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Abstract

In this paper, the use of multiobjective evolutionary optimisers for passive vibration suppression of an automotive
component is demonstrated. The component is used to connect a car engine to some point of a car body between the front seats.
Under such a circumstance, the structure is subject to several mechanical phenomena e.g. stress failure, fatigue, vibration
resonance, and vibration transmissibility. The optimisation problem is posed to find structural shape and size such that
maximising structural natural frequency and simultaneously minimising structural mass while constraints include stress failure
and displacement. The multiobjective optimiser employed is the multiobjective version of Population-Based Incremental
Learning (PBIL) with and without using a surrogate model. The optimum results obtained are illustrated and discussed. It is
found that the proposed design scheme is effective and efficient for an automotive component design.
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1. Introduction

Due to highly increasing competitiveness in
automotive industry, many car manufacturers require to
develop new products to offer to customers. Therefore,
automotive components are always improved by means of
design optimisation [1-2].

Practical engineering design problems are usually
assigned to find the best solutions of design variables that
lead to optimised design objectives whilst fulfilling all the
predefined constraints. Often, the design problem has more
than one objective which is called multiobjective
optimisation. The most popular method used for the
multiobjective optimisation is Evolutionary Algorithms
(EAs) [3-6]. The method can explore a Pareto optimum
front within a single run and without requiring function
derivatives. However, a lack of search consistency and low
convergence rate are the inevitable drawbacks of the
multiobjective evolutionary algorithms (MOEAs) [5]. For
this reason, the hybridisation of a surrogate model method
and multiobjective optimisers has been invented and this
approach is found to be very powerful and effective [6].

This  paper presents the multiobjective
evolutionary optimisation of an automotive component.
The component is used to connect a car engine to some
point of the body between the front seats. The structure is
subject to several mechanical phenomena such as stress
failure, fatigue, vibration resonance, and vibration
transmissibility. The design problem is posed to find
structural shape and size such that maximising structural
dynamic stiffness while, at the same run, minimising
structural mass. Design constraints include stress and
displacement. Three dimensional finite element analysis
(FEA) is employed to evaluate the objective and constrain
function values. The optimum solutions called Pareto
solutions are explored by using PBIL incorporating with a
Gaussian process surrogate model and a Latin Hypercube
Sampling technique. The proposed design approach is
found to be numerically powerful and effective.
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2. Surrogate model method

The term’ surrogate model’ used in an optimisation
process is an approximate model which is used to
approximate the objective and constrain functions in
optimisation problems [7]. Such a design strategy is useful
when dealing with optimisation problems with expensive
function evaluation, limited function values available, and
problems that need to perform an experiment to evaluate
their function values. The hybrid of the surrogate model
with an optimiser can be achieved in several ways. One of
the commonly used strategies is that, during the main
optimisation process, some design solutions have been
evaluated. Those solutions and their corresponding
objective and constraint values are used to build a surrogate
model. This model is then used as an approximate function
evaluation. The optimisation with the surrogate model is
performed with significantly less running time when
compared with using the actual function evaluation. The
obtained optimum solution of this design phase is brought
to the main optimisation process where its actual function
value is determined. With a highly accurate surrogate
model, this design strategy is far superior to purely using an
evolutionary algorithm. The computational steps are
repeated until the termination conditions are fulfilled. The
commonly used surrogate models for optimisation are
Kriging model [8], radial basis interpolation [6],
polynomial interpolation [9] and neural network [10]. In
this paper, only the Kriging model is employed.

2.1. Kriging Model

A Kriging model (also known as a Gaussian
process model) used herein is the famous MATLAB
toolbox named Design and Analysis of Computer
Experiments (DACE) [8]. The estimation of function can
be thought of as the combination of global and local
approximation models i.e.
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y(x)=f(x)+Z(x) (@)
where f(x) is a global regression model, Z(x)is a
stochastic Gaussian process with zero mean and non-zero
covariance representing a localised deviation, and X is a
design variables vector. In this work, a linear function is
use for a global model, which can be expressed as:

f=po+ gﬁi x; =BTf @

where B = [fo ..., Bl £ = F(X) = [1, X, Xa, ..., x]". The
covariance of Z(x) is expressed as:

Cov(Z(xP), Z(x%)) = o?R[R(XP,x9)] 3)

for p, g =1, ..., N where R is the correlation function
between any two of the N design points, and R is the
symmetric correlation matrix size NxN with the unity
diagonal [8]. The correlation function used in this paper is

RO, x7) = exp((xP =x)T 0(x® X)) @

where 6 are the unknown correlation parameters to be
determined by means of the maximum likelihood method.
Having found B and O, the Kriging predictor can be
achieved as

y=f)TB+r (R (y—Fp) ®)

Where F = [f(x}), f(x, ..., fx"]" and r"(x) =
[R(x,x1), R(x,x2), ..., R(x,x")]. For more details, see [8].

3. Multiobjective Population-Based Incremental
Learning (MOPBIL)

PBIL algorithm is an evolutionary optimiser based
upon binary searching space. The PBIL approach evolves its
population based upon the so-called probability vector, the
probability of having ‘1’ elements on each column of a
binary population. The example of how the probability
vector works is shown in Fig.1 which implies that one
probability vector can produce a variety of binary
populations.

In the multiobjective optimisation, more probability
vectors should be used in order to obtain a more diverse
population; therefore, it is called a probability matrix.
Starting with an initial probability matrix that have all
elements as “0.5”, and an initial Pareto archive, the binary
population according to the initial probability matrix is then
created. The binary population is decoded and objective
values are evaluated. The best binary solutions, whether it is
based on minimisation or maximisation, is chosen to update

the probability vector P;"for the next iteration using the
relation

R =R (1~ Le) +bjLe ©)
where Ly is called the learning rate, a value between 0 and
1, to be defined and b; is the mean value of the jth column of

the randomly selected non-dominated binary solutions. For
this study, Lg is set as:

Lg =0.5+rand(+0.10r-0.1) (7)
where rande [0,1] is a uniform random number. Mutation

on the i row of the probability matrix is allowed to take
place by a predefined probability and it can be expressed
as:

P™" =R%"a—my)+rand(0or1)m, ®)

where m_ is the amount of shift used in the mutation.
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population1  population2  population 3

0011 0110 0101
1100 1100 1001
0011 1010 0001
1100 0001 0100

Probability Vectors
[0.5,0.5,0.5,0.5] [0.5,0.5,0.5] [0.25,0.5,0,0.75]

Fig.1 Probability vector and their corresponding
populations

The updating process is completed when all rows of
the probability matrix are changed. The probability matrix
is updated and the external Pareto archive is improved
iteratively until convergence is achieved.

In cases where the total number of the non-dominated
solutions is greater than the archive size, the archiving
operator called the normal line method [4] is activated to
remove some solutions from the archive. The archiving
technique is used to prevent excessive use of computer
memory during an optimisation process. The basic idea of
the normal line technique is used to remove some non-
dominated design solutions while maintaining population
diversity in the archive. For more details of multiobjective
PBIL, see [11].

4. Design Problem

This paper presents a multiobjective optimisation
design problem for an automotive part as shown in Fig. 2.
The component is used to connect the car engine with the
car body. Under the working conditions, this structure is
subject to several mechanical phenomena e.g. stress,
fatigues, vibration resonance, and dynamic force
transmissibility. Also, the structural displacement due to a
number of loading conditions should not exceed the
predefined limit.

Fig. 3 a. Sizing variables
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Fig. 3 b. Shape variabies

The multiobjective optimisation problem is posed to
find structural shape and size such that maximising
structural natural frequencies and minimising mass whereas
constraint include stress failure and displacement, which
can be expressed as
Min: £ =[f,(x), f,(x)] ©)

Subject to

Omax < Oallowable

Upnax <0.005
0.0015<t, <0.0115
0.0015<t, <0.0115
0.0015<t, <0.01
0.0025<t, <0.015
~0.003< 7, <0.01
~0.0025< 7, <0.0028
~0.01< 7, <0.005
~0.01<7, <0.005
0<z,<0.03
~0.01<x, <0.01
~0.005< x, <0.01

where x is a design variable vector (all variables are
displayed in Fig. 3). f; is a function of mass. f,is a

function of dynamic stiffness (or natural frequencies). X,
f, and f, can be express as :

X={t; 1y t5.t4.21,2, 123124125:X11X2}T
and

f, =mass (10)
and

1
f, = .
w,+,+0,+0,+ @,
The other parameters are defined as follows:
G,..= Maximum von Misses stress

m

(11)

Gallowable = A”OWable stress

t; =Shape thickness

zi=Position of the key points in z-axis direction
x;= Position of key point in x-axis direction

@; = mode i natural frequency of a structure

Figs. 3a. & 3b. display all of the sizing and shape
design variables. The thicknesses (t; in Fig. 3 a.) are the
thickness of the sub-regions of the automotive component
as shown. The z; parameters determine the key points in
vertical direction as located in Fig. 3 b. These key points
are used to generated a spline curve so as to define the
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shape of the part. The x; parameters define the horizontal
position of the key points on the component.

The structure is acted upon by three load cases
(bending, twisting and swaying loads) at the right-hand
cylinder part. The objective and constraint function values
are evaluated by using FEA. The evaluation process is
carried out in such a way that, with the given input design
variables as defined, the shape and dimensions of the
structure are created. The finite element analysis is then
performed. Finally the computational results can be
obtained. Function evaluation is somewhat time-
consuming, which means it is difficult to apply a common
evolutionary algorithm to solve the optimisation problem
(9). As a result, the surrogate-assisted evolutionary
algorithm is developed to deal with such a difficulty.

To tackle multiobjective optimisation as defined
in (9), the MOPBIL algorithm and the surrogate-assist
MOPBIL (MOPBIL-SM) are used to find Pareto optimal
solutions. MOPBIL-SM is a design strategy that exploits
the surrogate model to create an initial Pareto archive rather
than starting with a randomly generated population as with
the traditional multiobjective PBIL.

The computational steps for generating an initial
Pareto archive by using the surrogate model are as follows:
I Sample a set of design variable vectors from
design experiment by using the LHS technique.

1. Evaluate design functions by FEA.

1. Constructing a surrogate model by using the
Kriging technique.

V. Use MOPBIL find Pareto optimal set based on
the surrogate model.

V. Find the real function values of the Pareto
optimal front obtained from optimising the
approximate Kriging model (step 1V).

VI. Use a non-dominated sorting technique to find
the initial Pareto archive

The LHS is used to sample 100 design solutions
for constructing a surrogate optimisation model.
Subsequently, with this initial Pareto archive, the common
MOPBIL is operated where the population size is 30, the
number of iterations is 10, and archive size is set as 30.

5. Results and Discussion

The progress of Pareto optimal solutions of the
optimisation design problem by using the hybridisation of a
surrogate model method and the MOPBIL is displayed in
Fig. 4. It can be seen that the Pareto front from iteration 1
to iteration 10 has slight improvement. This means that the
initial front generated by means of a surrogate-assisted
approach is very powerful.

<10 Pareto front
34

—E— 1Generat tion
33 3Generation
g —&— 5Generation
32 —6— 8Generation
—=— 10Generation

f2=1/{max frequency)
[N

~

Y

24 . . . . . . . .
i1 12 13 14 15 16 17 18 19
fi=mass (kg)

Fig.4 Pareto front of the MOPBIL-SM

In order to verify the effectiveness of the hybrid
approach, the original MOPBIL without the use of a
surrogate approach is performed with the same population
and archive sizes while the total generation number is set to

21



JRAME | Passive vibration control of an automotive component using evolutionary optimisation

be 30. This implies that the original MOPBIL uses 30x30
actual function evaluations which is approximately twice
the number of evaluation used by MOPBIL-SM (100 +
10x30 evaluations). The results from the former are termed
as MOPBIL whereas the results obtained from the later are
named MOPBIL-SM. Figs.5-7 compare the Pareto fronts
obtained from using MOPBIL-SM at the generations of 1, 3
and 5, and using MOPBIL at the generations of 10, 20 and
30 respectively. It can be found that the results from using
MOPBIL-SM are better than those obtained from using the
original MOPBIL even with a far smaller number of finite
element analyses. That means the hybrid approach is far
superior to the original optimiser.

x10t Pareto front

—E5— MOPBIL10Gen
31 —+— MOPBIL-SM1Gen

2=1/(max frequency)
©

s 16 17 18 19 2
fl=mass (kg)

Fig.5 Comparative Pareto fronts: MOPBIL 10 Generations
versus MOPBIL-SM 1 Generation

w10t Pareto front.

—E5— MOPBIL20Gen
31| & —+— MOPBIL-SM3Gen

f2=1/(max frequency)

13 14 15 16 17 18 19 2
f=mass (kg)

Fig.6 Comparative Pareto fronts: MOPBIL 20 Generations
versus MOPBIL-SM 3 Generations

w10t Pareto front
—E— MOPBIL30Gen
5 —+— MOPBIL-SM5Gen
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Fig.7 Comparative Pareto fronts: MOPBIL 30 Generations
versus MOPBIL-SM 5 Generations
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Fig.8 Pareto front from MOPBIL-SM
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The Pareto optimal solutions of the MOPBIL-SM
shown in Fig. 8 have the corresponding design solutions as
shown in Fig. 9. The optimum components have an obvious
variation for the design variables t, , zz and zs, while the
other variables have a slight variation. It can be seen that,
with one optimisation run, we can have a number of
optimum components for decision making.

Fig.9 3D automotive parts corresponding to selected
solutions in Fig. 8

6. Conclusions

The multiobjective 3D shape and sizing
optimisation problem of an automotive component using
the hybridisation of a surrogate Kriging model and
MOPBIL is demonstrated. The results show that the
proposed approach is efficient and effective for solving the
design problem. The new design strategy outperforms the
original PBIL optimiser based upon the total number of
function evaluations. An improved design strategy
employing much less function evaluations is the target for
future work.
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