

Annealing Induced Crystallinity, Photoelectrochemical Response and Hydrogen Evolution of TiO_2 Nanotube Arrays as Photocatalyst in Water Splitting

Min Min Thein^a, Nyein Nyein^b, Nyein Wint Lwin^c, Than Zaw Oo^c *

^a*Department of Physics, Monywa University, Monywa, Myanmar*

^b*Department of Physics, Meiktila University, Meiktila, Myanmar*

^c*Department of Physics, University of Mandalay, Mandalay, Myanmar*

Received 14 April 2018; Revised 25 April 2018; Accepted 26 April 2018

Abstract

The titanium dioxide nanotube (TiO_2 -NT) arrays were developed by electrochemical anodization. Scanning electron microscopy investigation showed that the TiO_2 -NTs have well-defined morphology with average inner diameter of 100 nm and length 2 μm . The crystallinity of anatase phase TiO_2 is more pronounced at higher annealing temperature 500 °C demonstrated by X-ray diffraction. We investigated the photoelectrochemical response of TiO_2 -NTs annealed at 300 °C, 400 °C and 500 °C in KOH aqueous solution under light illumination with different wavelengths by linear sweep voltammetry. A significant increase in peak current densities is observed (i) under UV light and (ii) in TiO_2 -NTs annealed at 500 °C with highest peak current density of 0.782 mA cm^{-2} . Former one is attributed to more energetic UV light activation to wide band gap TiO_2 and latter one is ascribed to better crystallinity at higher temperature. In the photocatalytic water splitting experiment using white light illumination, hydrogen evolution rate increases with increasing annealing temperature of TiO_2 -NTs and is as high as 0.347 mL min^{-1} for TiO_2 -NTs at 500 °C. It is noted that the crystallinity of photocatalyst plays a key role in determining the electrochemical current generation and hydrogen evolution in photoelectrochemical water splitting.

KEYWORDS: TiO_2 nanotubes; crystallinity; water splitting; hydrogen evolution

* Corresponding authors; e-mail: thanzawoo06@gmail.com, than0031@e.ntu.edu.sg

Introduction

Titanium dioxide (TiO_2) is a promising semiconductor material for photoelectrochemical water splitting because of its favorable band-edge positions, high photocorrosion resistance, superior chemical stability and low-cost [1, 2]. Solar water splitting provides an effective route for sustainable hydrogen generation using photoelectrochemical platform where only inputs are sunlight and water. Semiconductor materials are required as photocatalyst in water splitting and they would be able to support rapid charge transfer at a semiconductor/aqueous interface, exhibit long-term stability, and efficiently harvest a large portion of the solar spectrum [3]. As compared to the semiconducting materials in bulk or thin film form, the nanosized materials would offer much higher surface area for a given volume which enhances the catalytic reactions and increases the interactions with surrounding media. In addition, quantum confinement effects

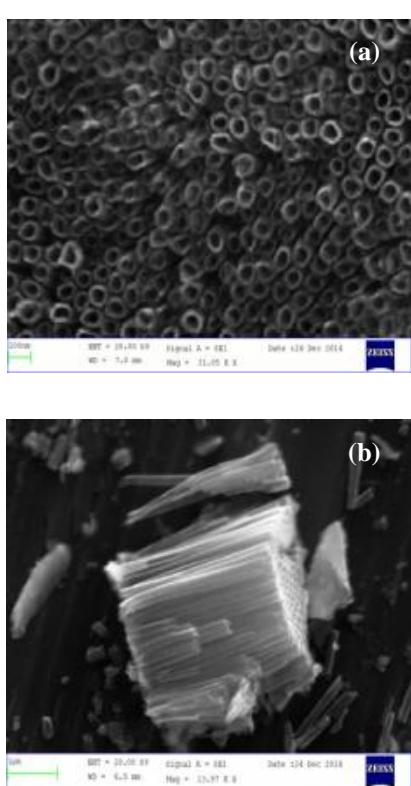
in nanosized materials would influence on the charge transport or band gap energy shifts which can determine the light harvesting capacity of semiconductor material [4]. Among TiO_2 nanostructures, TiO_2 nanotubes have attracted more attention due to their excellent electronic and photonic properties. The oriented nanotube arrays provide not only a high surface area but also the electron transfer channels along the tube walls. The one-dimensional TiO_2 nanotubes can therefore offer good oriented charge-transport properties and can alleviate the intrinsically short carrier diffusion length owing to the intimate connection between the nanostructured TiO_2 and electrolyte [5].

Prior reports demonstrated that one-dimensional nanostructured TiO_2 photoelectrode such as nanotubes and nanowires enabled the water splitting cells to increase their efficiency which is due to an increase in light harvesting and charge transport [6]. The functional properties of nano- TiO_2 can be modulated upon varying particle size,

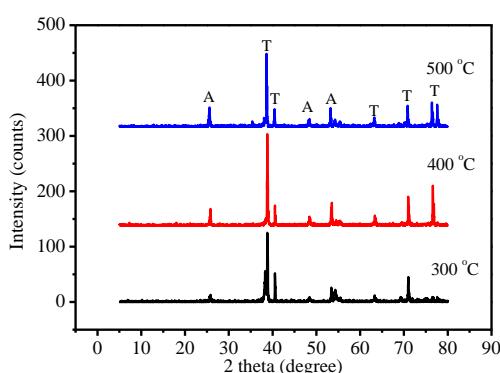
surface area, synthesis method and conditions, and crystallinity [7]. While a larger surface area with nano-TiO₂ increases the concentration of surface active sites for higher photocatalytic activity, it also increases the number of surface defects (lowering the crystallinity) resulting in charge trapping [8]. High crystallinity of the semiconducting material is one of the key factors determining the charge transport, eventually the photoelectrochemical cell efficiency. It is well documented that the crystallinity of the semiconducting materials including TiO₂ can be improved by annealing and their high crystalline structure would facilitate a decrease in grain boundaries, thereby increasing the electrical conduction and charge mobility [9, 10]. The present work involves the development of TiO₂ nanotube arrays by electrochemical anodization, examination of its crystallinity upon annealing, investigation into spectral dependent photoelectrochemical response of TiO₂ nanotubes and hydrogen evolution via water splitting. The principal focus of this study is to understand the correlation among the annealing induced crystallinity and electrochemical current density and hydrogen evolution rate of TiO₂ nanotubes in water splitting cell.

Materials and Methods

Titanium (Ti) sheet (99.7% purity) with a thickness of 0.2 mm was taken for the electrochemical anodization. Small pieces of Ti-sheet of size 25 × 20 mm² were ultrasonically cleaned in acetone and ethanol for 10 minutes each and then rinsed with distilled water and finally dried under air blow. For electrolyte solution, the volume ratio of ethylene glycol (EG) to distilled water (DW) was fixed at 9:1 and the ammonium fluoride (NH₄F) content was 0.5 wt%. Anodization was performed at room temperature in a standard two-electrode electrochemical cell with Ti foil as the working electrode and platinum rod (diameter: 1mm; purity: 99.9%) as the counter electrode connected to a dc power supply. The applied voltage between the Ti sample and the pt cathode (2 cm apart) was 30 V and the anodization time was 1 hour. The as-anodized TiO₂ nanotubes (TiO₂-NTs) samples were rinsed with distilled water and dried in air. Anodized samples were annealed at 300 °C, 400 °C and 500 °C in a digital muffle furnace (DMF 05) for 2 hr.


The surface morphology and size of TiO₂-NTs were investigated by Scanning Electron Microscopy (SEM ZEISS EVO 60) and its crystal phase by using X-ray diffractometer (Bruker D8 Advance).

The photoelectrochemical properties of TiO₂-NTs were investigated using a three electrodes photoelectrochemical cell with TiO₂ nanotubes array as the working photoelectrode, platinum rod as the counter electrode and Ag/AgCl was used as the reference electrode. 1 M potassium hydroxide with 1 wt% of ethylene glycol solution was used as the electrolyte in this experiment. The 100 W LED light with different wavelengths (665 nm, 590 nm, 515 nm and 370 nm) were used as the light sources. Then, a linear sweep potentiometry was swept from -0.5 to 1V at a scan rate of 5 mV s⁻¹ using the Potentiostat/Galvanostat electrochemical analyzer (CS350). The hydrogen evolution experiment using TiO₂-NTs as catalyst in water splitting was carried out using homemade photoelectrochemical (PEC) cell where the TiO₂-NTs sample was used as photoanode and a platinum rod as cathode. Water splitting experiments were carried out in 1 M aqueous KOH electrolyte with addition of ethylene glycol (EG) applying an external bias of 30 V. A 100 W LED white light was used as the light source to irradiate the photoanode.


Results and Discussion

Morphology, size and crystalline phase of TiO₂-NTs

First, the size of morphology of anodized TiO₂ nanotube (TiO₂-NTs) were examined by scanning electron microscopy (SEM). Fig. 1 depicts the SEM images (top view and cross-sectional view) of TiO₂ nanotube arrays. It is clear that the TiO₂-NTs were well-defined and uniform morphology over large area. The average inner diameter of TiO₂-NTs is 100 nm and the length is around 2 μm estimated by cross-sectional view of TiO₂-NTs (Fig.1 b). Upon annealing the sample at 300, 400 and 500 °C, the crystalline phase of TiO₂-NTs was identified by X-ray diffraction (XRD). Fig. 2 shows the XRD patterns of TiO₂-NTs annealed at 300 – 500 °C. The major diffraction peaks were examined with standard diffraction data of pure Ti and anatase phase TiO₂. The diffraction peaks corresponding to anatase phase TiO₂ were found at 25.28°, 48.05° and 53.89°. The peaks were more intensified at higher annealing temperatures (400 °C and 500 °C), suggesting an improved crystallinity of TiO₂-NTs. The pure Ti peaks still existed in the obtained XRD patterns because of the pure Ti base on which TiO₂-NTs were formed.

Fig. 1 SEM images of TiO_2 nanotube arrays
(a) Top view and (b) Cross- sectional view

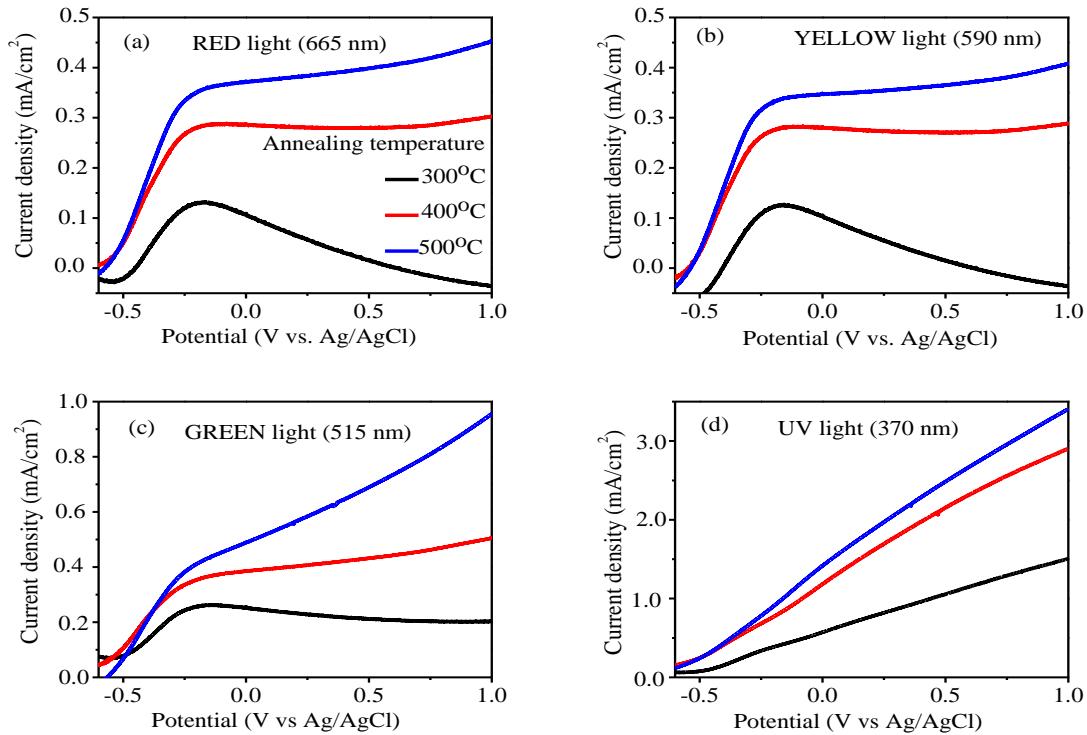
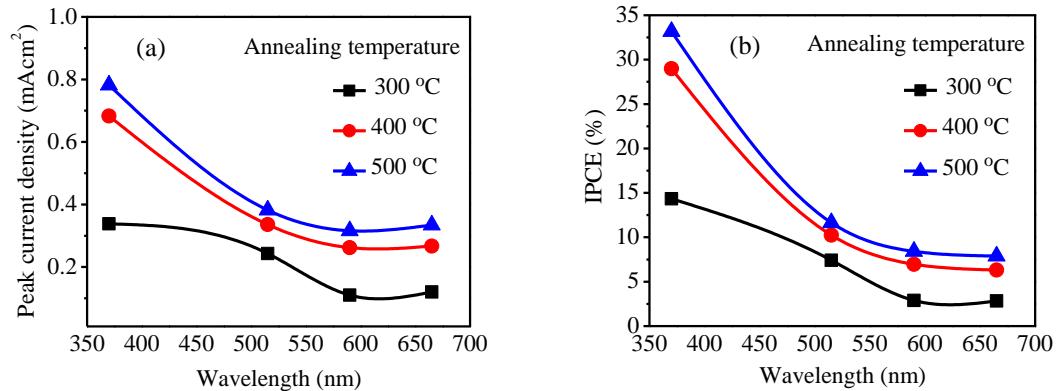


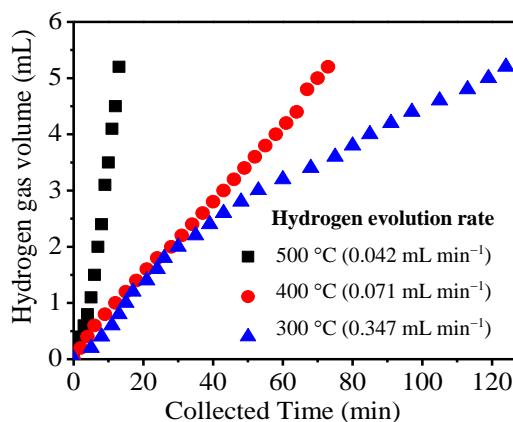
Fig. 2 XRD patterns of TiO_2 -NTs annealed at 300°C, 400 °C and 500 °C (“A” and “T” stand for - Anatase phase and pure Titanium respectively)


*Photoelectrochemical response of TiO_2 -NTs:
Varying annealing temperatures of TiO_2 -NTs*

The photoelectrochemical response of TiO_2 -NTs annealed at 300 °C, 400 °C and 500 °C in KOH aqueous solution was investigated by evaluating the electrochemical peak current densities from linear sweep voltammograms (−0.5 to 1.0 V) under light illumination with different wavelengths (665 nm, 590 nm, 515 nm and 370 nm) (Fig. 3). Using the measured peak current densities, we calculated the spectral dependent incident-photon-to-current-efficiency (IPCE) of TiO_2 -NTs which is a better parameter reflecting the spectral dependent photoresponse of TiO_2 -NTs. The spectral dependent IPCE was calculated by using the equation: $\text{IPCE} (\%) = 1240 J(\lambda) / \lambda I(\lambda) \times 100\%$ where $J(\lambda)$ is the current density and $I(\lambda)$ is the light intensity at a particular wavelength (λ). The peak current densities and IPCE values are plotted against the illuminated light wavelength and depicted in Fig. 4.

It is observed that for all annealed temperatures, the peak current densities of TiO_2 -NTs are almost unchanged under red and yellow light and increased under green and UV light. It is obvious that increase in peak current is more pronounced under more energetic light (UV) which is attributed to the wide band gap of TiO_2 [11, 12]. When we see the annealing effect on current densities, at the particular wavelength of light, the current densities increased with increasing annealing temperature which is ascribed to the increased crystallinity of TiO_2 -NTs at higher annealing temperatures. The peak current density is as high as 0.782 mA cm^{-2} for TiO_2 -NTs annealed at 500 °C under UV. In order to visualize clearly the effect of annealing temperature and light illumination on IPCE, we plot the IPCE against the wavelength as seen in Fig. 4. A pronounced increase in IPCE is found under high energetic UV illumination and in high temperature annealed TiO_2 -NTs. The reason is the same as mentioned previously. The maximum IPCE of 33.1% is realized for TiO_2 -NTs annealed at 500 °C under UV illumination.

Fig. 3 Linear sweep voltammograms of TiO_2 -NTs annealed at 300 °C, 400 °C and 500 °C under (a) red, (b) yellow, (c) green and (d) UV light illumination


Fig. 4 Plots of (a) peak current density and (b) IPCE (%) against the illuminated light wavelength for TiO_2 -NTs

Hydrogen evolution rate of TiO_2 -NTs in water splitting : Varying annealing temperatures of TiO_2 -NTs

The photoelectrochemical activity of TiO_2 -NTs was evaluated by measuring quantitatively the amount of hydrogen (H_2) and oxygen (O_2) separately produced through water splitting in the photoelectrochemical (PEC) cell. The principle

of photoelectrochemical water splitting is based on the conversion of light energy into chemical energy. Measurement was carried out with TiO_2 -NTs annealed at 300 °C, 400 °C and 500 °C as the photoanode in the KOH aqueous solution using an external bias of 30 V. Upon white light illumination, hydrogen gas was evolved at Pt electrode and collected in the syringe. The

volume of hydrogen gas collected was plotted against the collected time in Fig. 5. It is seen that TiO_2 -NTs annealed at 500 °C generated a larger volume of hydrogen in short time compared to those annealed at 300 °C and 400 °C. The hydrogen evolution rate was found to be 0.042 mL min^{-1} , 0.071 mL min^{-1} and 0.347 mL min^{-1} for TiO_2 -NTs annealed at 300 °C, 400 °C and 500 °C respectively. Higher hydrogen evolution rate in higher temperature annealed TiO_2 -NTs is attributed to the increased crystallinity and current generation in TiO_2 -NTs annealed at higher temperatures. We also performed the control experiments such as the testing of hydrogen evolution using (i) as-anodized TiO_2 -NTs (before annealing) and (ii) pure Ti sheet (before anodization) both of which only show pure Ti peaks (not showing the crystalline anatase peak of TiO_2) in XRD profiles. Apart from changing the photocatalyst sample, all other experimental conditions are identical in these control experiments. Extremely low hydrogen evolution was observed in the former case and no hydrogen evolution in the latter case. It supports the fact that only crystalline TiO_2 based photocatalysts enable an effective hydrogen evolution via water splitting.

Fig. 5 Collected hydrogen gas volume vs. time for TiO_2 -NTs water splitting

Conclusion

The TiO_2 -NTs with diameter of ~100 nm and length of 2 μm were developed by electrochemical anodization. X-ray diffraction study indicates that improved crystallinity is exhibited in TiO_2 -NTs annealed at higher temperature 500 °C. The photoelectrochemical measurements show that the electrochemical peak current density of TiO_2 -NTs

in KOH aqueous solution is higher under energetic UV light activation. Moreover, it is observed that the electrochemical current and hydrogen evolution rate increase with increasing annealing temperature of TiO_2 -NTs and is as high as 0.347 mL min^{-1} for TiO_2 -NTs at 500 °C with applied bias of 30 V. Increased hydrogen generation in water splitting is attributed to the increased current generation stemmed from the improved crystallinity of photocatalyst TiO_2 -NTs which is induced by high temperature annealing. Thus the crystallinity of photocatalyst plays a key role in determining the electrochemical current generation and hydrogen evolution in photoelectrochemical water splitting.

Acknowledgements

The authors acknowledge the research grant supported by University of Mandalay [Project No. 80 (2016-17)].

References

- [1] C. Hao, W. Wang, R. Zhang, B. Zou, H. Shi, Enhanced photoelectrochemical water splitting with $\text{TiO}_2@ \text{Ag}_2\text{O}$ nanowire arrays via p-n heterojunction formation, *Sol. Energy Mater. Sol. Cells.* 174 (2018) 132 – 139.
- [2] G. Wang, H. Wang, Y. Ling, Y. Tang, X. Yang, R.C. Fitzmorris, C. Wang, J.Z. Zhang, Y. Li, Hydrogen-Treated TiO_2 Nanowire Arrays for Photoelectrochemical Water Splitting, *Nano Lett.* 11 (2011) 3026 – 3033.
- [3] M.G. Walter, E.L. Warren, J.R. McKone, S. W. Boettcher, Q. Mi, E.A. Santori, N.S. Lewis, Solar Water Splitting Cells *Chem. Rev.* 110 (2010) 6446 – 6473.
- [4] M.I. Baraton, Nano- TiO_2 for Solar Cells and Photocatalytic Water Splitting: Scientific and Technological Challenges for Commercialization, *The Open Nanoscience Journal.* 5 (2011) 64 – 77.
- [5] H.S. Kim, K.S. Ahn, S.H. Kang, Enhancing photoelectrochemical water splitting performance of TiO_2 nanotube arrays by controlling morphological properties, *Electron. Mater. Lett.* 10 (2) (2014) 345 – 349.
- [6] I.S. Cho, Z.B. Chen, A.J. Forman, D.R. Kim, P.M. Rao, T.F. Jaramillo, X.L. Zheng, Branched TiO_2 nanorods for photoelectrochemical hydrogen production, *Nano Lett.* 11 (2011) 4978 – 4984.

- [7] S. Pavasupree, J. Jitputti, S. Ngamsinlapasathian, S. Yoshikawa, Hydrothermal synthesis, characterization, photocatalytic activity and dye-sensitized solar cell performance of mesoporous anatase TiO_2 nanopowders, *Mater. Res. Bull.* 43 (2008) 149 – 157.
- [8] X. Chen, S.S. Mao, Titanium dioxide nanomaterials: Synthesis, properties, modifications and applications. *Chem. Rev.* 107 (2007) 2891 – 2959.
- [9] Z.W. Zhao, B.K. Tay, Study of nanocrystal TiO_2 thin films by thermal annealing, *J. Electroceram.* 16 (2006) 489 – 493.
- [10] A.S. Wochnik, M. Handloser, D. Durach, A. Hartschuh, C. Scheu, Increasing Crystallinity for Improved Electrical Conductivity of TiO_2 Blocking Layers, *ACS Appl. Mater. Interfaces.* 5 (12) (2013) 5696 – 5699.
- [11] H. Kiziltas, T. Tekin, Increasing of Photocatalytic Performance of TiO_2 Nanotubes by Doping AgS and CdS, *Chem. Eng. Commun.* 204 (8) (2017) 852 – 857.
- [12] S. Noothongkaew, J.K. Han, Y.B. Lee, O. Thumthan, K.S. An, Au NPs decorated TiO_2 nanotubes array candidate for UV photodetectors, *Progress in Natural Science: Materials International.* 27 (6) (2017) 641 – 646.