

Calculation of Fast Neutron Removal Cross-Sections for Lithium Borate Glasses System Doped Lutetium

Sunantasak Ravangvong^{a,*}, Kittisak Sriwongs^a, Priyakorn Chaiyo^c
and Punsak Glumglomchit^c

^a Division of Science and Technology, Faculty of Science and Technology, Phetchaburi Rajabhat University, Phetchaburi, 76000 Thailand

^b The demonstration school of Silpakorn University, Nakhon Pathom, 73000 Thailand

^c Huahin Vitthayalai School, Hua-Hin, Prachuap Khirikhan, 77110 Thailand

Received 7 June 2019; Revised 17 December 2019; Accepted 24 December 2019

Abstract

The macroscopic effective removal cross-sections for fast neutrons (higher than 10^4 eV) (Σ_R) are parameter for used characterize the attenuation of fast neutrons in materials. This article interests on shielding radiation properties for borate glass in composition $x\text{Lu}_2\text{O}_3:20\text{Li}_2\text{O}:(80-x)\text{B}_2\text{O}_3$ at different concentration ($x = 5, 10$ and 15 mol%). Furthermore, the macroscopic effective removal cross-section for fast neutron values was also estimated and compared with ordinary and hematite–serpentine concrete. The results obtained can be used to choose the effective shielding radiation material for reducing heat energy into building.

KEYWORDS: Neutron, Lutetium; Glass

*Corresponding authors ; E-mail : sunantasak.rav@mail.pbru.ac.th

Introduction

Now a day, buildings consume lots of energy for artificial lighting and forced ventilation to provide visual and thermal comfort, respectively to the occupants inside the buildings. Glass is one of material; the most widely used building enclosures in commercial buildings. Extensive use of glass enclosures in commercial buildings causes more heat gain and uncomfortable conditions inside the building. Hence attention has to be focused on the selection of alternative window glass materials for reducing cooling loads in buildings. So, the studies on the window glass inward tilt to reduce solar beam radiation through various glass materials [1]. Radiation is the energy released from the source such as heat or light from the sun, microwave from microwave oven, X-rays from the X-ray tube and gamma rays from radioactive substances. Each type of radiation or electromagnetic wave is different at the frequency and wavelength such as heat wave, radio wave, infrared, sunlight, ultraviolet, X-rays and gamma rays which the amount of energy may be in the form of electromagnetic waves or groups of particles moving through the medium [2]. Radiation shielding involves at placing a shielding material between the ionizing radiations source and

the worker or the environment. The radiations which have to be considered are: x and gamma rays, alpha particles, beta particles, and neutrons, each type of these radiations interacts in different ways with shielding medium. Therefore, the effectiveness of shielding varies with the type and energy of radiation and also varies with the used shielding medium [3].

The best medium for attenuate radiation are mixture of hydrogenous mediums and neutron absorbing elements, because they attenuate both the intensity of radiation and neutrons, indeed, hydrogen slows fast and intermediate neutrons energy via inelastic scattering, and they become thermal neutrons which are absorbed by neutron absorbing elements which have a very high neutron absorption cross-section [3].

Neutron penetration in shielding is characterized by several parameters such as effective removal cross-section, the macroscopic thermal neutron cross section. In this study, the development and use glass for solve problem in shielding neutron by calculation the macroscopic effective removal cross-sections for fast neutrons and compare result with ordinary and hematite–serpentine concrete.

Materials and Methods

The shielding neutron involves three steps: 1. Slow the neutrons, 2. Absorb the neutrons and 3. Absorb the gamma rays. When neutrons are electrically neutral particles, during their passage through a material medium, they interact with the nuclei of atoms in two ways, either by diffusion or absorption. The interaction of neutrons with the atoms described by the total microscopic cross-section σ_t , expresses the probability that a neutron of a given energy interacts with the atoms of the traversed material and it is defined as the sum of the microscopic cross-section scattering σ_s and the microscopic cross-section absorption σ_a [4]. Equation (1)

$$\sigma_t = \sigma_s + \sigma_a \quad (1)$$

The attenuation of neutrons during their passage through material medium depends not only on the microscopic cross – section but also on the number of nuclei within this environment. The physical quantity bound these two parameters, called total macroscopic cross-section denoted Σ_t and defined by; equation (2)

$$\Sigma_t = \frac{(\rho N_A \sigma_t)}{A} \quad (2)$$

where ρ , N_A and A are density (g cm^{-3}), Avogadro's Number and atomic mass, respectively.

In the same way as a beam of photons, when the parallel beam of monoenergetic neutrons passes through a material medium, it will be attenuated due to absorption and scattering. The attenuation of neutrons in matter follows the following law; equation (3)

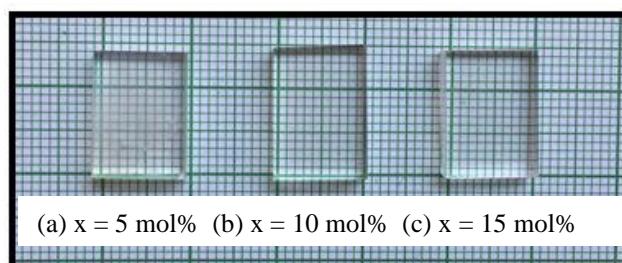
$$I = I_0 e^{-\Sigma_t x} \quad (3)$$

where I_0 , I , x and Σ_t are the intensities of neutrons unmitigated and mitigated, the thickness (cm) of the material medium and the total macroscopic cross–section, respectively. So the case of fast neutron attenuation is described by another parameter called the "removal cross – section", denoted by (Σ_{Rc} : m^{-1}) and is different from the total macroscopic cross–section but it has a fraction of it. The removal cross–section presents the probability that a fast or fission–energy neutron undergoes a first collision, which removes it from the group of penetrating uncollided neutrons.

Generally, shielding materials are chemical compounds or mixtures, their macroscopic removal cross-section is calculated from the value of Σ_R of their constituent elements and it is given by the following formula; equation (4)

$$\Sigma_R = \sum_i w_i \left(\frac{\Sigma_{Rc}}{\rho} \right)_i \quad (4)$$

where w_i , ρ and $(\Sigma_{Rc}/\rho)_i$ are the partial density (g cm^{-3}), density and mass removal cross section of the i th constituent, respectively [3 – 4].


For the calculation in eq. 4 may be the relation of atomic mass (A) and atomic number (Z) of element and it is given by the following formula [5]

$$\Sigma_R = 0.21A^{-0.56} \text{ or } \Sigma_R = 0.00662A^{-1/3} + 0.33A^{-2/3} - 0.211A^{-1}, (A > 12) \quad (5)$$

$$\Sigma_R = 0.190 Z^{-0.743}, (Z \leq 8) \quad (6)$$

$$\Sigma_R = 0.125 Z^{-0.565}, (Z > 8), \quad (7)$$

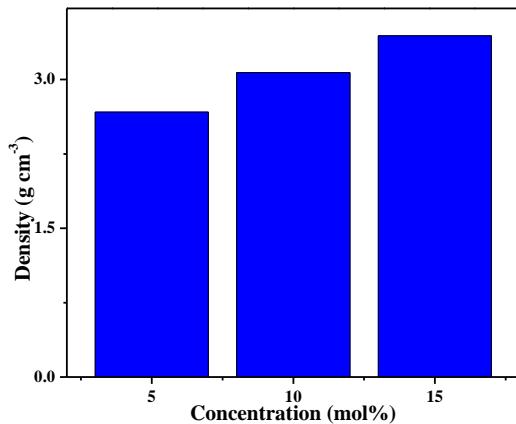

In this study, the macroscopic effective removal cross-sections for fast neutrons (higher than 10^4 eV) (Σ_R) were use eq. (4) – (7).

Fig. 1 Photograph of glasses system with different the Lu_2O_3 concentration.

Result and discussions

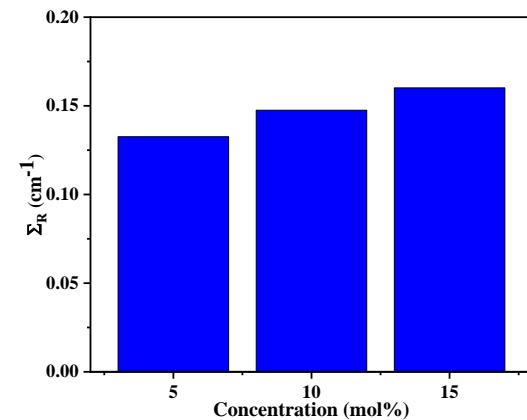

In this context, lithium borate glasses system containing lutetium with chemical composition $x\text{Lu}_2\text{O}_3:20\text{Li}_2\text{O}:(80-x)\text{B}_2\text{O}_3$ ($x = 5, 10$, and 15 mol%) were shown in Fig. 1. From Fig. 1, all glass samples are good transparent.

Fig. 2 Density of glasses system with different the Lu_2O_3 concentration.

Density is main and foundational physical property of glasses system. The density of glass was indicated the change of geometrical configurations, adjust compactness in degree, coordination of formation and differentiation of

dimensions of interstitial holes. The density of glasses system was measured by applying Archimedes method, the weight of glasses system was investigated in air and in water with contribute a 4 - digit sensitive microbalance (A&D HR-200) to measurement as shown in Table 1, it increased with increased Lu_2O_3 content. The increasing of Lu_2O_3 content that made molecular mass of Lu^{3+} increased which has effect to compactness of glass series structure. That may be due to the presence of Lu^{3+} ions in glass structure that will made borate glass network adjust by converting more $[\text{BO}_3]^{-3}$ triangles to BO^{-4} tetrahedral [6 – 7].

Fig. 3 Σ_R of glasses system with different the Lu_2O_3 concentration.

Table 1 Glass description (mol%) and density (g cm⁻³).

[Lu_2O_3] Mol%	Glass description	Density (g cm⁻³)
5	5 $\text{Lu}_2\text{O}_3:20\text{Li}_2\text{O}:75\text{B}_2\text{O}_3$	2.67 ± 0.0009
10	10 $\text{Lu}_2\text{O}_3:20\text{Li}_2\text{O}:70\text{B}_2\text{O}_3$	3.07 ± 0.0005
15	15 $\text{Lu}_2\text{O}_3:20\text{Li}_2\text{O}:65\text{B}_2\text{O}_3$	3.44 ± 0.0006

Table 2 Calculations of Σ_R for glass sample at 5 mol% of Lu_2O_3 content.

Element	Σ_R/ρ (cm² g⁻¹)	Fraction by Weight	Partial Density ρ (g cm⁻³)	Σ_R (cm⁻¹)
Li	0.08	0.15	0.40	0.033
B	0.06	0.23	0.63	0.036
O	0.04	0.57	1.57	0.063
Lu	0.01	0.04	0.12	0.001

Table 3 Calculations of Σ_R for glass sample at 10 mol% of Lu_2O_3 content.

Element	Σ_R/ρ (cm² g⁻¹)	Fraction by Weight	Partial Density ρ (g cm⁻³)	Σ_R (cm⁻¹)
Li	0.08	0.15	0.47	0.039
B	0.06	0.22	0.69	0.039
O	0.04	0.55	1.73	0.069
Lu	0.01	0.09	0.28	0.003
Total Σ_R (cm⁻¹)				0.15

Table 4 Calculations of Σ_R for glass sample at 15 mol% of Lu_2O_3 content.

Element	Σ_R/ρ ($\text{cm}^2 \text{g}^{-1}$)	Fraction by Weight	Partial Density ρ (g cm^{-3})	Σ_R (cm^{-1})
Li	0.08	0.15	0.50	0.042
B	0.06	0.20	0.69	0.039
O	0.04	0.52	1.76	0.071
Lu	0.01	0.13	0.45	0.005
Total Σ_R (cm^{-1})				0.1581

Table 5 Σ_R (cm^{-1}) for glasses system, Ordinary and hematite–serpentine concrete.

Sample	Σ_R (cm^{-1})	Ref.
5 Lu_2O_3 :20 Li_2O :75 B_2O_3	0.13	This work
10 Lu_2O_3 :20 Li_2O :70 B_2O_3	0.15	This work
15 Lu_2O_3 :20 Li_2O :60 B_2O_3	0.16	This work
Ordinary concrete	0.09	[8]
hematite–serpentine concrete	0.10	[8]

The removal cross-section for fast neutron (Σ_R) for the glasses system was shown in Fig. 3. It was found that Σ_R value was increased with increasing Lu_2O_3 concentration. This may be due to the replacement of B_2O_3 by Lu_2O_3 which higher than molecular weight. The comparison Σ_R as shown in Table 5, it found that the Σ_R value of glasses system were higher than Σ_R value of ordinary and hematite–serpentine concrete. It indicated the materials had high molecular number that plays an important role in the high energy neutron barrier. Form Table 5, glasses system had the removal cross-section for fast neutron higher than concrete mentioned which will help reduce the amount of neutron entering the building better.

Conclusion

The results obtained from this study can be used as a database for development and designers glass window shielding neutrons. The comparison glasses system with ordinary and hematite–serpentine concrete, this glasses system were advantages properties due to glasses system were reduce the amount of neutron enter the building and they also do not reduce the intensity of light, thus helping to reduce the amount of electricity used in the building.

Acknowledgement

The authors would like to thank Nakhon Pathom Rajabhat University to support for instrumentation and facilities.

References

- [1] G. K. Kumar, S. Saboor, T. P. Ashok Babu, Experimental and Theoretical Studies of Window Glazing Materials of Green Energy Building in Indian Climatic Zones, Procedia Eng. 109 (2017) 306 – 313.
- [2] A. S. Raymond, W. J. John, Physics for Scientists and Engineers, 6th edition, ISBN: 0 – 53440 – (2004) 842 – 7, Thomson Brooks/Cole.
- [3] Y. Elmahroug., B. Tellili, C. Souga, Calculation of Fast Neutron Removal Cross-Sections for different shielding materials, International Journal of Physics and Research. 3(2) (2013) 7 – 16.
- [4] V. P. Singh, N. M. Badiger, J. Kaewkhao, Radiation shielding competence of silicate and borate heavy metal oxide glasses: Comparative study, J. Non – Cryst. Solids. 404 (2014) 167 – 173.
- [5] A. E. Abd, G. Mesbah, M. A. M. Nader and A. Ellithi, A simple Method for Determining the Effective Removal Cross Section for Fast Neutrons, Journal of Radiation and Nuclear Applications. 2(2) (2016) 53 – 58.
- [6] F. Zaman, J. Kaewkhao, G. Rooh, N. Srisittipakakun, H.J. Kim, Optical and luminescence properties of Li_2O – Gd_2O – MO – B_2O_3 – Sm_2O_3 ($\text{MO} = \text{Bi}_2\text{O}_3$, BaO) glasses, J. Alloys Compd. 676 (2016) 275 – 285.
- [7] D. Kumar, S. M. Rao, S. P. Singh, Structural, optical and thermoluminescence study of

Dy³⁺ ion doped sodium borate glass, *J. Non-Cryst. Solids.* 464 (2017) 51 – 55.

[8] I. I. Bashter, Calculation of Radiation Attenuation Coefficients for shielding concretes, *Ann. Nucl. Energy.* 24(17) (1997) 1389 – 1401.

[8] A.M.S. Issa, K. Ashok, M.I. Sayyed, M.G. Dong, Y. Elmahroug, Mechanical and gamma-ray shielding properties of TeO₂-ZnO-NiO glasses, *Mater. Chem. Phys.* 212 (2018) 12 – 20.

[9] N. Chanthima, J. Kaewkhao, Investigation on radiation shielding parameters of bismuth borosilicate glass from 1 keV to 100 GeV, *Ann. Nucl. Energy* 55 (2013) 23 – 28.

[10] R. Laopaiboon, J. Laopaiboon, S. Pencharee, S. Nontachat, C. Bootjomchai, The effects of gamma irradiation on the elastic properties of soda lime glass doped with cerium oxide, *J. Alloys Compd.* 666 (2016) 292 – 300.

[11] M.I. Sayyed, Bismuth modified shielding properties of zinc boro-tellurite glasses, *J. Alloys Compd.* 688 (2016) 111 – 117.

[12] M.C. Ersundu, A.E. Ersundu, M.I. Sayyed, G. Lakshminarayana, S. Aydin, Evaluation of physical, structural properties and shielding parameters for K₂O-WO₃-TeO₂ glasses for gamma ray shielding applications, *J. Alloys Compd.* 714 (2017) 278 – 286.