

Low Electrical Resistivity of Nano WO_3 -doped ZnO Thermoelectric Material

Wasu Cheewasukhanont ^{a, b, *}, Jakrapong Kaewkhai ^{a, b}

^a*Center of Excellence in Glass Technology and Materials Science (CEGM), Nakhon Pathom Rajabhat University, Nakhon Pathom, 73000, Thailand*

^b*Physics Program, Faculty of Science and Technology, Nakhon Pathom Rajabhat University, Nakhon Pathom, 73000, Thailand*

Received 7 February 2019; Revised 21 August 2019; Accepted 6 December 2019

Abstract

The ZnO thermoelectric material was reduced electrical resistivity by doping nano WO_3 powder in solid-state reaction process by using ZEM-3 at temperature range of 373 – 873 K in Ar atmosphere. The results found that the XRD patterns show the nebulous phase matches with of ZnWO_4 belonging to the monoclinic structure. In XRD patterns were appeared WO_3 peaks in crystalline structure of ZnWO_4 phases, and the SEM showed an intensive distribution of WO_3 into the grain boundaries. The average Seebeck coefficient of WO_3 -doped ZnO sample was increased from -30 to $-75 \mu\text{V K}^{-1}$ indicate n-type thermoelectric materials. Moreover, we can reduce the electrical resistivity ranged from $16 \text{ m}\Omega \text{ cm}$ to $34 \text{ m}\Omega \text{ cm}$. The highest power factor of sample is $0.024 \text{ mW m}^{-1} \text{ K}^{-2}$ at 473 K. The results revealed that doping nano WO_3 with ZnO also could promote to using for the thermoelectric devices at high temperature application.

KEYWORDS: Nano materials; semi-conductors; thermoelectric materials

*Corresponding authors ; E-mail : wasu.kotzen@gmail.com

Introduction

This attention of the researcher is attributed to their unique properties of thermoelectric materials which they could act to directly conversion of heat energy into electrical energy which numerous applications of thermoelectric materials have been found in different fields [1 – 3]. The significant knowledge of Seebeck and Peltier effects are essential fundamental phenomena for making a small amount of power at a very small voltage. The efficiency of thermoelectric materials could be quantified by the dimensionless figure of merit ZT , $ZT = \sigma S^2 T / \kappa$, where S is Seebeck coefficient, σ is electric conductivity, κ is thermal conductivity and T is temperature [4]. Therefore, the realization of high S and σ values and a low κ value is required for a high-performance material [5]. It is well known that the compositional or composite materials are used for the development and enhancement material's properties. In case of chemical doping in ZnO material, the structure parameters can be operated that affect to properties of material and even also into the semiconductor materials [6]. Among the thermoelectric materials, ZnO has become a promising thermoelectric material due to its high Seebeck coefficient, low-

cost production, potential high-temperature chemical stability and non-toxicity [7]. Interesting of researchers ZnO -based materials showed that thermoelectric properties can be improved by substitution with transition element which showed to higher electrical conductivity, Seebeck coefficient and electrical resistivity. J. Liu and et al. [8] were demonstrated that Pb and Zn codoping in the SnSe single crystals in polycrystalline SnSe secondary phase contribute to remarkable enhancement of electrical conductivity and power factor and It can be concluded that the high thermoelectric performance $ZT = 2.2$ was achieved in polycrystalline SnSe through enhancing electrical transport properties while keeping ultralow thermal conductivity [9]. Interest in typical nanomaterials, whereas they are located in the bulk of conventional materials. Thus, the intrinsic properties of nanomaterials are different from conventional materials, since the majority of atoms are in different environment. Nanomaterials represent almost the ultimate in increasing surface area. Substances with high surface areas have enhanced chemical, mechanical, optical and magnetic properties, and this can be exploited for a

variety of structural and non-structural application [10]. In fields of thermoelectric materials, ZnO nanoparticle have shown favorable TE properties, low cost, and earth abundance for large-scale application potentials. Additionally, Zinc can be obtained from waste materials. ZnO nanoparticles have shown remarkable performance in a wide variety of applications, including photocatalytic and photoluminescence, self-cleaning and pollution remediation for structures and environment [11]. In recent years, some other metal oxides have received considerable attention as thermoelectric materials, such as WO_3 which have optical bandgap of ~ 2.7 eV, which is attributed to a charge transfer transition from a filled valence band composed mainly of O_2 p orbitals to an empty conduction band (CB) composed mainly of W 5d orbitals, and is an electronic (n-type) conductor when the material has oxygen vacancies [12, 13]. Therefore, this work aims to improve thermoelectric properties of the nano ZnO thermoelectric material by doped with nano WO_3 were synthesized by solid state reaction method.

Materials and Methods

For sample, pure nano- WO_3 doped with nano-ZnO (ZnO: WO_3) were prepared by a solid-state reaction method. The powders each having a purity of 99% were used as starting materials. To obtain ideal sample, for each composition, the powders were mixed and ground in a ball mill at speed of 320 revolution per minute for 5 h. Then hot-pressed at 800 °C for 6 h in Ar (Argon) atmosphere. After the hot-pressed, Crystal structure of the sample was characterized by X-ray diffraction (XRD-6100, SHIMADZU Co., Ltd.) with $\text{Cu K}\alpha$ (1.54056 Å) radiation accelerated in a 2θ range of 25 – 80 °. The nano-structure of the sample were observed by a scanning electron microscope (SEM, JEOL, JSM5410LV Co., Ltd.). In order to measure the Seebeck coefficient, two surfaces of sample

composite cubes ($3 \times 3 \times 15$ mm 3) were polished with sandpaper and kept at room temperature (25 ± 2 °C) shown in Fig. 1(a). The voltages were measured at temperatures at both sides of samples (Vroom) were recorded by a SANWA digital multi-meter Instrument (CD800a). The density was measured by Archimedes' method. Electrical conductivity and Seebeck coefficient were measured using a static DC thermoelectric property measurement system (ZEM-3, ADVANCE RIKO, Inc.) under at temperature range of 373 – 873 K in Ar atmosphere shown in Fig. 1(b).

Results and Discussion

In this work, the $\text{WO}_3:\text{BaO:ZnO:B}_2\text{O}_3$ glasses in composition $x\text{WO}_3:20\text{BaO:20ZnO:}(60-x)\text{B}_2\text{O}_3$ (where $x = 0, 5, 10, 15, 20$ and 25 mol%) have been studied the photon interaction in the energy range 1 – 10^5 keV by using WinXCom program. Fig. 1. shown that the photoelectric absorption were the main interaction at low photon energy (1 – 10^3 keV), the values were decreased with increasing of photon energy.

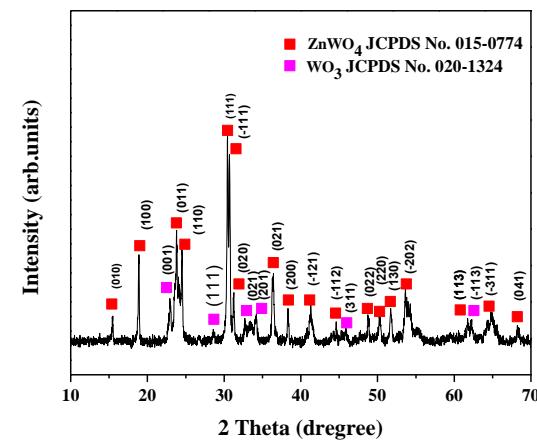
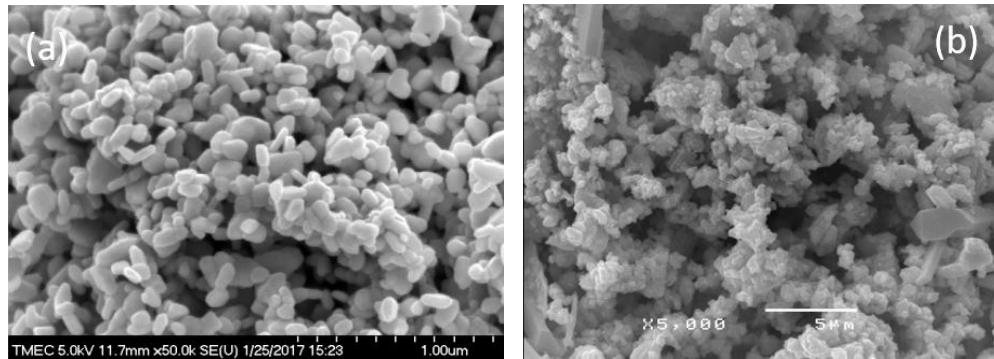



Fig. 2 XRD patterns of samples hot-pressing.

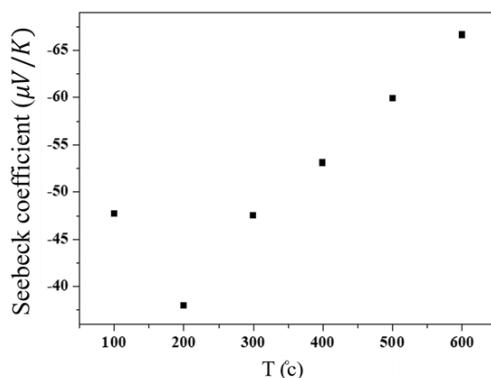


Fig. 1 Measurement system of thermoelectric properties (ZEM-3, ADVANCE RIKO, Inc.).

Fig. 3 SEM images of the fraction to the hot-pressing direction for WO_3 (a) and ZnWO_4 (b).

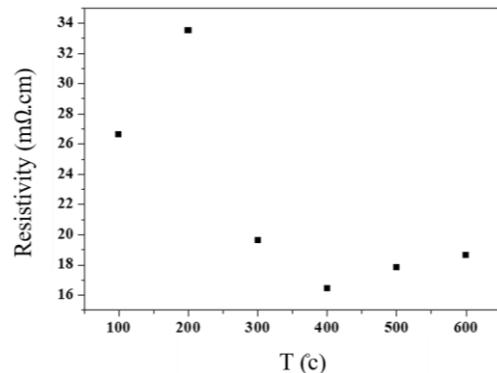

Fig. 2 shows the XRD pattern at the hot pressing at 800 °C for 6 h in Ar atmosphere on 60 MPa of the sample almost all diffraction peaks can be indexed to the nebulous phase matches with of ZnWO_4 (JCPDS No. 015-0774), belonging to the monoclinic structure. In XRD patterns were appeared WO_3 peaks (JCPDS No. 020-1324) in crystalline structure of ZnWO_4 phases due to the powder's preparation to ZnWO_4 are not completely oxidation. In Fig. 3 the scanning electron microscopy micrographs of the nano WO_3 (a) and with distribution amount of nano WO_3 in nano ZnO based (b) are shown that the distribution of nano WO_3 packing with the nano ZnO based and show that the grain size of samples increases with the addition of nano WO_3 in nano ZnO based.

Fig. 4 Temperature dependence of Seebeck coefficient of hot-pressing sample.

Fig. 4 presents the Seebeck coefficients (s) for the samples at different temperatures. The absolute value of the s increases with the increment of the temperature, and the Seebeck coefficient values are all negative over the whole temperature range, indicating an n-type conduction. The electrical resistivity of hot-pressing sample shows highest electrical

resistivity 34 $\text{m}\Omega \text{ cm}$ at 200 °C and electrical resistivity decreases with increasing temperature show lowed electrical resistivity at 16 $\text{m}\Omega \text{ cm}$ at 400 °C.

Fig. 5 Temperature dependence of the electrical resistivity of hot-pressing sample.

Fig. 6 Temperature dependence of the Power factor of hot-pressing sample.

The power fartner is another path of the values which can be predict reliably and accurately the efficiency of materials at a large temperature difference between the hot and cold sides of the materials. In this case the power factor of hot-pressing sample has the same trend of the Seebeck coefficient which

have increased with the increasing of the temperature. The hot-pressing sample have good the power factor when compared with the hot-pressing sample and showed highest power factor value of $ZnWO_4$ at $0.024 \text{ mW m}^{-1} \text{ K}^{-2}$ and lowed power factor value is $0.004 \text{ mW m}^{-1} \text{ K}^{-2}$ approximately.

Conclusion

For sample, pure nano- WO_3 doped with nano- ZnO ($ZnO: WO_3$) were prepared by a solid-state reaction method by hot-pressing process. The powders were mixed and ground in a ball mill at speed of 320 revolution per minute for 5 h. Then hot-pressed at 800°C for 6 h in Ar atmosphere. It can be concluded that XRD patterns did not show evidence for $ZnWO_4$ inclusion into the ZnO lattice, but the SEM showed an intensive distribution of WO_3 into the grain boundaries. The average Seebeck coefficient of WO_3 -doped ZnO sample was increased from -30 to $-75 \mu\text{V K}^{-1}$ indicate n-type thermoelectric materials. Found that we can reduce the electrical resistivity ranged from $16 \text{ m}\Omega \text{ cm}$ to $34 \text{ m}\Omega \text{ cm}$. The power factor showed highest power factor value of $ZnWO_4$ at $0.024 \text{ mW m}^{-1} \text{ K}^{-2}$ and lowed power factor value is $0.004 \text{ mW m}^{-1} \text{ K}^{-2}$.

Acknowledgement

The Authors would like to thank National Research Council of Thailand (NRCT), Nakhon Pathom Rajabhat University (NPRU), Assoc. Prof. Dr. Tosawat Seetawan (program of Physics Faculty of Science and Technology, Sakon Nakhon Rajabhat University (SNRU)) for support this research.

References

- [1] Q. Xin, X. Yu, C. Cheng, Z. Lei, Z. Lidong, Synergistically optimizing electrical and thermal transport properties of n-type $PbSe$, *Progress in Natural Science: Materials International* 28 (2018) 275 – 280.
- [2] T. Tian, L. Cheng, J. Xing, L. Zheng, Z. Man, D. Hu, S. Bernik, J. Zeng, J. Yang, Y. Liu, G. Li, Effects of sintering on the microstructure and electrical properties of ZnO -based thermoelectric materials, *Mater. Des.* 132 (2017) 479 – 485.
- [3] L. Feng, Z. Renshuang, W. Yehao, X. Zhaojun, Z. Xinbing, Z. Tiejun, Enhanced thermoelectric performance of n-type bismuth-telluridebased alloys via In alloying and hot deformation for mid-temperature power generation, *J. Materiomics* 4 (2018) 208 – 214.
- [4] L.C. Chieh, G. Dianta, K. Gareoung, A. Kyunghan, R.J. Soo, High thermoelectric performance and low thermal conductivity in K-doped $SnSe$ polycrystalline compounds, *Curr. Appl Phys.* 18 (2018) 1534 – 1539.
- [5] Y. Masahiro, I. Yuya, T. Rei, Thermoelectric properties of Bi_2O_3 -added WO_3 ceramics, *Ceram. Int.* 45 (2019) 197 – 202.
- [6] G. Weibao, Z. Liying, W. Chao, W. Yuanxu, Theoretical and experimental investigations of the thermoelectric properties of Al-, Bi- and Sn-doped ZnO , *Mater. Sci. Semicond. Process* 66 (2017) 247 – 252.
- [7] G. SeyedAli, G. Ehsan, L. Na, Effect of ZnO nanoparticles on thermoelectric properties of cement composite for waste heat harvesting, *Constr. Build. Mater.* 146 (2017) 755 – 763.
- [8] J. Liu, P. Wang, M. Wang, R. Xu, J. Zhang, J. Liu, D. Li, N. Liang, Y. Du, G. Chen, G. Tang, Achieving high thermoelectric performance with Pb and Zn codoped polycrystalline $SnSe$ via phase separation and nanostructuring strategies, *J. Nano Energy* 53 (2018) 683 – 689.
- [9] W. Michael, K. Kamali, S. Geoff, and R. Burkhard, Nano technology basic science and emerging technologies. UNSW Sydney, 2002, Australia.
- [10] W.T. Ran, W. Chao-Feng, L. Fu, and L. Jing-Feng, Low-cost and environmentally benign selenides as promising thermoelectric materials, *J. Materiomics* 4 (2018) 304 – 320.
- [11] W. Haiqing, D. Xiang, P. Shujie, D. Liang, and W. Yu, Improvement of thermoelectric properties of WO_3 ceramics by ZnO addition, *J. Alloys Compd.* 527 (2012) 204 – 209.
- [12] M. Li, H. Shao, J. Xu, Q. Wu, X. Tan, G. Liu, M. Jin, H. Hu, H. Huang, J. Zhang, J. Jiang, Microstructure engineering beyond $SnSe_{1-x}S_x$ solid solution for high thermoelectric performance, *J. Materiomics* 4 (2018) 321 – 328.
- [13] H. Min, C. Zhi-Gang, M. Syo, and Z. Jin, Nano-scale dislocations induced by self-vacancy engineering yielding extraordinary n-type thermoelectric $Pb_{0.96-y}In_ySe$, *J. Nano Energy* 50 (2018) 785 – 793.