

ผลของกลีเซอรอล และเพค-10 ไดเมทิโコンต่อสมบัติของฟิล์มชีวภาพ จากเปลือกทุเรียน

สุจัยพรผล เจริญแก้ว และ สุปรารถ แก้วกิริมย์*

บทคัดย่อ

งานวิจัยนี้ได้ทำการสังเคราะห์คาร์บอชีเมทิลเซลลูโลสจากเซลลูโลสของเปลือกทุเรียนเหลือทิ้ง สายพันธุ์ หมอนทอง ด้วยปฏิกิริยาการบอชีเมทิเลชัน ยืนยันโครงสร้างทางเคมีของคาร์บอชีเมทิลเซลลูโลสด้วยเทคนิค อินฟราเรดสเปกโตรสโคปี และศึกษาโครงผลึกด้วยเทคนิคการเลี้ยวเบนของรังสีเอกซ์ (WAXD) เตรียมฟิล์มชีวภาพ จากการบอชีเมทิลเซลลูโลสที่สังเคราะห์ได้หลายสูตร โดยใช้กลีเซอรอล และเพค-10 ไดเมทิโコンเป็นสารเติมแต่ง ศึกษาผลของปริมาณสารเติมแต่ง (10 20 และ 30 %wt) ต่อสมบัติเชิงกล ความแข็ง โครงผลึกของแผ่นฟิล์ม และอัตรา การซึมผ่านของไอน้ำ ผลการทดสอบแสดงให้เห็นว่าการเติมกลีเซอรอลช่วยให้ฟิล์มมีความยืดหยุ่นเพิ่มขึ้น แต่มีค่ามอ คุลัลสของยังคง ใบจะต้องลดลง ในขณะที่การเติมเพค-10 ไดเมทิโコン มีผลให้ค่าความยืดหยุ่นของฟิล์มลดลงอย่างมีนัยสำคัญ แต่ค่า มวลคุลัลสของยังเพิ่มสูงขึ้น ในงานวิจัยนี้การเติมกลีเซอรอล 30 %wt ทำให้ฟิล์มชีวภาพที่ได้มีค่าการต้านทานแรงขัดขึ้น ถูกที่สุดที่ระดับ 3H และร้อยละการยึด ณ จุดขาดสูงที่สุดเท่ากับ 47 % และมีอัตราการซึมผ่านของไอน้ำต่ำที่สุดคือ $317 \text{ g/day} \cdot \text{m}^2$

คำสำคัญ : คาร์บอชีเมทิลเซลลูโลส, ฟิล์มชีวภาพ, กลีเซอรอล, เพค-10 ไดเมทิโコン

Effects of Glycerol and PEG-10 dimethicone on Properties of Biofilm from Durian rind

Sujaipun Khemkaew and Supranee Kaewpirom*

Abstract

In this study, carboxymethyl cellulose was prepared from cellulose extracted from Montong-durian rind by carboxymethylation. Chemical structure of the synthesized carboxymethyl cellulose was confirmed by Fourier-transform infrared spectroscopy. Its crystal structure was also defined using wide-angle X-ray diffraction. Biofilms from such carboxymethyl cellulose with various formulations were produced using two different additives, namely glycerol and PEG-10 dimethicone. The effects of additive content (10, 20, and 30%wt) on mechanical properties, hardness, crystal structure and water vapor transmission rate of those biofilm were revealed. The experimental results showed that with addition of glycerol, the flexibility of the film increased while the Young's modulus decreased. On the other hand, with addition of PEG-10 dimethicone, flexibility of the film was reduced significantly, while the Young's modulus was improved. In this study, the biofilm with 30 %wt glycerol displayed the highest scratch resistance at 3H, the highest elongation at break of 47 % and the lowest water vapor transmission rate of $317 \text{ g/day} \cdot \text{m}^2$.

Keywords : Carboxymethyl cellulose, Biofilm, Glycerol, PEG-10 dimethicone

Department of Chemistry, Faculty of Science, Burapha University.

* Corresponding author, E-mail: kaewpiro@buu.ac.th Received 9 December 2015, Accepted 24 May 2016