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ABSTRACT: 
The optimal artificial neural network model for predicting the heat transfer 

coefficient and friction factor of the spirally fluted tube is considered. The 

experiment, nine test sections with different characteristic parameters of: 

helical rib height-to-diameter, /di = 0.12, 0.15, 0.19 and helical rib pitch-to-

diameter, p/di = 1.05, 0.78, 0.63 are tested. The developed artificial neural 

network model shows the mean square error (MSE) of 0.0123 and the 

correlation coefficient (R) of 1.00 in modeling of overall experimental data set. 

The predicted results obtained from the optimize ANN model are verified with 

the testing experimental data and good agreement is obtained with errors of 

±2.5%, ±15% for the Nusselt number and friction factor, respectively. In 

addition, the optimal ANN model results are found to be more accurate than the 

predicted results obtained from the published correlation.  

 

Keywords: Artificial neural network; spirally fluted tube, heat transfer and 

pressure drop 

 

1. INTRODUCTION 

Heat transfer enhancement techniques are applied to improve the heat exchanger devices which the spirally fluted 

tube has been used as one of passive heat transfer enhancement techniques to facilitate the desire flow modification 

for augmenting heat transfer. The spirally fluted tubes are the most widely used tubes in several heat transfer 

applications. There are many papers presented the heat transfer and pressure drop in the tube with helical ribs [19]. 

In addition, Sablani [1] developed a non-iterative procedure using an artificial neural network for calculating the 

fluid-to-particle heat transfer coefficient in fluid–particle systems. Mittal and Zhang [2] predicted the food thermal 

process evaluation parameters using neural networks. Islamoglu [3] applied a new approach for the prediction of 

the heat transfer rate of the wire-on-tube type heat exchanger use of an artificial neural network model. Wang et al. 

[4] Generalized neural network correlation for flow boiling heat transfer of R22 and its alternative refrigerants 

inside horizontal smooth tubes. Compared with the experimental data, the average, mean and root-mean-square 

deviations of the trained neural network were 2.5%, 13.0% and 20.3%, respectively. Scalabrin et al. [5] proposed a 

new model for predicting the heat transfer of the mixtures flow boiling by using artificial neural networks. Yigit 

and Ertunc [6] predicted the outlet air temperature and humidity of a wire-on-tube type heat exchanger using neural 

networks.  Zdaniuk et al [7] used an artificial neural network approach to correlate experimentally determined 

Colburn j-factors and Fanning friction factors for liquid water flow in the straight tubes with internal helical fins. 

Ermis et al. [8] applied the feed-forward back-propagation artificial neural network algorithm for phase change heat 

transfer analysis in a finned-tube, latent heat thermal energy storage system. Xie et al. [9] analyzed the heat transfer 

of shell-and-tube heat exchangers by artificial neural networks approach. Kurt et al. [10] estimated the thermal  
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performance of hot box type solar cooker by using artificial neural network. Tahavvor and Yaghoubi [11] 

determined the natural convection heat transfer and fluid flow around a cooled horizontal circular cylinder having 

constant surface temperature by using Artificial Neural Network. Xie et al. [12] predicted the performance 

predictions of laminar and turbulent heat transfer and fluid flow of heat exchangers having large tube-diameter and 

large tube-row by artificial neural networks. Taymaz and Islamoglu [13] predicted the laminar convection heat 

transfer in converging–diverging tube using back-propagation neural network. Alizadehdakhel et al. [14] applied 

the CFD and artificial neural network modeling to consider the two-phase flow pressure drop. Gao et al. [15] 

predicted the performance prediction of wet cooling tower using artificial neural network under cross-wind 

conditions. Bar et al. [16] predicted the pressure drop using artificial neural network of non-Newtonian liquid in 

piping components. Kumar and Balaji [17] estimated the heat generation from multiple protruding heat sources on a 

vertical plate under conjugate mixed convection by using ANN. Wu et al. [18] studied the predicting the 

performance characteristics of a reversibly used cooling tower under cross flow conditions for heat pump heating 

system in winter using artificial neural network technique. Reza [19] applied the artificial neural network to predict 

the heat transfer and flow characteristics in the helically coiled tube. Khairul et al. [20] numerically studied the 

convective heat transfer of nanofluids in the spirally corrugated helically coiled heat exchanger by using fuzzy logic 

technique.  

 

As mentioned review above, there are many papers presented the thermal devices analysis by using artificial neural 

network. However, there is not paper concerned the heat transfer characteristics and friction factor of the fluted tube 

using ANN. The main purpose of this paper is to analyze and predict the heat transfer coefficient and friction factor 

of the horizontal double tube with helical ribs using artificial neural network. The optimal ANN approach has been 

applied to show its capability in the representation of the thermal performance of the heat exchangers. 

2. ARTIFICIAL NEURAL NETWORKS APPROACH 

The artificial neural network has been got great attention due to a simplicity, flexibility, availability a various 

training algorithms. The processors are analogous to biological neurons in human brain which are connected to 

each other by weighted links over which signals can pass. Neuron receives multiple input parameters from other 

neurons in proportion to their connection weights and generates the output parameters. Due to a simple in structure 

and easily analyzed mathematically, the feed forward neural network has been become the most popular in 

engineering applications. As shown in Fig. 1, this ANN configuration has one input layer, one hidden layer and one 

output layer. A set of input parameter is supplied to the input nodes for the feed forward process and the 

information is transferred forward through the network to the nodes in the output layer. The nodes perform non-

linear input–output transformations by means of sigmoid activation function. The mathematical background, 

however, the procedures for training and testing the optimize ANN model can be found in the text by Haykin [21]. 

ANN configuration model as shown in Fig. 1, the input parameters are the hot and cold water mass flow rates, hot 

and cold water inlet temperatures, helical ribs pitch to diameter ratio,
ip / d and helical ribs depth to diameter ratio, 

i/ d  while the output parameters are the heat transfer rate, the heat transfer coefficient and friction factor.  

 

For training and testing the neural networks results, input data patterns and corresponding targets are required. 

Based on the experimental conditions [22], the artificial neural network processes are run. The experimental results 

819 data point [22] are used for training and testing of the ANN model.  In developing a ANN model, the available 

data set is divided into two dataset: the first dataset [20%] is used for training the ANN model, and then it is 

validated with the another dataset [80%]. The ANN training process can be performed by comparing with the 

predicted results of the ANN model to the input data. In order to minimize the error between the predicted output 

results and the input data, the weights and biases are changed. The back propagation algorithm is used in the study 

scheme. The proposed ANN model configuration is set by selecting the number of hidden layer and the number of 

nodes in hidden layer. The number of nodes in the input and output layers can be determined from physical 

variables which the calculation procedure of the optimize ANN model as shown in Fig. 1.  
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Fig. 1. Proposed optimal ANN model configuration. 

3. RESULTS AND DISCUSSION 

3.1 ANN performance analysis 

In order to obtain the accuracy of the optimal ANN model, the correlation coefficient (R) and the mean square error 

(MSE) are used as the characteristic parameters to obtain the agreement of training and predicting process of the 

optimal ANN model. Correlation coefficient is a measurement of how well the variation in the predicted outputs 

which is explained by the measured data, and the R value between the measured data and predicted output results is 

defined by [15,23] as follows: 
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cov( a, p )
R

cov( a,a ) cov( p, p )



                (1) 

where cov(a, p) is the covariance between a and p sets which represent the measured data and the predicted results 

obtained from ANN, respectively, and is calculated from: 

  a pcov( a, p ) E a p   
 

                (2) 

where E is the expected value, µa and µp are the mean value of a set and p set, respectively. In addition, cov(a, a) 

and cov(p, p) are the auto covariances of a and p sets, respectively, and are expressed as follows: 

 
2

acov( a,a ) E a  
 

                 (3) 

 
2

pcov( p, p ) E p  
  

                (4) 

The correlation coefficient ranges between −1 and +1. The R values closer to +1 indicate a stronger agreement of 

training and predicted results, while the values closer to −1 indicate a stronger negative relationship between 

training and predicting process. 

The mean square error is calculated from [15,23] as follows: 

 
2

1

1 N

i i
i

MSE a p
N 

                   (5) 

where ai and pi are the experimental results and predicted results of i set, and N is the number of data patterns.  

3.2 Backward propagation algorithm selection 

There are many training functions can be adopted in the training process which the backward propagation 

algorithms are used in the present study. Due to higher stability and faster convergence rate than other training 

algorithms, the Levenberg–Marquardt algorithm with a minimum MSE and R is used to act as the training function. 

For all backward propagation algorithms, a three-layer ANN model with a tangent sigmoid transfer function 

(tansig) for hidden layer and a linear transfer function (purelin) for output layer are used which the 25 neurons are 

used in the hidden layer for all backward propagation algorithms.  

3.3 ANN structure optimization 

The most important step in development of an ANN model is the determination of the optimal number of hidden 

layers and the numbers of neuron in each hidden layers which the suitable numbers of hidden neurons are often 

determined by trial and error process. Determination of an optimal number of hidden neurons depends on the 

correlation complexity between independent and dependent variables being handled by ANN, number of training 

and testing dataset which are available and amount of noise which exists in the dataset [24,25]. However, large 

numbers of hidden neurons require high computation times and often result in over-fitting, while low numbers of 

hidden neurons cannot relate dependent/dependent to independent/independent variables with acceptable accuracy 

[24,25]. Although, smaller network, which has fewer weights and biases usually have better generalization 

capability, two different strategies, i.e., network growing and network pruning are proposed [24,25] for the 

evaluation of an optimal number of hidden neurons. The network growing method starts with a small network and 

increases hidden neurons until a desired accuracy is achieved, while the network pruning strategy commences with 

a large number of hidden units, and then reduces the extra neurons through the training stage [24,25]. Network 

growing strategy is more efficient than pruning algorithms where the majority of the learning time devoted to the 

networks which are bigger than necessary [26].  

In this section, the heuristic design principle of acquiring decision factors to determine the quantity of hidden nodes 

and the configuration of hidden layers is presented. There are three empirical correlations for determination of 

number in hidden layer [27] as follows; 
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C k


                    (6) 

where K is the simple number, if i > N, 0i
NC  = 0. 

N m n c                     (7) 

where c is a constant which belongs to [28,29]. 

2N log n                    (8) 

For one hidden layer of ANN model, the correlation for calculation of node number in hidden layer is proposed by 

[30] as follows; 

N mn                    (9) 

For put forward, the empirical correlation [31] for determination the node number in hidden layer can be expressed 

as; 

20 43 0 12 2 54 0 77 0 86N . mn . m . n . m .                 (10) 

Which N is the node number in hidden layer, n is the node number in input layer and m is the node number in the 

output layer. The three neurons are used in the hidden layer as an initial guess. With an increase in the number of 

neurons, the networks give several correlation coefficient (R) and different mean square error (MSE) values for the 

training process. 
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Fig. 2. MSE of various ANN models over training and testing subset. 
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Fig. 3. MSE of various ANN models for testing and overall (training + testing) data set. 
 

Figures 2-3 show the variation of mean square error (MSE) of the optimize ANN model with number of hidden 

layer for testing and overall (training+testing) dataset, respectively. It can be seen that the MSE (Testing) 

continuously decreases with increasing hidden layer from 3 to 25. The MSE reaches it minimum value as the 

hidden layer of 25. When the number of hidden layers exceeded 25, the MSE slightly increases. Figure 4 shows the 

variation of R (testing) with number of hidden neurons for the testing and overall (training+testing) dataset. It can 

be seen from the figure that the R values rapidly increases as number of hidden neurons increase from 3 to 15 and 

then slightly increase with increasing hidden neurons from 15 to 25. With 25 hidden neurons, the R value reaches it 

maximum value and then the R value tends to decrease as shown in Fig. 4. It can be said that increasing the number 

of hidden layer more than 25 results in over-fitting of the ANN model over training data set and also cannot 

generalize the rules to test data set as well. Therefore, the neural network containing 25 hidden layers is chosen as 

the best case. In addition, the training process is stopped after 1000 iterations for the Levenberg–Marquardt 

algorithm because the MSE and R values converge after 1000 epochs as shown in Fig. 5.  
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Fig. 4. R values of various ANN models for testing and overall (training + testing) data set. 
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Fig. 5. MSE variation versus epochs for optimal ANN model in training. 
 
Table 1: Evaluation of the optimal ANN model through statistical accuracy analysis 

Hidden 

layer 

No. 

Weight Eff. Num 

%Eff. 

Num 

MSE 

(All) 

MSE 

(Train) 

MSE 

(Test) 

R 

(Train) R (Test) R (All) 

3 33 30.3 91.82 0.2010 0.1994 0.2078 0.99367 0.9933 0.994 

5 53 49.3 93.02 0.0909 0.0865 0.1086 0.99726 0.9965 0.997 

7 73 67.6 92.60 0.0560 0.0538 0.0649 0.99829 0.99790 0.998 

9 93 85.7 92.15 0.0443 0.0425 0.0512 0.99865 0.9984 0.999 

11 113 108 95.58 0.0330 0.0321 0.0368 0.99898 0.9988 0.999 

13 133 125 93.98 0.0270 0.0250 0.0351 0.99921 0.9989 0.999 

15 153 146 95.42 0.0209 0.0189 0.0288 0.99940 0.99908 0.999 

17 173 163 94.22 0.0193 0.0179 0.0252 0.99943 0.99920 0.999 

19 193 187 96.89 0.0174 0.0157 0.0244 0.99950 0.9992 0.999 

21 213 201 94.37 0.0147 0.0125 0.0234 0.99960 0.9993 1.000 

23 233 221 94.85 0.0137 0.0118 0.0212 0.99962 0.9993 1.000 

25 253 240 94.86 0.0123 0.0106 0.0190 0.99966 0.9994 1.000 

27 273 261 95.60 0.0124 0.0098 0.0229 0.99969 0.9993 1.000 

29 293 281 95.90 0.0120 0.0092 0.0233 0.99971 0.9993 1.000 

31 313 301 96.17 0.0116 0.0082 0.0250 0.99974 0.99920 1.000 

33 333 318 95.50 0.0117 0.0082 0.0255 0.99974 0.9992 1.000 

35 353 336 95.18 0.0112 0.0074 0.0267 0.99977 0.9991 1.000 

37 373 356 95.44 0.0118 0.0072 0.0302 0.99977 0.999 1.000 

39 393 380 96.69 0.0107 0.0058 0.0308 0.99982 0.999 1.000 

41 413 393 95.16 0.0107 0.0056 0.0316 0.99982 0.999 1.000 

43 433 417 96.30 0.0102 0.0048 0.0319 0.99985 0.999 1.000 
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3.4 Comparison of optimal ANN model with the measured overall data set 

A computer program with C++ software has been developed by using the back propagation algorithm. ANN model 

sensitivity is examined for 21 different networks with 3, 5, 8, 9, 11,….., 39, 41 and 43 neural nodes in the hidden 

layer. Table 1 shows the values of MSE and R which existed between the experimental data and the predicted 

results obtained from optimal ANN model over training, testing as well as overall data set (training+testing). 

According to Table 1, the optimize ANN model shows the best predictive capability for the prediction of the heat 

transfer rate, the heat transfer coefficient and friction factor, MSE and R of 0.0123 and 1.00, respectively. These 

values of statistical criteria and error indexes confirm the excellent agreement between the measured data and the 

predicted results obtained from the optimal ANN model. 
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Fig. 6. Experimental friction factor vs. predicted values for the overall (training + testing) data set. 
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Fig. 7. Experimental average heat transfer rate vs. predicted values for the overall (training + testing) data. 
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Fig. 8. Experimental heat transfer coefficient vs. predicted values for the overall (training + testing) data set. 
 

Figures 6-8 show the comparison between the values of friction factor, heat transfer rate and the convective heat 

transfer coefficient which are obtained from the optimal ANN model and overall experimental data set, 

respectively. The optimal ANN model shows the R= 0.89042 between the predicted friction factor and the 

experimental results of the overall data set. The optimal ANN model has predicted the friction factor of overall data 

set with MSE of 0.000058685. Again, Figures 7-8 present the comparison between the heat transfer rate, the 

measured heat transfer coefficient overall data set and the predicted results from the optimal ANN model. It can be 

seen that the ANN model prediction for the heat transfer rate and the heat transfer coefficient yield a MSE of 

0.98740, 0.99901, R of 0.0055, 0.0313 with the experimental overall data set, respectively. Figures 7-8 also are 

provided with a straight line indicating perfect prediction. 

 

 
 

Fig. 9. Comparison between the measured data and predicted friction factor [22]. 
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Fig. 10. Comparison between the measured data and ANN results. 
 

3.5 Comparison of optimal ANN model with the published correlations  

Figures 9-12 show the comparison between the predicted friction factor results, the predicted Nusselt number 

results obtained from the published correlation [22] and the predicted friction factor results, the predicted Nusselt 

number results obtained from the optimal ANN model. 

 

The Nusselt number for the tube with helical ribs is proposed by [22] as the following forms: 
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which 5 0 25 3 0 12 0 19 0 63 1 05i i,0 0 Re ,000, Pr , . / d . , . p / d .         

 

Although the flow characteristic in the tube with helical rib is highly complex, the friction factor results obtained 

from the measured data are properly correlated in the simple mathematical function. Non-isothermal correlations of 

the friction factor of tube with helical rib are proposed by [22] as the following form: 

1 68 0 54

217 85

. .

0.
he

i i

p
f . Re

d d



   
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   
              (12) 

which 5 0 25 0 12 0 19 0 63 1 05i i,0 0 Re ,000, . / d . , . p / d .        

 

The results obtained the comparison between the predicted results from the published correlations [22] and the 

measured data. It can be seen from these figures that the deviation is in the range of ±15% for the friction factor and 

±15% for the Nusselt number as comparing with the published correlations [22]. As comparison between the 

predicted results from the ANN model and the predicted results from the published correlations. It can be found that 
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the results obtained from the optimal ANN model are found to be more accurate than the predicted results obtained 

from the published correlations [22] especially the Nusselt number. 

 

 
 

Fig. 11. Comparison between the measured data and predicted Nusselt number [22]. 

 
 

Fig. 12. Comparison between the measured data and ANN results. 

5. CONCLUSION 

The main focus of this study is to present the performance of the ANN model to predict the convective heat transfer 

coefficient and the friction factor of the spirally fluted tube. The optimal ANN model showed a precise and an 

effective prediction of the experimental data with a satisfactory correlation coefficient value of 1.00 and the mean 
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relative error value of 0.0123. In addition, the optimal ANN model results are found to be more accurate than the 

predicted results from the published correlations. To conclude, the optimal ANN model can provide a future 

contribution to develop a better understanding of the heat exchanger dynamic behavior. 

6. ACKNOWLEDGEMENT 

The authors would like to express their appreciation to the Srinakharinwirot University (SWU) for providing 

financial support for this study.  

NOMENCLATURE 

d diameter, m     

f friction factor   

h heat transfer coefficient, kW/(m
2 o

C)  

k thermal conductivity, kW/(m 
o
C)  

m mass flow rate, kg/s    

Nu Nusselt number    

p helical rib pitch, m    

Pr Prandtl number   

Q heat transfer rate, kW    

Re Reynolds number   

 helical rib depth, m 
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