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ABSTRACT:
Direct numerical simulation of turbulent flows requires tremendous amount of 
computational power because it is necessary to resolve the spatial structures of 
the flow down to the Kolmogorov length scale. This procedure generates the so-
called grids or meshes. There are two competing grids favour, namely a 
collocated and staggered grid. To date, it is unclear which one is superior in 
terms of the resolution power. Recent advance in numerical methods for solving 
turbulent flows indicates that a staggered grid could be a better candidate for 
solving turbulent flows due to its superiority in mass-conservation. In order to 
clarify this possibility, the accuracy of these two grids must be tested using an 
identical numerical method. In this work, we use a pseudo-spectral method to 
mimic the behaviour of each numerical approximation. The effects of numerical 
errors are represented by the modified wavenumber which is then converted 
back to the physical space. The numerical methods considered in this work are 
the second-, fourth- and sixth-order central-finite-difference approximations. 
First a priori error analysis will be investigated, followed by a posteriori error 
analysis and cross-correlation against the reference solution from the pseudo-
spectral scheme. It is found that the second-order scheme on a staggered grid is 
as good as the fourth-order scheme on a collocated grid which costs twice more 
expensive. 
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1.	INTRODUCTION	

A computational fluid dynamics (CFD) code used in turbulent research is mostly designed for a structured grid, for 
example, Cartesian, cylindrical or spherical grids. On these grids, the code developers can use a simple collocated 
grid, where all the velocities and the pressure sit together at the same position. Alternatively, one can chose a 
staggered grid where each velocity component sits at different places, as well as the pressure. On one hand, the 
collocated grid is easy to manage even though it has been shown many times that this type of grid is less accurate 
than the staggered grid under the same conditions. On the other hand, it is believed that the staggered grid is more 
accurate and more stable, although one has to pay for additional interpolation and grid management [1]. It is still 
not clear which one is the better choice in terms of efficiency. 
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In early days, the collocated grid was plagued by the pressure-decoupling problem. This problem was alleviated by 
the Rie-Chow interpolation [2]. This problem still persists even in a higher-order scheme [3] and it is suggested that 
using other higher-order approximation of the Poisson equation, rather than the one required by a projection 
method, seems to help. Furthermore, several research groups [4–5] have developed a fully-conservative scheme that 
perfectly conserves mass, momentum and energy simultaneously, in spite of having the expense of very wide 
stencil. However, developing the fully-conservative scheme for the staggered grid is rather difficult. In spite of 
having fully conservative property which ensures that the numerical simulation will not blow up, the accuracy of 
higher-order schemes on the collocated grid is not impressive. Gullbrand [6] and Amiri, Hannani & Mashayek [7] 
found that the second- and fourth-order schemes deliver similar results in the simulation of turbulent channel flow. 
In contrast to a poor result of the fourth-order scheme on the staggered grid, the compact fourth-order scheme was 
shown to be much better than the second-order scheme [8]. The result of the second-order scheme with 2.1x106 grid 
points can be matched by the fourth-order scheme on 2.6x105 grid points. It is still not understood why the similar 
numerical schemes on similar grids can deviate so much by just altering the grid setting from collocation to 
staggered settings. To answer this question we have to compare the results on the collocated and staggered grids 
using the same numerical scheme under the same flow conditions and carefully investigate the flow statistics and 
other important parameters. 
 
In this work, we investigate the decay of homogeneous isotropic turbulence (HIT) using the second-order to sixth-
order central-finite-difference approximations (CDAs) and compare the results with those from the pseudo-spectral 
scheme. The turbulent kinetic energy, velocity-derivative skewness, and longitudinal energy spectra are 
investigated including the direct comparison with the pseudo-spectral scheme through the cross correlation 
validation. 

2.	NUMERICAL	APPROACH	

The flow considered in this work is governed by the continuity and incompressible Navier–Stokes equations written 
in Cartesian tensor notation as 
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where ( , , )mx x y z  and ( , , )mu u v w are respectively Cartesian coordinates and the corresponding velocity vector, 

mjk k jm u x  ò  is the vorticity vector, and mjkò  is the Levi-Civita symbol. The quantity t  denotes time, and 

2eff j jP u up    includes the thermodynamics pressure and the kinetic energy (the summation over the subscript 

j  being implied). The fluid properties, which are density   and kinematic viscosity , are assumed constant 

during the entire simulation. 
 
The simulations were conducted in a periodic cubic box of length 2 . It is thus suitable to Fourier transform the 
governing equations to perform the spatial derivative. The viscous term is integrated analytically via the use of an 
integrating-factor technique [9]. The Fourier-transformed Navier-Stokes equations reduce to 
 

 (3) 
 

where expv j jI t      is the integrating factor, , , )(m x y z     is the wavenumber in each direction of the 

Cartesian coordinates, 1i   , and ˆ
mH  is the nonlinear term. Equation (3) is advanced in time with a low-storage 

third-order Runge–Kutta scheme of Spalart, Moser & Rogers [10]. The divergence-free constrain is enforced via a 
standard pressure-projection method. The product of the nonlinear term, mjk j ku ò , is computed in real space and is 

then dealiased using the 3/2-rule in the Fourier space. 
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Table	1:	Modified	wavenumber	of	central‐finite‐difference	schemes	
Scheme Modified wavenumber m mx  

Pseudo-spectral m mx   

2nd-order collocated (Col2) sin( )m mx   

2nd-order staggered (Stg2) 
2sin

2
m mx  

 
 

 

4th-order collocated (Col4) 4 1
sin( ) sin(2 )

3 6m m m mx x     

4th-order staggered (Stg4) 39 1
sin sin

4 2 12 2
m m m mx x        

   
 

6th-order collocated (Col6) 3 3 1
sin( ) sin(2 ) sin(3 )

2 10 30m m m m m mx x x        

6th-order staggered (Stg6) 3 575 25 3
sin sin sin

32 2 192 2 320 2
m m m m m mx x x               

     
 

 
To mimic the accuracy of each central differencing scheme, the modified wavenumber m

  of each scheme, listed in 

Table 1, is used instead of the wavenumber m  in Eq. (3).  

 
The initial condition for all cases is obtained from the preliminary simulation using the pseudo-spectral method. 
The prescribed initial spectrum for the preliminary run is  
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where 2   is a free parameter, 13p   is the location of the peak of the spectrum, 2 3q   is twice the initial 

kinetic energy, 1/ 2)( j j    is the wavenumber magnitude, and  
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 present simulation 54.1R   

 Mansour & Wray [11] 56.2R   

Fig.	1.	Energy	spectra	normalized	by	Kolmogorov	units	at	 0t .	
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The preliminary simulation was performed with the resolution of 1283 and was advanced until 10t   ( 0t ), at which 

the realistic HIT develops. It should be noted that the grid used throughout this work is uniform. The energy 
spectrum at this time agrees very well with that of Mansour & Wray [11] at almost the same Taylor-scale Reynolds 

number (  1/ 2
uR u    , where   is the Taylor’s microscale), as illustrated in Fig. 1. 

 

 
Fig.	2.	Histories	of	turbulent	kinetic	energy.	

	

 
Fig.	3.	Histories	of	velocity‐derivative	skewness.	

3.	RESULTS	

The turbulent kinetic energy (TKE) is plotted in Fig. 2 showing that the second-order CDA on the collocated grid 
(Case Col2) deviates clearly from the others. This figure also indicated that the TKE decays slowest with the 
second-order CDA on the collocated grid (Case Col2), while the others predict practically the same trend. The 
velocity-derivative skewness is then investigated, as displayed in Fig. 3. Interestingly, the central differencing 
schemes on the collocated grid predict different third-order statistics of the velocity gradient. Instead of having the 
values close to 0.5 (a typical value in HIT), the results obtained using the CDAs on the collocated grid deviate 
greatly from those of the pseudo-spectral scheme. The values of the velocity-derivative skewness first fall sharply 
to within the range between 0 and 0.1. Note that the arrows indicate the closeness to the spectral scheme. The 
velocity-derivative skewness of the Case Col2 continues to sink deeper and predicts the negative value of xS  at the 

end of the simulation. The fourth-order CDA on the collocated grid (Col4) predicts a better value at 0.15 and the 
value of xS  from the Case Col6 is about 0.34. On the other hand, the results computed by the CDAs on the 

staggered grid generally agree with the pseudo-spectral method and the values of the skewness swing around 0.5. 
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This means the velocity gradients predicted by the CDAs on the collocated grid have different distribution than 
those computed by the pseudo-spectral scheme, and thereby the flows possess different structures. 
 

 
Fig.	4.	Histories	of	dissipation	rate.	

 

(a) 0 1t t   (b) 0 50t t  . 

Fig.	5.	Longitudinal	velocity	spectra.
 
In theory, the sole source of the reduction in TKE in homogeneous turbulent flow is the turbulent dissipation,  , 
which is investigated in Fig. 4. This figure indicates that the exact dissipation rate from the Case Col2 is actually 
highest. At first glance, it would seem that this plot disagrees with Fig. 2, since one can incorrectly suppose that the 
dissipation rate of the case Col2 should be lowest due to the highest value of the TKE of this case. In fact, the 
turbulent dissipation rate is the time derivative of the TKE and the slope of the TKE of the case Col2 is 
approximately the same to the others in Fig. 2. This leads to the question where the extra dissipation rate comes 
from. In order to shed some light on this question, the longitudinal velocity spectra after one time unit and at the 
end of the simulation are plotted in Fig. 5. The plots reveal the energy piles up at the high wavenumber part. Shortly 
after the simulations started (Fig. 5a), the amplitude of the smallest structure is raised by almost a hundred times. 
When comparing to the energy of the largest structure, this contributes about 1% of the energy. At the end of the 
simulation (Fig. 5b), the CDAs on the collocated grid predict the energy of the smallest scale to be 10%. This is a 
thousand times higher than the true value. Thus, the flow is ultimately changed and the differences lie in the small 
scale structure. Therefore, the high value of the dissipation rate in Fig. 4 is the result of the increase in the high 
wavenumber parts of the flow where the dissipation occurs. It is thus now evident that there must be something 
keeps adding energy to these high wavenumber parts. 
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Fig.	6.	Cross	correlation	against	the	spectral	solution.	

 

  

(a) pseudo-spectral method 
(b) 2nd-order CDA on  
collocated grid (Col2) 

(c) 6th-order CDA on  
staggered grid (Stg6) 

Fig.	7.	Contours	of	vorticity	magnitude	at	 x  	and	 0 50t t  .	
 
The goal of CFD is to predict the behaviour of the flow accurately. Ideally, if we know exactly the position, the 
initial velocity and the forces of all fluid particles in the system, we could ultimately determine the progression of 
the system. In reality, such information is limited and the incomplete information introduces initial errors to the 
solution and these errors grow exponentially in time. When the pseudo-spectral scheme is used to simulate the flow, 
it is certain that the flow can be predicted accurately, at least for a short period of time. When the non-spectral 
schemes are employed, the numerical errors further widen these errors. Ability to predict the transient flow is very 
important to many fields such as flow control, disaster mitigation, and fluid structure interaction among others. The 
investigation of how well the non-spectral schemes follow the prediction of the pseudo-spectral method is next 
performed. To this end, the cross correlation of the non-spectral schemes against the pseudo-spectral scheme is 
studied, as illustrated in Fig. 6. It can be seen that the cross correlation of the sixth-order CDA on the collocated 
grid (Case Col6) is slightly worse than that of the second-order CDA on the staggered grid (Case Stg2). They both 
predict the flow roughly 65% accurate. The cross correlation of the Case Stg6 is as close as 95% after 0 50t t  , 

while that of the Case Col6 drops to the same value at 0 10t t  . 

 
Next, the contour of the instantaneous vorticity magnitude at the end of the simulation is investigated (Fig. 7). It is 
clear that the low value of the correlation is the result of the deviation of the predictions. The white box represents a 
domain containing prominence structures of the flow bounding by the highest vorticity on the bottom left of the box 
and a large L-shaped vorticity region on the bottom right. The snapshot of the Case Col2 tells different story from 
the pseudo-spectral scheme and the Case Stg6. The highest vorticity is there but moves slightly to the left. The 
central dash box shows that the three vortices intermingle and move to the right of the computational box. The L-
shaped structured seems to have moved out of this plane ( x  ), while this feature is still present on the Case Stg6 
although the left tip curls more inwards than that on Fig. 7(a). We now turn to the more important feature illustrated 
in Fig. 7(b), which is the wiggles. These wiggles are the physical manifestation of the pile-up of the energy in the 
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high wavenumber parts seen in Figs. 5(a) and 5(b). The onset of these wiggles is the nonlinear convection term, the 
second term on the LHS of Eq. (1). The convection process spans over the range x      , while the CDAs on 
the collocated grid can take only up to 2 2x      . Therefore, the unresolved waves from the convection 

term generate aliasing errors in the provisional velocity field. When this field is checked for the mass conservation, 
the divergence operator of the CDAs on the staggered grid can measure the x       space, while those on the 
collocated grid cannot. Therefore the artificial wiggles are further transferred to the pressure field and change the 
momentum again in the next time step. This feedback mechanism causes the pile-up of the energy to be more 
severe on the collocated grid than the staggered counterpart. 

4.	SUMMARY	

We show that staggered grid can deliver a better prediction for turbulent flow. The main advantage comes from the 
ability to correctly detect the mass conservation at the high wavenumber parts. In fact, there are no differences 
when computing the diffusion term whether using collocated or staggered grids as an analytical integration is 
employed for this term. For the same order of accuracy, the cost of the convection of iu  in the i-direction is exactly 

the same, while that of the convection of iu  in the j-direction is slightly more expensive when using the staggered 

grid due to additional interpolation. Therefore it is more efficient to use the staggered grid instead of the collocated 
grid because the result is much more accurate. It should be emphasised that the fourth-order CDA is twice more 
expensive than the second-order scheme. Therefore, if one wishes to develop a new CFD code, the staggered grid 
could offer more efficiency than the collocated one. 
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