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ABSTRACT: 
Drivers move steering wheel by controlling both angle and torque of steering 

wheel. The steering manner that drivers steer only by torque is called “force 

control.” Since a dynamics of steering system is added to vehicle planar motion 

under force control, natural frequencies under force control differ from yaw 

natural frequency. To improve vehicle dynamic behavior, hence, not only yaw 

natural frequency, but also natural frequencies under force control are 

important. Therefore this paper aims to obtain symbolic natural frequencies 

under force control. Firstly, this paper obtains a characteristic equation under 

force control, which is expressed as a quartic equation of Laplace operator s. 

Secondly, Laplace operator s is replaced another variable to transform the 

quartic equation into a biquadratic equation. Solving the biquadratic equation, 

this paper obtains symbolic formulas of the frequencies. Considering these 

formulas, this paper proposes an improvement method of vehicle behavior 

under force control. 
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1. INTRODUCTION 

Drivers control the steering wheel with both torque and angle [1]. The control method of steering wheel with only 

torque is defined as “force control”, on the other side, that with only the angle is defined as “position control”. For 

the transient response of position control, performance of handling is designed based on the formulas of yaw natural 

frequency and its damping ratio. 

Therefore in order to design performance of handling under force control in the same way as performance design 

for position control transient response, we require formulas for natural frequencies and damping ratio under force 

control. However, since the characteristic equation under force control is a fourth-order equation for Laplace 

operator s, it is difficult to obtain exact formulas for the natural frequencies. However, the formulas have been 

obtained only for a special case such as neutral-steer vehicles [2]. However, all actual vehicles feature under-steer 

characteristics. Therefore in this paper, we obtain the formulas using 2-stage approximation for the natural 

frequencies and damping ratios under force control in vehicles with ordinary steering characteristics. Based on 

these formulas, moreover, we consider a method of configuring basic design parameters in order to improve 

transient response under force control. 

 

 
  

 

* Corresponding author: H. Sakai 

E-mail address: sakai_vd@yahoo.co.jp  



  /Volume 4(1), 2016 Transactions of the TSME: JRAME 36 

2. MODEL 

2.1 Vehicle model 

The model shown in Figure 1 describes planar motion with 2 degrees of freedom. Here, m is the vehicle mass, lf is 

the distance from the center of gravity to the front wheels, lr is the distance from the center of gravity to the rear 

wheels, Iz is the yaw moment of inertia, V is the vehicle velocity, r is the yaw angular velocity, β is the vehicle 

sideslip angle at the position of the center of gravity, βf is the vehicle sideslip angle at the front wheels, βr is the 

vehicle sideslip angle at the rear wheels, δ is the steering angle, Kf is the front wheel cornering power, Kr is the rear 

wheel cornering power, Ff is the front wheel lateral force, Fr is the rear wheel lateral force, and l is the wheelbase (l 

= lf + lr). Figure 2 shows the model of steering system. In this figure, ξ is the sum of the caster trail and pneumatic 

trail, Ih is the steering system moment of inertia, and Th is the steering torque. In this model, steering system 

damping and friction are ignored, further the overall gear ratio is considered to be 1. The equations of motion for 

this vehicle model can be expressed as follows [3]. 
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Fig. 1. Model of planar motion system.                                   Fig. 2. Model of steering system. 

2.2 Simplifying the notation 

In order to eliminate m from the response parameters, the non-dimensional yaw radius of inertia kN is defined by 

Eq. (8). In the case of passenger cars, kN
2 ≈ 1 [4]. 
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Further, the front wheel normalized cornering power Cf is defined by Eq. (9), and the rear wheel normalized 

cornering power Cr is defined by Eq. (10). 
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In order to simplify the formulas for the natural frequencies and damping ratios to be obtained, we use the normal 

load distribution ratio of front axle as p. As a result, lf and lr are expressed by eqs. (11) and (12).  

lpl f )1(   (11) 

pllr   (12) 

Using p, we perform the approximation shown in Appendix A-1. 

2.3 Vehicle response under force control 

Using eqs. (1) - (12), we obtain the transfer function of r against Th as follows. 
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Since s in the denominator in the above equation is a fourth-order equation, it is difficult to obtain a symbolic 

solution to the natural frequencies and damping ratios usually. However, only in the case of Cf = Cr = C and kN = 1, 

it is possible to factorize the right-side denominator in Eq. (13) as shown in Eq. (14) [2]. 
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3. FIRST APPROXIMATION FORMULAS FOR NATURAL FREQUENCIES AND DAMPING RATIOS 

3.1 Separation of the steering system and body system 

The part remaining when the steering system is removed from the vehicle is called “body system” in this paper. As 

shown in Figure 3, we assume that Ff is the output from the steering system and the input to the body system. Under 

this assumption, this paper assumes that “the natural frequency of the steering system is sufficiently higher than the 

natural frequency of the body system”. (This assumption is here indicated as “Assumption 1”.) 
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Fig. 3. Quasi border between steering system and body system. 

3.2 Body system natural frequency and damping ratio 

This section obtains natural frequency for body system. At the body system natural frequency, the steering system 

behavior is quasi-static from assumption 1. Thus we can ignore the effect of Ih below this frequency. Therefore, Eq. 

(3) can be reduced below in this frequency. 
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Since this equation means that drivers input Ff to the vehicle as Th, eq. (4) can be ignored. Therefore the equations 

of motion below the frequency consist of eqs. (15), (1), (2), (5) and (7). From these equations, when we obtain the 

following equation. 
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Here, ωB is the body system first approximate natural frequency, and ζB is the first approximate damping ratio. 

3.3 Steering system natural frequency and damping ratio 

This section obtains the natural frequency of steering system. Based on assumption 1, it is almost impossible for the 

motion of the body system to follow the motion of the steering system at the steering system natural frequency. 

Therefore, we approximate as follows. 

0f  (19) 

As a result, based on the above equation, eq. (3) and (4), the response of ξFf(s) for Th(s) is expressed by the 

following. 
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Furthermore, we obtain δ(s)/Th(s), which is the right hand of eq. (20). Using Eq. (19), Eq. (3) becomes the 

following. 

hfh TKI   2  (21) 

Reducing eq.(21), we obtain the following. 
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Using eq. (20) and Eq. (22), the transfer function of Ff(s) against Th(s) is the following. 
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Here, ωS is the first approximation of the steering system natural frequency, expressed as follows [3]. 
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Further we add the symbolic damping terms to Eq. (23), this term will be determined by the coefficient comparison 

method. 
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Here, ζS stands for the steering system damping ratio. Further, from the product of Eq. (25) and Eq. (16), the first 

approximation for the transfer function of r against Th is expressed as follows. 
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From Eq.(26) and (13), we can obtain  D3 ≈ 2ζSωS +Cr/(2kNV). Comparing this D3 and A3 in Eq. (13), we can obtain 

the following formula. 
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3.4 Accuracy of approximation 

Comparisons of ωS, ωB, and their exact solutions are shown in Figure 4(A). Further, those for ζSωS and ζBωB are 

shown in Figure 4(B). As shown fig. 4(A) and (B), the approximation error for ωS, ωB, ζSωS, and ζBωB is much 

smaller than that of eq.(14). Therefore the author considers that these symbolic formulas are valid. 
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(A) Natural frequencies                                                                           (B) Damping ratios 

Fig. 4. Approximation accuracy of natural frequencies (V= 24.5 [m/s], Cf =100[m/s2], Cr =200[m/s2], C 

=150[m/s2], Ih=21.0[kg m2], ξ=0.10[m], m=2000[kg], p=0.535, kN
2=0.935 and l =3.00[m]). 

4. SECOND APPROXIMATION FORMULAS FOR NATURAL FREQUENCIES AND DAMPING RATIOS 

4.1 Response parameters considering coupled motion (Second approximation) 

Using the denominators of Eq. (16) and Eq. (25), eq. (13) is reduced into the following equation. 
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The approximation error for ωS, ζSωS, ωB, and ζBωB is caused by the two terms outside the [ ] of the denominator in 

the right side of the above equation (hereafter referred to as the “coupling terms”). Therefore we expect that the 

approximation error will be further reduced when we correct ωS or ζSωS, ωB, and ζBωB so that all the coupling terms 

are nearly 0. The equation with ωS or ζSωS, ωB, and ζBωB corrected so that the coupled terms are almost 0 is 

expressed as follows. 
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The coefficient of Δ in the above equation is coupling terms. Since Eq. (29) and Eq. (28) are equal, when we 

compare the coefficients for each order of s in the denominators of Eq. (28) and Eq. (29), we obtain the following 

equations. 
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Deriving the above equations, we assume that the absolute value of the products of the coupling terms are 

significantly smaller than 1 and can therefore be ignored. (This assumption is indicated as “assumption 2”.) Solving 

for four coupling terms in the above equations and ignoring the small terms produces the following formula. 
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Since the maximum value of Ih/kN
2pmlξ measured in a passenger car is 0.2 [5], the maximum absolute value of the 

product of the coupling terms is 0.04. Therefore Assumption 2 is true. Substituting Eq. (31) for Eq. (29), we can 

obtain the transfer function of r(s) against Th(s) as follows.  
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Therefore, the second approximate steering system natural frequency ωSC, its damping ratio ζSC, the second 

approximate body system natural frequency ωBC and its damping ratio  ζBC  are described below. 
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Hence, it is not necessary to correct for ζSωS and ζBωB. 

4.2 Accuracy of approximation 

Figure 4(A) also shows examples of approximation accuracy calculation for eq. (33) and (34). The approximation 

error with respect to the exact solutions for ωSC, ωBC, ζSωS, and ζBωB is less than 1%. Moreover, Figure 5 shows the 

comparison of Eq. (13) and Eq. (32) on the time domain and frequency domain. Based on these results, it is 

believed that the accuracy of the second approximation is sufficient for practical purposes. In addition, figure 5 uses 

the non-dimensional steering torque ThN which is defined as shown below in order to compare the steering torque 

and steering angle using the same dimensions [rad]. 
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4.3 Valid range 

Figure 6 shows the approximation accuracy for ζSC and ζBC. The accuracy is higher when the value of Ih/kN
2pmlξ is 

lower; however it is believed that the approximation accuracy depends on Cf and Cr also. Therefore, in order to 

consider these at the same time, Ih/kN
2pmlξ is converted to B, which is stability factor under force control [5]. B is 

expressed by the following formula. 
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Fig. 5. Approximation accuracy of yaw velocity response (V=(lCr)
1/2= 24.5 [m/s], Cf =100[m/s2], Cr =200[m/s2], 

Ih=21.0[kgm2], ξ=0.10[m], m=2000[kg], p=0.535, kN
2=0.935 and l=3.00[m]). 

Figure 6 shows B as the horizontal axis Vernier scale. In both Figure 6(A) and Figure 6(B), the approximate 

validity range for eqs. (33) through (36) is B ≥ 2. Further, the average value of B in actual vehicles is approximately 

5 [5]. Since B = 4.76 in the calculation specifications for Figures 4 to 6, these figures are obtained assuming an 

average vehicle. Therefore eqs. (33) through (36) are valid for an ordinary passenger car. 
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Fig. 6. Validity range of the formulas (V=24.5 [m/s], Cf=100[m/s2], Cr=200[m/s2], Ih=21.0[kgm2], ξ=0.10[m], 

m=2000[kg], p=0.535, kN
2=0.935 and l =3.00[m]). 

5. METHODS OF HANDLING PERFORMANCE DESIGN FOR IMPROVING RESPONSE 

5.1 Response parameters considering coupled motion (Second approximation) 

Figure 7 shows the results of a parameter study for ωSC, ζSωS, ωBC, and ζBωB. It is believed that the parameters 

which have a degree of design freedom at the steering stability development stage are Cf, Cr, and Ih/kN
2pmlξ. Based 

on Figure 7, the basic design policy for these 3 parameters is the following.  

1) Set a larger Cf and smaller Ih/kN
2pmlξ in order to increase both ωSC and ζSωS.  

2) Set a larger Cr in order to increase ωBC and ζBωB.  

When setting these parameters, it is necessary to take care that the stability factor under position control does not 

become too small. 
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(A) Front axle                                                      (B) Rear axle 

Fig. 7. Influences of design parameters on response parameters (V=24.5m/s). 

Table 1 shows a specific example of this basic design policy. When the input shown in Figure 8(A) is applied to a 

vehicle with the specifications in Table 1, the response is shown in Figure 8(B). As shown in Figure 8(C), the 

response with the improved specifications matches the steady-state response beginning from the second cycle 

following the first steering (Figure 8(D)). It was possible to improve the force control transient response 

characteristics as a result of the basic design policy 1) to 2). 

Table 1: Vehicle parameters to improve vehicle transient behavior under force control 
unit origin improved

C f m/s
2

80 160

C r 160 240

I h /k N
2
plmξ non dimension 0.10 0.09

m kg 2000 2000

l m 3 3

k N non dimension 0.91 0.91

ξ m 0.1 0.1

p non dimension 0.54 0.54  
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(C) Response of original vehicle                                        (D) Response of improved vehicle 

Fig. 8. Improvement of vehicle transient behavior under force control. 

5.2 Design of handling performance 

Stability and control consists of multiple performance items. On the other hand, their design parameters are also 

related to other performances (e.g. ride, noise and vibration). Thus, their design parameters cannot be determined 

by numerical optimization for a certain metrics of stability and control. Hence, this optimization of the design 

parameters will be done by insights of the designer. To obtain the insights, symbolic formulas consisting of the 
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design parameters for each performance item should be useful. As one of these formulas, the author believes 

equations (33) - (36) having the accuracy described in the former section is useful. 

6. CONCLUSIONS 

This paper describes a study aimed at improving the force control transient response in a vehicle with ordinary 

steering characteristics. The results are summarized below. 

1) Formulas were obtained for the natural frequencies and damping ratios by separating the steering system and 

body system of a vehicle, and finding the characteristic equation for each. 

2) The error between these approximation formulas and the exact solution is less than 1%. These approximation 

formulas are valid for ordinary passenger cars, however they are not valid for cases when the force control stability 

index B is less than 2. 

3) Considering the formulas for natural frequencies and damping ratios, a basic configuration was derived. 

NOMENCLATURE 

B stability factor under force control, non-dimension 

C coefficient of cornering stiffness, m/s2 

F cornering force 

f front axle 

Ih moment of inertia of steering wheel, kg m2 

Iz yaw moment of inertia, kg m2 

K cornering stiffness, N/rad 

kN ratio of radius of yaw moment of inertia 

l wheelbase, m 

lf length between front axle and C.G., m 

lr length between rear axle and C.G., m 

m vehicle mass, kg 

p ratio of normal load distribution (lr /l) 

r yaw velocity, rad/s 

r rear axle 

Th steering torque, N m 

ThN ratio of steering torque 

V vehicle velocity, m/s 

β attitude angle of body, rad 

δ angle of steering wheel, rad 

ωB natural frequency of body system (first order approximation), rad/s 

ωBC natural frequency of body system (second order approximation), rad/s 

ωS natural frequency of steering system (first order approximation), rad/s 

ωSC natural frequency of steering system (second order approximation), rad/s 

ξ length of trail, m 

ζB damping ratio of body system (first order approximation) 

ζS damping ratio of steering system (first order approximation) 
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APPENDIX A-1: FORMULA SIMPLIFICATION 

When we consider p = 1/2, then the following relationship is satisfied. 

2

1
1

2
2 N

N

k
pkp


                                                                                                                                                   (A1) 

Further, because kN
2 ≈ 1[4], for the terms which include kN, the formula (A1) which allows first order Taylor 

expansion for kN at around kN = 1 produces the following relationship. 

NN kk 21
2
                                                                                                                                                                (A2) 

Therefore, the following approximation is possible based on Formula (A1) and Formula (A2). 

NN kpkp 
2

1                                                                                                                                                          (A3) 

 


