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A THEORETICAL STUDY ON FUNDAMENTAL OF VEHICLE
BEHAVIOR UNDER FORCE CONTROL

H. Sakai* ABSTRACT:

Department of Robotics Drivers move steering wheel by controlling both angle and torque of steering
Engineering, Kindai University, 1 wheel. The steering manner that drivers steer only by torque is called “force
Umenobe, Takaya, control.” Since a dynamics of steering system is added to vehicle planar motion
Higashihiroshima, Hiroshima, 739- : :

2116, Japan under force control, natural frequencies under force control differ from yaw

natural frequency. To improve vehicle dynamic behavior, hence, not only yaw
natural frequency, but also natural frequencies under force control are
important. Therefore this paper aims to obtain symbolic natural frequencies
under force control. Firstly, this paper obtains a characteristic equation under
force control, which is expressed as a quartic equation of Laplace operator s.
Secondly, Laplace operator s is replaced another variable to transform the
quartic equation into a biquadratic equation. Solving the biquadratic equation,
this paper obtains symbolic formulas of the frequencies. Considering these
formulas, this paper proposes an improvement method of vehicle behavior
under force control.

Keywords: Force control, Natural frequency, Steering system, Vehicle dynamics,
Automobile

1. INTRODUCTION

Drivers control the steering wheel with both torque and angle [1]. The control method of steering wheel with only
torque is defined as “force control”, on the other side, that with only the angle is defined as “position control”. For
the transient response of position control, performance of handling is designed based on the formulas of yaw natural
frequency and its damping ratio.

Therefore in order to design performance of handling under force control in the same way as performance design
for position control transient response, we require formulas for natural frequencies and damping ratio under force
control. However, since the characteristic equation under force control is a fourth-order equation for Laplace
operator s, it is difficult to obtain exact formulas for the natural frequencies. However, the formulas have been
obtained only for a special case such as neutral-steer vehicles [2]. However, all actual vehicles feature under-steer
characteristics. Therefore in this paper, we obtain the formulas using 2-stage approximation for the natural
frequencies and damping ratios under force control in vehicles with ordinary steering characteristics. Based on
these formulas, moreover, we consider a method of configuring basic design parameters in order to improve
transient response under force control.
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2. MODEL
2.1 Vehicle model

The model shown in Figure 1 describes planar motion with 2 degrees of freedom. Here, m is the vehicle mass, I; is
the distance from the center of gravity to the front wheels, I, is the distance from the center of gravity to the rear
wheels, 1, is the yaw moment of inertia, V is the vehicle velocity, r is the yaw angular velocity, g is the vehicle
sideslip angle at the position of the center of gravity, f; is the vehicle sideslip angle at the front wheels, g, is the
vehicle sideslip angle at the rear wheels, ¢ is the steering angle, K; is the front wheel cornering power, K. is the rear
wheel cornering power, F; is the front wheel lateral force, F, is the rear wheel lateral force, and I is the wheelbase (|
= It + I;). Figure 2 shows the model of steering system. In this figure, & is the sum of the caster trail and pneumatic
trail, 1, is the steering system moment of inertia, and T, is the steering torque. In this model, steering system
damping and friction are ignored, further the overall gear ratio is considered to be 1. The equations of motion for
this vehicle model can be expressed as follows [3].
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Fig. 1. Model of planar motion system. Fig. 2. Model of steering system.

2.2 Simplifying the notation

In order to eliminate m from the response parameters, the non-dimensional yaw radius of inertia ky is defined by
Eqg. (8). In the case of passenger cars, ky’~ 1 [4].

m ®)

Further, the front wheel normalized cornering power C; is defined by Eq. (9), and the rear wheel normalized
cornering power C, is defined by Eq. (10).

C, = 2K, ©)
I,m/1

c =K (10)
l,m/l
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In order to simplify the formulas for the natural frequencies and damping ratios to be obtained, we use the normal
load distribution ratio of front axle as p. As a result, I; and I, are expressed by egs. (11) and (12).

I, =@-p)l (11)

| =pl (12)

r

Using p, we perform the approximation shown in Appendix A-1.
2.3 Vehicle response under force control

Using egs. (1) - (12), we obtain the transfer function of r against T}, as follows.

rs) G sV +C,
Ton(s) Lk S1&V s+ As®+ As® + As+ A

where
C
A= LA, <,
kW“W kW
C C,.C, C/m
Az—_fz"‘ ;+fr+fp§
kol kG kv L,
S
h™N
A - C,C.mpé (13)
1k,

Since s in the denominator in the above equation is a fourth-order equation, it is difficult to obtain a symbolic
solution to the natural frequencies and damping ratios usually. However, only in the case of C; = C, = C and ky = 1,
it is possible to factorize the right-side denominator in Eq. (13) as shown in Eq. (14) [2].

rs) C 1 Vs +C (14)

T,(5) 1V
&) WV e rpmCe() o, @ Cg temCEl o,
v 2 1, pml& \Y 2 1, pmi&

3. FIRST APPROXIMATION FORMULAS FOR NATURAL FREQUENCIES AND DAMPING RATIOS

3.1 Separation of the steering system and body system

The part remaining when the steering system is removed from the vehicle is called “body system” in this paper. As
shown in Figure 3, we assume that F; is the output from the steering system and the input to the body system. Under
this assumption, this paper assumes that “the natural frequency of the steering system is sufficiently higher than the
natural frequency of the body system”. (This assumption is here indicated as “Assumption 17.)
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Fig. 3. Quasi border between steering system and body system.

3.2 Body system natural frequency and damping ratio

This section obtains natural frequency for body system. At the body system natural frequency, the steering system
behavior is quasi-static from assumption 1. Thus we can ignore the effect of I, below this frequency. Therefore, Eq.
(3) can be reduced below in this frequency.

F ol (15)

Since this equation means that drivers input F; to the vehicle as Ty, eq. (4) can be ignored. Therefore the equations
of motion below the frequency consist of egs. (15), (1), (2), (5) and (7). From these equations, when we obtain the
following equation.

rs) . 1) _ 1 Vs +C, (16)
T.() & () Kk SIMpAV s%+2L,m,5+ @,

Here,
_ & 17)
® kA
. 1 G (18)
GpWp = 2k, V

Here, wg is the body system first approximate natural frequency, and g is the first approximate damping ratio.
3.3 Steering system natural frequency and damping ratio

This section obtains the natural frequency of steering system. Based on assumption 1, it is almost impossible for the
motion of the body system to follow the motion of the steering system at the steering system natural frequency.
Therefore, we approximate as follows.

By =0 (19)

As a result, based on the above equation, eq. (3) and (4), the response of &Fy(s) for Ty(s) is expressed by the

following.

&k (s) :2§Kf(ﬂf (s)—05(s)) ~ 25K, 5(s) (20)
Ty (s) Ty (s) T, (s)

Furthermore, we obtain 4(s)/Tx(s), which is the right hand of eq. (20). Using Eqg. (19), Eqg. (3) becomes the
following.

1,6 ~ 28K, 5 +T, (21)

Reducing eq.(21), we obtain the following.
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S) 1 1 (22)
Tu(s) 1, 28K,
sPr——

I

Using eg. (20) and Eq. (22), the transfer function of F(s) against Ty(s) is the following.

F) o (23)

T.65) s’+o’

Here, ws is the first approximation of the steering system natural frequency, expressed as follows [3].

2 _ 28K (24)

Ws
I

Further we add the symbolic damping terms to Eq. (23), this term will be determined by the coefficient comparison
method.

Fils) o (25)

T,(5)  S%+20 0.5+ o

Here, (s stands for the steering system damping ratio. Further, from the product of Eq. (25) and Eq. (16), the first
approximation for the transfer function of r against Ty, is expressed as follows.

rs) _ & (S) r(s)
Ti(s) - Ti(s) &F¢ ()

o 1  Vs+C,
K IMpeV  s2+20 o5+ @, 8%+ 2L 055 + w5 (26)
C, sV +C,

Tk s+ D + D52+ Ds+ D,
where
D, = 205 + 24 300,
D, = 0" + @y + 4050,
D, = ZQ“Sa)Sa)BZ + ZQ’Ba)Ba)SZ

2 2
D, = 05" o,

From Eq.(26) and (13), we can obtain D3 = 2{sws+C,/(2kyV). Comparing this D; and Az in Eq. (13), we can obtain
the following formula.

C 27)
2k, v

GsWs =

3.4 Accuracy of approximation

Comparisons of ws, wg, and their exact solutions are shown in Figure 4(A). Further, those for (sws and (gwsg are
shown in Figure 4(B). As shown fig. 4(A) and (B), the approximation error for ws, wg, {sws, and {gwg is much
smaller than that of eq.(14). Therefore the author considers that these symbolic formulas are valid.
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Fig. 4. Approximation accuracy of natural frequencies (V= 24.5 [m/s], C; =100[m/s?], C, =200[m/s?], C
=150[m/s?], 1,=21.0[kg m?], £=0.10[m], m=2000[kg], p=0.535, kx*=0.935 and | =3.00[m]).

4. SECOND APPROXIMATION FORMULAS FOR NATURAL FREQUENCIES AND DAMPING RATIOS
4.1 Response parameters considering coupled motion (Second approximation)

Using the denominators of Eq. (16) and Eq. (25), eq. (13) is reduced into the following equation.

r(s) o, Vs+C, (28)

A(8) Kk JImp&v I+ 208+ 0, )(5 + 205055 + 0, ))] - (C, Tk 1)s? = 24505 (C, 1K, T)s

1

The approximation error for ws, {sws, wg, and {swsg is caused by the two terms outside the [ ] of the denominator in
the right side of the above equation (hereafter referred to as the “coupling terms”). Therefore we expect that the
approximation error will be further reduced when we correct ws or {sws, wg, and (gwg So that all the coupling terms
are nearly 0. The equation with ws or {sws, wg, and (gwg corrected so that the coupled terms are almost O is
expressed as follows.

rs) . ol 1 ' Vs +C, (29)
To(s) kNZImp§V [1+A,)s? +2(1+A51)§swss+wsz] [@+Ag,)s? +2(1+ABZ)§BCUBS+COBZ]

The coefficient of A in the above equation is coupling terms. Since Eq. (29) and Eq. (28) are equal, when we
compare the coefficients for each order of s in the denominators of Eq. (28) and Eq. (29), we obtain the following
equations.

s* 1A, +Ag, =0

§° 1 200, + 280 Agy + 2005 A g, + 2830 g, =0 (30)
s? :wszAsz +20505 - 28 wpAg, + a)SzABZ +28505 - 283wpAg, =-C,4 /kN2|

S 2§Bw3wszA31 +2¢ s 'a’sza’BZAm =-2¢50;C; /kN2|

Deriving the above equations, we assume that the absolute value of the products of the coupling terms are

significantly smaller than 1 and can therefore be ignored. (This assumption is indicated as “assumption 2”.) Solving
for four coupling terms in the above equations and ignoring the small terms produces the following formula.

C, Ik I 31
Agy =Ag =—Ag, =—Ag = : zN = 2h ( )
(23 Ky pmlg

Since the maximum value of I./ky*pmIZ measured in a passenger car is 0.2 [5], the maximum absolute value of the
product of the coupling terms is 0.04. Therefore Assumption 2 is true. Substituting Eq. (31) for Eq. (29), we can
obtain the transfer function of r(s) against Ty(s) as follows.
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(32)

2

rés) _ 1 O Vs +C,

T.(5) Kk ImpaV .
n(S) ky“Impgv 1+ 2|h 2 19 1+2|7h c0,5+ " |1 2'“ % +2 1—2|7h e 05S + @y
ky~ pmlg ky~ pmlg Ky~ pmig ky~ pmig

Therefore, the second approximate steering system natural frequency wsc, its damping ratio (sc, the second
approximate body system natural frequency wgc and its damping ratio {gc are described below.

B 1 1, pmC,¢& (33)
e R Tl aer )y
1+ h N p h

ky” pml&
P N PP IS e (34)
Coon ky”pml& \ ky 1
Ky’ pmlg
c
O5cCse = OsCs Eﬁ (3%)
c
Osclsc =@els =5 (36)
N

Hence, it is not necessary to correct for {sws and (gws.

4.2 Accuracy of approximation

Figure 4(A) also shows examples of approximation accuracy calculation for eq. (33) and (34). The approximation
error with respect to the exact solutions for wsc, wgc, {sws, and {gws is less than 1%. Moreover, Figure 5 shows the
comparison of Eq. (13) and Eq. (32) on the time domain and frequency domain. Based on these results, it is
believed that the accuracy of the second approximation is sufficient for practical purposes. In addition, figure 5 uses
the non-dimensional steering torque T,y which is defined as shown below in order to compare the steering torque
and steering angle using the same dimensions [rad].

- (37)
2K &
4.3 Valid range

Figure 6 shows the approximation accuracy for (sc and (sc. The accuracy is higher when the value of I/ky’pmI¢ is
lower; however it is believed that the approximation accuracy depends on C; and C; also. Therefore, in order to
consider these at the same time, Ih/kNmelé is converted to B, which is stability factor under force control [5]. B is
expressed by the following formula.

C;
[Cf +C J (38)

r

(1,7¢)
ky2pml
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Fig. 5. Approximation accuracy of yaw velocity response (V=(IC,)?*= 24.5 [m/s], C; =100[m/s?], C, =200[m/s?],
1,=21.0[kgm?], £=0.10[m], m=2000[kg], p=0.535, ky?=0.935 and 1=3.00[m]).

Figure 6 shows B as the horizontal axis Vernier scale. In both Figure 6(A) and Figure 6(B), the approximate
validity range for egs. (33) through (36) is B > 2. Further, the average value of B in actual vehicles is approximately
5 [5]. Since B = 4.76 in the calculation specifications for Figures 4 to 6, these figures are obtained assuming an
average vehicle. Therefore egs. (33) through (36) are valid for an ordinary passenger car.
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Fig. 6. Validity range of the formulas (V=24.5 [m/s], C;=100[m/s?], C,=200[m/s?], 1,=21.0[kgm?], £=0.10[m],
m=2000[kg], p=0.535, ky?=0.935 and | =3.00[m]).

5. METHODS OF HANDLING PERFORMANCE DESIGN FOR IMPROVING RESPONSE
5.1 Response parameters considering coupled motion (Second approximation)

Figure 7 shows the results of a parameter study for wsc, (sws, wge, and {swg. It is believed that the parameters
which have a degree of design freedom at the steering stability development stage are C;, C,, and In/ky*pmié. Based
on Figure 7, the basic design policy for these 3 parameters is the following.

1) Set a larger C; and smaller Ih/kNmelf in order to increase both wsc and {sws.

2) Set a larger C, in order to increase wgc and (gwe.

When setting these parameters, it is necessary to take care that the stability factor under position control does not
become too small.

42 /Volume 4(1), 2016 Transactions of the TSME: JRAME



Table 1 shows a specific example of this basic design policy. When the input shown in Figure 8(A) is applied to a
vehicle with the specifications in Table 1, the response is shown in Figure 8(B). As shown in Figure 8(C), the
response with the improved specifications matches the steady-state response beginning from the second cycle
following the first steering (Figure 8(D)). It was possible to improve the force control transient response
characteristics as a result of the basic design policy 1) to 2).
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Fig. 7. Influences of design parameters on response parameters (V=24.5m/s).
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Table 1: Vehicle parameters to improve vehicle transient behavior under force control

(A) Input torque

Lateral
acceleration

[m/s?]

unit origin - improved
C; m/s’® 80 160
C, 160 240
Ih/ky2pimé || non dimension 0.10 0.09
m kg 2000 2000
| m 3 3
Kn non dimension 0.91 0.91
14 m 0.1 0.1
p non dimension 0.54 0.54
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— — improved
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Fig. 8. Improvement of vehicle transient behavior under force control.

5.2 Design of handling performance

Stability and control consists of multiple performance items. On the other hand, their design parameters are also
related to other performances (e.g. ride, noise and vibration). Thus, their design parameters cannot be determined
by numerical optimization for a certain metrics of stability and control. Hence, this optimization of the design
parameters will be done by insights of the designer. To obtain the insights, symbolic formulas consisting of the
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design parameters for each performance item should be useful. As one of these formulas, the author believes
equations (33) - (36) having the accuracy described in the former section is useful.

6. CONCLUSIONS

This paper describes a study aimed at improving the force control transient response in a vehicle with ordinary
steering characteristics. The results are summarized below.

1) Formulas were obtained for the natural frequencies and damping ratios by separating the steering system and
body system of a vehicle, and finding the characteristic equation for each.

2) The error between these approximation formulas and the exact solution is less than 1%. These approximation
formulas are valid for ordinary passenger cars, however they are not valid for cases when the force control stability
index B is less than 2.

3) Considering the formulas for natural frequencies and damping ratios, a basic configuration was derived.

NOMENCLATURE

B stability factor under force control, non-dimension
C coefficient of cornering stiffness, m/s?

F cornering force

f front axle

Iy moment of inertia of steering wheel, kg m?

|

yaw moment of inertia, kg m?

N

K cornering stiffness, N/rad

Kn ratio of radius of yaw moment of inertia

| wheelbase, m

It length between front axle and C.G., m

I length between rear axle and C.G., m

m vehicle mass, kg

p ratio of normal load distribution (I, /1)

r yaw velocity, rad/s

r rear axle

Th steering torque, N m

Thn ratio of steering torque

\Y vehicle velocity, m/s

B attitude angle of body, rad

0 angle of steering wheel, rad

wp natural frequency of body system (first order approximation), rad/s
WBC natural frequency of body system (second order approximation), rad/s
ws natural frequency of steering system (first order approximation), rad/s
wsc natural frequency of steering system (second order approximation), rad/s
¢ length of trail, m

s damping ratio of body system (first order approximation)

Gs damping ratio of steering system (first order approximation)
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APPENDIX A-1: FORMULA SIMPLIFICATION

When we consider p = 1/2, then the following relationship is satisfied.

2
1-p+ pk,’ = % (A1)

Further, because ky? ~ 1[4], for the terms which include ky, the formula (A1) which allows first order Taylor
expansion for ky at around ky = 1 produces the following relationship.

1+ky* = 2k, (A2)
Therefore, the following approximation is possible based on Formula (A1) and Formula (A2).

1- p+ pkyZ =k, (A3)
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