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1. INTRODUCTION

In the past few decades, delayed neural networks (NNs) have been an important issue due to their applications in
many areas such as signal processing, pattern recognition, associative memories, fixed-point, computations, parallel
computation, control theory and optimization solvers [1-4]. The state estimation problems for NNs with discrete
interval, and distributed time-varying delays have been extensively studied in [5-7]. On the other hand, it is well-
known that the time delay appears in many dynamic systems such as digital control systems, distributed networks,
long transmission time in pneumatic system, remote control systems and manufacturing processes engineering and
have extensive applications in various systems [8-10], which caused many poor in performances and even instability.
The systems containing the information of past state derivatives are called neutral-type neural networks (NTNNS).
The existing work on the state estimator of NTNNs with mixed delays are only [11, 12] at present. Balasubramaniam
etal. [13], considered the problem of global passivity analysis of interval neural networks with discrete and distributed
delays of neutral type. Consequently, the passivity analysis of NTNNs has also been received considerable attention
and lots of works were reported in recent years.

The problem of passivity performance analysis has also been extensively applied in many areas such as signal
processing, sliding mode control, and networked control [14-16]. The main idea of the passivity theory is that the
passive properties of a system can keep the system internally stable. In [17-21], authors investigated the passivity of
neural networks with time-varying delay, and gave some criteria for checking the passivity of neural networks with
time-varying delay. Passivity analysis for neural networks of neutral type with Markovian jumping parameters and
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time delay in the leakage term have been presented by Balasubramaniam [22]. Robust exponential passive filtering
for uncertain neutral-type neural networks with time-varying mixed delays via Wirtinger-based integral inequality
has been presented in [23, 24]. Recently, the stability issues with time-delay are considered by the free-matrix-based
integral inequality. It has been known that the free-matrix-based integral inequality is less conservative than Jensen
inequality [25, 26].

Motivated by above discussing, this paper investigates the robust passivity analysis for NTNNs with interval and
neutral time-varying delays. Based on the constructed Lyapunov-Krasovskii functional, free-weighting matrix
approach, and double integral inequality for estimating the derivative of the Lyapunov-Krasovskii functional, the
delay-dependent passivity conditions are derived in terms of LMIs, which can be easily calculated by MATLAB
LMiIs control toolbox. Numerical examples are provided to demonstrate the feasibility and effectiveness of the
proposed criteria.

2. PRELIMINARIES

Consider the following NTNNs with interval and neutral time-varying delays described by:

X(t) = —AX(t) +Wg (x(t)) +W,g (X(t —z(t)) ) +W, f_k([) g(x(s))ds +W,X(t —h(t)) +u(t),

y() = g(x(®), (1)
X(t) =4(t), te[~7pn.0], Tpm =max{z,k,h,},

where x(t) = [x;(t), x2(t), ..., x,(t)] € R™ is the state of the neural, A=diag(a,,a,,...,a,) >0 represents the self-
feedback term, W,W,,W, and W, represents the connection weight matrices, g(:) :(gl(-),gz(~),...,gn(-))T
represents the activation functions, z(t), k(t) and h(t) represents the interval, discrete and neutral time-varying
delays, respectively, u(t) and y(t) represents the input and output vectors, respectively. @(t) is an initial condition

o l#). sup_,oco |09}

Thmax <

and ||¢(s)||rm = max{supf

Throughout this paper, we make the following assumption:
(H1): The variables z(t), k(t) and h(t) satisfy the following conditions:
O<zg <t7(t)<7y, 7(t) <73,
0<k(t) <k,, (2)
0<h()<h,, h(t)<hy<1, Vt=0,

where are known scalars 7,,7,,7,,k,,h, and h,.

(H2) : The neural activation functions g, (), k=12,...,.n, satisfy g (0)=0 and for s;,s, €ER, s, #5,:
gk (51) B gk (Sz)
s, -5,
where |1, are known real scalars.

I, < </, 3)

Let x(t,¢) denote the state trajectory of system (1) from the above initial condition and X(t,O) the corresponding
trajectory with zero initial condition.

Definition 1 [17]: The system (1) is said to be passive if there exists a scalar » such that forall t, >0:

t t
ZJ'O y' (s)u(s)ds 2_7.[0 u' (s)u(s)ds,
and for all solutions of (1) with x(t,0) .
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Lemma 2 [25]: For a positive definite matrix S >0, and any continuously differentiable function x: [a, b] — R"
the following inequality holds:

j X" (s)S x(s)ds > birfsn +b3 ST +binTsn

where
I1, = x(b) - x(a),

1, = x(b) + x(a) _bTZa j:x(s)ds,

6 b 2 b b
I, = x(b)—x(a)+E j x(s)ds — ey j jg x(s)dsd@.

Lemma 3 [26]: For a positive definite matrix S >0, and any continuously differentiable function x: [a, b] — R"™
the following inequality holds:

Ib Lb X" (s)Sx(s)dsd@ > 2IT;STI, +4I1; STl +6I1g ST,

where

1, = x(b) —lea [ x)ds,

1, = x(b) + —2 ["x(s)ds "x(s)dsd@
5 b-ala o ’

3 b 4 b b 60 bbb
I, = x(b)—EL x(s)ds + ooy j jg x(s)dsd@— o_ay j jﬂ j x(1)d Ads dé.
Lemma 4 [18] :Given matrices P, Q and R with P" =P, then
P + QF(K)R + (QF(K)R)' <0
holds for all F(k) satisfying F(k)" F(k) <1 if and only if there exists a scalar & > 0such that
P+ &'QQ" +sR'R < 0.

Lemma 5 [8](Schur complement): Given constant symmetric matrices X,Y, Z with appropriate dimensions
satisfying X =X, Y=Y >0 . Then X +Z"Y'Z <0 ifand only if

X Z' Y Z
<0 or T <0.
Z Y Z' X
3. MAIN RESULTS

For presentation convenience, in the following, we denote
L =diag(l/,1;,....17), L =diag(l;.1;,....1;),

n n

X)) =Ev(), g(x(t) =Z,v(t),
((t):[vT(t), V' (t=7(t), V' (t-,), V' (t-7,), j: X" (s)ds, L X'(9)ds, | I;XT(s)dsde, [ [X(s)asdo,

j”j jx (1) dAdsde, j j j (A)dAdsde, j (x(s))ds, X (t-h(t)), X(t), uT(t)T,

Transactions of the TSME: JRAME 2018, Volume 6(2)/ 73



where v(t) = col{X(t), g(x(t))},E1 =[1, 0], £, =[0, I] and e; € R™!*" is defined as ¢ =[ 0, . I, O

nx(i-1)n? “n? nx(14—i)n:|
fori=12,...14.

Theorem 1 Under assumptions (H1)-(H2), for given scalars 7;,7,,7;,h,,h; and k, the system (1) is passive in
Definition 1, if there exist real positive matrices P € R, Q;,S; € R™"(i = 1, 2, 3), real positive diagonal
matrices U,,U,,T.,T,, (5=12,3,4,a=12,3 b=2,34;a<b) and real matrices X,,X,,X, with appropriate
dimensions, and a scalar y >0 such that the following LMIs holds:

2=+, +Q, +Q, + O, +Q, +Q, + O, <0, 4)
where

Q, =TI} PIT, + [T, PT1, + (TT, +I1,)" +T1, +11,,
Qz = 3(5191 )T Ql (Elel)_(Eiea )T Q1 (E1e3)_(Eie4 )T Q1 (Ele4)+ 2(52e1)T Qz (E‘zel)_(Ezea )T Qz (5263)
~(

Z.e ) Q,(2.8,) +e,Qse, —(1-73) (8, )T Q (2,8,)-@1-h,)e,Qse,,,
Q,=(5,e )T 'S, (2,8,) el Sen,
Q, =e}y(¢/S, + 1S, ) e, ~TI{ S,IT, —3I1; S,IT, 51T, S, T, —TT; S, I, — 3113 S, I, ~ 5T}, S, [Ty, (5)
Q, =e](0.57,S, +0.523S, ), — 2IT;, S, T, — 4TT},S,T1,, — 6T}, S, Ty, — 21T}, S,TT,, — 4115, S, T, — 61T, S,TT,q,

3 4 3 4
Qg = zszl(HLTsHls + HIsTan ) + zazlzb:z,maHIgTabHZO + zazlzbzz‘ba HZoTame’
Q, =I1,I1, + H;ZHT21’

Qg = _7elT4e14 _(Ezel )T €14 _elTA (Ezel)'

with

M,=[(Ze) e e el el el el ] |

I, =|eh(26) -(E6) (28) -(E&)  n(Ee) —d % (2e) €05 (58) -¢,055(2e) ~¢ T ,
M,=(2,8) (U,-U,)e, T,=(Eg) (LU,-LU,)e,,
I1

- = —- = 2 —- Y = 6 12
5 =296 — =65, I, =Ee+56——¢, I, =Ee -Eg+—6—-—e,
21 1 21
—- = —_ = 2 - = 6 12
I, == -5, IIy=5.¢ +Z€, ——¢, I, =58 —E€,+—€——6€,
7 2 7
- 1 — 2 6 _ 3 24 60
I, =56, ——&s, I, =58 +—¢ — €, H13::‘1€1__es+_ze7__3e9r
21 1 4 1 1 1
- — 3 24 60
H14_‘—‘lel_ eev H15—~1e1+ ee —238, Hm::*lel__es"'_zes__gelo-
2 2 72 2 2 2
- — - _
I, =5, -LZg,, M,=L"Ee -Z.¢,,
—_ —_ + = — + (= —_ —_ —_
I, :(‘:‘Zea_‘:‘ )_ L (':1ea _':‘1eb)’ I =L (:1ea_:1eb)_(5zea_dzeb)l
- T T _ - -
I, = (*5181) Xy +epX, +e,X,, IT,, = A=e, +WE.e +WE e, +W,e,, +W,e,, + €, —€5
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Proof: Consider a Lyapunov-Krasovskii functional candidate:
5

V(x(®) = D Vi (x(®), (6)
i=1

where

v, (x®) =" (t)Pn(t)+2§pk I:“’[gk(s)—lk'sds}zgo—k [“[krs-9,() s,

v, (x() = Z Jo X (9Qx(8) + 0" (NN Jds+ [ X (IQx()ds+ [ X (QK(s)es,
Vo(x®) =k, [, [ 0" (x(5))8, 9(x(s))dsdo,

V, (x(t)) = Zzl‘;i j: [ %7 ()8, %(s)dsd,

V, (x(t)) = Zzll j:_q j; ['x (13, x(4)d 2 dsd,

where
n(t)z[xT W, [ K(©ds, [ x"(g)ds, [ [ x(s)dsdo, [ [ x(s)dsdo, [ [ ['x(1)dAdsdo,

t t et T T
J‘—rz .[0 .L X (/I)dﬂdsdg] ,
U, =diag{p,, p,.....p,} 20 and U, =diag{o;,0,....,0,} = 0 are to be determined.

The time derivative of V (x(t)) can be computed as follows:

V; (x(1) = 27" (t)Pn(t)+2i{pkx'(t)[gk<x(t»—I;x(t)]wkxa)[l;x(t)—gdx(t»]}
< g @ (),
V, (x(t)) < 3x" ()QX(1) + X (1)QX(t) — X' (t—7)Qx(t —7,) — X' (t—7,)QX(t — 7,)
+29" (X(1))Q,9 (x(t))— 9" (x(t—7,)) Q0 (x(t—7,)) -9 (X(t—7,))Q,9 (X(t—17,))
—([1-7,)x" (t—7(®)Qx(t —7(t)) - (1—h)X" (t—h(t))Q,X(t - h(t)),
= ') Q, <),
Vo (x() = K 97 (x(0)S,9(xO) -k, [, 97 (x(5))3,9 (x(5))s,
G 07 (x(0)8,0 (xO) k., 97 (x())S,0 (x(5))d,
K2 g7 (x(0)8,9 (xO) [, 9" (X(®)dsS,[  g(x(s))as,
s (1) Q; 5(b),
X (t)(c2S, +728, ) x(®) ~ 1, jt X (5)S,(s)ds 7, [ X' (5)S,X(s)ds,
s'(1) Q, ¢,
Vo (x(0) = 058 (1) (228, + 228, )X(0) - [ [ X ()8, () dsdo [ [ X7 (5)SX(s)ds o,

< gt 9 s(t),

IN

IA

k(t)

V, (x(1))

IN

Transactions of the TSME: JRAME 2018, Volume 6(2)/ 75



where ©;,(i=1,2,3,4,5) are defined in (5).
From (3), the nonlinear function g, (x,) satisfies:

<9 e s1o i x <0,
Xk

Thus, forany t, >0, (k=12,...,n), we have
2, [ gr (X(O) =1, x(0) [ x(6) - g, (x() | = O,

which 2[ g" (x(8))-x' (H)L’]TT [L'x(0)-g(x(6)) |20, where T =diag{t,t,,...,t,}. Let & be t, t—z(t), t—7,
and t—r, replace T with T,(s=1,2,3,4) then, we have (s=12,3,4)

25" (I, T, Mg (t) > O, (7)
Another observation from (3), we have

MGG BTN CICH) DN
T x@)-x6) Y

Thus, forany t >0, (k=12,...,n) and A =g, (x(6))—9,(x(8,)), we have

2, [ A=l (X(8) - X&) ][ I (X(6) - x(6,)) - A ] >0,

which 2[ A—L (x(6) - x(¢92)):|T T[L'(X(6)—-x(6,)~A >0, where A=CoKA,,A,....,A,}. Let 6,and 6, take
values in t, t—7(t), t—7, and t—7, and replace T with T, (a=1,2,3;b=2,3,4; b>a) then, we have

26T (O], T, TLc(t)>0, a=12,3,b=2,34,b>a. (8)
From (7) and (8), it can be shown that

g (1) 2 5(t) 20, 9)
where €2 is defined in (5).

On the other hand, for any matrices X,, X, and X, with appropriate dimensions, it is true that

g(x(s))ds +W;x(t-h(t))

t

0=2[x" ()X, +X" ()X, +u" (1) xs][—Ax(t) +Wg (X(t))+W,g (x(t-z(t)))+W, jt-k(t)

+u(t) - x(@)],
= ¢ (t) Q) (10)

where €, is defined in (5).

Therefore, we conclude that
V(x()—yu' (Hu) -2y" @)u(t)

IA

37 Vi () + 9+ — T Q) -2y" @u),
s () X s(t), (11)

where X is defined in (4). If we have X <0, then
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V(x(®)-yu’ Qu®) -2y ©u(t) <0, (12)
forany ¢(t) = 0. Since V (x(0)) =0 under zero initial condition, let X(t)=0 for t €[z,,,, O] after integrating (12)
with respect to t over the time period from O to t, , we get
ty t
2| yT >V (x(t;))-V - T
[V @uds = v (xt))-v (xO)-7[ v ©ues)ds,
t
> _y jof uT (5)u(s) ds.
Thus, the NTNNSs (1) is passive in the sense of Definition 1. This completes the proof.

In the following, it is interesting to consider the passivity condition of passivity analysis for uncertain NTNNs with
interval time-varying delays:

X(t) = —( A+ AA() ) X(t) + (W + AW (1)) g (x(t) ) + (Wi + AW, (1)) g (x(t — 7 (1))
+(W, + AW, 0) [ | 0(x(5)) ds+ (W + AW 1) (1-h(D) +u(),

K (13)
y(t) = g(x(t)),
X)) =¢@t), te]—Tna.0]  Tma =Max{zy,ky,h,},

where AA(t), AW(t), AW, (t), AW, (t) and AW, (t) represent the time- varying parameter uncertainties that are
assumed to satisfy following conditions:

[AA®D) AW (1) AW, (1) AW, (t) AW;(t)] = HF()[Ex Ey Ewi Ew, Ewsl, (14)

where H,E,,Ey, By, Eyy and Ey5 are known real constant matrices, and F(-) is and unknown time-varying
matrix function satisfying F' (t)F(t) <.

Then we have the following result.

Theorem 2 Under assumptions (H1)-(H2), for given scalars 7;,7,,7,,h,,h, and k, the system (1) is passive in
Definition 1, if there exist real positive matrices P e[l ™™, Q,, S; €0 ™ (i=12,3), real positive diagonal matrices

U.U, T.T, (5=1234,a=123; b=234; a<b) and real matrices X,, X,, X, with appropriate dimensions, and
scalars ¥ >0 and & > 0 such that the following LMIs holds:

T T
Fw@z@z @1} <0 s

0, —¢l
where

0, =—Ex(E18))+Ey (228 )+ Ey1 (228, ) + By 2811 + By sz

and Y is defined in Theorem 1.
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Proof : Replacing A, W, W, W, and W in LMIs (4) with A+HF(t)E,, W +HF(t)E, , W, + HF(t)Ey;
W, + HF (t)E,, and W+ HF(t)Ey, 5 respectively, so we have

Y +0[F(1)0, + OJF ()0, < 0. (16)
By Lemma 4, it can be deduced that & > 0and
Y+£7'0 0, +£050, < 0, (17)

is equivalent to (15) in the sense of the Schur complements Lemma 5. The proof is complete.

Remark 1 Theorem 1 presents estimating of the integral terms by Lemma 2 and Lemma 3, which provided a tighter
lower bound than Wirtinger-based integral inequality [24].

4., NUMERICAL EXAMPLE

In this section, we present two examples to illustrate the effectiveness and the reduced conservatism of our result.

i

=1, 1, =0 and I =1.

Example 1 Consider the NTNNs (1) with the following parameters:
12 0 02 02 -0.1 -0.2 -052 0
= y W = y Wl = y W2 =
0 18 026 0.1 0.1

’ W3 =
0.2 02 -0.09
The activation functions are assumed to be g, =g, = tanh(s) with I =0,

02 0
02 -0

For

05<7(t) <35 7

=0.7, 0<h(t) <35, 0<k(t)<1, and h, =0.5 by using MATLAB LMIs control toolbox and

by solving the LMIs in Theorem 1, in our paper we obtain the feasible solutions:

[ 9.7468 31406 0.1768 0.0075 -0.0066 0.0546 -0.7557 0.2706 -0.0296 0.0151 0.3430 0.0691 -0.0013 0.0015]
3.1406 10.6928 00142 00900 0.0097 0.0489 0.0817 -0.2262 -0.0045 -0.0025 0.2054 0.3565 -0.0001 0.0009
01768 00142 5.8603 -0.2743 -0.4111 -0.0256 12352 0.0126 -0.1472 0.0226 -0.4700 -0.0432 0.0000 -0.0002
0.0075 0.0900 -0.2743 52888 -0.0029 -0.4230 0.0695 13149 00264 -0.0899 -0.0580 -0.5500 0.0004  0.0006
-0.0066 0.0097 -0.4111 -0.0029 4.9310 0.2786 -0.0426 -0.0519 0.0746 0.0393 0.0974 -0.0160 0.0008 -0.0008
0.0546 0.0489 -0.0256 -0.4230 02786 55436 -0.0343 -0.1567 0.0434 01640 -0.0144 00849 00001 0.0001
o_|-07557 00817 12352 00695 -0.0426 -00343 47710 00573 -00578 00041 -18054 -0.0133 -0.0044 00002
02706 -0.2262 00126 13149 -0.0519 -0.1567 00573 4.8307 -0.0025 -0.0587 0.0075 -1.7558 -0.0003 -0.0046 |
-0.0296 -0.0045 -0.1472 0.0264 00746 0.0434 -0.0578 -0.0025 0.0240 0.0056 0.0249 -0.0045 0.0010  0.0004
00151 -0.0025 00226 -0.0899 0.0393 0.1640 0.0041 -0.0587 0.0056 0.0355 -0.0049 00182 0.0005 0.0019
0.3430 0.2054 -0.4700 -0.0580 0.0974 -0.0144 -1.8054 0.0075 0.0249 -0.0049 4.6585 -0.0043 -0.0004 -0.0002
0.0691 0.3565 -0.0432 -05500 -0.0160 00849 -0.0133 -1.7558 -0.0045 00182 -0.0043 45942 -0.0001 -0.0005
-0.0013 -0.0001 0.0000 0.0004 0.0008 00001 -0.0044 -0.0003 0.0010 0.0005 -0.0004 -0.0001 0.0008  0.0000
| 00015 00009 -0.0002 0.0006 -0.0008 00001 0.0002 -0.0046 0.0004 0.0019 -0.0002 -0.0005 0.0000  0.0008 |
Q:{s.lslo 1.1655} o :{0.36015 -0.1414} a :'7.0514 1.0326} s {7.1153 -0.4366} S :10,5{0.0016 -3.3988}
' |11655 58872 ~? |-0.1414 06644 | T [1.0326 45277] ' |-04366 21361 ° -3.3988  0.0015 |'
s :1079{7236.1573 -9.2006 } X :'9.12346 1.9938} :{5.6121 1.0238} :{8.0686 1.1923}
¢ -9.2006  7062.0086 |’ '] 1.9938 9.6625 | 1.0238 4.5991]  ° [1.1923 8.1750]'
U ='7.8148 0 } :‘3.9675 0 } T=‘5.2041 } T [04138 } :[1.6358 0 }
| o 57281 "* | 0o 5018] ' | 0 29493 0.7378 : 0 19877]
T=’1.6286 0 } T{o.lssz 0 } _[0.5543 } T {05436 } =[0.2092 0
‘1 o 1986 ° 0 04702 ° 0 08760 0.8681 s 0 0.3650 |’
[0.2099  © } [0.6603 0 }
T, = . Te= . y=28.8384.
0  0.3639 | 0 09218
78 /Volume 6(2), 2018 Transactions of the TSME: JRAME



In this example, Figure 1 gives the state trajectory of the NTNNs (1) under zero input, and the initial condition

(%@ %®] =[0.2 -03] .

Il
=2
i
T
1

0 2 4 6 8 10 1

(o]
E
N
5o
(=]
<

Time t

Fig. 1. State trajectories of x, and x, for Example 1.
Example 2 Consider the NTNNs (13) with the following parameters:
4 0 -04 0 0.1 0.2 041 -05 01 0
A = , W = y Wl = s W2 = , W3 = y
0 5 -0.1 0.1 -0.15 -0.18 069 031 0 01
H_0.70 E_OO EW—O 0 EW_O 0 EW_0 0
1o o7 "ol 01 ™™ 002 003] 271002 002/ *10.001 0.001]

The activation functions are assumed to be g, =g, = tanh(s) with I =0, |7 =1 1, =0 and I; =1. For
05<7(t)<4,7,=05 0<h(t) <35 0<k(t)<0.9, and h, =0.7 by using MATLAB LMIs control toolbox and by

solving the LMIs in Theorem 2, in our paper we obtain the feasible solutions:

[84.4165 35263 -0.0836 -0.1201 -0.1852 -0.3277 0.1583 -0.8058 -0.0345 -0.0590 0.7655 0.1168 -0.0030 -0.0045]
3.5263 95.4586 0.1045 -0.1223 0.3276  -0.1652 0.8402 0.2395 0.0601 -0.0297 -0.0179 0.7775 0.0046 -0.0026

-0.0836  0.1045 251.7313 0.0564 -17.9726 0.2688  69.3635 0.2195 -2.1684 0.0546 -38.5787 -0.3483 0.0154 0.0054

-0.1201 -0.1223 0.0564 251.5809 0.1162 -17.1330 -0.1580 69.4392 0.0246 -1.9769 -0.2371 -39.7804 0.0025 0.0278

-0.1852  0.3276 -17.9726 0.1162 323.1948 -0.3806 —7.6092 0.0960 11.5753 -0.0569 5.2763 0.0423 -0.0243 -0.0028

-0.3277 -0.1652 0.2688 -17.1330 -0.3806 3255460 -0.0545 -7.4640 -0.0894 11.7412 -0.0599 5.2954 -0.0078 -0.0357
0.1583 0.8402 69.3635 -0.1580 -7.6092 -0.0545 220.2724 -0.3687 -1.7341 -0.0016 -80.4882 —0.0355 -0.1296 0.0011

P= -0.8058  0.2395 0.2195  69.4392 0.0960 -7.4640 -0.3687 2205678 0.0267 -1.6718 -0.1862 -81.9804 0.0030 -0.1219
—0.0345 0.0601 -2.1684 0.0246  11.5753 -0.0894 -1.7341 0.0267 1.8162 -0.0188 0.8105 0.0017 0.1038 -0.0014
—-0.0590 -0.0297 0.0546 -1.9769 -0.0569 11.7412 -0.0016 -1.6718 -0.0188 1.8264 -0.0158 0.8186 -0.0018  0.1038
0.7655 -0.0179 -38.5787 -0.2371 52763 -0.0599 -80.4882 —0.1862 0.8105 -0.0158 229.9570 1.0551 0.0513 -0.0006
0.1168 0.7775 —-0.3483 -39.7804 0.0423 52954 -0.0355 -81.9804 0.0017 0.8186 1.0551 233.9030 0.0003 0.0554
—-0.0030  0.0046 0.0154 0.0025 -0.0243 -0.0078 -0.1296 0.0030 0.1038 -0.0018 0.0513 0.0003  0.0259 -0.0002
| -0.0045 -0.0026 0.0054 0.0278 -0.0028 -0.0357 0.0011 -0.1219 -0.0014 0.1038 -0.0006 0.0554 -0.0002  0.0262 |

3247688  19.4190 52.6405 3.0286 11.8541 0.2194 405.3284 -3.7323 0.0563 -0.0005
17[ 19.4190 358.8293} : 7[ 3.0286 47.5685}’ 3{ 0.2194 10.3829} 1{ -3.7323 327.1213}’ : {70.0005 0.0552]

s 10+ 5.0981 0.1213 292.9350  6.1759 354156 —0.0499 190.3478  3.1112
= X , = y = , = y
$ 0.1213 55087 | 6.1759 259.4640 > 1 -0.0499 33.7562 s 3.1112 160.5565
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180.2987 0 142.9120 0 245.6991 0 75.0977 0 98.5068 0
U, = U, = = = T, = ,

LS 112

! 0 167.7276 0 169.5647 0 229.8644 0 74.4702 0 99.9682
T _[ 984898 0 T _[40.6991 0 [52.8268 0  [52.6506 0] . _[37.4250 0
‘o 0 999658 | ° 0 415240|" ¢ 0 55.0384| 0 54.8779| ° 0 389042/
37.4342 0 48.1412 0
T, = R . y=1242.1687, ¢ =227.2216.
0 38.9422 0 49.4504

5. CONCLUSION

In this paper, the robust passivity analysis for NTNNs with interval and neutral time-varying delays have been studied.
By employing the Lyapunov-Krasovskii functional method, and double integral inequality was developed to
guarantee the passivity performance of NTNNs. A new passivity analysis criterion has been given in terms of LMIs,
which depended on the time-varying delays. Finally, numerical examples have been presented which illustrate the
effectiveness and usefulness of the proposed method.

NOMENCLATURE

R™ The n—dimensional Euclidean space
R™™ The set of mxn real matrices

I, The n — dimensional identity matrix
A(A) The set of all eigenvalues of A

Arvax (A max {Re 4; A € A(A)}

|| : || The Euclidean vector norm
c([0,t],R®)  The setof all R® — valued continuous functions on [0,t]

X=>0 X positive semi-definite
X>0 X positive definite
diag(...) A block diagonal matrix
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