



## Adsorption of methylene blue and ferrous metal solution by using coconut shell charcoal

Natkrita Prasoetsopha<sup>a</sup>, Intira Soonsook<sup>b</sup>, Anussara Panyayaw<sup>b</sup>, Paphawarin Nanon<sup>b</sup>, Witawat Singsang<sup>c</sup>, Ing-orn Sittitanadol<sup>b,\*</sup>

<sup>a</sup> Department of Materials Engineering, Faculty of Engineering and Technology, Rajamangala University of Technology Isan, Nakhon Ratchasima, 30000 Thailand.

<sup>b</sup> Department of Metallurgical Engineering, Faculty of Engineering, Rajamangala University of Technology Isan, Khon Kaen Campus, Khon Kaen, 40000 Thailand.

<sup>c</sup> Department of Aircraft Part Manufacturing Technology, Faculty of Industrial Technology, Rambhai Barni Rajabhat University, Chanthaburi, 22000 Thailand.

\*Corresponding Author: [ingorn.si@rmuti.ac.th](mailto:ingorn.si@rmuti.ac.th)

<https://doi.org/10.55674/jmsae.v11i3.248672>

Received: 7 June 2022 | Revised: 17 June 2022 | Accepted: 4 April 2023 | Available online: 1 May 2023

### Abstract

This research was developed based on the problem of waste from the coconut export industry and the current trend of water pollution. This research aims to study methylene blue adsorption by using coconut shell charcoal prepared from clay kilns. The study of adsorption isotherms in batch experiments showed that the coconut shell charcoal was fitted well with Langmuir adsorption isotherms with a capacity of  $36.49 \text{ mg g}^{-1}$  for particle size in the range of  $53 - 74 \mu\text{m}$ . Through the determination of the surface area of methylene blue adsorption, coconut shell charcoal in the range of  $53 - 74$  micrometers had the highest surface area of  $65.95 \text{ m}^2 \text{ g}^{-1}$ . Coconut shell charcoal was used to study the adsorption of ferrous ion from aqueous solution at the initial concentration of  $15 \text{ mg L}^{-1}$ . It was found that  $0.25 \text{ g}$  of coconut shell charcoal had the highest absorption capacity of  $17.29\%$  of the ferrous ion.



**Keywords:** Adsorption; coconut shell charcoal; Methylene blue; Ferrous ion; Heavy metal

© 2023 Center of Excellence on Alternative Energy reserved

### Introduction

Nowadays, a large amount of hazardous and toxic chemicals such as dyes, pesticides, heavy metals, industrial waste, and various chemicals are released into natural water sources. This is a major problem for the environment due to their toxic effect on humans and aquatic organisms, both directly and indirectly [1]. There are several methods to treat wastewater such as filtration, adsorption, ozonation, photocatalyst, chlorine treatment and so on [2 – 4]. One of the most popular methods is the adsorption process, given its simplicity, cost-effectiveness, environmental friendliness, and high wastewater treatment efficiency [5]. Finding simple and effective adsorbents to use in the wastewater

treatment process is one way to reduce environmental problems.

Apart from being used as fuel, charcoal has high adsorption properties making it suitable for wastewater treatment. Activated carbon has been frequently used as adsorbent to absorb dyes, heavy metals, and organic and inorganic substances from wastewater [6]. A study on the preparation of activated carbon from empty fruit bunches and mesocarp fibers of oil palm conducted by Baloo L. et al. [7] showed that the prepared activated carbon could be used as adsorbents for wastewater treatment. In the experiments, the prepared activated carbon had a maximum adsorption

capacity of methylene blue (MB) of  $24 \text{ mg g}^{-1}$  and the maximum adsorption capacity of acid orange 10 (MO10) of  $18.76 \text{ mg g}^{-1}$ .

Yusop M.F.M. et al. [5] studied the preparation of activated carbon from acacia wood as an adsorbent for wastewater treatment. The physicochemical activation process was used to prepare activated carbon from acacia. It was found that the activated carbon from acacia fit well with Langmuir's equation and had an adsorption capacity of  $338.29 \text{ mg g}^{-1}$ . Similarly, the study of Zakaria R. et al. [8] found that activated carbon prepared from Mangrove pile leftovers chemically activated by phosphoric acid ( $\text{H}_3\text{PO}_4$ ) showed a monolayer adsorption behavior according to Langmuir's equation and had the adsorption capacity of  $72.20 \text{ mg g}^{-1}$ .

However, the preparation of activated carbon is varied and cumbersome. Therefore, adsorbent charcoal prepared from natural waste material is an economical and environmentally friendly technology for the removal of dyes and heavy metals. Coconut is one of the most important economic crops in Thailand. After harvest, farmers dispose of coconut shells through incineration, which causes pollution. As a result, researchers are interested in using coconut shell charcoal as adsorbents to reduce environmental problems directly and indirectly. In this paper, coconut shell charcoal was investigated for the absorption of methylene blue dye and ferrous ion, which represent wastewater pollutants, including the isotherms and surface area of methylene blue adsorption.

## Materials and Methods

### Preparation and characterization of coconut shell charcoal

The coconut shell was calcined in a kiln originating in folk wisdom and having the same functions as the Elsa stove [9], then grounded into a fine powder and sieved through meshes to obtain a powder with the sizes of  $1,190 - 1,680$ ,  $149 - 210$ , and  $53 - 74 \mu\text{m}$ . SEM (FEI, QUANTA 250), FTIR (Perkin Elmer, Frontier), and XRD (Rigaku, SmartLab SE) were used to observe the surface morphology, surface functional groups, and phase composition of the prepared coconut shell charcoal, respectively. Moreover, the specific surface area and total pore volume were examined using nitrogen adsorption Brunauer-Emmett-Teller (BET) analysis (Micrometrics 3Flex, Version 5.02 apparatus).

### Adsorption of methylene blue experiment

The adsorption isotherms and surface area were determined by the batch method. Coconut shell charcoal sizes  $1,190 - 1,680$ ,  $149 - 210$ , and  $53 - 74 \mu\text{m}$  were used. Adsorption was performed with  $0.25 \text{ g}$  of coconut shell charcoal added to  $150 \text{ mL}$  of methylene blue solution (MB, Nice chemical Pvt, Ltd.) with the different initial concentrations of  $3, 10, 20, 30, 40$ , and  $50 \text{ mg l}^{-1}$  then stirred in the dark for  $7 \text{ h}$  at equilibrium. The remaining concentration of MB was determined using a UV-visible spectrophotometer (Jasco V530) at wavelength  $664 \text{ nm}$  [10, 11]. The equilibrium adsorption capacities ( $Q_e$ ) in  $\text{mg g}^{-1}$  was calculated using the eq. (1) [11]:

$$Q_e = \left( \frac{C_0 - C_e}{M} \right) V \quad (1)$$

Where  $C_0$  is the initial concentration in  $\text{mg l}^{-1}$ ,  $C_e$  is the equilibrium concentration in  $\text{mg l}^{-1}$ ,  $V$  is the liquid phase volume in  $\text{L}$ , and  $M$  is the mass of the adsorbent in  $\text{mg}$ . The specific surface area of coconut shell charcoal in  $\text{m}^2 \text{ g}^{-1}$  was calculated using the following eq. (2) [12, 13]:

$$S_{MB} = \frac{N_g \times a_{MB} \times N \times 10^{-20}}{M} \quad (2)$$

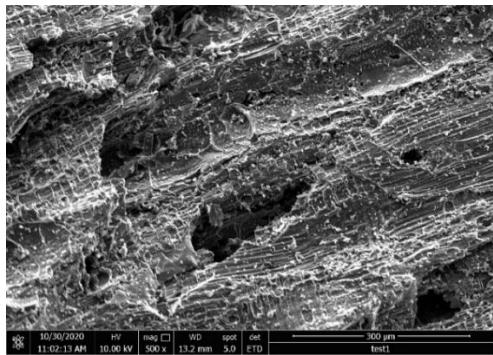
Where  $N_g$  is the number of molecules of MB dye adsorbed at the monolayer of charcoal in  $\text{mg g}^{-1}$ ,  $a_{MB}$  is the occupied surface area of one molecule of MB dye ( $197.20 \text{ \AA}^2$ ),  $N$  is Avogadro's number ( $6.02 \times 10^{23} \text{ mol}^{-1}$ ) and  $M$  is the molecular weight of MB dye ( $373.90 \text{ g mol}^{-1}$ ).

### Adsorption of ferrous ion experiment

Adsorption of ferrous ion from aqueous solution of various sizes of prepared coconut shell charcoal was determined by the batch method.  $0.25 \text{ g}$  of coconut shell charcoal was added to  $150 \text{ ml}$  of ferrous ion solution (Ammonium Iron (II) Sulfate Hexahydrate) at an initial concentration of  $15 \text{ mg L}^{-1}$ , then stirred in the dark for  $7 \text{ h}$  at equilibrium. The concentration of the residual ferrous ion was measured using a UV-visible spectrometer at wavelength  $510 \text{ nm}$  [14]. The percentage removal of the ferrous metal was calculated using eq. (3) [10]:

$$\% \text{ Removeal} = \left( \frac{C_0 - C_e}{C_0} \right) \times 100 \quad (3)$$

Where  $C_0$  is the initial concentration in  $\text{mg l}^{-1}$  and  $C_e$  is the equilibrium concentration in  $\text{mg l}^{-1}$ .


**Table 1** Langmuir and Freundlich parameters for the adsorption of methylene blue onto coconut shell charcoal adsorbent.

| Sample ( $\mu\text{m}$ ) | Langmuir model |       |        | Freundlich model |          |        |
|--------------------------|----------------|-------|--------|------------------|----------|--------|
|                          | b              | $q_0$ | $R^2$  | $K_f$            | $n^{-1}$ | $R^2$  |
| 53 – 74                  | 1.45           | 36.49 | 0.9809 | 4.76             | 0.67     | 0.9112 |
| 149 – 210                | 0.17           | 21.29 | 0.9855 | 3.34             | 0.55     | 0.9579 |
| 1,190 – 1,680            | 0.12           | 3.89  | 0.9858 | 0.72             | 0.41     | 0.8809 |

## Results and Discussions

### Characterization of coconut shell charcoal powder

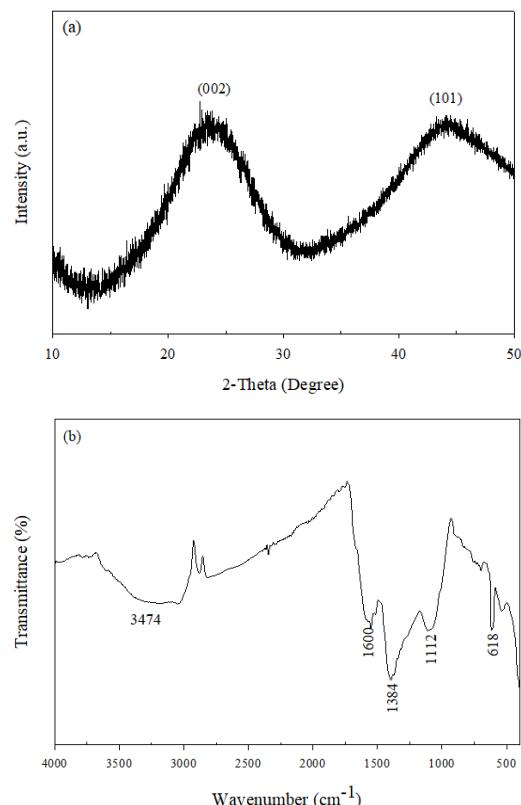
Fig. 1 shows an SEM image of the surface morphology of the coconut shell charcoal. The surface was found to be rough and filled with cavities of different sizes. This surface will help to support the increased adsorption capacity because the dye molecules are absorbed into the pores, consistent with the study of Nipa S.T. et al. [15], which discovered that the irregular surface structure and a large number of pores of papaya increase the ability to absorb.



**Fig. 1** Surface morphology of the coconut shell charcoal.

### Adsorption isotherm

The adsorption isotherms to characterize the adsorption mechanism of methylene blue onto coconut shell charcoal were studied through the Langmuir eq. (4) and Freundlich eq. (5) [18]:

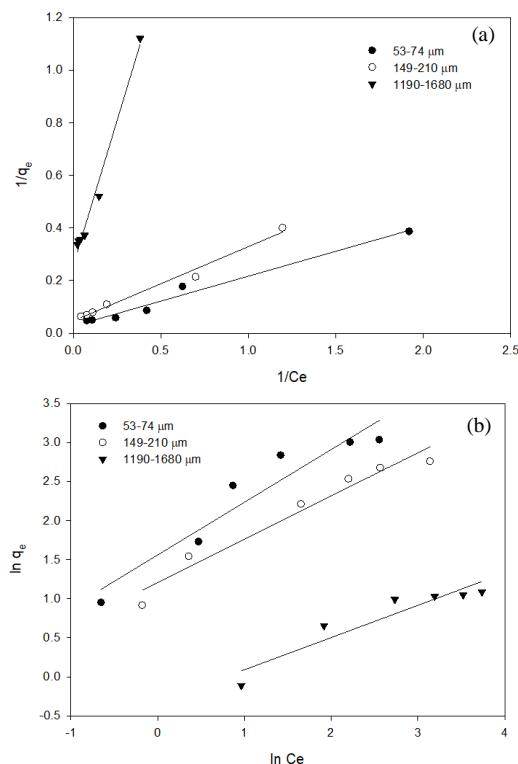

$$\frac{1}{q_e} = \frac{1}{Q_0} + \left( \frac{1}{bQ_0} \right) \left( \frac{1}{C_e} \right) \quad (4)$$

$$q_e = K_f C_e^{1/n} \quad (5)$$

Where  $q_e$  is the amount of solute adsorbed in  $\text{mg g}^{-1}$ ,

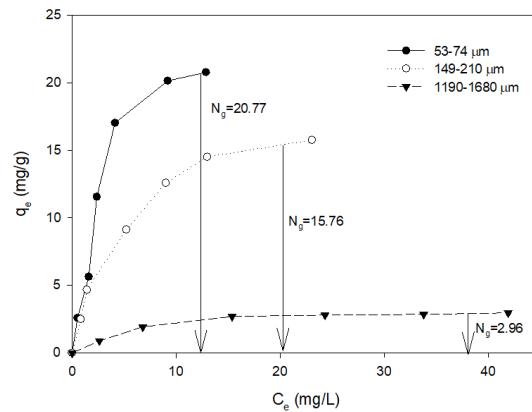
$C_e$  is the equilibrium concentration in  $\text{mg l}^{-1}$ ,  $Q_0$  is the monolayer adsorption capacity in  $\text{mg g}^{-1}$ ,  $b$  is the constant related to the energy of adsorption in  $\text{L g}^{-1}$ ,  $K_f$  and  $n$  are Freundlich's constants.

The adsorption of methylene blue onto coconut shell charcoal powder experiment showed that the adsorption occurred early and reached equilibrium after 3 h. As shown in Fig. 3((a), (b)), the adsorption isotherm was better fitted by the Langmuir models than the Freundlich models because the correlation coefficient ( $R^2$ ) was closer to 1 (Table 1). The Langmuir models signify monolayer physisorption [19] on adsorbents. The coconut shell charcoal size of 53 – 74  $\mu\text{m}$  produced the highest adsorption capacity of  $36.49 \text{ mg g}^{-1}$ .

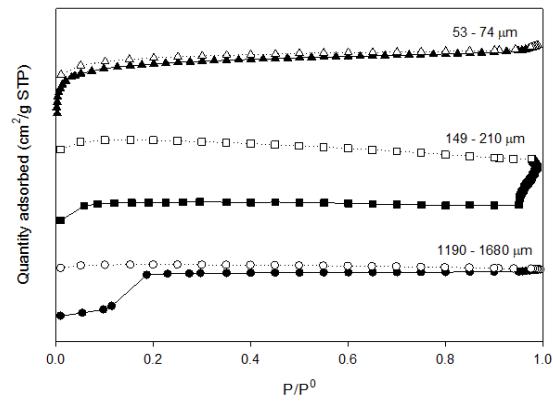



**Fig. 2** (a) XRD pattern and (b) FTIR spectra of coconut shell charcoal.

**Table 2** The calculated specific surface area, BET specific surface area, and total pore volume of coconut shell charcoal powder.


| Sample<br>( $\mu\text{m}$ ) | $N_g$<br>( $\text{mg g}^{-1}$ ) | $S_{MB}$<br>( $\text{m}^2 \text{g}^{-1}$ ) | $S_{MB}$<br>( $\text{m}^2 \text{g}^{-1}$ ) | Total pore volume<br>( $\text{cm}^3 \text{g}^{-1}$ ) |
|-----------------------------|---------------------------------|--------------------------------------------|--------------------------------------------|------------------------------------------------------|
| 53 – 74                     | 20.77                           | 65.95                                      | 235.69                                     | 0.160                                                |
| 149 – 210                   | 15.76                           | 50.05                                      | 188.55                                     | 0.123                                                |
| 1,190 – 1,680               | 2.96                            | 9.80                                       | 104.66                                     | 0.067                                                |

The X-ray diffraction (XRD) pattern of the coconut shell charcoal (Fig. 2(a)) shows the broad peaks at  $24.1^\circ$  and  $43.9^\circ$ , indicating an amorphous carbon structure corresponding to the (002) and (101) planes of carbon [16]. Fig. 2(b) interprets the FTIR spectra of coconut shell charcoal, which has all the necessary bands to prove that it is charcoal. The C-C stretching is linked to the bands at 430 and  $618 \text{ cm}^{-1}$ , whereas the C-O vibration is associated with  $1112 \text{ cm}^{-1}$ . Bands were found at 1384 and  $1600 \text{ cm}^{-1}$  are confirmed to be the C-H symmetric bending and C-C aromatic skeletal stretching vibrations, respectively. The O-H stretching vibrations are responsible for the bands around  $3474 \text{ cm}^{-1}$  [16, 17].




**Fig. 3** Plot of adsorption isotherms for the adsorption of methylene blue onto coconut shell charcoal adsorbent; (a) Langmuir model and (b) Freundlich model.

Through determination of specific surface area of coconut shell charcoal powder from methylene blue adsorption capacity, it was found that the coconut shell charcoal with particle size in the range of 53 – 74  $\mu\text{m}$  had the highest specific surface area, followed by sizes 149 – 210 and 1,190 – 1,680  $\mu\text{m}$ , respectively, as shown in Table 2, because small particles have greater surface area than larger particles consistent with the work of Albalasmeh A. et al. [13]. It was also found that larger biochar particles had less surface area than smaller biochar particles.



**Fig. 4** Adsorption isotherm of methylene blue solution onto coconut shell charcoal adsorbents.



**Fig. 5** Nitrogen adsorption-desorption isotherm of coconut shell charcoal.

The nitrogen adsorption–desorption isotherms of all sizes of coconut shell charcoal shown in Fig. 5 show that it is a Type I and Type II isotherm according to the IUPAC classification [5], which means it is a microporous and mesoporous material with a small surface area. Also, Brunauer-Emmett-Teller (BET) analysis showed that as the size of the particles gets smaller, the charcoal gets more porous and has a bigger surface area. And the BET surface area of prepared coconut shell charcoals was consistent with the study of preparation of porous graphene-like material from coconut shell charcoals for supercapacitors by Fahmi F. et al. [20] found that BET surface area of coconut shell charcoals with a size of 125  $\mu\text{m}$  is 189.97  $\text{m}^2 \text{ g}^{-1}$ .

#### *Adsorption of ferrous ion*

The adsorption of ferrous ion from aqueous solution onto coconut shell charcoal powder study showed that coconut shell charcoal had the ability to absorb ferrous ion with the coconut shell charcoal size 53 – 74  $\mu\text{m}$  being the most effective. It could absorb 17.29% of ferrous ion, while coconut shell charcoal size 149 – 210 and 1,190 – 1,680  $\mu\text{m}$  could absorb 8.17% and 3.03% of ferrous ion, respectively. The highest absorption capacity of ferrous ion was made by coconut shell charcoal size 53 – 74  $\mu\text{m}$ . This result is similar to the adsorption of the methylene blue solution, thanks to its largest surface area.

## Conclusion

The methylene blue absorption of coconut shell charcoal was a monolayer physisorption. The coconut shell charcoal size 53 – 74  $\mu\text{m}$  had the highest adsorption capacity at 36.49  $\text{mg g}^{-1}$ . The prepared coconut shell charcoal had surface areas of 65.95, 50.05, and 9.80  $\text{m}^2 \text{ g}^{-1}$  for the coconut shell charcoal sizes of 53 – 74, 149 – 210, and 1,190 – 1,680  $\mu\text{m}$ , respectively. For the adsorption of the ferrous ion from aqueous solution, it was found that coconut shell charcoal size 53 – 74  $\mu\text{m}$  was more effective than other sizes, since it presented the highest adsorption capacity and highest specific surface area. At an initial concentration of 15  $\text{mg l}^{-1}$ , 0.25 g of coconut shell charcoal had the highest capacity of ferrous ion adsorption at 17.29%.

## Acknowledgement

This work was supported by the Department of Metallurgical Engineering, the Department of Chemistry, Faculty of Engineering, Rajamangala University of Technology, Isan, Khon Kaen Campus, the Institute of Nanomaterials Research and Innovation for Energy,

Khon Kaen University, and the Department of Materials and Processing Technology, Faculty of Engineering and Technology, King Mongkut's University of North Bangkok Technology, Rayong Campus.

## References

- [1] W. Wang, Y.Y. Liu, X.F. Chen, S.X. Song, Facile synthesis of NaOH-modified fishbone charcoal (FBC) with remarkable adsorption towards methylene blue, Procedia Eng. 211 (2018) 495 – 505.
- [2] N. Goyal, S. Barman, V.K. Bulasara, Efficient removal of bisphenol S from aqueous solution by synthesized nano-zeolite secony mobil-5, Microporous Mesoporous Mater. 259 (2018) 184–194.
- [3] I. Arberas-Jiménez, I. Sifaoui, M. Reyes-Batlle, A. Rizo-Liendo, L. Sancho, A. Urruticoechea, J.E. Piñero, J. Lorenzo-Morales, Ultraviolet – Chlorine combined treatment efficiency to eliminate Naegleria fowleri in artificial surf lagoons, Heliyon. 8(11) (2022) e11625.
- [4] A. Asadi, R. Akbarzadeh, A. Eslami, T.-C. Jen, P. Ozaveshe Oviroh, Effect of synthesis method on NS-TiO<sub>2</sub> photocatalytic performance, Energy Procedia. 158 (2019) 4542 – 4547.
- [5] M.F.M. Yusop, M.A. Ahmad, N.A. Rosli, M.E.A. Manaf, Adsorption of cationic methylene blue dye using microwave-assisted activated carbon derived from acacia wood: Optimization and batch studies, Arab. J. Chem. 14(6) (2021) 103122.
- [6] A.C. Lua, A comparative study of the pore characteristics and phenol adsorption performance of activated carbons prepared from oil-palm shell wastes by steam and combined steam-chemical activation, Green Chem. Eng. 8(1) (2022) 69 – 781.
- [7] L. Baloo, M.H. Isa, N.B. Sapari, A.H. Jagaba, L.J. Wei, S. Yavari, R. Razali, R. Vasu, Adsorptive removal of methylene blue and acid orange 10 dyes from aqueous solutions using oil palm wastes-derived activated carbons, Alex. Eng. J. 60(6) (2021) 5611 – 5629.
- [8] R. Zakaria, N.A. Jamalluddin, M.Z. Abu Bakar, Effect of impregnation ratio and activation temperature on the yield and adsorption performance of mangrove based activated carbon for methylene blue removal, Results in Materials. 10 (2021) 100183.

[9] S.O. Apori, J. Byalebeka, M. Murongo, J. Ssekandi, G.L. Noel, Effect of co-applied corncob biochar with farmyard manure and NPK fertilizer on tropical soil, *Resour. Environ. Sustainability.* 5 (2021) 100034.

[10] W. Widiyastuti, M. Fahrudin Rois, N.M.I.P. Suari, H. Setyawan, Activated carbon nanofibers derived from coconut shell charcoal for dye removal application, *Adv Powder Technol.* 31(8) (2020) 3267 – 3273.

[11] C. Bouyahia, M. Rahmani, M. Bensemhlali, S. El Hajjaji, M. Slaoui, I. Bencheikh, K. Azoulay, N. Labjar, Influence of extraction techniques on the adsorption capacity of methylene blue on sawdust: Optimization by full factorial design, *Mater. Sci. Energy Technol.* 6 (2023) 114 – 123.

[12] L. Chen, C. Batchelor-McAuley, B. Rasche, C. Johnston, N. Hindle, R.G. Compton, Surface area measurements of graphene and graphene oxide samples: Dopamine adsorption as a complement or alternative to methylene blue?, *Appl. Mater. Today.* 18 (2020) 100506.

[13] A. Albalasmeh, M.A. Gharaibeh, O. Mohawesh, M. Alajlouni, M. Quzaih, M. Masad, A. El Hanandeh, Characterization and Artificial Neural Networks Modelling of methylene blue adsorption of biochar derived from agricultural residues: Effect of biomass type, pyrolysis temperature, particle size, *J. Saudi Chem. Soc.* 24(11) (2020) 811 – 823.

[14] G. Ketsela, Z. Animen, A. Talema, Adsorption of lead (II), cobalt (II) and iron (II) from aqueous solution by activated carbon prepared from white lupine (GIBITO) HSUK, *J. Thermodyn. Catal.* 11(2) (2020) 203.

[15] S.T. Nipa, N.R. Shefa, S. Parvin, M.A. Khatun, M.J. Alam, S. Chowdhury, S.M.A.Z. Shawon, B.K. Biswas, M.W. Rahman, Adsorption of methylene blue on papaya bark fiber: Equilibrium, isotherm and kinetic perspectives, *Results Eng.* 17 (2023) 100857.

[16] M. Kumar, S. Sharma, R. Pal, B. Vidhani, Supreet, A novel gas sensor based on activated charcoal and polyaniline composites for selective sensing of methanol vapors, *Sensor Actuator Phys.* 353 (2023) 114210.

[17] A.S. Yusuff, M.A. Lala, K.A. Thompson-Yusuff, E.O. Babatunde, ZnCl<sub>2</sub>-modified eucalyptus bark biochar as adsorbent: preparation, characterization and its application in adsorption of Cr(VI) from aqueous solutions, *S. Afr. J. Chem. Eng.* 42 (2022) 138 – 145.

[18] O. Ifguis, Y. Ziat, F. Ammou, R. Bouhdadi, M. Mbarki, M. Benchagra, Theoritical and experimental study on the thermodynamic parameters and adsorption of methylene blue on “Argania shells” in industrial waters, *S. Afr. J. Chem. Eng.* 41 (2022) 211 – 222.

[19] X.-J. Liu, M.-F. Li, S. Singh, Manganese-modified lignin biochar as adsorbent for removal of methylene blue, *J. Mater. Res. Technol.* 12 (2021) 1434–1445.

[20] F. Fahni, N.A.A. Dewayanti, W. Widiyastuti, H. Setyawan, Preparation of porous graphene-like material from coconut shell charcoals for supercapacitors, *Cogent Eng.* 7(1) (2020) 1748962.