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ABSTRACT: 
This work presents the use of differential evolution (DE) for tuning a 

proportional-integral-derivative (PID) controller, linear quadratic regulator 

(LQR) with an integral action for aircraft pitch control. An optimisation problem 

for the two controllers are presented to optimise percentage of overshoot, settling 

time and steady state error while the weighted sum technique is applied. The 

design variables for the PID controller are control gains while for the LQR 

controller are the Q and R matrices. Various integral control gain values are 

employed for the LQR controller leading to a LQR with an integral action 

controller. The performance of the optimal controllers is investigated based on 

the single step and multiple steps response while some disturbance is also added. 

The results showed that PID controller is efficient for response speed while the 

optimum LQR with integral action controller is efficient for steady state error 

elimination. Both of the optimum controllers are robust and can handle 

disturbance rejection.      
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1. INTRODUCTION 

A control system is an important part in a fixed wing unmanned aerial vehicle (UAV) as, in general, the goal of the 

UAV is to operate the flight without human involving. The control system in a UAV can be separated into two main 

operations, inner loop and outer loop. The outer loop is mainly assigned to command control surfaces in order to 

track a flying trajectory while the inner loop is a task to mainly control surface actuators. Normally, design of inner 

loop control employs linear models while the models can be separated into longitudinal and lateral motions. The pitch 

control is a longitudinal control designed to control pitch angle in order to stabilise the aircraft when it noses up or 

down during change of altitude. Rather than the stabilisation requirement, design of a pitch control also needs to 

satisfy the control handling quality, response speed and accuracy in order to meet the limit of the actuators and 

precision in attitude tracking. 

    

A pitch controller in a UAV is usually a Proportional, Integral and Derivative (PID) control system [1–5]. Tuning the 

PID to satisfy the system requirements can be achieved by several techniques such as poles-placement, the Cohen-

Coon technique and the Ziegler-Nichols technique [1]. Optimisation techniques can also be applied to the PID tuning 

problem in order to obtain the optimal control gain [3–5]. However, the PID controller has some limitation in 

disturbance rejection and uncertainty handling requirement. Therefore, some optimum and robust control techniques 

such as Linear Quadratic Regulator (LQR) [6], LQR with integrating action, H-infinity [7], or some intelligent control 

such as fuzzy control, neural network control, etc., are required[8–10].  
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LQR is an optimal control system which can deal with disturbance as well as eliminate steady state error when being 

applied with an integral action. For the UAV flight control system, there has been some literature work implemented 

as reported in [11, 12]. Design of the LQR controller has some difficulty of identifying the matrices Q and R to 

synthesise the optimum controller. Unfortunately, identifying the Q and R matrices has no conventional technique to 

implement, thus, expertise and experience are necessary for the LQR design. Studying on the technique to identify 

the Q and R matrices is still an interesting topic. 

    

In this work, an application of a meta-heuristic (MH) optimisation technique is presented for pitch control design of 

an aircraft using PID and LQR with integral action controllers. The optimisation problem for PID, and LQR with 

integrating action controller design is presented while MH is used to find control gains for the PID controller and the 

matrices Q and R for the LQR controller. The objective functions are posed to minimising percentage of overshoot, 

settling time and steady state error while the weighted sum technique is used for dealing with the multiple objective 

functions. A differential evolution (DE) algorithm [13] is used as an optimiser to solve the proposed problem while 

the performances of all optimum controllers are compared based on single and multiple step response with disturbance 

being applied.   

2. THEORY OF CONTROL AND DE 

2.1. Proportional Integral Derivative Control 

PID is a controller which contains three elements; Proportional, Integral and Derivative. The overall control function 

of the PID controller can be expressed as: 

𝑟(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝐾𝑖 ∫ 𝑒(𝑡)𝑑𝑡 + 𝐾𝑑
𝑡

0

𝑑𝑒(𝑡)

𝑑𝑡
                      (1) 

 

where Kp, Ki, and Kd are proportional, integral, and derivative control gains respectively while r(t) and e(t) are output 

response and error signal respectively.  Design of the PID controller needs to find control gains of these three elements 

in order to make the close control system meet the requirement while the traditional techniques to design are, for 

example, the Cohen-Coon technique, the Ziegler-Nichols technique or applying optimisation. 

2.2. Linear-Quadratic Regulator (LQR) and LQR with integral action  

LQR is an optimal control technique. Finding the LQR controller, Kr, can be done by minimising the quadratic cost 

function which can be expressed as. 

 

Min: 𝐽(𝑡) = ∫ [𝑥𝑇(𝜏)𝑄 𝑥(𝜏) + 𝑢𝑇𝑅𝑢(𝜏)]𝑑𝜏
𝑡

0
                                                         (2) 

 

Subjected to  

 𝑥̇ = (𝐴 − 𝐵𝐾𝑟)𝑥 

 u= −𝐾𝑟𝑥  

 

where Q and R are weighting factor matrices need to be defined. The other parameters are defined as follows: 

 𝑥̇ is a state vector 

 𝑥 is a state variable  

 𝐴 is a system matrix 

 𝐵 is an input matrix 

 𝑢 is an input vector  

 𝐾𝑟  is a system proportional gain. 

The control gain Kr which minimising the quadratic cost function can be expressed as; 

 

𝐾𝑟  = 𝑅−1𝐵𝑇𝑃                                                                                (3) 

 

where the parameter P can be obtained by solving the Riccati equation as expressed in eq. (4) 

 

𝐴𝑇𝑃 + 𝑃𝐴 − 𝑃𝐵𝑅−1𝐵𝑇𝑃 + 𝑄 = 0                                                           (4) 
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For the LQR with integral action, the integral term is introduced to the system as show in Fig. 1 in order to eliminate 

the steady state error. The processing to obtain the optimal control gain is similar to the original LQR while the 

integral control gain Ki can be found in a similar fashion to the PID technique. 

  

 
Fig. 1. LQR with integral action in block diagram. 

 
2.3. Differential Evolution (DE)  

DE is a meta-heuristic optimiser proposed by [13]. It is a population based algorithm containing two main operators 

in the reproduction process, which are mutation and crossover. Figure 2 shows the computational search steps of DE, 

which include initialisation, reproduction and selection as detailed below.  

2.3.1 Initialisation 

The process of DE starts with randomly generating an initial population (a set of solutions) within the boundary of 

[𝑥̅𝐿 , 𝑥̅𝑈], upper and lower bounds, while objective function values of the solution member in the population are 

calculated. 

 

𝑃 = {𝑥̅1, 𝑥̅2, 𝑥̅3 ⋯ 𝑥̅𝑁}  ,  𝑜𝑏𝑗𝐹 = {𝑓1, 𝑓2, 𝑓3 ⋯ 𝑓𝑁}                   (5) 

 

2.3.2 Mutation 

Up to the present time, there have been a number of DE mutation strategies proposed for many applications. In this 

paper, DE/best/1 is used. Let 𝑥̅𝑖1  and 𝑥̅𝑖2  be two randomly selected members from the current population and  𝑥̅𝐵𝑒𝑠𝑡  

be the best solution found so far. A mutant solution can be found as: 

𝑢̅𝑖 = 𝑥̅𝐵𝑒𝑠𝑡 + 𝑆𝐹(𝑥̅𝑖1 − 𝑥̅𝑖2)                 (6) 

 

where SF is a scaling factor. 

2.3.3 Crossover 

The binomial crossover is used with the rate of crossover CR. The final solution after the binomial crossover can be 

found as: 

 

𝑣𝑗
𝑖 = {

𝑢𝑗
𝑖   𝑖𝑓 𝑟𝑎𝑛𝑑 ≤ 𝐶𝑅

𝑥𝑗
𝑖   𝑖𝑓 𝑟𝑎𝑛𝑑 > 𝐶𝑅

 . 

 

where rand  [0,1] is a uniform random number. 

 

2.3.4 Selection 

Having obtained 𝑣̅𝑖 with their objective function values, 𝐹𝑣
𝑖, they are then compared to their parents 𝑥̅𝑖. 𝐼𝑓 𝐹𝑣

𝑖 < 𝐹𝑥
𝑖, 

then 𝑣̅𝑖 is selected to the next generation (iteration), otherwise, 𝑥̅𝑖is selected. The reproduction and selection operators 

are operated repeatedly until meeting a termination condition (usually the maximum number of function evaluations). 
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Fig. 2. DE procedure flow chart 

 

2.4 Modelling of pitch controller for altitude hold 

Figure 3 shows the aircraft standard (body) axes, related components, and their control parameter. The aircraft control 

system is usually separated into longitudinal and lateral/directional motions which, in this paper, will consider only 

the longitudinal motion. The longitudinal motion consists of four components including 

1. Forces represented by X, Y, Z for the forces in the directions of x, y, z axes respectively. 

2. Angular velocities represented by p, q, r for the rotational velocities in the directions of x, y, z axes respectively. 

3. Velocities represented by u, v, w for the x, y, z –axis velocities respectively.  

4. Moments represented by L, M, N for the moments in the directions of x, y, z axes respectively. They are also 

respectively called rolling, pitching, and yawing moments.  

 

For simplicity, the assumption is made. The forward speed (𝒖𝟎) of an aircraft is considered to be constant, neglecting 

all effect of control surfaces except for the elevator. The derivative term such as 𝑑𝑋/(𝑚 ∙ 𝑑𝑢)  is reduced to 𝑋𝑢 and 

applied to all variables while being divided by mass for convenience [14]. 

 

 
Fig. 3. Aircraft standard axes for angles, forces, velocities, rotational velocities and  

moments around x, y, z axes 
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The longitudinal force and moment equations of an aircraft can be expressed as given in eq. (7-9). 

𝑋 − 𝑚𝑔 sin 𝜃 = 𝑚(𝑢̇ + 𝑞𝑣 − 𝑟𝑣)                 (7) 

 

𝑍 + 𝑚𝑔 cos 𝜃 cos∅ = 𝑚(𝑤̇ + 𝑝𝑣 − 𝑞𝑢)                             (8) 

 

𝑀 = 𝐼𝑦𝑞̇ + 𝑟𝑞(𝐼𝑥 − 𝐼𝑧) + 𝐼𝑥𝑧(𝑝2−𝑟2)                             (9) 

All the variables in the equation of motion are replaced by reference value plus by perturbation or disturbance 

  

𝑢 = 𝑢0 + ∆𝑢, 𝑣 = 𝑣0 + ∆𝑣, 𝑤 = 𝑤0 + ∆𝑤  

𝑝 = 𝑝0 + ∆𝑝, 𝑞 = 𝑞0 + ∆𝑞, 𝑟 = 𝑟0 + ∆𝑟             (10) 

𝑋 = 𝑋0 + ∆𝑋, 𝑍 = 𝑍0 + ∆𝑍, 𝑀 = 𝑀0 + ∆𝑀 

 

Assume that the flight condition is symmetric and the propulsive forces are constant, so the parameters  𝑣0, 𝑝0, 𝑞0,
𝑟0, ∅0 are set to 0 which lead the equations of motion to eq. (11) to (13). 

(
𝑑

𝑑𝑡
− 𝑋𝑢) ∆𝑢 − 𝑋𝑤∆𝑤 + (𝑔 cos 𝜃0)∆𝜃 = 𝑋𝛿𝑒

∆𝛿𝑒 + 𝑋𝛿𝑇
∆𝛿𝑇                  (11) 

 

−𝑍𝑢∆𝑢 − [(1 − 𝑍𝑤̇)
𝑑

𝑑𝑡
− 𝑍𝑤] ∆𝑤 − [(𝑢0 + 𝑍𝑞)

𝑑

𝑑𝑡
− 𝑔 sin 𝜃0] ∆𝜃 = 𝑍𝛿𝑒

∆𝛿𝑒 + 𝑍𝛿𝑇
∆𝛿𝑇              (12) 

 

−𝑀𝑢∆𝑢 − (𝑀𝑤̇
𝑑

𝑑𝑡
+ 𝑀𝑤) ∆𝑤 + (

𝑑2

𝑑𝑡2 − 𝑀𝑞
𝑑

𝑑𝑡
) ∆𝜃 = 𝑀𝛿𝑒

∆𝛿𝑒 + 𝑀𝛿𝑇
∆𝛿𝑇                  (13) 

 

Since 𝑍𝑞 and 𝑍𝑤̇ are very small, they can be neglected. By rearranging eq. (13) to the state space representation, it 

yields. 

 

[

∆𝛼̇
∆𝑞̇

∆𝜃̇

] = [
𝑍𝛼/𝑢0 1 0

𝑀𝛼 + 𝑀𝛼̇𝑍𝛼 𝑀𝑞 + 𝑀𝛼̇ 0

0 1 0

] [
∆𝛼
∆𝑞
∆𝜃

]+[

𝑍𝛿𝑒
/𝑢0

𝑀𝛿𝑒

0

] [∆𝛿𝑒]            (14) 

3. NUMERICAL STUDIES  

In this work, the pitch control model is formulated based on eq. (14) and the stability derivative parameters shown in 

Table 1. The state space model can be expressed in eq. (15) while the transfer function between the pitch angle and 

the aileron defection is expressed in eq. (16). 

 

𝑥 = [
∆𝛼
∆𝑞
∆𝜃

],    𝐴 = [
−2.02 1 0

−6.9868 −2.9476 0
0 1 0

],      𝐵 = [
0.16

11.7304
0

] ,       𝐶 = [0 0 1]         (15)

                   
𝑑𝜃

𝑑𝛿
=

11.7304𝑠+22.5775

𝑠3+4.9676𝑠2+12.9410𝑠
                                (16) 

 

Two optimisation problems for optimum PID and LQR tuning are presented. The objective function is assigned to 

simultaneously minimise the percentage of overshoot (OS), settling time (ST) and steady state error (SSE) of step 

response where the command step input is 0.2 radian or about 11.5 degree is applied. The weighted sum is used to 

combine the three objective functions while the weighting values are set to be 𝑤1 = 1, 𝑤2 = 10, 𝑤3 = 10. The 

equivalent single objective function can be expressed as follows: 

 

𝑜𝑏𝑗𝐹 = 𝑤1 ∗ 𝑂𝑆 + 𝑤2 ∗ 𝑆𝑇 + 𝑤3 ∗ 𝑆𝑆𝐸                                                   (17) 
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Table 1: Necessary longitudinal derivatives parameters 

Longitudinal 

Derivatives 

Dynamics Pressure and Dimensional Derivative 

𝑸 = 𝟑𝟔. 𝟖 𝒍𝒃/𝒇𝒕𝟐,          𝑸𝑺 = 𝟔𝟕𝟕𝟏 𝒍𝒃 

𝑸𝑺𝒄̅ = 𝟑𝟖𝟓𝟗𝟔 𝒇𝒕 ∙ 𝒍𝒃,        𝒄̅/𝟐𝒖𝟎 = 𝟎. 𝟎𝟏𝟔 𝒔 

Components 

X-Force Z-Force Pitching Moment 

Rolling Velocities 𝑋𝑢 = −0.045 𝑍𝑢 = −0.369 𝑀𝑢 = 0 

Yawing Velocities 𝑋𝑤 = 0.03 𝑍𝑤 =
𝑍𝛼

𝑢0

= −0.202 
𝑀𝑤 = 0.05 

𝑀𝑤̇ = 0.051 

Angle of attack 
𝑋𝛼 = 0 

𝑋𝛼̇ = 0 

𝑍𝛼 = −355.42 

𝑍𝛼̇ = 0 

𝑀𝛼 = −8.8 

𝑀𝛼̇ = −0.8976 

Pitching rate 𝑋𝑞 = 0 𝑍𝑞 = 0 𝑀𝑞 = −2.05 

Elevator Deflection 𝑋𝛿𝑒
= 0 𝑍𝛿𝑒

= −28.15 𝑀𝛿𝑒
= −11.7304 

 

DE is used to solve the proposed optimisation problem while the DE scaling factor (𝑆𝐹) and cross over rate (CR) are 

set to be 0.5 and 0.7 respectively. The population size is set to be 25 while number of iterations is set to be 100. For 

the PID case, the design variables are Kp, Ki and Kd. The pure derivative term on Kd is not used but the low pass filter 

with fixed N = 100 is employed instead. The lower and upper bounds of three gain values [𝑥̅𝐿 , 𝑥̅𝑈] are set to [-100,100] 

respectively. For LQR with integral action case, the design variables are set to be the Q and R matrices, which can be 

expressed as:  

𝑄 = [

𝑄1 0 0
0 𝑄2 0
0 0 𝑄3

] , 𝑅 = 𝑟.                                                   (18) 

 

There are totally 4 design variables, [𝑟, 𝑄1, 𝑄2, 𝑄3] for this case. The upper and lower bounds of Q and R are set 

equally between 0.0001 and 1000.  Various integral gain (Ki) of 10-1, 100, 101,…, 104, are used for integral action.   

4. RESULT AND DISCUSSION 

4.1. PID optimum tuning by DE 

After performing an optimisation run, the optimum PID gains are shown in Table 2 while a step response is reported 

in Table 3. The system time response shows the performance with rise time and settling time respectively equal to 

0.0432 and 0.0655 with 0.8208 overshoot and 0.0152 steady state error. Figure 4 shows how the system response to 

the reference using the optimal gain. 

 
Fig. 4. Step response of the system with PID optimising gain. 
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Table 2: The best of 20 run times for PID tuning 

Design 

variables 

Kp 10.3011 

Ki 2.7423 

Kd 3.0046 

Result 

Rise Time 0.0432 

Settling Time 0.0655 

Overshoot 0.8208 

Steady state error 0.0152 

 

4.2. LQR tuning by DE 

After perform optimisation based on various integration gain, the results are shown in Table 3 and Fig. 5. It was found 

that when Ki increases, the rise time, settling time, overshoot and steady state error tend to be decreased leading to a 

better LQR controller. The best obtained LQR controller found when the Ki is 10000. When comparing with the 

optimum obtained PID controller, only the LQR with Ki = 1000 perform better in terms of steady state error 

elimination while the PID is better in term of response speed. 

 

Figure 6 shows the multi-step response of the optimal PID controller and the LQR with Ki = 1000. Multiple steps 

input was used as a reference signal which has the magnitude of 0.2 radian at the start then decrease to 0.1 radian at 

5 seconds and then increase again to 0.15 radian at 10 seconds. Disturbance of 0.05 radian was ejected at 7 seconds 

to test system stability. The rise time, settling time and steady state error values obtained from the PID control system 

are 0.0432, 0.0655 and 0.8208, respectively while those obtained from the LQR with integral action control system 

are 0.1257, 0.2118 and 0, respectively. It can be said that the optimum PID obtained is efficient in term of response 

speed whereas the optimum LQR with integral action obtained in this study is efficient in term of steady state error 

elimination. Both controllers can deal with disturbance of the system. 

Table 3: The optimum results obtained for vary Ki 

Ki 0.1 1 10 100 1000 10000 

Design 

variables 

Q1 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 

Q2 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 

Q3 1.4101 4.4385 13.8071 60.8477 86.6876 348.9385 

r 10.4544 3.2774 0.5958 0.1194 0.0079 0.0015 

Result 

Rise Time 5.7107 1.6547 0.5813 0.2699 0.1257 0.0584 

Settling Time 8.6238 2.6793 0.9795 0.4551 0.2118 0.0984 

Overshoot 1.9176 1.9125 0.1708 0.0000 0.0000 0.0001 

Steady state error 0.1030 0.0340 0.0143 0.0067 0.0031 0.0014 

Kr 

-0.1582 -0.3289 -0.4992 -0.5706 -0.5897 -0.5942 

0.0630 0.2021 0.6429 1.7023 3.9772 8.8684 

0.3673 1.1637 4.8138 22.5701 105.0021 487.6114 
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Fig. 5. Step response 0.2 radian with vary Ki 

 

 
Fig. 6. Multi-step input and disturbance is generated to test system stability 

5. CONCLUSION  

In this work, DE is successfully applied for optimisation of pith control design of a UAV based on using PID and 

LQR with integral action controller. The optimisation problem is posed to minimise percentage of overshoot, settling 

time and steady state error while weighted sum technique is applied. The design variable are the control gains are for 

the PID controller while Q and R matrices are the design variables for the LQR with integral action controller. Various 

integral control gain values are employed for the LQR controller leading to the LQR with an integral action controller. 

Performance of the controllers are investigated based on the single step and multiple steps response. The results 

obtained reveal that the optimum PID controller is efficient for response speed while the optimum LQR with integral 

action controller is efficient for steady state error elimination. Both of the optimum controllers are robust and can 

handle disturbance rejection.      
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