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ABSTRACT: 
This paper is considered the problem of the robust passivity analysis for neutral-

type neural networks with interval time-varying delays. By constructing an 

augmented Lyapunov-Krasovskii functional and using the double integral 

inequality with approach to estimate the derivative of the Lyapunov-Krasovskii 

functionals. Then, the sufficient conditions are established to ensure the robust 

passivity of the considered neutral-type neural networks with interval time-

varying delays. These robust passivity conditions are obtained in terms of linear 

matrix inequalities, which can be investigated easily by using standard 

algorithms. Finally, numerical examples are given to demonstrate the 

effectiveness of the proposed method. 
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1. INTRODUCTION 

In the past few decades, delayed neural networks (NNs) have been an important issue due to their applications in 

many areas such as signal processing, pattern recognition, associative memories, fixed-point, computations, parallel 

computation, control theory and optimization solvers [1-4]. The state estimation problems for NNs with discrete 

interval, and distributed time-varying delays have been extensively studied in [5-7]. On the other hand, it is well- 

known that the time delay appears in many dynamic systems such as digital control systems, distributed networks, 

long transmission time in pneumatic system, remote control systems and manufacturing processes engineering and 

have extensive applications in various systems [8-10], which caused many poor in performances and even instability. 

The systems containing the information of past state derivatives are called neutral-type neural networks (NTNNs). 

The existing work on the state estimator of NTNNs with mixed delays are only [11, 12] at present. Balasubramaniam 

et al. [13], considered the problem of global passivity analysis of interval neural networks with discrete and distributed 

delays of neutral type. Consequently, the passivity analysis of NTNNs has also been received considerable attention 

and lots of works were reported in recent years. 

 

The problem of passivity performance analysis has also been extensively applied in many areas such as signal 

processing, sliding mode control, and networked control [14-16]. The main idea of the passivity theory is that the 

passive properties of a system can keep the system internally stable. In [17-21], authors investigated the passivity of 

neural networks with time-varying delay, and gave some criteria for checking the passivity of neural networks with 

time-varying delay. Passivity analysis for neural  networks of neutral  type with Markovian  jumping  parameters  and 
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time delay in the leakage term have been presented by Balasubramaniam [22]. Robust exponential passive filtering 

for uncertain neutral-type neural networks with time-varying mixed delays via Wirtinger-based integral inequality 

has been presented in [23, 24]. Recently, the stability issues with time-delay are considered by the free-matrix-based 

integral inequality. It has been known that the free-matrix-based integral inequality is less conservative than Jensen 

inequality [25, 26]. 

 

Motivated by above discussing, this paper investigates the robust passivity analysis for NTNNs with interval and 

neutral time-varying delays. Based on the constructed Lyapunov-Krasovskii functional, free-weighting matrix 

approach, and double integral inequality for estimating the derivative of the Lyapunov-Krasovskii functional, the 

delay-dependent passivity conditions are derived in terms of LMIs, which can be easily calculated by MATLAB 

LMIs control toolbox. Numerical examples are provided to demonstrate the feasibility and effectiveness of the 

proposed criteria.  

2. PRELIMINARIES 

Consider the following NTNNs with interval and neutral time-varying delays described by: 
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where 𝑥(𝑡) = [𝑥1(𝑡), 𝑥2(𝑡), … , 𝑥𝑛(𝑡)] ∈ ℝ𝑛 is the state of the neural, 1 2diag( , , , ) 0nA a a a    represents the self-

feedback term, 1 2, ,W W W  and 3W   represents the connection weight matrices,  1 2( ) ( ), ( ), , ( )
T

ng g g g       

represents the activation functions, ( ), ( )t k t  and ( )h t   represents the interval, discrete and neutral time-varying 

delays, respectively, ( )u t  and ( )y t  represents the input and output vectors, respectively. ( )t  is an initial condition 

and  
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Throughout this paper, we make the following assumption:  

 H1 : The variables ( ), ( )t k t  and ( )h t   satisfy the following conditions: 
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where are known scalars 1 2 3 2 2, , , ,k h    and 3h . 

 

 H2 : The neural activation functions ( ),kg   1,2, , ,k n    satisfy (0) 0kg   and for 𝑠1, 𝑠2 ∈ ℝ, 
1 2s s : 

1 2

1 2

( ) ( )
,k k

k k

g s g s
l l

s s

 
 


                              (3) 

where ,k kl l   are known real scalars. 

 

Let  ,x t   denote the state trajectory of system (1) from the above initial condition and  ,0x t  the corresponding 

trajectory with zero initial condition. 

 

Definition 1 [17]: The system (1) is said to be passive if there exists a scalar    such that for all 0ft  : 

0 0
2 ( ) ( ) ( ) ( ) ,

f ft t
T Ty s u s ds u s u s ds     

and for all solutions of (1) with ( ,0)x t . 
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Lemma 2 [25]: For a positive definite matrix 0,S   and any continuously differentiable function 𝑥: [𝑎, 𝑏] ⟶ ℝ𝑛  

the following inequality holds: 
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Lemma 3 [26]: For a positive definite matrix 0,S   and any continuously differentiable function 𝑥: [𝑎, 𝑏] ⟶ ℝ𝑛 

the following inequality holds: 
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Lemma 4 [18] :Given matrices ,P Q  and R  with TP P , then 

 ( ) ( ) 0,
T

P QF k R QF k R     

holds for all ( )F k  satisfying ( ) ( )TF k F k I  if and only if there exists a scalar 0  such that 

1 0.T TP QQ R R     

 

Lemma 5 [8] ( Schur complement) :  Given constant symmetric matrices , ,X Y Z   with appropriate dimensions 

satisfying ,TX X  0TY Y   .  Then 
1 0TX Z Y Z   if and only if 

0
TX Z

Z Y

 
 

 
  or  0.

T

Y Z

Z X

 
 

 
  

3. MAIN RESULTS 

For presentation convenience, in the following, we denote 
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where   ( ) col ( ), ( )v t x t g x t ,
1 2[ , 0], [0, ]I I     and 𝑒𝑖 ∈ ℝ𝑛×14𝑛  is defined as 

( 1) (14 )0 , , 0i n i n n n i ne I   
   

for 1,2, ,14.i    

 

Theorem 1  Under assumptions    H1 - H2 , for given scalars 1 2 3 2 3, , , ,h h    and 
2k  the system (1)  is passive in 

Definition 1, if there exist real positive matrices 𝑃 ∈ ℝ7𝑛×7𝑛, 𝒬𝑖 , 𝑆𝑖 ∈ ℝ𝑛×𝑛(𝑖 = 1, 2, 3),  real positive diagonal 

matrices 
1 2, , ,s abU U T T  1,2,3,4; 1,2,3; 2,3,4;s a b a b      and real matrices 

1 2 3, ,X X X  with appropriate 

dimensions, and a scalar 0   such that the following LMIs holds: 
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Proof: Consider a Lyapunov-Krasovskii functional candidate: 
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 1 1 2diag , , , 0nU      and  2 1 2diag , , , 0nU      are to be determined. 

 

The time derivative of  ( )V x t  can be computed as follows: 
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3 1 3 3

2

2

3 2 1 2 1

2

2 1 2 1
( )

2

2 1

( ) ( )

(1 ) ( ( )) ( ( )) (1 ) ( ( )) ( ( )),

( ) ( ),

( ) ( ) ( ) ( ) ( ) ,

( ) ( ) ( ) ( ) ,

( ) (

T

T T

T

t
T T

t k

t
T T

t k t

T

g x t Q g x t

x t t Q x t t h x t h t Q x t h t

t t

V x t k g x t S g x t k g x s S g x s ds

k g x t S g x t k g x s S g x s ds

k g x t S g x

 

  

 





  

       

 

 

 







     

   

   

1 2

1

1
( ) ( )

3

2 2

4 1 2 2 2 1 2 2 2

4

2 2

5 1 3 2 3 3

) ( ) ( ) ,

( ) ( ),

( ) ( ) ( ) ( ) ( ) ( ) ( ) ,

( ) ( ),

( ) 0.5 ( ) ( ) ( ) ( )

t t
T

t k t t k t

T

t t
T T T

t t

T

t
T T

t

t g x s ds S g x s ds

t t

V x t x t S S x t x s S x s ds x s S x s ds

t t

V x t x t S S x t x s S x s ds d

 

 

 

   

 

  

 

 





 

   

 

  

 

 


2

3

5

( ) ( ) ,

( ) ( ),

t t t
T

t

T

x s S x s ds d

t t

 


 




 

  
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where  , 1,2,3,4,5i i   are defined in (5). 

From (3), the nonlinear function ( )k kg x  satisfies:  

( )
, 1,2, , , 0.k k

k k k

k

g x
l l k n x

x

        

 

Thus, for any 0, ( 1,2, ,n),kt k   we have 

2 ( ( )) ( ) ( ) ( ( )) 0,T

k k k k kt g x l x l x g x              

which    2 ( ) ( ) ( ) ( ) 0,
T

T Tg x x L T L x g x               where  1 2diag , , , .nT t t t   Let   be 
1, (t),t t t    

and 
2t   replace T  with ( 1,2,3,4)sT s   then, we have ( 1,2,3,4)s   

 

17 182 ( ) ( ) 0,T T

st T t                              (7) 

 

Another observation from (3), we have 

1 2

1 2

( ( )) ( ( ))
, 1,2, , .

( ) ( )

k k

k k

g x g x
l l k n

x x

 

 

 
   


 

 

Thus, for any 0, ( 1,2, , )kt k n    and    1 2( ) ( )k kg x g x    , we have 

1 2 1 22 ( ( ) ( )) ( ( ) ( )) 0,k k kt l x x l x x                

which 1 2 1 22 ( ( ) ( )) ( ( ) ( )) 0,
T

L x x T L x x                where 1 2col{ , , , }.n       Let  1 and 2  take 

values in 1, ( ),t t t t    and 2t   and replace T  with  1,2,3; 2,3,4;abT a b b a    then, we have 

 

19 202 ( ) ( ) 0, 1,2,3, 2,3,4, .T T

abt T t a b b a                              (8) 

 

From (7) and (8), it can be shown that 

 

6( ) ( ) 0,T t t                              (9) 

 

where 6   is defined in (5). 

 

On the other hand, for any matrices 
1 2,X X  and 

3X  with appropriate dimensions, it is true that 

       



1 2 3 1 2 3
- ( )

0 2 ( ) ( ) ( ) ( ) ( ) ( - ( )) ( ) - ( )

( ) ( ) ,

t
T T T

t k t
x t X x t X u t X Ax t Wg x t W g x t t W g x s ds W x t h t

u t x t

          

 


  

   
7( ) ( ),T t t                       (10) 

 

where 7   is defined in (5). 

 

Therefore, we conclude that 

 
5

6 71
( ( )) ( ) ( ) 2 ( ) ( ) ( ) ( ) ( ) 2 ( ) ( ),T T T T

ii
V x t u t u t y t u t V x t u t u t y t u t 


           

                     ( ) ( ),T t t                       (11) 

 

where   is defined in (4). If we have 0,    then 

 



Transactions of the TSME: JRAME  2018, Volume 6(2)/ 77 

( ( )) ( ) ( ) 2 ( ) ( ) 0,T TV x t u t u t y t u t                       (12) 

 

for any ( ) 0.t   Since  (0) 0V x   under zero initial condition, let ( ) 0x t   for max[ , 0]t   after integrating   (12) 

with respect to t over the time period from 0  to 
ft , we get 

   
0 0

0

2 ( ) ( ) ( ) (0) ( ) ( ) ,

( ) ( ) .

f f

f

t t
T T

f

t
T

y s u s ds V x t V x u s u s ds

u s u s ds





  

 

 


 

Thus, the NTNNs (1) is passive in the sense of Definition 1. This completes the proof.    

 

In the following, it is interesting to consider the passivity condition of passivity analysis for uncertain NTNNs with 

interval time-varying delays: 

 

         

       

 

 

1 1

2 2 3 3
( )

max max 2 2 2

( ) ( ) ( ) ( ) ( ) ( ) ( ( ))

( ) ( ) ( ) ( ) ( ),

( ) ( ) ,

( ) ( ), ,0 , max , , ,

t

t k t

x t A A t x t W W t g x t W W t g x t t

W W t g x s ds W W t x t h t u t

y t g x t

x t t t k h



   



           

        

 

      

              (13) 

 

where 1 2( ), ( ), ( ), ( )A t W t W t W t     and 3( )W t  represent the time- varying parameter uncertainties that are 

assumed to satisfy following conditions: 

 

1 2 3 1 2 3(t) ( ) ( ) ( ) ( ) ( ) ,A W W W WA W t W t W t W t HF t E E E E E                          (14) 

 

where 1 2, , , ,A W W WH E E E E  and 3WE   are known real constant matrices, and ( )F   is and unknown time- varying 

matrix function satisfying ( ) ( ) .TF t F t I           

 

Then we have the following result. 

 

Theorem 2 Under assumptions    H1 - H2 , for given scalars 1 2 3 2 3, , , ,h h    and 2k   the system ( 1)  is passive in 

Definition 1, if there exist real positive matrices 
7 7 ,n nP   , 1,2,3 ,n n

i iQ S i   real positive diagonal matrices 

1 2, , ,s abU U T T  1,2,3,4; 1,2,3; 2,3,4;s a b a b     and real matrices 
1 2 3, ,X X X  with appropriate dimensions, and 

scalars 0   and 0   such that the following LMIs holds: 

 

2 2 1

1

0,
T T

I





    
 

   
                        (15) 

 

where 

 

 

     

1 1 1 1 13 2 14 3

2 1 1 2 1 1 2 2 2 11 3 12

,

,

T T T

A W W W W

e X H e X H e X H

E e E e E e E e E e

    

         
 

 

and   is defined in Theorem 1. 
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Proof : Replacing 1 2, , ,A W W W  and 3W in LMIs (4) with ( ) AA HF t E , ( ) WW HF t E , 1 1( ) WW HF t E , 

2 2( ) WW HF t E  and  3 3( ) WW HF t E  respectively, so we have 

 

1 2 2 1( ) ( ) 0.T TF t F t                            (16) 

 

By Lemma 4, it can be deduced that 0  and 

 
1

1 1 2 2 0,T T                             (17) 

 

is equivalent to (15) in the sense of the Schur complements Lemma 5. The proof is complete.   

 

Remark 1 Theorem 1 presents estimating of the integral terms by Lemma 2 and Lemma 3, which provided a tighter 

lower bound than Wirtinger-based integral inequality [24]. 

4. NUMERICAL EXAMPLE 

In this section, we present two examples to illustrate the effectiveness and the reduced conservatism of our result.  

Example 1 Consider the NTNNs (1) with the following parameters:  

1 2 3

1.2 0 0.2 0.2 0.1 0.2 0.52 0 0.2 0
, , , , .

0 1.8 0.26 0.1 0.2 0.1 0.2 0.09 0.2 0.1
A W W W W

             
             

          
  

The activation functions are assumed to be 
1 2 tanh( )g g s    with 

1 1 20, 1, 0l l l      and 
2 1l  . For 

0.5 ( ) 3.5,t  3 0.7,   0 ( ) 3.5, 0 ( ) 1,h t k t     and 
3 0.5h   by using MATLAB LMIs control toolbox and 

by solving the LMIs in Theorem 1, in our paper we obtain the feasible solutions: 

9.7468 3.1406 0.1768 0.0075 0.0066 0.0546 0.7557 0.2706 0.0296 0.0151 0.3430 0.0691 0.0013 0.0015

3.1406 10.6928 0.0142 0.0900 0.0097 0.0489 0.0817 0.2262 0.0045 0.0025 0.2054 0.3565 0.0001 0.0009

0.1768 0.0142 5.8693 0.

P

   

   





2743 0.4111 0.0256 1.2352 0.0126 0.1472 0.0226 0.4700 0.0432 0.0000 0.0002

0.0075 0.0900 0.2743 5.2888 0.0029 0.4230 0.0695 1.3149 0.0264 0.0899 0.0580 0.5500 0.0004 0.0006

0.0066 0.0097 0.4111 0.0029 4.9310 0.2786

     

     

   0.0426 0.0519 0.0746 0.0393 0.0974 0.0160 0.0008 0.0008

0.0546 0.0489 0.0256 0.4230 0.2786 5.5436 0.0343 0.1567 0.0434 0.1640 0.0144 0.0849 0.0001 0.0001

0.7557 0.0817 1.2352 0.0695 0.0426 0.0343 4.7710 0.0573 0.0578 0.

  

    

    0041 1.8054 0.0133 0.0044 0.0002

0.2706 0.2262 0.0126 1.3149 0.0519 0.1567 0.0573 4.8307 0.0025 0.0587 0.0075 1.7558 0.0003 0.0046

0.0296 0.0045 0.1472 0.0264 0.0746 0.0434 0.0578 0.0025 0.0240 0.0056 0.0249 0.004

  

       

      5 0.0010 0.0004

0.0151 0.0025 0.0226 0.0899 0.0393 0.1640 0.0041 0.0587 0.0056 0.0355 0.0049 0.0182 0.0005 0.0019

0.3430 0.2054 0.4700 0.0580 0.0974 0.0144 1.8054 0.0075 0.0249 0.0049 4.6585 0.0043 0.0004 0.0002

0.0691 0

   

       

.3565 0.0432 0.5500 0.0160 0.0849 0.0133 1.7558 0.0045 0.0182 0.0043 4.5942 0.0001 0.0005

0.0013 0.0001 0.0000 0.0004 0.0008 0.0001 0.0044 0.0003 0.0010 0.0005 0.0004 0.0001 0.0008 0.0000

0.0015 0.0009 0.0002 0.000

        

     

 6 0.0008 0.0001 0.0002 0.0046 0.0004 0.0019 0.0002 0.0005 0.0000 0.0008

,

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


 


 
 
 
 

 




 

5

1 2 3 1 2

9

3

3.1810 1.1655 0.36015 -0.1414 7.0514 1.0326 7.1153 -0.4366 0.0016 -3.3988
, , , , 10 ,

1.1655 5.8872 -0.1414 0.6644 1.0326 4.5277 -0.4366 2.1361 -3.3988 0.0015

7236.1573 -
10

Q Q Q S S

S





         
              
         

  1 2 3

1 2 1

9.2006 9.12346 1.9938 5.6121 1.0238 8.0686 1.1923
, , , ,

-9.2006 7062.0086 1.9938 9.6625 1.0238 4.5991 1.1923 8.1750

7.8148 0 3.9675 0 5.2041 0
, ,

0 5.7281 0 5.0184 0 2.9493

X X X

U U T

       
         

       

    
      
    

2 3

4 5 6 7 8

9 10

0.4138 0 1.6358 0
, , ,

0 0.7378 0 1.9877

1.6286 0 0.1862 0 0.5543 0 0.5436 0 0.2092 0
, , , , ,

0 1.9856 0 0.4702 0 0.8760 0 0.8681 0 0.3650

0.2099 0
,

0 0.3639

T T

T T T T T

T T

    
     

    

         
             
         

 
  
 

0.6603 0
, 28.8384.

0 0.9218


 
 

 
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In this example, Figure 1 gives the state trajectory of the NTNNs (1) under zero input, and the initial condition 

   1 2( ) ( ) 0.2 0.3
T T

x t x t   . 

 
Fig. 1. State trajectories of 

1x  and 
2x  for Example 1. 

  

Example 2 Consider the NTNNs (13) with the following parameters:  

1 2 3

1 2 3

4 0 0.4 0 0.1 0.2 0.41 0.5 0.1 0
, , , , ,

0 5 0.1 0.1 0.15 0.18 0.69 0.31 0 0.1

0.7 0 0 0 0 0 0 0 0 0
, , , ,

0 0.7 0.1 0.1 0.02 0.03 0.02 0.02 0.001 0.001
A W W W

A W W W W

H E E E E

          
             

           

        
            
        

.




   

The activation functions are assumed to be 
1 2 tanh( )g g s    with 

1 1 20, 1, 0l l l      and 
2 1l  . For 

30.5 ( ) 4, 0.5,t    0 ( ) 3.5, 0 ( ) 0.9,h t k t     and 
3 0.7h   by using MATLAB LMIs control toolbox and by 

solving the LMIs in Theorem 2, in our paper we obtain the feasible solutions: 

84.4165 3.5263 0.0836 0.1201 0.1852 0.3277 0.1583 0.8058 0.0345 0.0590 0.7655 0.1168 0.0030 0.0045

3.5263 95.4586 0.1045 0.1223 0.3276 0.1652 0.8402 0.2395 0.0601 0.0297 0.0179 0.7775 0.0046 0.0026

0.0836 0.1045 2

P

        

   







51.7313 0.0564 17.9726 0.2688 69.3635 0.2195 2.1684 0.0546 38.5787 0.3483 0.0154 0.0054

0.1201 0.1223 0.0564 251.5809 0.1162 17.1330 0.1580 69.4392 0.0246 1.9769 0.2371 39.7804 0.0025 0.0278

0.1852 0.3276 17.9726 0.1

   

      

  162 323.1948 0.3806 7.6092 0.0960 11.5753 0.0569 5.2763 0.0423 0.0243 0.0028

0.3277 0.1652 0.2688 17.1330 0.3806 325.5460 0.0545 7.4640 0.0894 11.7412 0.0599 5.2954 0.0078 0.0357

0.1583 0.8402 69.3635 0.1580 7.60

    

         

  92 0.0545 220.2724 0.3687 1.7341 0.0016 80.4882 0.0355 0.1296 0.0011

0.8058 0.2395 0.2195 69.4392 0.0960 7.4640 0.3687 220.5678 0.0267 1.6718 0.1862 81.9804 0.0030 0.1219

0.0345 0.0601 2.1684 0.0246 11.5753 0.089

      

      

   4 1.7341 0.0267 1.8162 0.0188 0.8105 0.0017 0.1038 0.0014

0.0590 0.0297 0.0546 1.9769 0.0569 11.7412 0.0016 1.6718 0.0188 1.8264 0.0158 0.8186 0.0018 0.1038

0.7655 0.0179 38.5787 0.2371 5.2763 0.0599 80.4882 0.18

  

        

      62 0.8105 0.0158 229.9570 1.0551 0.0513 0.0006

0.1168 0.7775 0.3483 39.7804 0.0423 5.2954 0.0355 81.9804 0.0017 0.8186 1.0551 233.9030 0.0003 0.0554

0.0030 0.0046 0.0154 0.0025 0.0243 0.0078 0.1296 0.0030 0.1038 0.0018 0

 

   

     .0513 0.0003 0.0259 0.0002

0.0045 0.0026 0.0054 0.0278 0.0028 0.0357 0.0011 0.1219 0.0014 0.1038 0.0006 0.0554 0.0002 0.026
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4
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324.7688 19.4190 52.6405 3.0286 11.8541 0.2194 405.3284 3.7323 0.0563 0.0005

19.4190 358.8293 3.0286 47.5685 0.2194 10.3829 3.7323 327.1213 0.0005 0.055
, , , , ,
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1 2 1 2 3

4 5 6

180.2987 0 142.9120 0 245.6991 0 75.0977 0 98.5068 0

0 167.7276 0 169.5647 229.8644 0 74.4702 0 99.9682

98.4898 0 40.6991 0 52.8268 0

0 99.9658
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0
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,
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5. CONCLUSION 

In this paper, the robust passivity analysis for NTNNs with interval and neutral time-varying delays have been studied. 

By employing the Lyapunov-Krasovskii functional method, and double integral inequality was developed to 

guarantee the passivity performance of NTNNs. A new passivity analysis criterion has been given in terms of LMIs, 

which depended on the time-varying delays. Finally, numerical examples have been presented which illustrate the 

effectiveness and usefulness of the proposed method. 

NOMENCLATURE 

ℝ𝑛   The n  dimensional Euclidean space 

ℝ𝑛×𝑛   The set of m n  real matrices  

nI   The n  dimensional identity matrix  

( )A    The set of all eigenvalues of A    

max ( )A    Remax ; ( )A     

    The Euclidean vector norm 

𝐶([0, 𝑡], ℝ𝑛)  The set of all ℝ𝑛 − valued continuous functions on [0, ]t  

0X       X positive semi-definite 

0X      X positive definite  

 diag    A block diagonal matrix 
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