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Abstract 
 We present a novel generic tool to design the shape and location of an actuator for continuous elastic dynamic systems, i.e. 
essential properties of the actuators in order to generate a desired state profile. The main idea of the research is to generate an 
approximation via reduction of the number of actuators by using the singular value decomposition (SVD). SVD is a powerful and 
elegant method for data analysis aimed at obtaining low-dimensional approximation of high-dimensional data. We implement our 
work on the structural dynamics of a clamped elastic beam. By the use of Finite Difference Method (FDM), we divide the beam 
into discrete elements. Each element has the ability to translate and rotate with respect to the surrounding elements. By 
implementing the theory of robust H control, we obtain the optimal control law with respect to the worst exogenous input. This 
and the use of SVD enables us to approximate efficiently the number of actuators needed. Thus, enabling us to reduce the number 
of actuators that are necessary in order to obtain a desirable state profile with a robust control law. 
 
Keywords: Finite difference method, Singular value decomposition, H control. 
 
1. Introduction 
 Control of continuous elastic dynamic systems is a 
very important issue in aerospace engineering and 
structural engineering. The question of minimal number of 
actuators arises when dealing with large scale systems. 
Trying to implement a large number of actuators and 
controlling them in real time is a very difficult problem. We 
try in our work to reduce the large number of actuators, in 
order to control a large scale system with multiple inputs. 
 Various vibration control methods have been 
studied, which can be categorized into two major groups: 
passive vibration control and active vibration control. In 
passive vibration control, passive elements are used to 
change the system damping and stiffness in order to reduce 
structural vibration. Although no power source is needed, 
the dynamics of the plant is often changed, and the weight 
of the whole system is often increased which is not 
acceptable in aerospace applications. Furthermore, the 
structural vibration is only reduced in certain frequencies, 
with passive vibration control. Due to the limitation of 
passive vibration control, active vibration control was 
introduced and there has been a great deal of interest in the 
active vibration control of structures. The structures of 
active vibration control, with many actuators and sensors, 
have been made possible by the use of piezoelectric 
ceramic and piezo polymer film materials as the sensing 
and actuating devices [1]. Active vibration control is 
capable of performing over a broad range of operating 
conditions, and has the advantage of reduced weight over 
passive damping methods [1].  
 One of the earliest works in the field of active 
vibration and acoustic control was published by Fuller [2]. 
Feed-forward control was used to reduce narrow band 
acoustic radiation with structural actuators, and 
considerable noise attenuations were achieved with this 
approach [3, 4]. Swigert 

and Forward used piezoelectric element (PZT) as the active 
damper to control the mechanical vibration of an end-
supported mass [5]. Bailey and Hubbard developed the 
active vibration control system for a cantilever beam using 
Poly Vinylidence Flouride (PVDF) [6]. Choi performed 
vibration control with multi-step Bang-Bang control [7]. 
Baumann and Eure used feedback control to reduce 
stochastic disturbances such as turbulent boundary layer 
noise [8, 9]. Although active control has been used to 
reduce structural vibrations for many years [2, 10, 11], the 
application of active vibration control on large-scale 
systems has achieved little success due to the scalability 
limitations of traditional centralized control architectures. 
In general, one controller processes all sensor data to 
generate optimal actuator inputs in order to reduce the 
structural vibrations. Thus, there is an overwhelming, some 
even impractical, computational burden on the centralized 
controller, when large-scale systems are considered. As a 
result recent advances in Micro- Electro-Mechanical 
systems (MEMS) and embedded system technologies have 
enabled the applications of distributed control designs [12], 
which is more scalable compared with centralized control 
and suitable for large-scale systems. A distributed control 
system normally consists of numerous localized controllers 
called nodes. Each localized controller has a sensor, an 
actuator and a means of communicating with other 
controllers in the system [13, 14]. Therefor there is an urge 
to reduce the number of actuators and controllers.[15].We 
present a method that reduces the number of actuators, such 
that it approximates the process in the best possible way in 
the sense of minimizing the Frobenius norm. One of the 
methods which approximate representation of high-
dimensional processes is the singular value decomposition. 
Singular value decomposition (SVD) is a method of data 
analysis aimed at obtaining low-dimensional approximation 
descriptions of high-dimensional processes. In other words 



JRAME HRobust Control via Singular Value Decomposition as a Design Tool for Continuous Dynamic Systems 

 

 
16 
 

in order to obtain a desired damped vibration, the object is 
divided into n models, elements. Similar to the finite 
element and difference method [16, 17], i.e. n actuators are 
required to be controlled in order to obtain the objective 
damped vibration. By use of SVD and implementation of 
our method one can achieve an optimal approximation of 
the objective damped vibration profile by controlling a 
minimal number of actuators. This way one can analyze 
large scale models and reduce the number of actuators. The 
SVD has been used to obtain low-dimensional descriptions 
of turbulent fluid flows [18], structural vibrations [19, 20], 
insects gaits [21], and for damage detection [22]. It has also 
been extensively used in image processing, signal analysis 
and data compression.  
 The paper is organized as follows: Section two 
introduces some notations and reviews regarding SVD and 
linear H control. Section three describes the dynamical 
model. Section four presents the control algorithm for 
reduction of the number of actuators for large scale 
systems, implemented on a one side clamped cantilever 
beam. Section five presents simulation results and section 
six presents conclusions and future work. 
 
2. Review of SVD and H  control 
2.1 Singular Value Decomposition 

The reduced order approach by SVD is based on 
projecting the dynamical system onto subspaces consisting 
of basis elements that contain characteristics of the 
expected solution. This is in contrast to the finite element 
methods, where the elements of the subspaces are 
uncorrelated to the physical properties of the system that 
they approximate. We apply the SVD to derive a Galerkin 
approximation in the spatial variable, with basis vectors 
corresponding to the solution of the physical system at pre-
specified time instances. 

Lemma 2.1.1 :For any matrix nmRH   exists a 

unitary matrix, mmT RUUU   ,1 which its 
columns form an orthonormal basis, a unitary matrix 

nnRV   which its columns form an orthonormal basis 

and a diagonal matrix   decreasing order nmR    i.e., 
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 (2. 1) 

such that, 
TVUH   (2. 2) 

 The diagonal entries i of   are called the 

singular value of H . s' elements which are the singular 

values, are the square roots of the eigenvalues of TUU
and UU T . The columns of U  are called left singular 

values of H which are the eigenvectors of HH T . The 

columns of V are called right singular values and are the 

eigenvectors of THH . Using the orthogonality of V we 
can write the SVD in the form: 

UHV  (2. 3) 

 We can interpret Eq. (2.3) as a mapping of a special 
set of orthonormal vectors, columns of V , into an 
orthonormal set of vectors, columns of U . If we denote

],[ ,1 nuuU  , ),,( 1 ndiag    and 

],[ ,1 nvvV  , then H  can be written as: 
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 (2. 4) 

 This form is called the dyadic decomposition of H
which decomposes the matrix H of rank n into a sum of 
n matrices of rank one. 
 
2.2 Review of linear H State feedback control 
 In order to obtain a control law which is robust to 
exogenous inputs, we consider the following LTI system 
described by: 
 

ICxCy
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uBwBAxx
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21

,
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 (2. 5) 

where, 
nRx  is the state vector, 
qRw  is an external disturbance signal, 
mRu  is the control input signal, 
rRz   is the control output signal, 
pRy  is the measurement output signal. 

 
Theorem 2.2.1 The stability and achievable 2L gain 
properties for the linear system Eq. (2.5) can be established 
by finding a positive definite Lyapunov function 

xWxxS T 1)(   such that the following conditions are 

satisfied.  

,0)(

,002
1122

























xS

I
I

DYWCBBYYBWAAW TTTTTT

    (2. 6) 

where KWY  . 
 
Definition 2.2.1 We say that Eq. (2.5) is 2L gain stable if 
there exist 0  and a locally bounded function S(x), 
called a storage function,  
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nRxSxS  ,0)0(,0)( and for each admissible 
input such that 0,)(  tu U  
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Where 
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Or equivalently, 
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Where G  denotes the transfer function of Eq. (2.5) which 
corresponds to the ratio between the norm of z , control 
output, to the norm of w , external disturbance [23]. 
 
Proof. A state space system Σ is said to be dissipative with 
respect to the supply rate function s if there exists a 

function  RXS : , called the storage function, such 
that for all Xx 0 , at all 01 tt  , and all input functions 
w , 


1

0

))(),(())(())(( 01

t

t
dttztwstStxS  (2. 10) 

Where 00 )( xtx  , and )( 1tx are the state of Σ at time 0t
and 1t resulting from initial condition 0x and input function

)(w . 

 Note that whenever the function ))(( txS  is differentiable 
as a function of time, then Eq.(2.10) can be equivalently 
written as 

)(tsS   (2. 11) 

If Σ is dissipative with respect to the supply rate function, 
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(2. 12) 

By using the relations above, dissipative approach, we can 
conclude that a sufficient condition to the existence of the 

2L -gain criterion, is the existence of a function 

00)(  xxS such that, 
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by implementing the system to (2.13) we obtain, 
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     (2. 14) 
where J  is the cost function. The worst input disturbance 
for maximizing J is given by: 

T
x

T SBw 1
2*    (2. 15) 

and the optimal controller for minimizing J is, 

  T
x
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  (2. 16) 

where (*)  indicates optimality. Substituting this relations 
into J yields, 
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Now, choosing the storage function S  to be 

0,
2
1

 TT PPPxxS  (2. 18) 

yields the following RiccatiInequalityfor P : 
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An equivalent expression is given by: 
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 (2. 20) 

where 1 PW . According to the Schur complement, 
Eq.(2.20) can be transformed into the following matrix 
representation, 
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The latter inequality is called the Bounded Real 
Lemma. By substituting the state feedback control 

Kxu   to   yields the following closed loop system: 
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 
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1
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 (2. 22) 

and the corresponding LMI (Linear Matrix Inequality), 
which completes the proof.  
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Note, the following matrix can be solved by the LMI 
toolbox using MATLAB. The following LMI provides a 
feasibility test, parameterized in 0 . The 2L gain of the 

system exists, if and only if exists a K such that the LMI 
where the upper bound for the external disturbance holds. 
 
3. Dynamical model 
 In this section we present the dynamical analysis of 
an elastic beam Fig. (1). By using the following PDE 
(Partial Differential Equation) according to Euler-Bernoulli 
beam theory assumptions, one can represent the elastic 
equation of the beam [24], 
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where ),( tqw denotes the beam’s vertical displacement, 

 is the beam’s density, A is the beam’s cross section, E
is the Young’s modulus of elasticity, I is the moment of 
inertia and F  denotes a distributed force acting along the 
beam which denotes the inputs u . The boundary 
conditions, accounted for a cantilever beam, 
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where L is the beam’s length. Since there is no convenient 
solution to the system, an efficient explicit second-order 
accurate finite differences scheme is proposed: 
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where )/()(2 AEIb  , )/(1 Ac  and sm, represents 
discrete space and time respectively. In order to maintain 
stability of the scheme, it requires that [25], 

2
1

b  (3. 4) 

where 2/ qt  . Eq.(3.3) can be written in a matrix 
form given by: 
 

),1()()()1(  mwmBumAwmw  (3. 5) 

where  2tdiagB  , and A is a diagonal matrix whose 
elements are, 

 2222222222 ,4,26,4,  bbbbbdiagA 
 (3. 6) 

By rearranging the finite differences equation in the form of 
a discrete state space representation we obtain: 
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where )()(,)1()( 21 mwmqmwmq  . 
 
4. Control algorithm 
 We implement the SVD algorithm by applying it on 
the controller outputs. The columns of V can be interpreted 
as inputs, the diagonal values of the matrix   can be 
interpreted as the controls gain and the columns of U  can 
be interpreted as outputs. 
 

tkkkkntntn VUuu   ~  (4. 1) 

 As a result we are interested only in the outputs, the 
columns of U . We use only k columns that correspond to 

the largest singular values, i.e. the first thk columns. These 
columns represent the optimal eigenvectors, in the sense of 
minimal number and maximal influence. The k columns of 
U correspond to the most influenceable system inputs. 
These are actually the main directions of the acting forces, 
which act on the body. It can be interpreted as the shapes of 
the actuators. After the robust control law is obtained by the 
use of the linear H  controller, we minimize the number 
of actuators by using the SVD algorithm. In order to verify 

the algorithm we use the first thk  columns of U to control 
the system. We obtain the approximated system by 
implementing again the linear H  controller on the 
reduced order inputs, 

Fig. 1 Illustration of the elastic beam. 
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i.e. apxu is an approximation based on the transformation of 

tkkk V  by the operator u . By applying the linear H
controller on A~ and apxB~ we obtain apxu . 

 In summary, an algorithm to solve the linear H  
problem for large scale system with a minimal number of 
actuators is: 
 

1. Conversion of the continuous state space 
dynamical system to a discrete one. 

2. Determining the control input as a function of 
time and space for the large scale system. 

3. Computing the SVD matrices. 
4. Choosing the first k most influenceable 

columns of U , i.e. obtaining the new 
actuators. 

5. Recalculating the controller for the 
approximated actuated system. 

6. Implementing the new controller on the system 
where only k actuators are used. 

 
 We choose the order of approximation according to 

the largest singular values. We choose the k largest 
singular values according to the value of the norm 
corresponding to an acceptable nominal value.  
 
5. Simulations 
 In order to simulate the algorithm we chose a metal 
beam with a density of 3/7850 mkg  and a Young’s 
modulus of GpaE 200 . The length of the beam is 

cm24 and has a cross section of 2125.0 cm with a moment 

of inertia 4576.1 cmeI  . We chose an initial condition 

of cmqqw 2)0,(  and divided the beam into 25 equal 
elements. We considered the external disturbance as a 
bounded standard Gaussian function, where the disturbance 
matrix is unitary. We start by demonstrating the dynamic 
behavior of the beam while the controller is turned off and 
the plant has no damping Fig. (2). Fig (3) represents the 
displacement of the beam while using all 25 actuators in 
order to control the beam where  = 10.1. Fig (4) 
represents the displacement of the beam while using only 
three actuators in order to control the beam where  = 
13.3. It can be seen that the closed loop dynamic behavior 
is very similar to the dynamic behavior where all twenty 
five actuators were applied. Despite the fact that there is a 
slight undershoot, while there was non when all 25 
actuators are used. Fig (5) presents the weights of the 

actuators which are applied for a third degree 
approximation. We can consider the bars as the shapes of 
the actuators which are needed in order to obtain an 
approximated solution. The control inputs are represented 
in Fig. (6) respectively to the actuators which are presented 
in Fig. (5).  

 
Fig. 2 The 25 cm beam, oscillating around zero, for a 
period of 0.5 seconds, while the controller is turned off. 
 

 
Fig. 3 The 25 cm beam, regulated while the controller is 
turned on and acts on all the 25actuators. 
 

 
Fig. 4 The 25 cm beam, regulated while the controller is 
turned on and only three actuators are controlled. 
 

 
Fig. 5 Representation of the discrete weights of the 
actuators, i.e. shapes, which are applied on the third-degree 
approximated system. 
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6. Conclusions 
We presented in this paper a novel algorithm for 

reducing the number of actuators for large scale systems in 
closed loop. The algorithm was based on the use of the 
singular value decomposition and the robust H  
controller. We have shown that it is possible to control a 
large scale system by significantly reducing the number of 
actuators. We implemented our work on a two dimensional 
steal beam. In the future we plane on expanding our work 
to nonlinear problems while solving the output feedback 
robust H  controller and implementing the algorithm on 
three dimensional problems. 
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