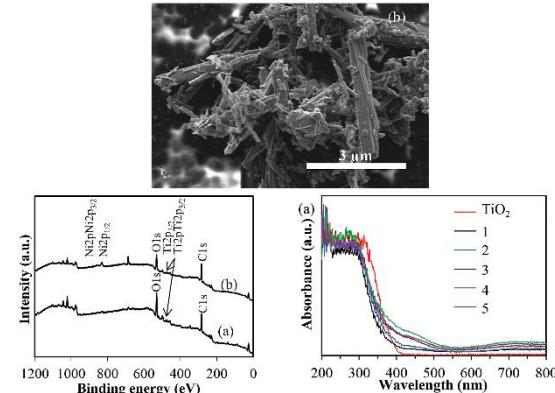


Enhancement of band gap and electrical conductivity properties of TiO_2 nanowire by Ni with hydrothermal method

Mahamasuhaimi Masaee^{a, c, *}, Witthaya Sririkun^a, Peerawas Kongsong^b

^a Department of Industrial Engineering, Faculty of Engineering, Rajamangala University of Technology Srivijaya, Songkhla, 90000 Thailand

^b Department of Materials Engineering, Faculty of Engineering and Architecture, Rajamangala University of Technology Isan, Nakhon Ratchasima, 30000 Thailand


^c Fiber and Textile Research Unit, Faculty of Engineering, Rajamangala University of Technology Srivijaya, Songkhla, 90000 Thailand

*Corresponding Author: susumeme1983@yahoo.com

Received: 1 May 2021 | Revised: 25 May 2021 | Accepted: 1 December 2021 | Available online: 1 January 2022

Abstract

Nickel doped Titanium dioxide phase B nanowires (Ni/TiO₂(B) NWs) were successfully fabricated by a hydrothermal method and characterized by XRD, FE-SEM, UV-vis and XPS spectroscopy. The FE-SEM images of the surface morphology showed that the size of nickel doped TiO₂(B) phase crystal was small (19 – 29 nm). The results indicated that the uniform Ni doped TiO₂(B) nanowires with a length of about 5 μm and an average diameter of about \sim 204.80 nm were produced. The result also showed composite with 4 mol% Ni doped TiO₂(B) NWs phase exhibited optimum photocatalytic activity for the synergistic effects of electrical conductivity and band gap energy. The properties study of Ni/TiO₂(B) NWs leading to a new applications of high-performance materials as solar cells, electronics batteries and many other applications.

Keywords: TiO₂(B) nanowire; Hydrothermal; Ni doped TiO₂

© 2022 Center of Excellence on Alternative Energy reserved

Introduction

The substance that is photoreactive, nontoxic and relatively low cost is titanium dioxide (TiO₂) catalyst [1]. The crystal types occur in 3 different phases: anatase, rutile, brookite and TiO₂(B). A lot of research works about anatase has been done because of its small crystal size. TiO₂(B)'s structure is less compact than that of other forms TiO₂ and TiO₂(B) is rarely found in nature. The three widely known crystallographic forms are anatase and rutile (tetragonal), brookite (orthorhombic) and TiO₂(B), as a metastable monoclinic modification of TiO₂ [2]. The structure of TiO₂(B) ($a = 12.16 \text{ \AA}$, $b = 3.74 \text{ \AA}$, $c = 6.51 \text{ \AA}$, $\beta = 107.29^\circ$), also called monoclinic TiO₂. TiO₂(B)'s structure

was first synthesized in 1980. The dehydration of layered or tunnel-structured hydrogen titanate are called the TiO₂(B) phase which is metastable polymorph formed [2]. The TiO₂(B) phase has tunnel structure and not high density. The TiO₂(B) phase may find use in energy storage applications [3]. Some hydrothermally synthesized TiO₂(B) nanowire (TiO₂(B) NWs) properties have been reported [4, 5]. Furthermore, these studies are achieved to apply these catalyst in the life applications. These study, a novel nickel (Ni) doped TiO₂(B) phase nanowires composite powder synthesis by hydrothermal method is described. TiO₂(B) has many applications, such as photo reactivity, nontoxicity,

semiconducting, energy storage and antibacterial activities [5, 6]. Monoclinic titania, commonly named TiO_2 (B) phase (a metastable polymorph of titanium dioxide), has a relatively open structure with significant voids and continuous channels, facilitating lithium intercalation and leading to excellent electrochemical properties [7]. TiO_2 (B) and Ni are value low cost functional materials. Consequently, they have with a having a huge extent of applications, such as electrochemical, catalyst supports, photocatalysis, lithium ion batteries, electrodes for solar cells and electrochromic applications [3, 6 – 10]. The titanium dioxide doped nickel composite has been used for a variety of applications. The nickel element has use in hydrogen fuel cell applications. The nickel doped Strontium (Sr) can be used in water splitting to make hydrogen for energy production [10]. The Ni^{2+} is easily substituted into the TiO_2 lattice and creates an impurity energy level. The energy of impurity would lead to a decreased band gap and response of visible light for TiO_2 photocatalyst. For conductivity, at low frequency, the resistivity and grain boundary of Ni doped TiO_2 with high an impurity energy level effect on the conductivity that would apply lower energy to exchange electron between ions at grain boundary than pure TiO_2 . Then, Conductivity of Ni doped TiO_2 is high. [11, 12]. Using a hydrothermal process with temperature at 120 °C or higher put the mixture solution in stronger KOH or NaOH will appear in the formation of solid titanium dioxide nanowires or long nanofibers. These conditions make the normal unidirection crystal growth becoming preferential. Because of its high surface area, the nanotube structure is attractive. However, anatase phase particles can be created from the structure of titanate nanotubes with free-alkali ions because it is typically unstable at high temperatures (at ~500 °C) [4, 5, 13].

These TiO_2 (B) NWs composites by preparation with hydrothermal system and characterization will be shown in detail. We prepared the Ni/ TiO_2 (B) NWs using the hydrothermal method. Crystallization, surface microstructure optical properties, electrical conductivities and the photocatalytic properties of the powders were characterized.

Materials and Methods

Synthesis of Ni/ TiO_2 (B) NWs by Hydrothermal Method

Titanium dioxide nanopowder Degussa P25 was mixed with 30 ml of 10 M sodium hydroxide (NaOH, 98%, Loba-

chemie). The precursor used as a dopant (doping agent) is nickel nitrate ($\text{Ni}(\text{NO}_3)_2 \cdot 6\text{H}_2\text{O}$) high purify which were varied to different Ni/Ti amount of 0, 1, 2, 3, 4 and 5 mol% and were sonicated for 60 min in an ultrasonic. The composite solution was moved to a 50 mL. Then heated at 220 °C for 24 h in teflon-lined autoclave container. After cooling to room temperature, the mixtures were (or the mixture was) taken out, and then were rinsed extensively with 0.10 M HCl, deionized water and followed by ethanol. Then, the mixture was calcined at 400 °C for 2 h.

Characterization of Ni/ TiO_2 (B) NWs

An X-ray diffractometer (X'Pert MPD, Philips) was used to characterize the X-ray diffraction (XRD) patterns. The Scherer equation (Eq. (1)) was used to determine the size of titanium crystal use equation below [14]:

$$D = \frac{0.9\lambda}{\beta \cos \theta} \quad (1)$$

The symbols D , λ , β and θ are the crystallite size (nm), the wavelength of the X-ray radiation ($\text{CuK}_\alpha = 0.15406$ nm), the angle width at half maximum height, and the half diffraction angle in degree of the centroid of the peak, respectively. Morphology of the prepared powders was measured with Field emission scanning electron microscope (FE-SEM, Apreo, FEI) at acceleration voltage of 5 kV and Energy-dispersive x-ray measurements (EDX). The UV-vis spectrophotometer (UV-2401, Shimadzu) was used BaSO_4 as reference for observing optical properties and the band gap energy value of TiO_2 powder. The X-ray photoelectron spectrometer (XPS, AXIS ULTRA, Kratos analytical) was used to observe the chemical composition of the powders. The results from XPS were distinguishable with a hemispherical analyzer positioned at an angle of 45° with respect to the normal to the sample surface. To measure the DC electrical conductivity (σ_{DC} , S cm^{-1}) of Ni/ TiO_2 (B) NWs tablets were prepared by compression of 0.1g powder in a 10 mm diameter cylinder mold using a constant pressure. All samples were then analyzed, measuring the electrical conductivity and capacitance by LCR meter, 4285A Precision, Agilent with a frequency range of 75 kHz – 30 MHz at room temperature.

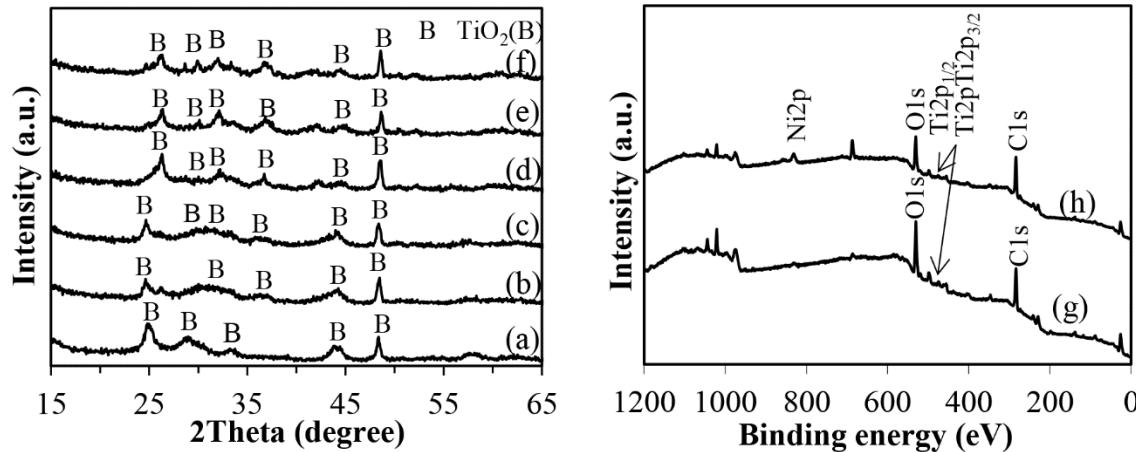
Results and Discussion

XRD Analysis

The XRD patterns of TiO_2 powders calcined at 400 °C by hydrothermal method are presented in Fig. 1. It was

found that only the $\text{TiO}_2(\text{B})$ phase can be seen at 0 – 5 mol% Ni doping in TiO_2 . The diffraction peaks which appear in undoped TiO_2 sample at 2θ are 25.30, 29.20, 44.30 and 48.20 degrees, respectively. According to the JCPDS 46-1238 patterns of $\text{TiO}_2(\text{B})$ form TiO_2 monoclinic structure requirements [15]. P25 TiO_2 have anatase and rutile structure in ratio 80:20 show at 2θ are 25, 37, 47 and 55 degree [16]. It was observed that the process of adding a dopant to the phase transformation has shown practically no phase change in the titanium dioxide, independent of the amount of dopant feeding and electronic structure. Moreover, Fig. 1 shows that, for various Ni species, no separate crystalline phase was detected, which suggests that Ni species were thoroughly dispersed in TiO_2 nanoparticles. Increasing Ni content did not show that any significant lattice deformation had occurred, which is not unexpected considering that Ni^{2+} has an ionic radius similar to Ti^{4+} and can also form octahedral coordination as Ti^{4+} does [6].

The values of average crystal size of pure $\text{TiO}_2(\text{B})$ and $\text{Ni}/\text{TiO}_2(\text{B})$ NWs, measured from (hkl) planes in XRD of (101) using the Scherrer equation, were 20.67, 19.67, 29.49, 25.31, 29.53 and 29.53 nm for undoped $\text{TiO}_2(\text{B})$ and 1, 2, 3, 4 and 5 mol% $\text{Ni}/\text{TiO}_2(\text{B})$ NWs, respectively. The occurrence of Ni–O–Ti bonds in Ni-doped $\text{TiO}_2(\text{B})$ causes the grain size to decrease, which in turn impedes the growth of the crystals. Nonetheless, as the Ni concentration increases further to 1 – 2 mol%, the lattice constant values estimated increases to $a = 12.206 \text{ \AA}$, and for the last three concentrations 3, 4 and 5 mol%, the lattice constant values


decrease to $a = 11.623$, 11.641 and 11.219 \AA , respectively (Table 1). This shows that the substitutional Ni^{2+} ions replace Ti^{4+} ions and result in linear decay of the crystallite size. The lattice parameters have an effect on the crystallite size, and not different between the synthesis of undoped and $\text{Ni}/\text{TiO}_2(\text{B})$ NWs. The defect in structure is appear number of dislocations decreases. When the amount of nickel is increased with the crystal size start to increase [6].

XPS Spectra of $\text{Ni}/\text{TiO}_2(\text{B})$ NWs

Figure 1 (g) and (h) shows XPS spectra of $\text{TiO}_2(\text{B})$ NWs and 4 mol% $\text{Ni}/\text{TiO}_2(\text{B})$ NWs composites consist of only Ti, Ni, O and C elements and the binding energies of $\text{Ti}2\text{p}$, $\text{Ni}2\text{p}$, $\text{O}1\text{s}$ and $\text{C}1\text{s}$ are 456.50, 853.50, 528.50 and 283.50 eV, respectively. The $\text{O}1\text{s}$ region of an annealed undoped TiO_2 show peaks at 529.70 and 531.40 eV corresponding to Ti, O and the hydroxyl group, respectively. This research, the presence of Ti^{4+} in TiO_2 sample where found at binding energy positions corresponding to $\text{Ti}2\text{p}$ and $\text{Ti}2\text{p}$ lines for pure $\text{TiO}_2(\text{B})$ powders at 456.50 and 461.00 eV [14]. The binding energies of $\text{Ti}2\text{p}$ region for the pure TiO_2 and TiO_2 doped nickel specimens were similar. Atoms existed in the forms Ni_2O_3 from Fig. 1(g). XPS result reveals.

Morphology of Powder $\text{Ni}/\text{TiO}_2(\text{B})$ NWs

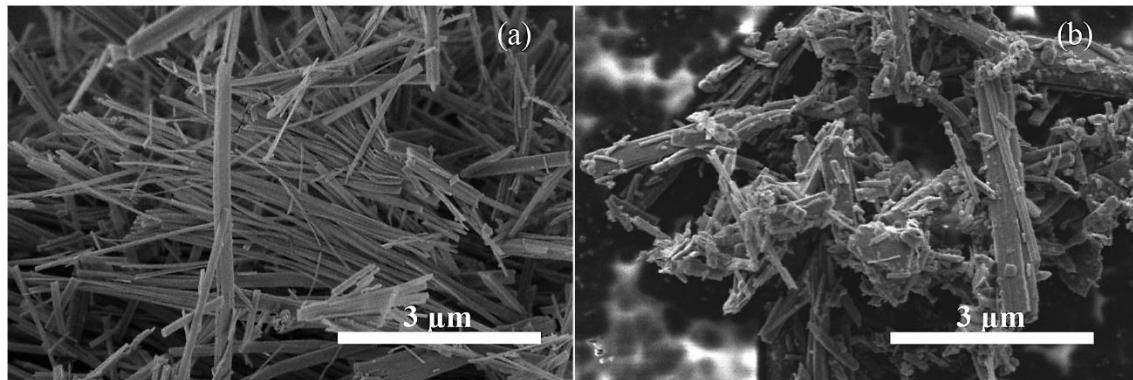

Ni at 853.50 eV for $\text{Ni}2\text{p}$ and 872.00 eV for $\text{Ni}2\text{p}$, and make be completely observed in Fig. 1(h). In combination from the XRD data, it may be concluded that Ni_2O_3 was dispersed on the surface of titania [14].

Fig. 1 XRD patterns of pure $\text{TiO}_2(\text{B})$ NWs (a) and $\text{TiO}_2(\text{B})$ NWs at various Ni: (b) 1 mol%, (c) 2 mol%, (d) 3 mol%, (e) 4 mol%, and (f) 5 mol% Ni. XPS spectra of (g) pure $\text{TiO}_2(\text{B})$ NWs and (h) 4 mol% $\text{Ni}/\text{TiO}_2(\text{B})$ NWs.

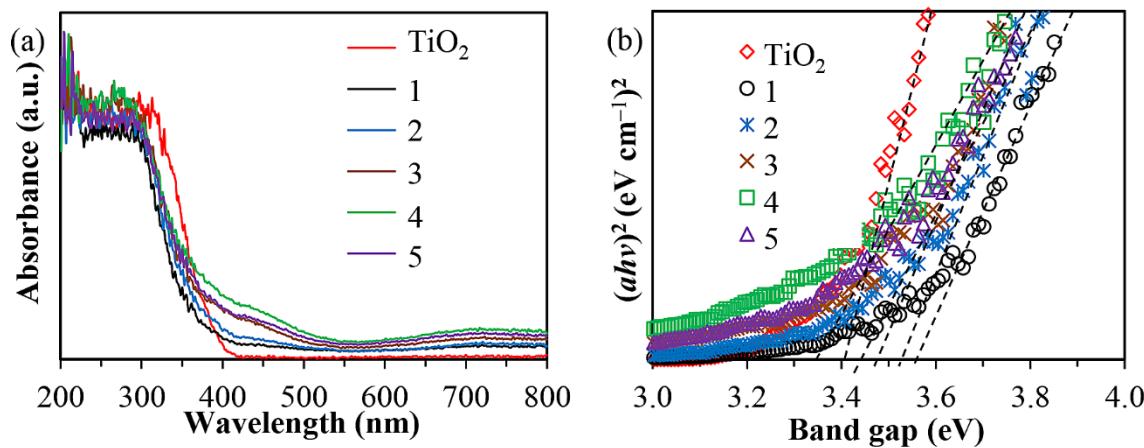
Table 1 Crystallite size (D), Lattice parameters, Cell volume (V), Optical properties (E_g), Oxygen vacancies (E_u) and Conductivity (σ_{DC}) and Capacitance (G) of pure $\text{TiO}_2(\text{B})$ and $\text{Ni}/\text{TiO}_2(\text{B})$ NWs.

mol% Ni	D (nm)	Lattice parameters (Å)			V (Å 3)	E_g (eV)	E_u	σ_{DC} (×10 $^{-7}$ S cm $^{-1}$)	G (×10 $^{-11}$ F)
		a	b	c					
$\text{TiO}_2(\text{B})$	20.67	11.647	3.763	6.488	284.354	3.37	2.90	5.50	8.90
1	19.67	12.206	3.756	6.687	306.570	3.50	2.27	4.50	3.25
2	29.49	11.823	3.769	6.422	286.170	3.50	2.14	5.20	4.50
3	25.31	11.623	3.746	6.725	292.805	3.45	1.94	4.50	6.90
4	29.53	11.641	3.743	6.406	279.124	3.33	1.47	7.50	7.60
5	29.53	11.219	3.754	6.397	269.417	3.35	1.65	2.20	6.20

Fig. 2 FE-SEM images of pure (a) $\text{TiO}_2(\text{B})$ NWs and (b) 5 mol% Ni doped $\text{TiO}_2(\text{B})$ NWs.

The carbon can be attributed to the remained carbon from the starting solution and the hydrocarbon from the XPS instrument itself. The structure of the composite Ni doped $\text{TiO}_2(\text{B})$ NWs powders was produced by hydrothermal method for 24 h at 220 °C and calcined at 400 °C and was characterized by FE-SEM showed in Fig. 2. The images show nanowires of the $\text{TiO}_2(\text{B})$ and the short 5 mol% TiO_2 nanowire that have an average diameter was increased from ~163.9 – 204.8 nm due to Ni ions might affect the expansion distortion of Ti lattice which rises particle size and morphology[8, 17]. The XRD analysis shown in Table 1. The shape and morphology of $\text{Ni}/\text{TiO}_2(\text{B})$ NWs at various Ni dosage were not found to be much different than that of undoped sample. In the hydrothermal process, TiO_2 particles react with NaOH solution to form sodium titanate ($\text{Na}_x\text{Ti}_y\text{O}_z$). It was washed with acid to gets protonate titanate ($\text{H}_2\text{Ti}_3\text{O}_7\text{xH}_2\text{O}$) when calcined at 400 °C to be only $\text{TiO}_2(\text{B})$ phase.

Energy Gap Measurement


The result in Fig. 3 presents the UV-vis spectra of $\text{TiO}_2(\text{B})$ NWs and $\text{Ni}/\text{TiO}_2(\text{B})$ NWs. The band gap energies (E_g) of the samples were determined and analyzed by intercept x of the linear portion of $(\alpha h\nu)^2$ as a function of E to $\alpha E = 0$ (where $E = E_g$) of following eq. (2) [18];

$$\alpha E = A' (E - E_g)^m \quad (2)$$

where E_g is the band gap energy (eV) of the specimen, A' is the absorption constant and λ is the wavelength of the onset of the spectrum (nm). ($E = hc/\lambda$), respectively. $m = 1/2$ for direct band gap and $m = 2$ for indirect band gap. The symbol of α is absorption coefficient was determined by $\alpha = A/d'$ where A is the measured absorbance (nm), d' is the thickness of specimens in UV-vis cell (0.40 cm). The data of UV-vis diffuse reflectance wavelength of nickel doped TiO_2 (Ni = 0, 1, 2, 3, 4 and 5 mol%) powders calcined at 400 °C for 2 h are presented in Fig. 3. It can be seen that pure

TiO_2 (B) NWs (the undoped) and Ni/ TiO_2 (B) NWs powders (Fig. 3(a)), Ascribed to the electron transfer from the valence band (mainly formed by 2p orbitals of the oxide anions) to the conduction band (mainly formed by t_{2g} peaks of Ti^{3d} orbital of the Ti^{4+} cations), are showing absorption spectra consisting of a single broad intense absorption at around 400 nm (i.e., in the UV light range) [6, 19]. From the curves it is seen that all the powder specimens have indirect band gap transitions. Table 1. shows the calculated band gap energy value (E_g) of these powders. From the UV-vis result it is shown that the titanium dioxide band gap energy is barely decreased, when the nickel content is increased, which corresponds to the red shift of the absorption edge measured in UV-vis spectra (Fig. 3(b)).

The value of charge transfer transitions between metal ion and the valence or conduction band of titanium dioxide can be described with these red shift lengths. Analyzing the E_g and absorption edge data, the Ni/ TiO_2 (B) NWs is anticipated under visible light irradiation and the pure TiO_2 (B) NWs to be active recombination of electron under UV irradiation [6]. The amount of nickel in titanium dioxide be effect on enrichment of visible light absorption capacity relating with the prior work [20, 21]. In addition, we describe the potential reason of band gap narrowing in TiO_2 with Ni doping in hydrothermal system. As reported, the Ni dopant acts as an acceptor impurity in TiO_2 lattice [6]. The Ni/ TiO_2 (B) NWs, the acceptor levels of Ni along with oxygen vacancies are created in the band gap of TiO_2 .

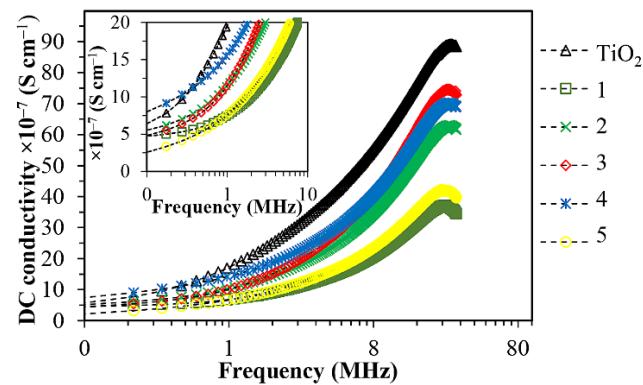
Fig. 3 (a) UV-vis diffuse reflectance spectra and (b) the band gap energies of all samples.

Electrical Properties

Figure 4 and Table 1 show conductivity and capacitance parts as a function of frequency, respectively. The DC electrical conductivity (σ_{DC} , S cm^{-1}) of stoichiometric TiO_2 (B) NWs at frequency range of 75 kHz – 30 MHz at room temperatures can be calculated by the following eq. (3) [22];

$$\sigma_{DC} = \frac{GL}{A} \quad (3)$$

Where G is conductance (S), L and A are the thickness (cm) and the cross sectional area (cm^2), respectively. As shown in Fig. 4, the DC electrical conductivity increases with increasing frequency. At higher frequency range, a higher DC conductivity of the material also increases as hopping frequency of the free electrons is accelerated [23]. The DC conductivity at high frequencies is the trend required for a small polaron hopping [24 – 26]. For the host nanomaterials, conductivity showed with fairly localized vendors bound to the lattice with lattice strain i.e. with polaron conduction [24, 27, 28]. It is seen that with addition of Ni, conductivity value increases in the high frequency. The Ni addition at 4 mol% Ni/ TiO_2 (B) NWs may result in more localization of charge carriers along with mobile ions causing higher ionic conductivity because the Ni optimum dopant take the part of an acceptor impurity in TiO_2 lattice and the reduction of the recombination of electron-hole pairs [29].


Moreover, the defect concentration or oxygen vacancy concentration around grain boundaries strongly affects the motion of charge carriers suggesting the performance in electrical conductivity. The advantages of nanowire structures were validated to contribute to the enhanced electron charge separation and transportation. TiO₂ nanowire nanostructures have a high surface area for continuous reaction process [7]. This may be the reason for higher conductivity and strong frequency dispersion on 4 mol% Ni/TiO₂(B) NWs. As expected, the conductivity increases with doped Ni. The conductivity of 4 mol% Ni/TiO₂(B) NWs was increased by 7.50×10^{-7} S cm⁻¹ compared with pure TiO₂ NWs is 5.50×10^{-7} S cm⁻¹. The Ni crystal dispersion of TiO₂(B) phase particles is due to the phase action of Ni/TiO₂ NWs that assist in controlling the internal individual dipoles in the presence of an electric field and hence, controls the conductivity properties of the composite.

In addition, D. Zhang et al. [7] found that photovoltage spectroscopy intensity is increased with increase in Ni dopant content from an undoped up to 1.50 mol%, and then decreased. This result support the Ni (II) ions and the oxygen vacancies can be because oxygen vacancies and Ni (II) ions can go on as traps to capture the photoinduced electron. These factors result in the surface potential of Ni doped TiO₂ being much less than that of pure TiO₂ under illumination. Therefore, the inhibit electron-hole recombination make the photovoltage spectroscopy response signal increase. This is of asset to the photocatalytic reaction. While at high Ni dopant region (> 1.50 mol%), the excessive oxygen vacancies and Ni species can become the recombination centers of photoinduced electrons and holes. So, it was revealed that the intensity of photovoltage spectroscopy signal is decreased [6].

Ni²⁺ has easily substituted into TiO₂ lattice and created an impurity energy level. The energy of impurity would lead to decreased band gap and response of visible light for TiO₂ photocatalyst. For conductivity, at low frequency, the resistivity and grain boundary of Ni doped TiO₂ with high an impurity energy level effect on the conductivity that would apply lower energy to exchange electron between ions at grain boundary than pure TiO₂. Then, Conductivity of Ni doped TiO₂ is high. [11, 12].

Conclusion

The 4 mol% Ni doped TiO₂(B) NWs photocatalyst was prepared by using the hydrothermal process and exhibits a higher photoactivity than pure TiO₂(B) NWs. The result shows that the high amount of Ni-doped TiO₂(B) promotes the formation of basic sites on the surface of TiO₂(B). Nickel doping of TiO₂(B) affected in the unit cell, crystallite size and band gap energy of the TiO₂(B) NWs. The amount of nickel content (more than 3 mol%) can affect to larger crystal size, however the band gap energy did not linearly decrease with the increasing amount of nickel to TiO₂(B). The 4 mol% Ni/TiO₂(B) NWs is near optimal across the compositions tested, having photocatalytic activities and small crystallite size. However, while XPS measurements give evidence of such interfacial effects on the TiO₂(B) NWs. Further studies on 4 mol% Ni/TiO₂(B) NWs have a real interest, since its high electrical conductivity properties makes it desirable for making ionic batteries and electrochemical sensors.

Fig. 4 The DC electrical conductivity of TiO₂(B) NWs at various Ni concentrations.

Acknowledgement

The authors would like to acknowledge Faculty of Engineering, Rajamangala University of Technology Srivijaya, Songkhla, Thailand and Fiber and Textile Research Unit for financial support of this research.

References

- [1] P. Makal, D. Das, Self-doped TiO₂ nanowires in TiO₂-B single phase, TiO₂-B/anatase and TiO₂-anatase/rutile heterojunctions demonstrating individual superiority

in photocatalytic activity under visible and UV light, *Appl. Surf. Sci.* 455 (2018) 1106 – 1115.

[2] Y. Zhang, Z. Jiang, J. Huang, L.Y. Lim, W. Li, J. Deng, D. Gong, Y. Tang, Y. Lai, Z. Chen, Titanate and titania nanostructured materials for environmental and energy applications: a review, *RSC Adv.* 5(97) (2015) 79479 – 79510.

[3] W. Wang, M. Tian, A. Abdulagatov, S.M. George, Y.C. Lee, R. Yang, Three-dimensional Ni/TiO₂ nanowire network for high areal capacity lithium ion microbattery applications, *Nano Lett.* 12(2) (2012), 655 – 660.

[4] V.N. Nguyen, N.T. Nguyen, P.H. Nguyen, Hydrothermal synthesis of Fe-doped TiO₂ nanostructure photocatalyst, *Adv. Nat. Sci.: Nanosci. Nanotechnol.* 2(3) (2011) 035014.

[5] S. León-Ríos, R. Espinoza González, S. Fuentes, E. Chávez Ángel, A. Echeverría, A.E. Serrano, C.S. Demergasso, R.A. Zárate, One-Dimensional TiO₂-B Crystals Synthesised by Hydrothermal Process and Their Antibacterial Behaviour on *Escherichia coli*, *J. Nanomater.* 2016 (2016) 1 – 8.

[6] I. Ganesh, A.K. Gupta, P.P. Kumar, P.C. Sekhar, K. Radha, G. Padmanabham, G. Sundararajan, Preparation and characterization of Ni-doped TiO₂ materials for photocurrent and photocatalytic applications, *Sci. World J.* 2012 (2012) 1 – 16.

[7] H.Y. Wu, M.H. Hon, C.Y. Kuan, C. Leu, Synthesis of TiO₂(B)/SnO₂ composite materials as an anode for lithium-ion batteries, *Ceram.* 41(8) (2015) 9527 – 9533.

[8] D. Zhang, Chemical synthesis of Ni/TiO₂ nano-photocatalyst for UV/visible light assisted degradation of organic dye in aqueous solution, *J. Sol-Gel Sci. Technol.* 58(1) (2011) 312 – 318.

[9] M.E. Olya, A. Pirkarami, M. Soleimani, M. Bahmaei, Photoelectrocatalytic degradation of acid dye using Ni-TiO₂ with the energy supplied by solar cell: mechanism and economical studies, *J. Environ. Manage.* 121 (2013) 210 – 219.

[10] W.T. Chen, A. Chan, D. Sun-Waterhouse, T. Moriga, H. Idriss, G.I. Waterhouse, Ni/TiO₂: A promising low-cost photocatalytic system for solar H₂ production from ethanol-water mixtures, *J. Catal.* 326 (2015) 43 – 53.

[11] S. Ahmad W. Khan, A. Raushan, Synthesis and characterization of Ni doped TiO₂ nanoparticles by Sol-Gel method, In Conf.: Int. Conf. on Advanced Materials for Power Engineering At: MGU. (2015).

[12] P. Soni, V.V.S. Murty, K.K. Kushwaha, The effect of Ni²⁺ ions on energy band gap of TiO₂ nanoparticles for solar cell applications. *J. Nanosci. Nanoeng. Appl.* 8(2) (2018) 69 – 74.

[13] A. Byeon, M. Boota, M. Beidaghi, K.V. Aken, J.W. Lee, Y. Gogotsi, Effect of hydrogenation on performance of TiO₂(B) nanowire for lithium ion capacitors, *Electrochem. Commun.* 60 (2015) 199 – 203.

[14] L. Sikong, M. Masaee, K. Kooptarnond, W. Taweeprada, F. Saito, Improvement of hydrophilic property of rubber dipping former surface with Ni/B/TiO₂ nano-composite film, *Appl. Surf. Sci.* 258(10) (2012) 4436 – 4443.

[15] J. Cui, D. Sun, S. Chen, W. Zhou, P. Hu, H. Liu, Z. Huang, Enhancement of selective determination of the perfect match and mismatch of single nucleobases with a biosensing electrode based on surface-coarsened anatase TiO₂ nanobelts, *J. Mater. Chem.* 21(29) (2011) 10633 – 10636.

[16] K.F. He, E.N. Xu, Y. Liu, W.P. Chen, Hydrogenation of nano-structured TiO₂ photocatalyst through an electrochemical method, *J. Nanosci. Nanotechnol.* 15(1) (2015) 303 – 308.

[17] P. Hermawan, H.D. Pranowo, I. Kartini, Physical characterization of Ni(II) doped TiO₂ nanocrystal by sol-gel process, *Indo. J. Chem.* 11(2) (2011) 135 – 139.

[18] B. Xu, J. Ding, L. Feng, Y. Ding, F. Ge, Z. Cai, Self-cleaning cotton fabrics via combination of photocatalytic TiO₂ and superhydrophobic SiO₂, *Surf. Coat. Technol.* 262 (2015) 70 – 76.

[19] N.S. Begum, H.F. Ahmed, K.R. Gunashekhar, Effects of Ni doping on photocatalytic activity of TiO₂ thin films prepared by liquid phase deposition technique, *Bull. Mater. Sci.* 31(5) (2008) 747 – 751.

[20] M.M. Haque, A. Khan, K. Umar, N.A. Mir, M. Muneer, T. Harada, M. Matsumura, Synthesis, characterization and photocatalytic activity of visible light induced Ni-doped TiO_2 , *Energy Environ. Focus.* 2(1) (2013) 73 – 78.

[21] G. Cai, J. Tu, D. Zhou, L. Li, J. Zhang, X. Wang, C. Gu, Constructed TiO_2/NiO core/shell nanorod array for efficient electrochromic application, *J. Phys. Chem. C.* 118(13) (2014) 6690 – 6696.

[22] N. Sriharan, N. Muthukumarasamy, T.S. Senthil, Preparation and characterization of Al_2O_3 doped TiO_2 nanocomposites prepared from simple sol-gel method, *Z. Phys. Chem.* 230(12) (2016) 1745 – 1758.

[23] R. Chang, Y. Tian, Y. Wang, J. Qin, pH-responsive vesicles with tunable membrane permeability and hydrodynamic diameters from a cross-linkable amphiphilic block copolymer, *Nanomater. Nanotechnol.* 6(6) (2016) 1 – 6.

[24] S. Sagadevan, K. Pal, P. Koteeswari, A. Subashini, Synthesis and characterization of $\text{TiO}_2/\text{graphene oxide}$ nanocomposite, *J. Mater. Sci.: Mater. Electron.* 28(11) (2017) 7892 – 7898.

[25] A.N. Patil, M.G. Patil, K.K. Patankar, V.L. Mathe, R.P. Mahajan, S.A. Patil, Dielectric behaviour and ac conductivity in $\text{Cu}_{\text{x}}\text{Fe}_{3-\text{x}}\text{O}_4$ ferrite, *Bull. Mater. Sci.* 23(5) (2000) 447 – 452.

[26] S. Kurien, S. Sebastian, J. Mathew, K.C. George, Structural and electrical properties of nano-sized magnesium aluminate, *Indian J. Pure Appl. Phys.* 42 (2004) 926 – 933.

[27] C.R. Indulal, R. Raveendran, Synthesis, characterization and dielectric studies of cerium phospho iodate and cadmium doped cerium phospho iodate in nano form, *Indian J. Pure Appl. Phys.* 48 (2010) 121 – 126.

[28] M. Raghavasudha, D. Ravinder, P. Veerasomaiah, Influence of Cr^{3+} ion on the dielectric properties of nano crystalline Mg-Ferrites synthesized by citrate-gel method, *Mater. Sci. Appl.* 4(7) (2013) 432 – 438.

[29] H.L. Qin, G.B. Gu, S. Liu, Preparation of nitrogen-doped titania with visible-light activity and its application, *C. R. Chim.* 11(1 – 2) (2008) 95 – 100.