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1. INTRODUCTION

A control system is an important part in a fixed wing unmanned aerial vehicle (UAV) as, in general, the goal of the
UAV is to operate the flight without human involving. The control system in a UAV can be separated into two main
operations, inner loop and outer loop. The outer loop is mainly assigned to command control surfaces in order to
track a flying trajectory while the inner loop is a task to mainly control surface actuators. Normally, design of inner
loop control employs linear models while the models can be separated into longitudinal and lateral motions. The pitch
control is a longitudinal control designed to control pitch angle in order to stabilise the aircraft when it noses up or
down during change of altitude. Rather than the stabilisation requirement, design of a pitch control also needs to
satisfy the control handling quality, response speed and accuracy in order to meet the limit of the actuators and
precision in attitude tracking.

A pitch controller in a UAV is usually a Proportional, Integral and Derivative (PID) control system [1-5]. Tuning the
PID to satisfy the system requirements can be achieved by several techniques such as poles-placement, the Cohen-
Coon technique and the Ziegler-Nichols technique [1]. Optimisation techniques can also be applied to the PID tuning
problem in order to obtain the optimal control gain [3-5]. However, the PID controller has some limitation in
disturbance rejection and uncertainty handling requirement. Therefore, some optimum and robust control techniques
such as Linear Quadratic Regulator (LQR) [6], LQR with integrating action, H-infinity [7], or some intelligent control
such as fuzzy control, neural network control, etc., are required[8-10].
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LQR is an optimal control system which can deal with disturbance as well as eliminate steady state error when being
applied with an integral action. For the UAV flight control system, there has been some literature work implemented
as reported in [11, 12]. Design of the LQR controller has some difficulty of identifying the matrices Q and R to
synthesise the optimum controller. Unfortunately, identifying the Q and R matrices has no conventional technique to
implement, thus, expertise and experience are necessary for the LQR design. Studying on the technique to identify
the Q and R matrices is still an interesting topic.

In this work, an application of a meta-heuristic (MH) optimisation technique is presented for pitch control design of
an aircraft using PID and LQR with integral action controllers. The optimisation problem for PID, and LQR with
integrating action controller design is presented while MH is used to find control gains for the PID controller and the
matrices Q and R for the LQR controller. The objective functions are posed to minimising percentage of overshoot,
settling time and steady state error while the weighted sum technique is used for dealing with the multiple objective
functions. A differential evolution (DE) algorithm [13] is used as an optimiser to solve the proposed problem while
the performances of all optimum controllers are compared based on single and multiple step response with disturbance
being applied.

2. THEORY OF CONTROL AND DE
2.1. Proportional Integral Derivative Control

PID is a controller which contains three elements; Proportional, Integral and Derivative. The overall control function
of the PID controller can be expressed as:

r(t) = Kpe(®) + Ki J e(®dt + Ky 57 ()

where Kp, Ki, and Kgq are proportional, integral, and derivative control gains respectively while r(t) and e(t) are output
response and error signal respectively. Design of the PID controller needs to find control gains of these three elements
in order to make the close control system meet the requirement while the traditional techniques to design are, for
example, the Cohen-Coon technique, the Ziegler-Nichols technique or applying optimisation.

2.2. Linear-Quadratic Regulator (LQR) and LQR with integral action

LQR is an optimal control technique. Finding the LQR controller, K;, can be done by minimising the quadratic cost
function which can be expressed as.

Min: J(t) = fot[xT(T)Q x(7) + uTRu(7)|dr )

Subjected to
x = (A - BK,)x
u= —K,x

where Q and R are weighting factor matrices need to be defined. The other parameters are defined as follows:
X is a state vector
x is a state variable
A is a system matrix
B is an input matrix
u is an input vector
K, is a system proportional gain.
The control gain K which minimising the quadratic cost function can be expressed as;

K, = R™1BTP 3)
where the parameter P can be obtained by solving the Riccati equation as expressed in eq. (4)

ATP + PA—PBR™'BTP+Q =0 @)
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For the LQR with integral action, the integral term is introduced to the system as show in Fig. 1 in order to eliminate
the steady state error. The processing to obtain the optimal control gain is similar to the original LQR while the
integral control gain K; can be found in a similar fashion to the PID technique.

r o+ + u + X X y
—s»@ » Ki > 1/ B»@ » B e:»@ » 1/ p CI——>
- ) At
A |«
Kr |«

Fig. 1. LQR with integral action in block diagram.

2.3. Differential Evolution (DE)

DE is a meta-heuristic optimiser proposed by [13]. It is a population based algorithm containing two main operators
in the reproduction process, which are mutation and crossover. Figure 2 shows the computational search steps of DE,
which include initialisation, reproduction and selection as detailed below.

2.3.1 Initialisation

The process of DE starts with randomly generating an initial population (a set of solutions) within the boundary of
[X., xy], upper and lower bounds, while objective function values of the solution member in the population are
calculated.

P ={x',x%x%--x"} | objF = {f*,f? f3- f"} (5)

2.3.2 Mutation

Up to the present time, there have been a number of DE mutation strategies proposed for many applications. In this
paper, DE/best/1 is used. Let ¥ and x‘z be two randomly selected members from the current population and x5es¢
be the best solution found so far. A mutant solution can be found as:

ﬁi — fBest + SF(fil _ fiz) (6)
where SF is a scaling factor.

2.3.3 Crossover

The binomial crossover is used with the rate of crossover CR. The final solution after the binomial crossover can be
found as:

vi=

{u]‘: if rand < CR
J

x} if rand > CR’

where rand e [0,1] is a uniform random number.

2.3.4 Selection

Having obtained & with their objective function values, F., they are then compared to their parents x:. If F! < F{,
then 7' is selected to the next generation (iteration), otherwise, x‘is selected. The reproduction and selection operators
are operated repeatedly until meeting a termination condition (usually the maximum number of function evaluations).
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Fig. 2. DE procedure flow chart

2.4 Modelling of pitch controller for altitude hold

Figure 3 shows the aircraft standard (body) axes, related components, and their control parameter. The aircraft control
system is usually separated into longitudinal and lateral/directional motions which, in this paper, will consider only
the longitudinal motion. The longitudinal motion consists of four components including

1. Forces represented by X, Y, Z for the forces in the directions of x, y, z axes respectively.

2. Angular velocities represented by p, q, r for the rotational velocities in the directions of X, y, z axes respectively.

3. Velocities represented by u, v, w for the x, y, z —axis velocities respectively.

4. Moments represented by L, M, N for the moments in the directions of x, y, z axes respectively. They are also
respectively called rolling, pitching, and yawing moments.

For simplicity, the assumption is made. The forward speed (u,) of an aircraft is considered to be constant, neglecting
all effect of control surfaces except for the elevator. The derivative term such as dX/(m - du) is reduced to X,, and
applied to all variables while being divided by mass for convenience [14].

Fig. 3. Aircraft standard axes for angles, forces, velocities, rotational velocities and
moments around x, y, zZ axes
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The longitudinal force and moment equations of an aircraft can be expressed as given in eq. (7-9).

X —mgsin@ =m(u + quv — rv) @)
Z +mg cos 0 cos® = m(w + pv — qu) (8)
M= yq + rq(lx - Iz) + Ixz(pz_rz) (9)

All the variables in the equation of motion are replaced by reference value plus by perturbation or disturbance

u =1uy + Au, v = vy + Av, w = wy + Aw
p =p, + Ap, q = qo + Aq, r=r1,+Ar (10)
X=Xo+AX, Z=7Z,+AZ, M=M,+AM

Assume that the flight condition is symmetric and the propulsive forces are constant, so the parameters vq, po, o,
19, @, are set to 0 which lead the equations of motion to eq. (11) to (13).

d
(£ - X,) Au — X, Aw + (g cos 80)A0 = X5,A8, + X5, A8 (11)
d d .
—Zybu = (1= Z3) 5 = Z,| Aw — [(uo + Z,) 5 — g sin 60| A0 = Z5, A6, + Z5,48; (12)
d a? d
—M,Au — (MW =+ MW) Aw + (F - M, E) A6 = My A8, + Ms, A5y (13)

Since Z, and Z,, are very small, they can be neglected. By rearranging eq. (13) to the state space representation, it
yields.

Aa Zo/ug 1 0114a] (Zs./uo
AQl = Mg + MgZo Mg + M, 0] [Aq + Ms, |[AS,] (14)
A@ 0 1 01146 0

3. NUMERICAL STUDIES

In this work, the pitch control model is formulated based on eq. (14) and the stability derivative parameters shown in
Table 1. The state space model can be expressed in eq. (15) while the transfer function between the pitch angle and
the aileron defection is expressed in eq. (16).

Aa ~2.02 1 0 0.16

x=[Aq, A=|-69868 —29476 0| B= 11.7304], c=[0 o0 1] (15)
A8 0 1 0 0

dae _ 11.7304s+22.5775

ds ~ s3+4.967652+12.9410s (16)
Two optimisation problems for optimum PID and LQR tuning are presented. The objective function is assigned to
simultaneously minimise the percentage of overshoot (OS), settling time (ST) and steady state error (SSE) of step
response where the command step input is 0.2 radian or about 11.5 degree is applied. The weighted sum is used to
combine the three objective functions while the weighting values are set to be w; =1, w, = 10, w; = 10. The
equivalent single objective function can be expressed as follows:

objF = wy * 0OS + w, x ST + w3 x SSE (17
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Table 1: Necessary longitudinal derivatives parameters
Dynamics Pressure and Dimensional Derivative

o Q =36.81b/ft?, QS =67711b
Longitudinal QST = 38596 ft-1b,  ¢/2u, = 0.016s
Derivatives
Components
X-Force Z-Force Pitching Moment
Rolling Velocities X, = —0.045 Z, = —0.369 M, =0
. "y Zg M,, = 0.05
Yawing Velocities X, = 0.03 Zy = u—o = —0.202 M, = 0.051
X, = Z, = —355.42 M, =-88
Angle of attack X, = Zy =0 M, = —0.8976
Pitching rate X,=0 Zq=0 M, = —2.05
Elevator Deflection X5, =0 Zs, = —28.15 Ms, = —11.7304

DE is used to solve the proposed optimisation problem while the DE scaling factor (SF) and cross over rate (CR) are
set to be 0.5 and 0.7 respectively. The population size is set to be 25 while number of iterations is set to be 100. For
the PID case, the design variables are K,, Kj and Kg. The pure derivative term on Ky is not used but the low pass filter
with fixed N = 100 is employed instead. The lower and upper bounds of three gain values [x,, x;;] are set to [-100,100]
respectively. For LQR with integral action case, the design variables are set to be the Q and R matrices, which can be

expressed as:

Q. 0 0
Q=[0 0, 0],R=r. (18)
0 0 Qs

There are totally 4 design variables, [r, Q;, Q,, Q5] for this case. The upper and lower bounds of Q and R are set
equally between 0.0001 and 1000. Various integral gain (K;) of 102, 10°, 10*,..., 104, are used for integral action.

4. RESULT AND DISCUSSION

4.1. PID optimum tuning by DE

After performing an optimisation run, the optimum PID gains are shown in Table 2 while a step response is reported
in Table 3. The system time response shows the performance with rise time and settling time respectively equal to
0.0432 and 0.0655 with 0.8208 overshoot and 0.0152 steady state error. Figure 4 shows how the system response to
the reference using the optimal gain.

Step Response

0.25

——Reference
—PID

0.2

0.15

Amplitude

0.1t

0.05 +

0

0 é lb 13 20
Time (seconds)
Fig. 4. Step response of the system with PID optimising gain.
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Table 2: The best of 20 run times for PID tuning

Kp 10.3011
Design Ki 27423
variables
Kd 3.0046
Rise Time 0.0432
Settling Time 0.0655
Result
Overshoot 0.8208
Steady state error 0.0152

4.2. LQR tuning by DE

After perform optimisation based on various integration gain, the results are shown in Table 3 and Fig. 5. It was found
that when K;j increases, the rise time, settling time, overshoot and steady state error tend to be decreased leading to a
better LQR controller. The best obtained LQR controller found when the K; is 10000. When comparing with the
optimum obtained PID controller, only the LQR with K; = 1000 perform better in terms of steady state error
elimination while the PID is better in term of response speed.

Figure 6 shows the multi-step response of the optimal PID controller and the LQR with K; = 1000. Multiple steps
input was used as a reference signal which has the magnitude of 0.2 radian at the start then decrease to 0.1 radian at
5 seconds and then increase again to 0.15 radian at 10 seconds. Disturbance of 0.05 radian was ejected at 7 seconds
to test system stability. The rise time, settling time and steady state error values obtained from the PID control system
are 0.0432, 0.0655 and 0.8208, respectively while those obtained from the LQR with integral action control system
are 0.1257, 0.2118 and 0, respectively. It can be said that the optimum PID obtained is efficient in term of response
speed whereas the optimum LQR with integral action obtained in this study is efficient in term of steady state error
elimination. Both controllers can deal with disturbance of the system.

Table 3: The optimum results obtained for vary Ki

Ki 0.1 1 10 100 1000 10000

01 0.0001 00001  0.0001  0.0001 0.0001 0.0001

Design Q2 00001 00001  0.0001  0.0001 0.0001 0.0001
variables Q3 14101 44385  13.8071  60.8477  86.6876  348.9385

r 104544 32774 05958  0.1194 0.0079 0.0015

Rise Time 57107  1.6547 05813  0.2699 0.1257 0.0584

Settling Time 86238 26793 009795  0.4551 0.2118 0.0984

Overshoot 19176 19125  0.1708  0.0000 0.0000 0.0001

Result Steady stateerror  0.1030  0.0340 00143  0.0067 0.0031 0.0014
01582  -0.3289  -0.4992  -0.5706  -0.5897 -0.5942

Kr 00630 02021 06429  1.7023 3.9772 8.8684

0.3673 1.1637 4.8138 22.5701 105.0021 487.6114
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Step Response
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Fig. 5. Step response 0.2 radian with vary Ki
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Fig. 6. Multi-step input and disturbance is generated to test system stability

5. CONCLUSION

In this work, DE is successfully applied for optimisation of pith control design of a UAV based on using PID and
LQR with integral action controller. The optimisation problem is posed to minimise percentage of overshoot, settling
time and steady state error while weighted sum technique is applied. The design variable are the control gains are for
the PID controller while Q and R matrices are the design variables for the LQR with integral action controller. Various
integral control gain values are employed for the LQR controller leading to the LQR with an integral action controller.
Performance of the controllers are investigated based on the single step and multiple steps response. The results
obtained reveal that the optimum PID controller is efficient for response speed while the optimum LQR with integral
action controller is efficient for steady state error elimination. Both of the optimum controllers are robust and can
handle disturbance rejection.
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