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1. Introduction

Flow around bluff bodies has been involved in many engineering applications, such as flow past offshore riser
pipelines, flow past road vehicles, and flow past buildings. A better understanding of flow physics past these machines
and structures is needed to enhance their performance, while minimizing impacts related to flow phenomena. Flow
around a circular cylinder is one of the canonical problems of fluid flow that has been widely investigated due to its
simple geometries. However, the underlying physics of flow past a circular cylinder is rather complicated consisting
of many phenomena such as boundary layer separation, shear layer, wake region, and vortex shedding [1].

Rather than studying the physics through the experimentation, the computational fluid dynamics is utilized for more
convenient. Stringer et al. [2] investigated flow past circular cylinder performed by URANS through OpenFOAM. It
shows that the URANS developed by Menter [3] is sufficiently accurate compared to the experimental results of
Norberg [4]. The flow field data obtained from URANS is large with high dimension. Nevertheless, in the recent
years due to the advancement in data-driven methods, the disadvantage of having a tremendous amount of data can
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be exploited to reduce the dimension of the flow in order to extract significant physics. Data-driven techniques were
frequently utilized through the proper orthogonal decomposition (POD) established by Holmes et al. [5] and the
dynamic mode decomposition (DMD) introduced by Schmid [6]. Taira et al. [7] applied POD and DMD to flow past
circular cylinder at Re = 100. They found that the significant structure is the Karman vortex street detected from both
POD and DMD at this Reynolds number, where the vortex street is laminar. The regimes of flow past circular cylinder
at different Reynolds numbers were illustrated by Lienhard [8] as shown in Fig. 1. However, the data driven
techniques have not been used to analyze flow in the subcritical regime. In this work, the flow at Re = 3900 is
investigated through the POD and DMD to explore the influence of turbulence vortex streets. Furthermore, this work
introduces the state-of-the-art data-driven method. The spectral proper orthogonal decomposition (SPOD), recently
developed by Sieber et al. [9]. The results obtained from SPOD are compared to those obtained from POD and DMD.
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Fig. 1. Regimes of fluid flows around a circular cylinder [8]

2. Methodology
2.1 Unsteady Reynolds-Averaged Navier-Stokes simulations

The Unsteady Reynolds-averaged Navier-Stokes (URANS) equations are utilized to simulate flow around the
circular cylinder at Re ~ 3900 through OpenFOAM, which is the open source CFD program in C++ program language.
The momentum and continuity equations are presented in Egs. (1) - (2), respectively.
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where z; are the nonlinear Reynolds stress terms. Thus, the Boussinesq hypothesis was introduced to solve the

URANS equations by defining the Reynold stress terms in term of the dynamic eddy viscosity (u;), which modelled
by the k — w SST turbulence model.

2.2 Proper Orthogonal Decomposition (POD)

The fundamental concept of POD was to decompose the matrix data set (Y) which members are y;; into the form of a
linear combination of orthonormal vectors (u; ,,,). Each element of matrix Y can be defined as follows:
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where i € {1,2, ..., Ne}, t€ {1,2, ..., Nm} and am; are the temporal coefficients. The singular value decomposition
(SVD) was connected to POD and used to obtain the POD basis function. The SVD can describe the data set by

Y=yZp" (4)

where 2'is the elements containing the square root of eigenvalues. The elements in the matrix ¢, 2’and @are #, oi
and & respectively. It is noted that ¢ and @ are eigenvectors of YYT and YTY, respectively. Then, equation (5) was
transformed into a linear combination form by decomposing the identity matrix to # #".

d
y = ;(w?mwi ()

where d is the rank of 27 Now, equation (3) is similar to equation (5). So, #: can be defined as POD basis functions
or orthonormal vectors. The inner product (#:Y;) represents temporal coefficients. The flow field data have applying
in POD by Matlab program.

2.3 Dynamic Mode Decomposition (DMD)

The dynamic mode decomposition began with the transformation of data to the first matrix by gathering the
information of the flow in terms of snapshot sequences or each row defined by each time series that has the coordinate
of the flow field in the column.

X=X X, x, mx )’(: X, X, X =X ©)

where the data with time series t = X1, X2, X3, ..., xm. The matrix X represents the present flow field. The matrix-free
formulation was created to predict the future flow field. The matrix X for the future flow field created by converting
each time series in the matrix X with a time step (At). The data snapshot matrix X and matrix X were nonlinear
dynamical systems. Now, the relationship of the matrix-free or matrix A can be created by using the optimum linear
approximation in equation (7).

X ~ AX @

Then, the matrix A can be found by using the Moore-Penrose pseudoinverse to transform matrix X in inverse form of
X. After applying SVD to equation (7), the Moore-Penrose pseudoinverse of matrix X can be obtained as follows:

A=XXx"=x(v="U") (8)

The rank of matrix A can be reduced to r x r by decomposing A in term of U and U*. The projection of A on the
POD modes is defined to be A.

A=U*AU= U*Xvz! )

Then, eigenvectors W can be obtained by the eigendecomposition of A. After finding eigenvectors W, the DMD
modes are

b= XVZ~'w. (10)

The algorithm of DMD was write and perform in Matlab program.
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2.4 Spectral Proper Orthogonal Decompasition (SPOD)

The key concept of SPOD is to add a time variable from the common space POD. The first step is to partition the N
x M data matrix Q into Ny blocks, whereas each block is of dimension N % Nj.

91 lQNb—l
r 1 . "l. 1
Q=49 49,93 ™ q(M—I) 9y (11)
QZ QNb

Then, the fast Fourier transformation (FFT) was applied into each block of data to convert the flow dynamics from
the time domain to the frequency domain. Frequency matrix can be constructed by picking up the same frequency
element of each block as shown in equation (12).

= _ — | a1 =2 a3 NN (12)
ka_\/Af/“ququqk " 9

where k = 7, 2, ..., Nt. Then, the calculation of matrix M of frequency k is performed to find eigenvectors (8¢, ) and
eigenvalues (ka). The calculation of matrix is presented in equation (13).

—A. " wo 13
Mfk - ka Wka (13
Finally, the SPOD mode of frequency k (¢'fk) can be obtained.

~ ~ ~ —1/2 14
Vr, = QpOr, Ay (14)

It is noted that the SPOD mode at each frequency has Ny energy modes.

3. Computation Domain

The dimensions of the computational domain are defined according to the suggestions of Liu [10]. Furthermore,
Rajani et al. [11] have complied the domain of numerous researchers of the flow past circular cylinder at Re = 3900,
they defined the length of the cylinder to be zD. The diameter of a circular cylinder is 0.1 m. In the streamwise
direction, the distance from the inlet to the cylinder is 1 m and the distance from the cylinder to the outlet is 2.5 m.
In the wall-normal direction, the distance from the top wall to the cylinder and the distance from the bottom wall to
the cylinder are equal to 0.8 m. The length of the cylinder is 0.314 m along the spanwise direction. The maximum
value of y* is chosen to be 0.3. The inlet velocity is 1 m/s. To obtain the Reynolds humber of 3900, the kinematic
viscosity is equal to 2.56 X 10 m?/s. The pressure at the outlet is 0 Pa. Slip wall boundary conditions are defined on
the top and bottom walls. Symmetry planes are defined on the side walls. No-slip boundary condition is defined
over the cylinder surface. The turbulent energy is equal to 1.5 X 10* m?/ s?. The specific turbulent dissipate rate is
0.2236 s,
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4. Results and Discussion
4.1 The Unsteady Reynolds-Averaged Navier-Stokes (URANS)

The results obtained from URANS the k—w SST turbulence model using OpenFOAM well agreed with experimental
values as shown in Fig. 2 - Fig. 4. Drag coefficient (Cp) and Strouhal number (St) obtained from the simulations are
1.1237 and 0.196, while the experimental values are Cp = 0.98 + 0.05 and St = 0.215.
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4.2 Proper Orthogonal decomposition (POD)

Figure 5 presents energy fractions of 340 modes. It reveals that practically most of the energy is contained in the first
POD mode. The energy fractions of the second to the tenth most energetic POD modes are illustrated in Fig. 6. Figure
7 shows that as the number of POD modes employed for the flow reconstruction increases, the streamwise velocity
of the reconstructed flow field becomes closer to the streamwise velocity obtained from URANS. In the present study,
the first five dominant modes can reconstruct the flow field containing 99.97% of the energy of the original flow
field. Moreover, the first POD mode represents the spatial structures of the mean flow as shown in Fig. 8. The spatial
patterns in the second and third POD modes are large scale Karman vortex street, which are in the state of the rolled-
up free shear layer. The top and bottom free shear layers are rolled up to form the vortices at the rear of the cylinder.
The fourth and fifth modes represent the smaller scales, though there are additionally relationships between vortices
that interact with one another. As can be seen, the vortices on either side are of the center of the rear area are
connected. These five modes exhibit perturbation with no decay over time.
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Fig. 8. The first five dominant POD modes.

4.3 Dynamic Mode Decomposition (DMD)

The 340 eigenvalues distribution in Fig. 9 demonstrates that every eigenvalue is in the unit circle, indicating that all
DMD modes are stable. In Fig. 10, there are three modes that have significantly greater amplitude than the other
DMD modes on the complex pairs. The second DMD mode is located at the frequency of 2.027 Hz, which is closed
to the vortex shedding frequency. Figure 11 describes the flow field reconstruction of the streamwise velocity. Similar
to POD, as the number of DMD modes employed for the flow reconstruction increase, the streamwise velocity of the
reconstructed flow field becomes closer to the original streamwise velocity obtained from URANS. The first three
modes present the spatial structures in both real and complex parts (Fig. 12). It is likely that the first DMD mode
represents the mean flow field at the frequency of 0 Hz. The second and third DMD modes demonstrate extracted
structures, which resemble POD and there are connected to mechanisms of vortex shedding. The free shear layer on
both sides has rolled up in the mechanism for the second DMD. The interaction between the vortex and vortex is seen
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in the third DMD mode. The additional information that obtained from DMD is the DMD mode which decay in time.
This mode was found at the frequency 2.39 Hz, which is the ninth DMD mode. The ninth mode’s spatial structures
in both real and imagination are shown the vortices cut off state for beginning to shed, which is the procedure of
vortex shedding mechanisms. As seen in Fig. 13, the orange vortex on the lower side essentially cut off the blue free
shear layer at the top.
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4.4 Spectral Proper Orthogonal Decomposition (SPOD)

Figure 14 presents the first energy mode of the 17 frequencies, which obtained from applying 340 snapshots to SPOD.
Clearly, there are three distinct frequencies at 1.25 Hz, 1.875 Hz and 2.5 Hz, which contain greater mode energy than
others. The highest mode energy is at the frequency of 1.875, which is closed to the vortex shedding frequency. The
spatial structure of the SPOD modes at these three distinct frequencies reveals the large-scale structures with
alternating pattern, which are in state of rolled-up free shear layers that related to the vortex shedding mechanisms as
shown in Fig. 15. These three modes exhibit disturbance with no decay in time. While the decay modes are not
detected.
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5. Conclusion

Spectral analysis of flow around a circular cylinder at a subcritical Reynolds number is explored and compared via
POD, DMD, and SPOD. From POD and DMD, it demonstrates that the spatial structures representing the most
dominant mode is the mean flow field. On the other hand, SPOD excludes the mean flow field from the analysis. The
large-scale spatial structures of POD mode 2 and 3 are similar to the ones derived from the DMD second mode pair,
illustrating the free shear layers rolled up state of vortex shedding mechanisms at specific frequencies. The
symmetrically alternating structures are presented along the top and bottom sides of the cylinder’s centerline.
Moreover, smaller scales of vortex street-like structures obtained from POD mode 4 and 5 are similar to the one
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extracted from the DMD third mode pair. It is suggested that these additional small scaled structures behind the
cylinder are the influence of vortex-vortex interactions between the top and bottom sides before they diffuse and
decay into three shedding lines. It is the mechanism of eddy shedding in high-speed mode. Physics may imply that
the free shear layers rolled up state and the influence of the vortex’s interaction are effect along the flow without
degradation due to the no decay in time evolution. Contrary to the vortices cut off the free shear layer state, which
the decay in time. It demonstrates that this state temporarily affects the flow.

The three data-driven method have different pros and cons. The capability of POD to reconstruct the flow field using
fewer modes is demonstrated. However, DMD and SPOD are able to extract significant modes associated with distinct
frequencies. The frequencies of 2.027 and 1.875 Hz, close to the vortex shedding frequency of 1.96 Hz, were detected
via DMD and SPOD, respectively. DMD can offers variety of frequencies. As a result, the ninth DMD mode, which
decays in time can be identified. On the other hand, because of its noisy spectrum, it’s hard to analyse. While in
SPOD the decay mode cannot detected. The explanation is because SPOD, which based on Welch’s method for
averaging spectrum techniques, it’s reduced the spectral precision and only detected significant modes. Thus, the
number of snapshots must be increased in order to obtain greater precision in the spectrum using the default
parameters. SPOD provides the energy rank associated with the mode energy in each frequency from high to low.
The pattern of SPOD frequency spectra which removes the mean flow from the analysis is similar to the pattern
derived from the spectral analysis of C_ values. When the frequency is closed to the vortex shedding frequency, the
mode energy increases and reaches its peak at the vortex shedding frequency before being damped in subsequent
frequencies. While in POD and DMD is interrupted by the static mode.

The underlying physics of flow around a circular cylinder at a subcritical Reynolds number is derived from POD,
DMD and SPOD analysis. The extracted modes will be used to create a reduced-order model (ROM) of flow past a
circular cylinder. Then, active flow control of the vortex-shedding flow will be able to develop based on ROM.
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Nomenclature

u mean velocity, m/s

D mean pressure, Pa

v kinematic viscosity, m?/s

T Reynold stress, N/m?

p fluid density, kg/m®

Us dynamic eddy viscosity, Pa s
Y, U POD modes

D Rectangular diagonal matrix
@T, VT transpose of complex unitary matrix
0] DMD modes

w weight matrix

P SPOD modes

Co drag coefficient

C. lift coefficient

Re Reynolds number
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