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ABSTRACT: 
Legged robots have been widely developed and utilized in various applications 

since they are more flexible than the conventional wheel-based robots which 

cannot perform effectively in bumpy areas. Although the legged robot has no 

difficulty operating in uneven terrain, the broken parts of legged robot can lead 

to the task failure. In case of damages, the legged robots cannot operate 

properly with prior control strategies due to transformed models. This paper 

proposes the new method to detect the broken legs by employing only internal 

sensors. The lengths of robot legs will be estimated using the comparison 

between damaged robot and candidate models constructed in the simulation. 

Particle Swarm Optimization (PSO) is operated to discover the best candidate 

model that provides the highest fitness value. The similarity of orientation of 

robot body between actual damaged robot and candidate models is set as the 

fitness function calculated using normalized cross-correlation algorithm. The 

efficiency of this method is verified using numerical simulations and 

experiments, which shows that the proposed method can detect the lengths of 

robot legs more accurate than the existing method. 
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1. INTRODUCTION 

Legged robots can be applied in several applications (e.g. being in action on uneven terrain and outdoor 

environment) on account of flexibility in which regular wheel-based robots are not attainable. However, intricate 

control manners and sophisticated components are necessary to achieve the desired behaviors. In general, legged 

robots can function successfully with predesigned controllers. However, there are some failures occurred when 

some parts of robots are not working, such as broken legs and joints lock. Damaged legs can lead to the lack of 

success while operating with the prior-designed controller because of changed models. Recently, self-damage 

recovery algorithms have been proposed so far to overcome this drawback. It makes robot more flexible as allowed 

the robots to create the new-alternative behaviors to deal with broken robots automatically without human control. 

Human and certain animals, in like manner, will be able to learn the new gait when their legs get injured. A biped 

dog can create a distinctive self-recovery behavior with only two hind legs as it can do balancing, standing and even 

walking. Thus, it can be recapitulated that applying self-damage recovery behavior can open doors of possibility for 

damaged-legged robots to restore themselves. 

 

The insect-inspired central pattern generators are employed in a robot with leg malfunction successfully [1]. The 

controlling frequency of each leg are changed to compensate the leg malfunction. In the experiment, legs of the 
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robot are disable in order to mimic the leg malfunction. However, the broken legs, joint and body have not been 

considered yet in [1].  In [2], the six-legged robot will be able to walk after getting damaged; still, it cannot cope 

some imperfections owing to the non-updated model. Leg-loss identification is a significant process to assist the 

damaged robots to discover the new, present models. The camera equipped on the robot is employed to detect the 

artificial markers mounted on robot’s legs [3]. This method works suitably to detect the abnormal actions of leg 

loss; yet, there are some conditions of using camera and image processing that lead to task failures. For example, 

intensity of light or dusty environment can affect a detection system. Although the artificial markers aid in 

recognizing position of legs faster and easier, predesigned markers are needed to attach on robot’s legs in advance. 

Some researchers also detect the abnormal joints of legged robot by measuring the electrical current spent while 

operating [4]. The advantage of this method is that external sensing measurement is not employed which make it 

more flexible in practical situation. However, the errors might occur with low battery as measuring electrical 

current incorrectly. Another method, named as virtual joint sensor, can detect the joint sensor fault on humanoid 

robot [5]. This method uses the linear invert pendulum model and the leg kinematic models cooperating with the 

Kalman filter to detect and recovery the fault of joint sensors. Although the simulation results prove that this 

method can detect the fault of joint sensor effectively, it can detect only the fault of joint sensor. Acceleration data 

is applied to identify the fault as well [6]. It is used to measure the orientation of robot and set as the input of the 

state machine. This method can detect only the abnormal behaviors of the robot. 

 

In spite of the fact that aforementioned methods can correctly detect the broken parts or abnormal behavior, the 

new-model of robot is not provided. Since the method proposed in [3] can identify only the status of each leg 

(usable or unusable) and the method proposed in [4] can detect the joint fault, they cannot provide actual updated 

model after damaged. Bongard and et al. published the self-modeling method that lets the robot be able to 

reconstruct an exact model [7]. Robot can discover the current model using collation of responses between the 

actual robot and candidate models in the simulation. The candidate models in the search space will evolve their 

body in which makes their behaviors similarly to real-damaged robot.  The optimization method, genetic algorithm 

(GA), is utilized for this process. The responses of damaged robot are observed using external sensory device, the 

Wii infrared remote. After applying this approach, the new proper model and alternative behaviors have been 

found. However, using an external sensor limits the ability of legged robot to perform in other different 

environments. To eliminate this problem, the algorithm proposed in [8] employs only built-in sensors, i.e., tilt 

sensor and switches, to observe its behavior, called as self-identification method based on biological evolutionary 

mechanisms. The damaged robot can obtain the new model successfully with this method. In addition, this method 

is applied to get alternative gaits in [9]. However, GA can provide resolution errors as encoding and decoding 

processes are required as dealing with binary chromosomes. Moreover, due to a limited number of sensors, some 

candidate models with different leg’s length can yield the duplicate final postures at the end of process so that the 

candidate models in search space have to perform twice to overcome this problem.  

 

The PSO-based Leg-loss Identification method (PLI) is proposed in this paper. The PLI method uses only on-board 

sensors that lets robot become more versatile. Particle swarm optimization is utilized to optimize the fitness 

function that is set as the resemblance of candidate models and actual damaged robot. The advantage of PSO is that 

parameters can be set as the real number, meaning that decoding and encoding process (using in general Genetic 

algorithm) are not essential. Since using only final posture can cause the confusion of model identification, it is 

better to observe the behavior of robot during a period of time. The comparison between actual-damaged robot and 

candidate models in the simulation is done using normalized cross-correlation algorithm. The performance of PLI is 

evaluated using the Open Dynamics EngineTM (ODE) simulator. In the benchmark, the efficiency of PLI is 

compared with existing GA-based identification method [8]. The results show that the proposed method can assist 

legged robots to discover the new leg’s lengths better than GA-based method in term of accuracy. Moreover, two 

experiments are conducted with 2-DOFs quadruped robot to apply this method in practical situation.  According to 

the result, the PLI algorithm can provide the acceptable new-updated model so that the proposed method can 

employ with actual robot as well. However, the gap between real world and simulation slightly limit the 

performance of algorithm.  

 

2. ROBOT MODEL AND SIMULATION 

The quadruped robot, consisting of twelve servo motors (three joints for each leg), is employed to evaluate the 

proposed algorithm in this paper. The attended mode of servo motors is shown in Fig. 1. There are two limbs for 

one leg, upper limb and lower limb. The lower limb and upper limb are connected together with the hinge joint, but 
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the body and the upper limb are connected with two hinge join, as shown in Fig. 1(b) and (c). Both upper and lower 

limbs are constructed as the cylinders with 2 cm in radius and 20 cm in length. The shape of the robots’ body is also 

in the cylinder shape with 30 cm diameter. To measure the orientation, used as the main cue for the PLI, the Inertial 

Measurement Unit (IMU) is mounted on the robot body. The Open Dynamic EngineTM (ODE) is utilized in order to 

simulate and evaluate the performance of proposed method. 

 

(a) Robot Model

(b) Front View (c) Top View 

Upper Limb

Lower Limb

 
Fig. 1. The robot model used in the simulation: (a) reference quadruped robot, (b) joints construction in 
front view and (c) joints construction in top view. 

3. LEG-LOSS IDENTIFICATION ALGORITHM 

Leg-loss identification method is beneficial for legged robots in order to deal with the damaged legs. This paper 

mainly focuses on identifying the length of broken legs. In the PLI method, the normalized cross correlation and 

PSO are employed to evaluate the differences between damaged robot and candidate model and to discover the 

candidate model providing similar behavior to actual damaged robot, respectively.  

 

3.1 Normalized cross-correlation (NCC) 

The cross correlation is utilized to compare the responses of damaged robot and candidate model. It is generally 

used in signal processing with the concept of convolution technique to compare between an input signal and a 

reference signal [10]. In PLI, the normalized cross-correlation is implemented as its result is allocated between +1 

and -1. In case that the result is close to +1, it means that two signals are completely similar. On the other hands, if 

the result is close to -1, it means that two signal are exceedingly different. The cross-correlation between two real 

continuous signals x and y can be computed using Eq. (1), 
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where the time shift   is the lag. The discrete normalized cross-correlation of signal x and y over the period of time 

N is given as follows: 
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In PLI, as orientation is employed, there are three signals, i.e., pitch, roll and yaw angles of robot’s body, to be 

considered. The NCC result is combined and averaged in one value as following equation: 

 

3

pitch roll yaw

norm ave

C C C
cw C



 
   (3) 

 

where Cpitch, Croll and Cyaw are the normalized cross-correlation of pitch, roll and yaw angles of robot’s body, 

respectively. The value of cw can be varied from -1 to +1; hence, on condition that it allocates at 1, it means that the 

candidate model and broken robot have similar model (same behaviors). On the contrary, it indicates that candidate 
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model and broken robot have different model when cw is close to -1. In addition, the value cw will be manipulated 

in PSO algorithm in the next process.  

 

3.2 Particle swarm optimization (PSO) 

The PSO, inspired by swarm behavior of living creatures, is generally used in optimization problems. The solution 

of the problem is called as ‘particle’. The concept of PSO can be described that all particle in the search space will 

follower the leader (highest fitness value) to find optimum point. In the search space, there are three main 

parameters, which are current position (x), best previous position (p) and current velocity (v).  For ith particle in a 

D-dimension space, it can be set as
1 2

( , ,..., )
i i i iD

X x x x , 
1 2

( , ,..., )
i i i iD

P p p p  and 
1 2

( , ,..., )
i i i iD

V v v v . The best prior 

positions of any particles in population are stored for updating their speeds. The evolution of each particle is varied 

by the following equations: 
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and 
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where w is the weight to balance between global search and local search, c1 and c2 are the positive constant weights, 

and Rand()is a random function range 0 to 1. The velocity of each particle is updated by combining best local 

solution (pid) and best global solution (pgd). Eq. (4) and Eq. (5) are originally published in [11].  In PLI, the Eq. (5) 

is modified to improve the robustness as parameter cw is added into the equation as follows: 

 

(1 )
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x x cw v     (6) 

 

The term (1 )cw  is contributed the system to become convergent rapidly. The term (1 )cw  become 0 when cw is 

+1, meaning that the updated model of damage robot is achieved (a candidate model can produce same behaviors as 

broken robot). Thus, it is not in need of updating the position (x). 

 

3.3 PSO-based leg-loss identification (PLI) 

The PLI algorithm can be applied to assist the legged robot to identify the new updated model after damaged. This 

method is able to get the length of robot’s legs by means of comparing the responses of an actual robot and 

candidate models in the simulation. The NCC and PSO are further employed in PLI algorithm to obtain the 

similarity of behaviors and to evolve the candidate robots in the search space, consequently. The advantage of this 

algorithm is that only internal sensors are utilized. Thus, it leads the legged robot become feasible to operate in 

unfamiliar environments. 

 

The procedure of PLI algorithm can be seen in Fig. 2. The algorithm begins with creating the N random particles in 

the population. Each particle contains eight real values – four legs (two parts per leg) – as the robot model 

illustrated in Fig. 1 (a). The value of particle (p), so-called as candidate model, of n can be represented as follows:  

 

,1 ,2 ,3 ,4 ,5 ,6 ,7 ,8
{ , , , , , , , }

n n n n n n n n n
p L L L L L L L L  (7) 

 

where L is the length of robot’s legs and 1,2,3, ,n N . In primary state, it is assumed that only lower parts of legs 

are broken. The lower lengths of legs will be generated randomly with range of 0 to 60 cm, but the upper lengths 

will be set as x cm identically to the length of actual robot – the lower lengths should be constant since they have 

not been broken yet. After initializing the particles, all of candidate models and actual robot will perform similar 

action that is generated randomly beforehand. Later, the evaluation process begins. All of candidate models will be 

compared with damaged robot following Eqs. (1) and (2). If the best cw value of the candidate model reaches the 

desired value m (it is set as 0.95 in this study), the process of leg-loss identification will be completed, and select 

the best model as the new model for damaged robot.  Moreover, if the iteration reaches the time t, this process also 

ends. In case that the model is not satisfied, the new set of candidate model will be generated according to the PSO 

algorithm – all of L in pn will be updated following Eqs. (4)-(6), and then continue the same process as shown in 



  /Volume 4(1), 2016 Transactions of the TSME: JRAME 50 

Fig. 2. This routine will be operated repeatedly until reaching the desired cw or set time t. Fig. 3 illustrates the best 

candidate model in search space that can adapt itself to provide same behavior as damaged robot (the lengths of 

upper limbs and lower limbs are 20 cm but the length of broken limb is set as 10 cm). By performing for 25 

iterations, the robot can discover the new-updated model. Additionally, in evolution process, some of L values in pn 

will be varied randomly with probability prob = 0.10, and the upper length of legs will not be changed if the lower 

length of legs are not zero.  

 

Start

Initialize 

population

Perform 

random action

Evaluate 

particles in 

population

Get satisfied 

model or reach set 

iteration 

Get new 

model

Create new 

population 

based on PSO

Stop

Yes

No

 
 

Fig. 2. Process of PLI algorithm. 

4. SIMULATION RESULTS 

The performance of proposed algorithm (PLI) is certified by numerical simulation, and compared with the GA-

based method as it uses only internal sensor, likewise [7].  There are three of broken legs validated in the 

experiments, which are one leg-loss by half, one leg loss and two leg-loss, illustrated in Fig. 4. Two algorithm, PLI 

and GA-based method, are programmed to perform with the same sets of parameter as population of 80 particles 

and 25 iterations with 5 ms sampling rate. Each algorithm will perform 10 times, and the average of root mean 

square (RMS) error will be measured. The RMS error can be calculated as follows: 

 

 2
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RMS error

n

i

i

e
n 

   (8) 

 

where 1,2, ,i n  and e is the error of lengths between the actual damaged robot and the new updated model 

obtained from the simulation. The performance of PLI is also measured by varying the number of particles in the 

population, and this experiment collects the number of iteration that the best models are discovered. In addition, the 

noise and sampling rate tests are conducted to evaluate the performance of proposed method.  
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iteration = 5 

iteration = 10 

 iteration = 0 

iteration = 15 

iteration = 20 iteration = 25 

(a) Damaged Robot

(b) Evolution of the best candidate 

model in search space  
 

Fig. 3. The evolution of the best candidate robot in search space: (a) damaged robot and (b) the best 
candidate model captured every 5 iterations – shown that the candidate model can evolve itself in order to 
create the behaviour as same as damaged robot. In 20 iterations, it cannot find the proper model, but it can 
identify the length of legs correctly within 25 iterations. 
 

 

(a) (b) (c)
 

Fig. 4. The damaged robot tested in the experiment: (a) first lower limb-loss by half, (b) first leg-loss and (c) 
first lower limb-loss and third lower limb-loss by half. 
 

4.1 One-leg loss by half (Case A) 

In this test case, two algorithms are conducted to verify the broken robot with lower limb-loss by half, and the 

average RMS errors are measured. The example of result is shown in Table 1. The PLI can provide more accurate 
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results, compared to GA-based method, and the average RMS error is also lower as the RMS error of PLI and GA-

based method are 0.094 and 9.157, subsequently. The main reason why GA-based method product more error is 

that it employs the switches mounted at the end of robot’s legs. In case of damaged leg, the responses of the switch 

cannot be measured correctly. 

 
Table 1: The length of robot’s legs (in cm) from PLI and GA-based method 

Leg 

Number 

Upper Limbs Lower Limbs RMS 

Error 1st 2nd 3rd 4th 1st 2nd 3rd 4th 

C
a
se

 A
 Actual 40.000 40.000 40.000 40.000 20.000 40.000 40.000 40.000 - 

PLI 40.000 40.000 40.000 40.000 19.745 39.991 39.991 39.921 0.095 

GA 33.647 40.000 32.941 40.000 0.000 33.647 48.941 32.235 9.157 

C
a
se

 B
 Actual 0.000 40.000 40.000 40.000 0.000 40.000 40.000 40.000 - 

PLI 0.000 40.000 40.000 40.000 0.4152 40.000 40.000 40.000 0.147 

GA 33.647 40.000 29.176 40.000 27.058 40.000 29.412 32.235 16.408 

C
a
se

 C
 Actual 40.000 40.000 40.000 40.000 0.000 40.000 20.000 40.000 - 

PLI 39.720 40.000 40.000 40.000 0.079 39.609 19.739 39.940 0.196 

GA 40.000 41.882 32.941 40.000 1.647 40.000 24.235 37.882 3.133 

4.2 One leg loss (Case B) 

The PLI still performs well and provides good result in term of error, as illustrated in Table 1. Due to the same 

reason as aforementioned in 4.1, the GA-based method, further, provide big error while operating. Since this 

benchmark is simpler than the first one – as no shorten leg to make an impact movement, the error of GA-based 

method is less than the result in Case A, as 16.408. Still, the PLI can make a better result as RMS error is 0.147. 

 

4.3 Two leg loss (Case C) 

This is the most difficult test compared to others because there are two broken legs, one leg-loss by half and one 

lower leg-loss by half. The error of PLI algorithm is still lower than GA-based method because of the same reason. 

However, the GA-based method can provide feasible result as illustrated in Table 1. The RMS errors of PLI and 

GA-based Method are 0.196 and 3.133 by order. 

 

4.4 Number of particles 

To ensure that PLI algorithm can discover the new model correctly, the number of particles is varied to test the 

stability. The result of this test can be seen in Fig. 5. The number of particles is set at 40, 60 and 80 particles. The 

experiments are conducted for 30 times per each case, and the average numbers of iteration are shown in the graph. 

In Case A, the result shows that increasing number of particle leads the robot to find the new model rapidly. 

However, in Case B, a low number of particles can perform faster because this situation is simpler than other so that 

more number of possible solution can affect the system failure. In the most complex experiment, Case C, the results 

are therefore same as Case A since it is difficult to detect the correct model, a large number of feasible solutions 

will make the robot to get the correct model faster. Therefore, the number of particles can affect the performance of 

leg-loss identification in term of time spent. On the other hands, in non-complicated situation, a low number of 

particles can be employed to achieve better solution. 

 
4.5 Noise analysis 

Since the PLI algorithm is experimented only in simulation, the noise effect is considered as well. This experiment 

is done with Case A with 5 ms sampling rate and 80 particles, and the Gaussian noise is added into the signal to 

simulate the noise of the accelerometer and gyroscope which are used in the experiment. However, the noise in the 

real system is not similar as simulated, but the aim of this test is to ensure that the PLI can perform with the noisy 

condition. The result shows that, with noise, the error of the system is bigger than that without noise situation; 

however, the error at the end of the simulation becomes smaller (acceptable result with 2 cm error) as shown in Fig. 
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6. It means than the PLI algorithm is feasible to apply in noisy systems. In additional, the PLI will be demonstrated 

with an actual damaged robot in the next section. 

 
Fig. 5. Results of number of particles test (average iteration that robot discovered the best solution). 

 
Fig. 6. Results of number of particles test (average iteration that robot discovered the best solution). 

 

4.5 Sampling rate 

The sampling rate of the signals are also tested in the experiment, and it has been evaluated with case A, without 

noise and 80 particles. As shown in Table 2, the result shows that varied sampling rates, 5, 10, 20 and 100 ms, do 

not cause the major errors. Although the large sampling rates have not been tested in the experiments, in general 

robotics system, the 100 ms of sampling rate is possible for robot to operate properly. 
 
Table 2: The length of robot’s legs (in cm) of sampling rate test 

Sampling Rate  5 ms 10 ms 20 ms 100 ms 

1st leg 
Upper Limb 40.000 40.000 40.000 40.000 

Lower Limb 20.009 19.999 20.017 20.021 

2nd leg 
Upper Limb 40.000 40.000 40.000 40.000 

Lower Limb 39.972 39.999 40.000 40.000 

3rd leg 
Upper Limb 40.000 40.000 40.000 40.000 

Lower Limb 39.982 39.879 40.000 39.999 

4th leg 
Upper Limb 40.000 40.000 40.000 40.000 

Lower Limb 39.980 39.999 40.000 40.000 

RMS error 0.019 0.181 0.003 0.005 
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5. EXPERIMENTAL RESULTS 

To be certain that the proposed method is feasible to employ with practical robots, two experiments are conducted 

in this study. The PLI algorithm is programmed and tested with 2-DOFs-quadruped robot with external Inertial 

Measurement Unit (IMU) – which is used to measure the orientation of robot’s body. Two cases of broken legs, one 

leg ripped out and three limbs ripped out, are conducted in this test. 

 

5.1 Experimental setup 

In the experiment, a robot is made up with four legs consisting of two degrees of freedom per each leg. Eight 

Dynamixel servo motors are employed as actuators for each joint, illustrated in Fig.7. The size of robot’s body is set 

as a square with 16 cm width (lb). The lengths of lower limb (ll) and upper limb (lu) are 6 cm and 8 cm, respectively. 

The quadruped robot is controlled through the computer with FDIII-HC board and USB cable. The orientation of 

robot is measured via x-IMU, high-performance and well-calibrated IMU, which is connected to computer 

wirelessly with Bluetooth technology. 

 

For simulation side, the parameters, w, c1 and c2, are set as 0.99, 0.5 and 0.5, in order. The weight balance is set as 

0.99 since it is expected to be minimized over time – additionally, the solutions of evolutionary algorithm (like 

PSO) will be getting optimized as time passes. The values of parameters, c1 and c2, are identical because of leading 

the particles to follow both global and local solutions. Even the proposed algorithm can operate successfully in the 

simulation, there is a minor contrast between simulation and real-world environment. To avoid such problem, the 

high-performance sensor is selected to obtain the orientation’s values in this study; however, there is still a gap 

between simulation and a practical robot in the experiments as shown in Fig. 8. The values of orientation achieved 

by x-IMU are rather diverse from the values calculated in the simulation. Even if the values are not completely 

similar, the tendency goes somewhat in the same direction.  
 

l b

l ul l

 
 

Fig. 7. The quadruped robot utilized in the experiments. 
 

 

The proposed algorithm, PLI, is modified to overcome the problems of dissimilar orientation. Firstly, the velocity 

(v), used to update the particle, is changed from Eq. (4) as follows:  

 

1 2
(1 ) [ () ( ) () ( )]

id id id id gd id
v cw w v c rand p x c rand p x             (9) 

 

Since there is a difference between simulation and actual robot – making this term (1 )cw  become 0 gradually, 

transferring Eq. (4) to Eq. (9) leads the velocity to become convergent rapidly. The position (x) is updated by using 

PSO original equation Eq. (5). Secondly, the probability of mutation (prob) is adjusted to 0.50 to avoid particles to 

allocate in local optimal. Thirdly, the selection of new updated model is done by the current and previous fitness 

values (fc and fp). The final solution will be achieved if fc and fp are greater than the desired value, set as 0.95 in this 

study. In additional, the sampling rate, to read the sensor values, is defined as 20 ms, and the candidate models in 

the search space are programmed to perform for 250 ms. The population of particles is set as 80 particles.  
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Fig. 8. The orientation of robot’s body between actual robot (a) and simulation (s)  

5.2 One leg ripped out (Case D) 

According to the result written in Table 3, the PLI algorithm provide the acceptable result with 3.392 RMS error. 

The finding process is done with 6 iterations, and the maximum fitness value is 0.953. A main obstacle which 

causes an error can be noted as the difference between the orientations of real damaged robot and candidate models 

in the simulation. Therefore, it can be concluded that the proposed method, PLI, can assist the broken robot to 

discover a new updated model. Fig. 9 shows the actual robot and the new model found by PLI algorithm. 

 

Actual Robot Simulation
 

 

Fig. 9. The actual damaged robot and the updated model provided by PLI of Case D. 

5.3 One leg and one limb ripped out (Case E) 

This test case is similar to Case C in previous section, and it is hard to comprehend the final solution. The PLI 

cannot discover the new model efficiently as shown in Table 3. Due to the same reason causing to Case C, the RMS 

error is quite high as 21.133. The main problem providing the error is not only the difficulty but also the gap 

between simulation and real world; nevertheless, the PLI algorithm can give a rough structure of new model in this 

experiment as illustrated in Fig. 10. It is worth noting that if the gap between simulation and actual robot can be 

minimized, the successful rate can be increased, following the simulation of Case C.   
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Actual Robot Simulation
 

 

Fig. 10. The actual damaged robot and the updated model provided by PLI of Case E. 
 

Table 3: The length of robot’s legs (in mm) from PLI in the experiments 

Leg Number 
Upper Limbs Lower Limbs RMS 

Error 1st 2nd 3rd 4th 1st 2nd 3rd 4th 

C
a
se

 D
 

Actual 0.000 80.000 80.000 80.000 0.000 60.000 60.000 60.000 - 

PLI 0.000 80.000 80.000 80.000 0.000 61.132 61.609 50.610 3.392 

C
a
se

 E
 

Actual 0.000 80.000 80.000 80.000 0.000 60.000 0.000 60.000 - 

PLI 0.000 80.000 80.000 80.000 0.000 16.600 0.000 18.900 21.133 

6. CONCLUSIONS 

This paper has proposed to develop the leg-loss identification algorithm based on particle swarm optimization 

method and normalized cross-correlation algorithm, called as PSO-based Leg-loss Identification (PLI). The 

procedure of detecting the broken legs is done by comparing the actual damaged robot and a number of candidate 

robots in the search space. The responses of actual damaged robot and candidate model are compared by the cross-

correlation method, which is also utilized as the fitness function in PSO. The PSO algorithm is employed to evolve 

the candidate models to provide the same behavior as the damaged robot. In the experiment, the results of PLI are 

compared with GA-based method, and they show that PLI is better in term of efficiency. In addition, the number of 

particles is varied to evaluate the performance of the proposed algorithm, and it can be summarized that, in complex 

situation, a large number of particle can assist the robot to detect a failure part faster, but in case of simple problem, 

a limited number of particle can provide more robustness.  However, in the future, it is planned to test the 

performance of the algorithm in various problems. To be certain that the PLI can handle the noisy system 

(represented the practical situation), the noise analysis is also conducted, and the result shows that even if noisy 

signals provide more error than non-noisy signals, the error become small at the end of process. The changing of 

sampling rate is experimented as well. The error between best candidate model and actual damaged robot is very 

small even the sampling rate increased ten times. Moreover, the experiments also show that the PLI can discover 

the new updated model with actual damaged robot. However, the difference between simulation and practical 

situation makes an error to the final model but it is acceptable as the structure of the model is similar to the 

damaged robot. It can be concluded that the proposed method (PLI) is feasible to detect the broken leg by 

discovering the new model, which will be beneficial for legged robot to create the alternative walking behavior 

after damaged. Additionally, the performance of the PLI can be improved by adding the transferring module 

between simulation and real world, which decreases the gap and errors. 
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