTE showed a positive association with load, indicating improved engine performance and energy 

conversion under greater load circumstances. It was also discovered that, in keeping with expectations, the EGT 

increased as the engine load increased. These conclusions from the thorough investigation offer helpful advice for 

enhancing the efficiency of IC engines using mixes of biodiesel made from UTO. The remarkable precision and 

accuracy of the ideal artificial neural network (ANN) model is validated by the strong agreement between the 

predictions and the target values. The biofuels under consideration, B20 (20% biofuel, 80% diesel) and B100 (pure 

biofuel), appear to have remarkably similar properties to conventional diesel fuel, as evidenced by the lack of any 

significant deviation or separation between the trend lines for the different biofuel blends on the y-axis, which 

represents key performance metrics like brake-specific fuel consumption (BSFC), brake-specific energy consumption 

(BSEC), brake thermal efficiency (BTE), and exhaust gas temperature (EGT) [52,53]. 
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This suggests that these biofuel mixes can be smoothly incorporated into compression ignition (CI) engines as 

alternate fuels without significantly affecting the engine's overall performance. These results are in line with the 

model's performance as reported by Javed et al. [44], who were able to accurately simulate the emissions and 

operation of a dual-fuel engine powered by hydrogen and a blend of Jatropha Methyl Ester biodiesel. In support of 

this, the additional data shown in Fig. 3 confirms a high correlation with engine load where, in general, all fuels of 

diesel, B20, B25, B30, B35, B40 and B100 to exhibit similar trends for BTE, BSFC, BSEC and exhaust gas 

temperature [45].  The striking similarities observed across this wide range of biofuel blends support the conclusion 

that these renewable fuels can be easily incorporated into CI engine applications as viable and effective alternatives 

to conventional diesel, without sacrificing engine performance or efficiency. 

 

3.2 Emission Parameters prediction with ANN 

 

The research examined the emission properties of a compression ignition (CI) engine operating on various biodiesel 

mixes derived from used temple oil. The two primary emission parameters that were looked at were smoke density 

and absorption coefficients. These data are crucial for understanding the engine's combustion characteristics and 

exhaust emissions. To represent these emission parameters, the researchers created a variety of neural network 

topologies using three to seven neurons. The performance evaluation metrics for these models are included in Table 

4 of the study, demonstrating their high prediction accuracy of the engine's emission behavior [46]. For smoke 

density, the 6-3-1 topology exhibited the strongest correlation, with an R-All value of 0.9946. This model also 

demonstrated low error metrics, with an MSE of 3.0261, RMSE of 1.7396, MAD of 1.4677, and MAPE of 8.7520. 

Similarly, for absorption coefficient prediction, the 6-6-1 topology outperformed the others, achieving an R-All of 

0.9932 and impressively low error values of 0.0008 for MSE, 0.0282 for RMSE, 0.0221 for MAD, and 5.9503 for 

MAPE. These exceptional results indicate that the proposed models are highly accurate and well-suited for modeling 

the non-linear relationships inherent in engine emission characteristics [47]. The study's conclusions were further 

corroborated by a comparison with an earlier study that used engine speed and load data to predict fuel consumption 

and emissions from a spark ignition engine; the current model's demonstrated performance was comparable with 

those earlier findings, demonstrating the approach's robustness and applicability. Also, the trends in smoke density 

as well as the absorption coefficient were also analyzed whereby the engine load was considered. As depicted in 

Figures 4(a) and 4(b), both parameters exhibited a positive correlation with increasing load, indicating that higher 

engine loads lead to greater smoke density and absorption coefficient. Importantly, the minimal deviation observed 

between the trend lines for different biodiesel blends (B20 and B100) and diesel suggests that these biofuels exhibit 

very similar properties to conventional diesel fuel. This finding implies that the tested biodiesel blends can be used 

as viable alternatives to diesel in CI engines without significantly impacting the engine's emissions profile [48]. In 

addition, Figure 3 of the supplemental information also corroborates these findings as it presented the dependence of 

smoke density and absorption coefficient on load as a function of fuel type and load, although the fuels used in 

evaluating this work included diesel, B20, B25, B30, B35, B40 and B100 [49]. This large set of data is useful in 

comprehending the emission profile of CI engines fuelled with different biodiesel blends and can guide the design of 

improved engines that have a reduced emission footprint. 

 

3.3 Sensitivity analysis 

 

Sensitivity analysis assists in forecasting an output parameter, while trying to determine one input parameter. The 

feasibility and the optimal model were evaluated by calculating the remaining parameter value with one of the input 

parameter fixed at time using the test set. To dig deeper, we checked out how these values line up with each other. 

We did this with something called the correlation coefficient (R-All) as well as MSE & RMSE [50]. You can also 

find the sensitivity analysis for the ideal model topologies regarding BTE, EGT, BSFC, & BSEC forecasts in Table 

5 [51]. Hypothesis testing made it possible to establish that the input parameter torque influenced the best accurate 

model for predicting BSFC (6-5-1). In order to ensure the overall output tops the total figure in terms of fuel 

consumption, there has to be a balance between torque and BSFC [52]. Originally, torque means the force that tries 

to rotate an object or the revolve force of the engine. The exhaust gas temperature of 6-5-2-1 is closely linked with 

fuel consumption while the prediction of BSEC of 6-3-2-1 is significantly affected by the braking power. It can be 

seen that ideal torque and fuel affect the brake thermal efficiency model to a larger extend. Table 6 illustrates 

sensitivity analysis performed on the top models regarding the emission, absorption coefficient and smoke density. 

The model that achieved the highest accuracy in forecasting two highly sensitive to engine speed smoke density        

(6–3–1) and extremely sensitive to engine load absorption coefficient (6–6–1) of the tested vehicle was topology. 

This work was mainly concerned with refining artificial neural network (ANN) models to predict several engine 
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system performance indicators. According to the investigation of several ANN topologies, the researchers found in 

their study which ANNs viewed better forecasts for given indicators [53]. for the prediction of BFSC, brake specific 

energy consumption (BSEC), brake thermal efficiency (BTE) and exhaust gas temperature (EGT), respectively, the 

best ANN model topologies were found to be 6-5-1, 6-3-1, 6-3-1 and 6-5-1. For the BTE prediction, using calculated 

MSE, MAD, MAPE and RMSE the values were found to be 0.0397, 0.1993, 0.1234 and 0.5599, in that order. The 

findings also suggest a significant correspondence between the model’s outputs as well as the actual observed values; 

quite expectedly, the BTE prediction yielded the highest R-All of 0. 9988. The research also anticipated that technique 

with 6-3-1 topologies and the 6-6-1 topologies was ideal for predicting absorption coefficient and smoke density, 

respectively. as indicated in analyses of the emission parameters, the prediction of the smoke density using the ANN 

of 6-3-1 topology holds the more value of R-All correlation coefficient of 0.9946. the corresponding of RMSE, MSE, 

MAPE for the smoke density prediction was 3.0261, 1.7396, 1.4677 and 8.7520, in that order. 

 

Even if ANNs have shown a lot of promise, it is still worthwhile to investigate alternative machine learning 

techniques, including Decision Trees and Support Vector Machines, in order to perform comparative analyses           

and obtain a deeper comprehension of the dynamics of CI engine [54]. To fully realize the promise of these 

computational tools in real-world CI engine applications, future research should concentrate on optimizing                                                                    

neural network architectures, refining training methodologies, and investigating the integration of diverse machine 

learning approaches [55]. The creation of reliable real-time data processing and collection strategies will be essential 

to this project in order to facilitate the smooth integration of these cutting-edge methods into the engine control 

systems. 

 

Table 3: displays the models used to anticipate emissions.  

 

parameter Model  
No. of 

neurons 
R - Train 

R - 

validations 
R - Tests R - ALL MSE RMSE MAD MAPE 

BSFC 

(kg-kW/h) 
BSFC-6–3-1 3 0.9996 0.9952 0.9529 0.9919 0.0001 0.0104 0.0049 1.1198 

BSFC-6–4-1 4 0.9984 0.9987 0.9431 0.9682 0.0005 0.0213 0.0083 1.8187 

BSFC-6–5-1 5 0.9974 0.9998 0.9976 0.9970 0.0000 0.0066 0.0052 1.2499 

BSFC-6–6-1 6 0.9620 0.9909 0.9607 0.9658 0.0007 0.0273 0.0233 5.9579 

BSFC-6–7-1 7 0.9985 0.9943 0.9994 0.9937 0.0001 0.0092 0.0048 1.1731 

BSEC  

(kJ/kWh) 
BSEC-6–3-1 3 0.9965 0.9972 0.9984 0.9932 0.2121 0.4606 0.3031 1.6702 

BSEC-6–4-1 4 0.9955 0.5606 0.9773 0.9893 0.2702 0.5198 0.3083 1.9908 

BSEC-6–5-1 5 0.2075 0.8910 0.6371 0.2914 14.8957 3.8595 2.3660 11.5680 

BSEC-6–6-1 6 0.9922 0.9378 0.9998 0.9787 0.4814 0.6938 0.4037 2.2602 

BSEC-6–7-1 7 0.5861 0.7940 0.7511 0.6412 19.7816 4.4477 3.4422 22.4025 

BTE 

(%) 
BTE-6–3-1 3 0.9992 1.0000 0.9774 0.9988 0.0397 0.1993 0.1234 0.5599 

BTE-6–4-1 4 0.8967 0.9990 0.9980 0.9394 2.8713 1.6945 1.0036 4.6516 

BTE-6–5-1 5 0.9981 0.9999 0.9986 0.9083 0.0535 0.2313 0.1765 0.8419 

BTE-6–6-1 6 0.8835 0.9920 0.9666 0.9298 5.0974 2.2577 1.6914 7.7218 

BTE-6–7-1 7 0.9999 0.9317 0.9146 0.9766 0.7654 0.8749 0.3340 1.5205 

EGT 

(oC) 
EGT-6–3-1 3 0.9987 0.6994 0.9308 0.9919 45.0672 6.7132 3.3875 1.1332 

EGT-6–4-1 4 0.9933 0.9959 0.9995 0.9920 46.3064 6.8049 4.9097 1.6096 

EGT-6–5-1 5 0.9994 0.9919 0.9839 0.9965 23.6187 4.8599 2.9395 0.9917 

EGT-6–6-1 6 0.9973 0.9706 0.9985 0.9912 49.9486 7.0674 4.6041 1.5226 

EGT-6–7-1 7 1.0000 1.0000 0.3214 0.9831 91.3481 9.5576 3.5016 1.1857 
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Fig. 3. predicted values and observed of BTE, BSFC, BSEC and EGT. 

 

Table 4: lists the emission prediction models performance evaluation indices. 

parameter Model  
No. of 

neurons 
R - Train 

R - 

validations 
R - Tests R - ALL MSE RMSE MAD MAPE 

smoke 

density           

(HSU) 

SD- 6–3-1 3. 0. 9956 0. 9997 0.9967 0.9946 3.0261 1. 7396 1.4677 8.7520 

SD-6–4-1 4 0.9975 0.9965 0.9991 0.9930 2.7116 1.6467 1.0883 5.8984 

SD-6–5-1 5 0.9871 0.9985 0.9829 0.9799 13.9407 3.7337 2.8539 18.5829 

SD-6–6-1 6 0.6599 0.9881 0.9977 0.7508 102.5749 10.1279 4.8282 32.1169 

SD-6–7-1 7 0.9936 0.9982 0.9901 0.9928 4.1567 2.0388 1.5730 9.6690 

Absorption 

coefficient 

(m-1) 

AC-6–3-1 3 0.9992 0.9988 0.9853 0.9893 0.0064 0.0802 0.0386 9.5293 

AC-6–4-1 4 0.9916 0.9953 0.9869 0.9893 0.0051 0.0712 0.0499 12.6555 

AC-6–5-1 5 0.9902 0.9988 1.0000 0.9932 0.0032 0.0563 0.0363 9.2059 

AC-6–6-1 6 0.9934 0.9999 1.0000 0.9932 0.0008 0.0282 0.0221 5.9503 

AC-6–7-1 7 0.9751 0.9998 0.9994 0.9840 0.0091 0.0952 0.0697 19.4951 
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Fig. 4. Predicted values and observed values of absorption coefficient and smoke density  

 

Table 5: Sensitivity analysis for the predicttion of BTE, BSFC, BSEC and EGT  

Prediction parameter Parameter name (on hold) R - ALL MSE RMSE 

BSFC  

(kg/kWh)     

 BSFC-(6-5-1)

  

CV in  kJ/kg 0.9947 0.0001 0.0091 

Load in % 0.9957 0.0001 0.0076 

Torque in N-m 0.9805 0.0012 0.0346 

Speed in RPM 0.9972 0.0000 0.0064 

Brake Power in KW 0.9947 0.0001 0.0089 

Fuel consumption in l/h 0.9953 0.0001 0.0071 

BSEC 

(kJ/kWh)  

 BSEC-(6-3-1)

  

CV in  kJ/kg 0.9826 0.4021 0.6341 

Load in % 0.9839 0.4364 0.6606 

Torque in N-m 0.9925 0.1745 0.4177 

Speed in RPM 0.9944 0.1277 0.3574 

Brake Power in KW 0.7615 12.5246 3.5390 

Fuel consumption in l/h 0.7630 6.1141 2.4727 

BTE 

(%)   

BTE- (6-3-1) CV in  kJ/kg 0.9869 0.8934 0.9452 

Load in % 0.9874 0.5227 0.7230 

Torque in N-m 0.9979 0.0638 0.2526 

Speed in RPM 0.9906 0.2992 0.5470 

Brake Power in KW 0.9911 0.2920 0.5404 

Fuel consumption in l/h 0.9836 0.5227 0.7230 

EGT  

( OC)             

EGT - (6-5-1) CV in  kJ/kg 0.9922 39.6486 6.2967 

Load in % 0.9890 69.5387 8.3390 

Torque in N-m 0.9961 21.7855 4.6675 

Speed in RPM 0.9936 37.5758 6.1299 

Brake Power in KW 0.9029 1380.0000 37.1820 

Fuel consumption in l/h 0.7510 2360.0000 48.6272 
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Table 6: Sensitivity analysis for absorption coefficient, smoke density, and emission parameter prediction. 

Prediction parameter Parameter name (on hold) R - ALL MSE RMSE 

smoke density           

(HSU)  

SD - (6-3-1)

  

CV in  kJ/kg 0.9830 0.9830 0.9830 

Load in % 0.9420 0.9420 0.9420 

Torque in N-m 0.8031 0.8031 0.8031 

Speed in RPM 0.4310 514.0440 22.6725 

Brake Power in KW 0.9758 18.5262 4.3042 

Fuel consumption in l/h 0.5960 321.5964 17.9331 

Absorption 

Coefficient  

(m-1)  

AC - (6-6-1)

  

CV in  kJ/kg 0.9863 0.0087 0.0933 

Load in % 0.7965 0.1159 0.3404 

Torque in N-m 0.9918 0.0057 0.0755 

Speed in RPM 0.9983 0.0008 0.0288 

Brake Power in KW 0.9905 0.0008 0.0288 

Fuel consumption in l/h 0.9330 0.0333 0.1825 

 

4. Conclusions 
 

The importance of artificial neural networks in increasing the stock of biodiesel as a renewable energy source for CI 

engines is therefore underlined by this work. The models of ANN that were developed systematically and optimized 

in this work make it possible to provide the prediction of biodiesel fuel performance and emission characteristics with 

a high degree of accuracy, rarely seen when working on this topic. Specific patterns of applied some ANN 

architectures such as 6-5-1 for brake specific fuel consumption (BSFC) represent the reliability and stability of the 

modeling methodology. It is possible to draw the conclusions about describing of highly excellent correlation 

coefficients that is 0, 17000 for brake thermal efficiency (BTE) is obtained in addition to low values for MSE such 

as just 0. 0397 for BTE, the above -stated indices evidently affirm the reliability and prognostic capability of the 

developed ANN models. This study's sophistication is further demonstrated by the sensitivity analysis that was done, 

which provides insightful information about the most important parameters. This information can be used to advise 

and direct future model optimizations and revisions.  
 

The pursuit of the sustainable development goals (SDGs) will be greatly impacted by these ground-breaking 

discoveries since they directly support SDG 7's promotion of environmentally friendly energy sources and SDG 13's 

mitigation of greenhouse gas emissions. This work contributes to the improvement of sustainable energy practices 

and opens the door to a more environmentally friendly future by minimizing the need for resource-intensive physical 

testing. In line with the worldwide necessity to shift towards greener energy alternatives and accomplish sustainable 

development goals, the research promotes the wider usage of biodiesel as a clean, renewable substitute for traditional 

fossil fuels. 
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