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Abstract

We present a novel generic tool to design the shape and location of an actuator for continuous elastic dynamic systems, i.e.
essential properties of the actuators in order to generate a desired state profile. The main idea of the research is to generate an
approximation via reduction of the number of actuators by using the singular value decomposition (SVD). SVD is a powerful and
elegant method for data analysis aimed at obtaining low-dimensional approximation of high-dimensional data. We implement our
work on the structural dynamics of a clamped elastic beam. By the use of Finite Difference Method (FDM), we divide the beam
into discrete elements. Each element has the ability to translate and rotate with respect to the surrounding elements. By

implementing the theory of robust /_ control, we obtain the optimal control law with respect to the worst exogenous input. This

and the use of SVD enables us to approximate efficiently the number of actuators needed. Thus, enabling us to reduce the number
of actuators that are necessary in order to obtain a desirable state profile with a robust control law.

Keywords: Finite difference method, Singular value decomposition, H  control.

1. Introduction

Control of continuous elastic dynamic systems is a
very important issue in aerospace engineering and
structural engineering. The question of minimal number of
actuators arises when dealing with large scale systems.
Trying to implement a large number of actuators and
controlling them in real time is a very difficult problem. We
try in our work to reduce the large number of actuators, in
order to control a large scale system with multiple inputs.

Various vibration control methods have been
studied, which can be categorized into two major groups:
passive vibration control and active vibration control. In
passive vibration control, passive elements are used to
change the system damping and stiffness in order to reduce
structural vibration. Although no power source is needed,
the dynamics of the plant is often changed, and the weight
of the whole system is often increased which is not
acceptable in aerospace applications. Furthermore, the
structural vibration is only reduced in certain frequencies,
with passive vibration control. Due to the limitation of
passive vibration control, active vibration control was
introduced and there has been a great deal of interest in the
active vibration control of structures. The structures of
active vibration control, with many actuators and sensors,
have been made possible by the use of piezoelectric
ceramic and piezo polymer film materials as the sensing
and actuating devices [1]. Active vibration control is
capable of performing over a broad range of operating
conditions, and has the advantage of reduced weight over
passive damping methods [1].

One of the earliest works in the field of active
vibration and acoustic control was published by Fuller [2].
Feed-forward control was used to reduce narrow band
acoustic radiation with  structural actuators, and
considerable noise attenuations were achieved with this
approach [3, 4]. Swigert
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and Forward used piezoelectric element (PZT) as the active
damper to control the mechanical vibration of an end-
supported mass [5]. Bailey and Hubbard developed the
active vibration control system for a cantilever beam using
Poly Vinylidence Flouride (PVDF) [6]. Choi performed
vibration control with multi-step Bang-Bang control [7].
Baumann and Eure used feedback control to reduce
stochastic disturbances such as turbulent boundary layer
noise [8, 9]. Although active control has been used to
reduce structural vibrations for many years [2, 10, 11], the
application of active vibration control on large-scale
systems has achieved little success due to the scalability
limitations of traditional centralized control architectures.
In general, one controller processes all sensor data to
generate optimal actuator inputs in order to reduce the
structural vibrations. Thus, there is an overwhelming, some
even impractical, computational burden on the centralized
controller, when large-scale systems are considered. As a
result recent advances in Micro- Electro-Mechanical
systems (MEMS) and embedded system technologies have
enabled the applications of distributed control designs [12],
which is more scalable compared with centralized control
and suitable for large-scale systems. A distributed control
system normally consists of numerous localized controllers
called nodes. Each localized controller has a sensor, an
actuator and a means of communicating with other
controllers in the system [13, 14]. Therefor there is an urge
to reduce the number of actuators and controllers.[15].We
present a method that reduces the number of actuators, such
that it approximates the process in the best possible way in
the sense of minimizing the Frobenius norm. One of the
methods which approximate representation of high-
dimensional processes is the singular value decomposition.
Singular value decomposition (SVD) is a method of data
analysis aimed at obtaining low-dimensional approximation
descriptions of high-dimensional processes. In other words
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in order to obtain a desired damped vibration, the object is
divided into n models, elements. Similar to the finite
element and difference method [16, 17], i.e. n actuators are
required to be controlled in order to obtain the objective
damped vibration. By use of SVD and implementation of
our method one can achieve an optimal approximation of
the objective damped vibration profile by controlling a
minimal number of actuators. This way one can analyze
large scale models and reduce the number of actuators. The
SVD has been used to obtain low-dimensional descriptions
of turbulent fluid flows [18], structural vibrations [19, 20],
insects gaits [21], and for damage detection [22]. It has also
been extensively used in image processing, signal analysis
and data compression.

The paper is organized as follows: Section two
introduces some notations and reviews regarding SVD and

linear H »control. Section three describes the dynamical

model. Section four presents the control algorithm for
reduction of the number of actuators for large scale
systems, implemented on a one side clamped cantilever
beam. Section five presents simulation results and section
six presents conclusions and future work.

2. Review of SVD and H » control

2.1 Singular Value Decomposition

The reduced order approach by SVD is based on
projecting the dynamical system onto subspaces consisting
of basis elements that contain characteristics of the
expected solution. This is in contrast to the finite element
methods, where the elements of the subspaces are
uncorrelated to the physical properties of the system that
they approximate. We apply the SVD to derive a Galerkin
approximation in the spatial variable, with basis vectors
corresponding to the solution of the physical system at pre-
specified time instances.

Lemma 2.1.1 :For any matrix H € R™" exists a
unitary — matrix, U_] = UT ,U e R™" wohich it
columns form an orthonormal basis, a unitary matrix
V e R™" which its columns form an orthonormal basis

and a diagonal matrix decreasing order 2 € R™" e,

o 0 0

Y= o, 0| ; 020,20, @D
0 0 0

such that,

H=UzV" @.2)

The diagonal entries O; of 2 are called the
singular value of H . X's elements which are the singular
values, are the square roots of the eigenvalues of UU r
and U'U . The columns of U are called left singular
values of H which are the eigenvectors of H TH . The

columns of V are called right singular values and are the
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eigenvectors of HH T. Using the orthogonality of V" we
can write the SVD in the form:

HYV =UZ 2.3)

We can interpret Eq. (2.3) as a mapping of a special
set of orthonormal vectors, columns of V , into an

orthonormal set of vectors, columns of U . If we denote

U=[u....,u,], Z=diag(o,...,0,) and
V= [V1, ...V, ], then H can be written as:
n
H=UsV" =Y ouy/ 2.9
i=l

This form is called the dyadic decomposition of H

which decomposes the matrix H of rank n into a sum of
7 matrices of rank one.

2.2 Review of linear H » State feedback control

In order to obtain a control law which is robust to
exogenous inputs, we consider the following LTI system
described by:

X=Ax+Bw+ B,u
YX: z=Cx+Du 2.5)
y=Cx ,C,=1

where,

x e R" is the state vector,

w e R? is an external disturbance signal,
u € R"™ is the control input signal,

z€ R’ isthe control output signal,

ye R?” is the measurement output signal.

Theorem 2.2.1 The stability and achievable ngain

properties for the linear system Eq. (2.5) can be established
by finding a positive definite Lyapunov function

S(x)= x"W'x such that the following conditions are

satisfied.
AW +wA" +B,Y+Y'Bl B wCT+Y'D"
* 7}/2[ 0 <0, (2- 6)
* * -1
S(x)>0,
where Y = KW .

Definition 2.2.1 We say that Eq. (2.5) is L2 gain stable if

there exist ¥y >0 and a locally bounded function S(x),
called a storage function,



S(x)20,S(0)=0,Vx e R"and for each admissible
input such that Yu(-) € U,Vt >0

SCe() < (1) + [['s(w(0), 20 2.7
Where

1
s=5 0 1wl -1213). 720 @9

Or equivalently,

2
z
1G1= sup 1212 < @9
=0 || w2

Where GG denotes the transfer function of Eq. (2.5) which
corresponds to the ratio between the norm of Zz, control
output, to the norm of w, external disturbance [23].

Proof. A state space system X is said to be dissipative with
respect to the supply rate function s if there exists a

function S : X — R, called the storage function, such
that for all x, € X , at allf; > ¢, and all input functions
w,

S < S+ [ s, ze)de - @.10)

Where x(#,) = x,, and x(¢)are the state of = at time ¢,
and £, resulting from initial condition X and input function
w(-).

Note that whenever the function S(x(¢)) is differentiable

as a function of time, then Eq.(2.10) can be equivalently
written as

S <s(f) @.11)

If'X is dissipative with respect to the supply rate function,
1(, 2 2

s=<l 1wl -1z1). 7 20 e.12

By using the relations above, dissipative approach, we can
conclude that a sufficient condition to the existence of the

L, -gain criterion, is the existence of a function
S(x) =0 Vx # 0such that,

.1
S0 Iwiz -1=13) .13

by implementing the system to (2.13) we obtain,
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: L1
$=5527 1wl -1 1E)

1 1
J =S, (Ax+Bw+ B,u) +EZTZ—E}/2WTWS 0

2.14)
where J is the cost function. The worst input disturbance
for maximizing J is given by:

w =y?B/S! 2.15)

and the optimal controller for minimizing J is,

u" =—(D"D) "' BIB’ @2.16)

where (*) indicates optimality. Substituting this relations

into J yields,
1
SxAx+E;/'2SXBlBITSXT

—%SXBQR_IBQTSXT +%xTQx <0

2.17)
Now, choosing the storage function S to be
1
S:ExTPx,Psz >0 @.18)
yields the following Riccatilnequalityfor P :
PA+A"P+Q
2.19)

+ P(;/‘zBlBIT ~B,R'B] )P <0
An equivalent expression is given by:

AW +WA" +y7 BBl —B,R'B] +WC[C,W <0
(2.20)

where W =P According to the Schur complement,
Eq.(2.20) can be transformed into the following matrix
representation,

AW +wA" -B,R"'B] B, WC[
* -y 0 |<0,

* * —

@2.21)

The latter inequality is called the Bounded Real
Lemma. By substituting the state feedback control

u = Kx to X yields the following closed loop system:
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%=(A+B,K)x+Bw

z=(C, + DK )x @2

and the corresponding LMI (Linear Matrix Inequality),
which completes the proof.

(4+B, KW +w(4+B,K)" B w(C,+DK)"
* —y2[ 0 <0,
* * i
(2.23)

Note, the following matrix can be solved by the LMI
toolbox using MATLAB. The following LMI provides a

feasibility test, parameterized in y > 0. The L, gain of the

system exists, if and only if exists a K such that the LMI
where the upper bound for the external disturbance holds.

3. Dynamical model

In this section we present the dynamical analysis of
an elastic beam Fig. (1). By using the following PDE
(Partial Differential Equation) according to Euler-Bernoulli
beam theory assumptions, one can represent the elastic
equation of the beam [24],

2 4
pt? gt(f D gD gy

3.1

where W(q,t) denotes the beam’s vertical displacement,
p is the beam’s density, A is the beam’s cross section, F

is the Young’s modulus of elasticity, [ is the moment of

inertia and F' denotes a distributed force acting along the
beam which denotes the inputs wu. The boundary
conditions, accounted for a cantilever beam,

W(%O=M=0 ,atg =0,
oq
(3.2)
2 3
oq oq

where L is the beam’s length. Since there is no convenient
solution to the system, an efficient explicit second-order
accurate finite differences scheme is proposed:

| -l
wir = 2w Wt
2
At

m
_b2 Wsi2 _4W.

m

m m m
o1 T 6Ws _4Ws—1 + Wi

qu

+cF"

s

3.3)
where b* = (EI) /(pA) , ¢ =1/(pA) and m, s represents

discrete space and time respectively. In order to maintain
stability of the scheme, it requires that [25],
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bu s% (3.4)

where [t = At/ qu. Eq.(3.3) can be written in a matrix
form given by:

w(m+1) = Aw(m) + Bu(m) —w(m —1), 3.5

] -

Fig. 1 Illustration of the elastic beam.

where B = diag(Al‘2 ), and A is a diagonal matrix whose

elements are,

A= diag(—bz/,12,4b2/,12,—6b2,u2 + 2,4b2,uz,—b2/,12)
3.6)

By rearranging the finite differences equation in the form of
a discrete state space representation we obtain:

|:LI1(m+1):|:|: 0 1}{611("1)}{0}("1), 3.7
g (m+1) ] |1 4] q,(m)| |B

where ¢, (m) = w(m 1), ¢(m) = w(m).

4. Control algorithm

We implement the SVD algorithm by applying it on
the controller outputs. The columns of } can be interpreted
as inputs, the diagonal values of the matrix o can be
interpreted as the controls gain and the columns of U can
be interpreted as outputs.

unxt ~ a’nxt — Unxko_kkakxt (4. 1)

As a result we are interested only in the outputs, the
columns of U . We use only k columns that correspond to

the largest singular values, i.e. the first k™ columns. These
columns represent the optimal eigenvectors, in the sense of
minimal number and maximal influence. The k columns of
U correspond to the most influenceable system inputs.
These are actually the main directions of the acting forces,
which act on the body. It can be interpreted as the shapes of
the actuators. After the robust control law is obtained by the

use of the linear H  controller, we minimize the number
of actuators by using the SVD algorithm. In order to verify
the algorithm we use the first k™ columns of U to control
the system. We obtain the approximated system by
implementing again the linear H_, controller on the
reduced order inputs,



Xapx (m + 1) = AXapx (m) + Bapxuapx (m) (4' 2)

where,
i I R @.3)
-1 4] > "™ |B '

ie.u apx is an approximation based on the transformation of

oy by the operator u . By applying the linear H
controller on A and B apx We obtain U apx -

In summary, an algorithm to solve the linear H

problem for large scale system with a minimal number of
actuators is:

1. Conversion of the continuous state space
dynamical system to a discrete one.

2. Determining the control input as a function of

time and space for the large scale system.

Computing the SVD matrices.

4. Choosing the first k& most influenceable
columns of U, ie. obtaining the new
actuators.

5. Recalculating  the  controller for the
approximated actuated system.

6. Implementing the new controller on the system
where only k actuators are used.

had

We choose the order of approximation according to
the largest singular values. We choose the k largest
singular values according to the value of the norm
corresponding to an acceptable nominal value.

5. Simulations
In order to simulate the algorithm we chose a metal

beam with a density of p = 7850kg/m3 and a Young’s
modulus of £ =200Gpa . The length of the beam is

24¢m and has a cross section of 0.125¢m? with a moment
of inertia I =1.76¢7> cm* . We chose an initial condition

of W(¢,0) =¢q* cm and divided the beam into 25 equal

elements. We considered the external disturbance as a
bounded standard Gaussian function, where the disturbance
matrix is unitary. We start by demonstrating the dynamic
behavior of the beam while the controller is turned off and
the plant has no damping Fig. (2). Fig (3) represents the
displacement of the beam while using all 25 actuators in
order to control the beam where y = 10.1. Fig (4)

represents the displacement of the beam while using only
three actuators in order to control the beam where y =

13.3. It can be seen that the closed loop dynamic behavior
is very similar to the dynamic behavior where all twenty
five actuators were applied. Despite the fact that there is a
slight undershoot, while there was non when all 25
actuators are used. Fig (5) presents the weights of the
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actuators which are applied for a third degree
approximation. We can consider the bars as the shapes of
the actuators which are needed in order to obtain an
approximated solution. The control inputs are represented
in Fig. (6) respectively to the actuators which are presented
in Fig. (5).

- P 1o

Time{sec| Lengthjem]

Fig. 2 The 25 cm beam, oscillating around zero, for a
period of 0.5 seconds, while the controller is turned off.

Disglacamertm)

Fig. 3 The 25 ¢m beam, regulated while the controller is
turned on and acts on all the 25actuators.

Displacementim]

Lengthicm]

Time[msec]

Fig. 4 The 25 c¢m beam, regulated while the controller is
turned on and only three actuators are controlled.

(a) (b) ()

Fig. 5 Representation of the discrete weights of the
actuators, i.e. shapes, which are applied on the third-degree
approximated system.
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6. Conclusions

We presented in this paper a novel algorithm for

reducing the number of actuators for large scale systems in
closed loop. The algorithm was based on the use of the

singular value decomposition and the robust H

o0

controller. We have shown that it is possible to control a
large scale system by significantly reducing the number of
actuators. We implemented our work on a two dimensional
steal beam. In the future we plane on expanding our work
to nonlinear problems while solving the output feedback

robust /1 controller and implementing the algorithm on

three dimensional problems.
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