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ABSTRACT:

Legged robots have been widely developed and utilized in various applications
since they are more flexible than the conventional wheel-based robots which
cannot perform effectively in bumpy areas. Although the legged robot has no
difficulty operating in uneven terrain, the broken parts of legged robot can lead
to the task failure. In case of damages, the legged robots cannot operate
properly with prior control strategies due to transformed models. This paper
proposes the new method to detect the broken legs by employing only internal
sensors. The lengths of robot legs will be estimated using the comparison
between damaged robot and candidate models constructed in the simulation.

Particle Swarm Optimization (PSO) is operated to discover the best candidate
model that provides the highest fitness value. The similarity of orientation of
robot body between actual damaged robot and candidate models is set as the
fitness function calculated using normalized cross-correlation algorithm. The
efficiency of this method is verified using numerical simulations and
experiments, which shows that the proposed method can detect the lengths of
robot legs more accurate than the existing method.
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1. INTRODUCTION

Legged robots can be applied in several applications (e.g. being in action on uneven terrain and outdoor
environment) on account of flexibility in which regular wheel-based robots are not attainable. However, intricate
control manners and sophisticated components are necessary to achieve the desired behaviors. In general, legged
robots can function successfully with predesigned controllers. However, there are some failures occurred when
some parts of robots are not working, such as broken legs and joints lock. Damaged legs can lead to the lack of
success while operating with the prior-designed controller because of changed models. Recently, self-damage
recovery algorithms have been proposed so far to overcome this drawback. It makes robot more flexible as allowed
the robots to create the new-alternative behaviors to deal with broken robots automatically without human control.
Human and certain animals, in like manner, will be able to learn the new gait when their legs get injured. A biped
dog can create a distinctive self-recovery behavior with only two hind legs as it can do balancing, standing and even
walking. Thus, it can be recapitulated that applying self-damage recovery behavior can open doors of possibility for
damaged-legged robots to restore themselves.

The insect-inspired central pattern generators are employed in a robot with leg malfunction successfully [1]. The
controlling frequency of each leg are changed to compensate the leg malfunction. In the experiment, legs of the
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robot are disable in order to mimic the leg malfunction. However, the broken legs, joint and body have not been
considered yet in [1]. In [2], the six-legged robot will be able to walk after getting damaged,; still, it cannot cope
some imperfections owing to the non-updated model. Leg-loss identification is a significant process to assist the
damaged robots to discover the new, present models. The camera equipped on the robot is employed to detect the
artificial markers mounted on robot’s legs [3]. This method works suitably to detect the abnormal actions of leg
loss; yet, there are some conditions of using camera and image processing that lead to task failures. For example,
intensity of light or dusty environment can affect a detection system. Although the artificial markers aid in
recognizing position of legs faster and easier, predesigned markers are needed to attach on robot’s legs in advance.
Some researchers also detect the abnormal joints of legged robot by measuring the electrical current spent while
operating [4]. The advantage of this method is that external sensing measurement is not employed which make it
more flexible in practical situation. However, the errors might occur with low battery as measuring electrical
current incorrectly. Another method, named as virtual joint sensor, can detect the joint sensor fault on humanoid
robot [5]. This method uses the linear invert pendulum model and the leg kinematic models cooperating with the
Kalman filter to detect and recovery the fault of joint sensors. Although the simulation results prove that this
method can detect the fault of joint sensor effectively, it can detect only the fault of joint sensor. Acceleration data
is applied to identify the fault as well [6]. It is used to measure the orientation of robot and set as the input of the
state machine. This method can detect only the abnormal behaviors of the robot.

In spite of the fact that aforementioned methods can correctly detect the broken parts or abnormal behavior, the
new-model of robot is not provided. Since the method proposed in [3] can identify only the status of each leg
(usable or unusable) and the method proposed in [4] can detect the joint fault, they cannot provide actual updated
model after damaged. Bongard and et al. published the self-modeling method that lets the robot be able to
reconstruct an exact model [7]. Robot can discover the current model using collation of responses between the
actual robot and candidate models in the simulation. The candidate models in the search space will evolve their
body in which makes their behaviors similarly to real-damaged robot. The optimization method, genetic algorithm
(GA), is utilized for this process. The responses of damaged robot are observed using external sensory device, the
Wii infrared remote. After applying this approach, the new proper model and alternative behaviors have been
found. However, using an external sensor limits the ability of legged robot to perform in other different
environments. To eliminate this problem, the algorithm proposed in [8] employs only built-in sensors, i.e., tilt
sensor and switches, to observe its behavior, called as self-identification method based on biological evolutionary
mechanisms. The damaged robot can obtain the new model successfully with this method. In addition, this method
is applied to get alternative gaits in [9]. However, GA can provide resolution errors as encoding and decoding
processes are required as dealing with binary chromosomes. Moreover, due to a limited number of sensors, some
candidate models with different leg’s length can yield the duplicate final postures at the end of process so that the
candidate models in search space have to perform twice to overcome this problem.

The PSO-based Leg-loss Identification method (PLI) is proposed in this paper. The PLI method uses only on-board
sensors that lets robot become more versatile. Particle swarm optimization is utilized to optimize the fitness
function that is set as the resemblance of candidate models and actual damaged robot. The advantage of PSO is that
parameters can be set as the real number, meaning that decoding and encoding process (using in general Genetic
algorithm) are not essential. Since using only final posture can cause the confusion of model identification, it is
better to observe the behavior of robot during a period of time. The comparison between actual-damaged robot and
candidate models in the simulation is done using normalized cross-correlation algorithm. The performance of PLI is
evaluated using the Open Dynamics Engine™ (ODE) simulator. In the benchmark, the efficiency of PLI is
compared with existing GA-based identification method [8]. The results show that the proposed method can assist
legged robots to discover the new leg’s lengths better than GA-based method in term of accuracy. Moreover, two
experiments are conducted with 2-DOFs quadruped robot to apply this method in practical situation. According to
the result, the PLI algorithm can provide the acceptable new-updated model so that the proposed method can
employ with actual robot as well. However, the gap between real world and simulation slightly limit the
performance of algorithm.

2. ROBOT MODEL AND SIMULATION

The quadruped robot, consisting of twelve servo motors (three joints for each leg), is employed to evaluate the
proposed algorithm in this paper. The attended mode of servo motors is shown in Fig. 1. There are two limbs for
one leg, upper limb and lower limb. The lower limb and upper limb are connected together with the hinge joint, but
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the body and the upper limb are connected with two hinge join, as shown in Fig. 1(b) and (c). Both upper and lower
limbs are constructed as the cylinders with 2 ¢cm in radius and 20 cm in length. The shape of the robots’ body is also
in the cylinder shape with 30 cm diameter. To measure the orientation, used as the main cue for the PL1I, the Inertial
Measurement Unit (IMU) is mounted on the robot body. The Open Dynamic Engine™ (ODE) is utilized in order to
simulate and evaluate the performance of proposed method.

< Upper Limb M M

J «Lower Limb (b) Front View (c) Top View

(a) Robot Model

Fig. 1. The robot model used in the simulation: (a) reference quadruped robot, (b) joints construction in
front view and (c) joints construction in top view.

3. LEG-LOSS IDENTIFICATION ALGORITHM

Leg-loss identification method is beneficial for legged robots in order to deal with the damaged legs. This paper
mainly focuses on identifying the length of broken legs. In the PLI method, the normalized cross correlation and
PSO are employed to evaluate the differences between damaged robot and candidate model and to discover the
candidate model providing similar behavior to actual damaged robot, respectively.

3.1 Normalized cross-correlation (NCC)

The cross correlation is utilized to compare the responses of damaged robot and candidate model. It is generally
used in signal processing with the concept of convolution technique to compare between an input signal and a
reference signal [10]. In PLI, the normalized cross-correlation is implemented as its result is allocated between +1
and -1. In case that the result is close to +1, it means that two signals are completely similar. On the other hands, if
the result is close to -1, it means that two signal are exceedingly different. The cross-correlation between two real
continuous signals x and y can be computed using Eq. (1),

C,y(0)= [ Xy -t @

where the time shift ¢ is the lag. The discrete normalized cross-correlation of signal x and y over the period of time
N is given as follows:

D xin]-yin]
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In PLI, as orientation is employed, there are three signals, i.e., pitch, roll and yaw angles of robot’s body, to be
considered. The NCC result is combined and averaged in one value as following equation:

C..+C_ +C
cw= Cnormfave = - ?:0" = (3)

where Cpich, Cron and Cyay are the normalized cross-correlation of pitch, roll and yaw angles of robot’s body,
respectively. The value of cw can be varied from -1 to +1; hence, on condition that it allocates at 1, it means that the
candidate model and broken robot have similar model (same behaviors). On the contrary, it indicates that candidate
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model and broken robot have different model when cw is close to -1. In addition, the value cw will be manipulated
in PSO algorithm in the next process.

3.2 Particle swarm optimization (PSO)

The PSO, inspired by swarm behavior of living creatures, is generally used in optimization problems. The solution
of the problem is called as ‘particle’. The concept of PSO can be described that all particle in the search space will
follower the leader (highest fitness value) to find optimum point. In the search space, there are three main
parameters, which are current position (x), best previous position (p) and current velocity (v). For ith particle in a
D-dimension space, it can be set as X, = (X, X, %p) s P =(Pus Pire-s Bp) aNd V, = (v, V,,,...,V,p) . The best prior
positions of any particles in population are stored for updating their speeds. The evolution of each particle is varied
by the following equations:

Vg =W-V,, +C -Rand () - (P, — %) +C, - Rand()'(pgd —Xq) (4)
and
Xig = Xig + Vig (5)

where w is the weight to balance between global search and local search, ¢, and c; are the positive constant weights,
and Rand()is a random function range O to 1. The velocity of each particle is updated by combining best local
solution (pig) and best global solution (pyg). EQ. (4) and Eq. (5) are originally published in [11]. In PLI, the Eq. (5)
is modified to improve the robustness as parameter cw is added into the equation as follows:

Xg =X +(@—CW) - vy (6)

The term (1-cw) is contributed the system to become convergent rapidly. The term (1—cw) become 0 when cw is

+1, meaning that the updated model of damage robot is achieved (a candidate model can produce same behaviors as
broken robot). Thus, it is not in need of updating the position (X).

3.3 PSO-based leg-loss identification (PLI)

The PLI algorithm can be applied to assist the legged robot to identify the new updated model after damaged. This
method is able to get the length of robot’s legs by means of comparing the responses of an actual robot and
candidate models in the simulation. The NCC and PSO are further employed in PLI algorithm to obtain the
similarity of behaviors and to evolve the candidate robots in the search space, consequently. The advantage of this
algorithm is that only internal sensors are utilized. Thus, it leads the legged robot become feasible to operate in
unfamiliar environments.

The procedure of PLI algorithm can be seen in Fig. 2. The algorithm begins with creating the N random particles in
the population. Each particle contains eight real values — four legs (two parts per leg) — as the robot model
illustrated in Fig. 1 (a). The value of particle (p), so-called as candidate model, of n can be represented as follows:

P, :{Ln,u Ln,zv Ln,sv LnA' Ln‘sv Ln‘er Ln,?! Ln,a} (7)

where L is the length of robot’s legs and n=1,2,3,...,N . In primary state, it is assumed that only lower parts of legs
are broken. The lower lengths of legs will be generated randomly with range of 0 to 60 cm, but the upper lengths
will be set as x cm identically to the length of actual robot — the lower lengths should be constant since they have
not been broken yet. After initializing the particles, all of candidate models and actual robot will perform similar
action that is generated randomly beforehand. Later, the evaluation process begins. All of candidate models will be
compared with damaged robot following Egs. (1) and (2). If the best cw value of the candidate model reaches the
desired value m (it is set as 0.95 in this study), the process of leg-loss identification will be completed, and select
the best model as the new model for damaged robot. Moreover, if the iteration reaches the time t, this process also
ends. In case that the model is not satisfied, the new set of candidate model will be generated according to the PSO
algorithm — all of L in p, will be updated following Egs. (4)-(6), and then continue the same process as shown in
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Fig. 2. This routine will be operated repeatedly until reaching the desired cw or set time t. Fig. 3 illustrates the best
candidate model in search space that can adapt itself to provide same behavior as damaged robot (the lengths of
upper limbs and lower limbs are 20 cm but the length of broken limb is set as 10 cm). By performing for 25
iterations, the robot can discover the new-updated model. Additionally, in evolution process, some of L values in p,
will be varied randomly with probability prob = 0.10, and the upper length of legs will not be changed if the lower

length of legs are not zero.

Initialize
population

I

&
Perform

random action

!

Evaluate Create new
. - population
partlcleg in based on PSO
population

Get satisfied
model or reach set
iteration

Get new
model

Fig. 2. Process of PLI algorithm.

4., SIMULATION RESULTS

The performance of proposed algorithm (PLI) is certified by numerical simulation, and compared with the GA-
based method as it uses only internal sensor, likewise [7]. There are three of broken legs validated in the
experiments, which are one leg-loss by half, one leg loss and two leg-loss, illustrated in Fig. 4. Two algorithm, PLI
and GA-based method, are programmed to perform with the same sets of parameter as population of 80 particles
and 25 iterations with 5 ms sampling rate. Each algorithm will perform 10 times, and the average of root mean
square (RMS) error will be measured. The RMS error can be calculated as follows:

1 n
RMS = |— 2 8
error fn ;el ®)

where i=12,...,n and e is the error of lengths between the actual damaged robot and the new updated model

obtained from the simulation. The performance of PLI is also measured by varying the number of particles in the
population, and this experiment collects the number of iteration that the best models are discovered. In addition, the
noise and sampling rate tests are conducted to evaluate the performance of proposed method.
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(a) Damaged Robot

-

iteration = 0 iteration = 5
iteration = 10 iteration = 15
‘f_; ‘+—=
iteration = 20 iteration = 25

(b) Evolution of the best candidate
model in search space

Fig. 3. The evolution of the best candidate robot in search space: (a) damaged robot and (b) the best
candidate model captured every 5 iterations - shown that the candidate model can evolve itself in order to
create the behaviour as same as damaged robot. In 20 iterations, it cannot find the proper model, but it can
identify the length of legs correctly within 25 iterations.

Fig. 4. The damaged robot tested in the experiment: (a) first lower limb-loss by half, (b) first leg-loss and (c)
first lower limb-loss and third lower limb-loss by half.

4.1 One-leg loss by half (Case A)

In this test case, two algorithms are conducted to verify the broken robot with lower limb-loss by half, and the
average RMS errors are measured. The example of result is shown in Table 1. The PLI can provide more accurate
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results, compared to GA-based method, and the average RMS error is also lower as the RMS error of PLI and GA-
based method are 0.094 and 9.157, subsequently. The main reason why GA-based method product more error is
that it employs the switches mounted at the end of robot’s legs. In case of damaged leg, the responses of the switch
cannot be measured correctly.

Table 1: The length of robot’s legs (in cm) from PLI and GA-based method
Leg Upper Limbs Lower Limbs RMS
Number 1st 2nd 3rd 4th 1st 2nd 3rd 4th Error

< Actual | 40.000 | 40.000 | 40.000 | 40.000 | 20.000 | 40.000 | 40.000 | 40.000 -
3 PLI 40.000 | 40.000 | 40.000 | 40.000 | 19.745 | 39.991 | 39.991 | 39.921 0.095
© GA 33.647 | 40.000 | 32.941 | 40.000 0.000 33.647 | 48.941 | 32.235 9.157
Actual | 0.000 40.000 | 40.000 | 40.000 0.000 40.000 | 40.000 | 40.000 -

g PLI 0.000 40.000 | 40.000 | 40.000 | 0.4152 | 40.000 | 40.000 | 40.000 0.147

© GA 33.647 | 40.000 | 29.176 | 40.000 | 27.058 | 40.000 | 29.412 | 32.235 16.408

o Actual | 40.000 | 40.000 | 40.000 | 40.000 0.000 40.000 | 20.000 | 40.000 -

3 PLI 39.720 | 40.000 | 40.000 | 40.000 0.079 39.609 | 19.739 | 39.940 0.196

© GA 40.000 | 41.882 | 32.941 | 40.000 1.647 40.000 | 24.235 | 37.882 3.133
4.2 One leg loss (Case B)

The PLI still performs well and provides good result in term of error, as illustrated in Table 1. Due to the same
reason as aforementioned in 4.1, the GA-based method, further, provide big error while operating. Since this
benchmark is simpler than the first one — as no shorten leg to make an impact movement, the error of GA-based
method is less than the result in Case A, as 16.408. Still, the PLI can make a better result as RMS error is 0.147.

4.3 Two leg loss (Case C)

This is the most difficult test compared to others because there are two broken legs, one leg-loss by half and one
lower leg-loss by half. The error of PLI algorithm is still lower than GA-based method because of the same reason.
However, the GA-based method can provide feasible result as illustrated in Table 1. The RMS errors of PLI and
GA-based Method are 0.196 and 3.133 by order.

4.4 Number of particles

To ensure that PLI algorithm can discover the new model correctly, the number of particles is varied to test the
stability. The result of this test can be seen in Fig. 5. The number of particles is set at 40, 60 and 80 particles. The
experiments are conducted for 30 times per each case, and the average numbers of iteration are shown in the graph.
In Case A, the result shows that increasing number of particle leads the robot to find the new model rapidly.
However, in Case B, a low number of particles can perform faster because this situation is simpler than other so that
more number of possible solution can affect the system failure. In the most complex experiment, Case C, the results
are therefore same as Case A since it is difficult to detect the correct model, a large number of feasible solutions
will make the robot to get the correct model faster. Therefore, the number of particles can affect the performance of
leg-loss identification in term of time spent. On the other hands, in non-complicated situation, a low number of
particles can be employed to achieve better solution.

4.5 Noise analysis

Since the PLI algorithm is experimented only in simulation, the noise effect is considered as well. This experiment
is done with Case A with 5 ms sampling rate and 80 particles, and the Gaussian noise is added into the signal to
simulate the noise of the accelerometer and gyroscope which are used in the experiment. However, the noise in the
real system is not similar as simulated, but the aim of this test is to ensure that the PLI can perform with the noisy
condition. The result shows that, with noise, the error of the system is bigger than that without noise situation;
however, the error at the end of the simulation becomes smaller (acceptable result with 2 cm error) as shown in Fig.
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6. It means than the PLI algorithm is feasible to apply in noisy systems. In additional, the PLI will be demonstrated

with an actual damaged robot in the next section.

30l - 40 particles >30
|:| 60 particles
25| |:| 80 particles
o 201 ]
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&
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il il
0
Case A Case B Case C

Fig. 5. Results of number of particles test (average iteration that robot discovered the best solution).
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Fig. 6. Results of number of particles test (average iteration that robot discovered the best solution).

4.5 Sampling rate

The sampling rate of the signals are also tested in the experiment, and it has been evaluated with case A, without
noise and 80 particles. As shown in Table 2, the result shows that varied sampling rates, 5, 10, 20 and 100 ms, do
not cause the major errors. Although the large sampling rates have not been tested in the experiments, in general
robotics system, the 100 ms of sampling rate is possible for robot to operate properly.

Table 2: The length of robot’s legs (in cm) of sampling rate test

Sampling Rate 5ms 10 ms 20 ms 100 ms

1% leg Upper Limb 40.000 40.000 40.000 40.000
Lower Limb 20.009 19.999 20.017 20.021

2" Jeg Upper Limb 40.000 40.000 40.000 40.000
Lower Limb 39.972 39.999 40.000 40.000

3 leg Upper Limb 40.000 40.000 40.000 40.000
Lower Limb 39.982 39.879 40.000 39.999

4" leg Upper Limb 40.000 40.000 40.000 40.000
Lower Limb 39.980 39.999 40.000 40.000

RMS error 0.019 0.181 0.003 0.005

Transactions of the TSME: JRAME

2016, Volume 4(1) / 53



5. EXPERIMENTAL RESULTS

To be certain that the proposed method is feasible to employ with practical robots, two experiments are conducted
in this study. The PLI algorithm is programmed and tested with 2-DOFs-quadruped robot with external Inertial
Measurement Unit (IMU) — which is used to measure the orientation of robot’s body. Two cases of broken legs, one
leg ripped out and three limbs ripped out, are conducted in this test.

5.1 Experimental setup

In the experiment, a robot is made up with four legs consisting of two degrees of freedom per each leg. Eight
Dynamixel servo motors are employed as actuators for each joint, illustrated in Fig.7. The size of robot’s body is set
as a square with 16 cm width (I,). The lengths of lower limb (l;) and upper limb (l,) are 6 cm and 8 cm, respectively.
The quadruped robot is controlled through the computer with FDIII-HC board and USB cable. The orientation of
robot is measured via x-IMU, high-performance and well-calibrated IMU, which is connected to computer
wirelessly with Bluetooth technology.

For simulation side, the parameters, w, ¢; and c,, are set as 0.99, 0.5 and 0.5, in order. The weight balance is set as
0.99 since it is expected to be minimized over time — additionally, the solutions of evolutionary algorithm (like
PSO) will be getting optimized as time passes. The values of parameters, ¢, and ¢,, are identical because of leading
the particles to follow both global and local solutions. Even the proposed algorithm can operate successfully in the
simulation, there is a minor contrast between simulation and real-world environment. To avoid such problem, the
high-performance sensor is selected to obtain the orientation’s values in this study; however, there is still a gap
between simulation and a practical robot in the experiments as shown in Fig. 8. The values of orientation achieved
by x-IMU are rather diverse from the values calculated in the simulation. Even if the values are not completely
similar, the tendency goes somewhat in the same direction.

Fig. 7. The quadruped robot utilized in the experiments.

The proposed algorithm, PLI, is modified to overcome the problems of dissimilar orientation. Firstly, the velocity
(v), used to update the particle, is changed from Eqg. (4) as follows:

Vg =(L—cw) - [w-v, +¢ -rand () - (py —%4) + ¢, - rand () - (pyy — %i4)] )

Since there is a difference between simulation and actual robot — making this term (1-cw) become 0 gradually,
transferring Eq. (4) to Eq. (9) leads the velocity to become convergent rapidly. The position (x) is updated by using
PSO original equation Eq. (5). Secondly, the probability of mutation (prob) is adjusted to 0.50 to avoid particles to
allocate in local optimal. Thirdly, the selection of new updated model is done by the current and previous fitness
values (f; and ;). The final solution will be achieved if f; and f, are greater than the desired value, set as 0.95 in this
study. In additional, the sampling rate, to read the sensor values, is defined as 20 ms, and the candidate models in
the search space are programmed to perform for 250 ms. The population of particles is set as 80 particles.
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Fig. 8. The orientation of robot’s body between actual robot (a) and simulation (s).

5.2 One leg ripped out (Case D)

According to the result written in Table 3, the PLI algorithm provide the acceptable result with 3.392 RMS error.
The finding process is done with 6 iterations, and the maximum fitness value is 0.953. A main obstacle which
causes an error can be noted as the difference between the orientations of real damaged robot and candidate models
in the simulation. Therefore, it can be concluded that the proposed method, PLI, can assist the broken robot to
discover a new updated model. Fig. 9 shows the actual robot and the new model found by PLI algorithm.

Actual Robot Simulation
Fig. 9. The actual damaged robot and the updated model provided by PLI of Case D.

5.3 One leg and one limb ripped out (Case E)

This test case is similar to Case C in previous section, and it is hard to comprehend the final solution. The PLI
cannot discover the new model efficiently as shown in Table 3. Due to the same reason causing to Case C, the RMS
error is quite high as 21.133. The main problem providing the error is not only the difficulty but also the gap
between simulation and real world; nevertheless, the PLI algorithm can give a rough structure of new model in this
experiment as illustrated in Fig. 10. It is worth noting that if the gap between simulation and actual robot can be
minimized, the successful rate can be increased, following the simulation of Case C.
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Actual Robot Simulation

Fig. 10. The actual damaged robot and the updated model provided by PLI of Case E.

Table 3: The length of robot’s legs (in mm) from PLI in the experiments

Upper Limbs Lower Limbs RMS
I—eg Number 1st 2nd 3rd 4th 1st 2nd 3rd 4th Error
a Actual 0.000 80.000 80.000 80.000 0.000 60.000 60.000 60.000 -
S PLI 0.000 80.000 80.000 80.000 0.000 61.132 61.609 50.610 | 3.392

Actual 0.000 80.000 80.000 80.000 0.000 60.000 0.000 60.000 -

Case E

PLI 0.000 80.000 80.000 80.000 0.000 16.600 0.000 18.900 | 21.133

6. CONCLUSIONS

This paper has proposed to develop the leg-loss identification algorithm based on particle swarm optimization
method and normalized cross-correlation algorithm, called as PSO-based Leg-loss Identification (PLI). The
procedure of detecting the broken legs is done by comparing the actual damaged robot and a number of candidate
robots in the search space. The responses of actual damaged robot and candidate model are compared by the cross-
correlation method, which is also utilized as the fitness function in PSO. The PSO algorithm is employed to evolve
the candidate models to provide the same behavior as the damaged robot. In the experiment, the results of PLI are
compared with GA-based method, and they show that PLI is better in term of efficiency. In addition, the number of
particles is varied to evaluate the performance of the proposed algorithm, and it can be summarized that, in complex
situation, a large number of particle can assist the robot to detect a failure part faster, but in case of simple problem,
a limited number of particle can provide more robustness. However, in the future, it is planned to test the
performance of the algorithm in various problems. To be certain that the PLI can handle the noisy system
(represented the practical situation), the noise analysis is also conducted, and the result shows that even if noisy
signals provide more error than non-noisy signals, the error become small at the end of process. The changing of
sampling rate is experimented as well. The error between best candidate model and actual damaged robot is very
small even the sampling rate increased ten times. Moreover, the experiments also show that the PLI can discover
the new updated model with actual damaged robot. However, the difference between simulation and practical
situation makes an error to the final model but it is acceptable as the structure of the model is similar to the
damaged robot. It can be concluded that the proposed method (PLI) is feasible to detect the broken leg by
discovering the new model, which will be beneficial for legged robot to create the alternative walking behavior
after damaged. Additionally, the performance of the PLI can be improved by adding the transferring module
between simulation and real world, which decreases the gap and errors.
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